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Tensors; the Metric Tensor
In the last talk we talked about and concretised our notion of an "infinitesimal displace-
ment". This gives rise to the notion of tensors when considering other quantities of
interest. It turns out that a lot of quantities in physics linearly depend on displacements.
Wald gives two examples of that:

Firstly, consider a magnetic probe in three-dimensional space. Around it you can mea-
sure the magnetic field strength. But, if you change the orientation of the probe with
respect to the observer, the field strength is going to change so theoretically we might
assume to need an infinite number of measurements to determine the magnetic field.
However, since the field strength is obviously linearly dependent on the orientation of
the probe, only three readings with the probe oriented in three linearly independent di-
rections are needed. Similarly, take an object in three-dimensional space in equilibrium.
At a point in the object we can run a plane with normal vector 𝑛 through it, splitting
the object into two sides. One can then measure the force applied by one side onto the
other in the direction of a chosen vector 𝑙. Again, the force, F, is linearly dependent on
our choices (𝑛, 𝑙) and instead of an infinite number of readings, we only need 3 ∗ 3 = 9,
namely the values F takes when 𝑛 and 𝑙 point in basis directions. Thus, we have a bi-
linear map (𝑛, 𝑙) ↦ 𝐹 , called the stress tensor.

In this talk we will introduce tensors as a way of understanding linear dependence on
displacements and apply them to our case of interest in order to gather another tool to
work with going forward, and introduce a metric on the tangent space at a point defined
earlier.

First, let’s recall some concepts from linear algebra and functional analysis:
Let 𝑉 be an arbitrary finite-dimensional vector space over ℝ. Its dual space is defined
by 𝑉 ∗ ∶= {𝑓 ∶ 𝑉 → ℝ ∣ linear}; elements in it are called dual vectors. Defining
addition and scalar multiplication in the obvious way, we turn 𝑉 ∗ into a vector space
of its own. We have, that dim𝑉 ∗ = dim𝑉 . This is proven by the following definition:
Given a basis 𝑣1, ..., 𝑣𝑛 of 𝑉 , we define elements 𝑣1∗, ..., 𝑣𝑛∗ ∈ 𝑉 ∗ by

𝑣𝜇∗(𝑣𝜈) = 𝛿𝜇,𝜈

This obviously defines a basis on 𝑉 ∗, called the dual basis to the basis {𝑣𝜇}.
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Since 𝑉 ∗ is a finite dimensional vector space, we can define its dual, called the double
dual of 𝑉 , 𝑉 ∗∗. Since the dual basis is dependent on the basis we chose for 𝑉 , there is
actually no natural way of identifying 𝑉 ∗ with 𝑉 even though they are apparently iso-
morphic. There is however such a way for 𝑉 ∗∗ with the canonic embedding 𝜏 defined
by

𝜏 ∶ 𝑉 → 𝑉 ∗∗, 𝑣 ↦ 𝜏𝑣
where 𝜏𝑣(𝑤∗) ∶= 𝑤∗(𝑣).
This map is obviously linear and injective and, since dim𝑉 = dim𝑉 ∗∗, bijective.

This is enough of a recap to now introduce tensors. We define a tensor of type (𝑘, 𝑙) to
be a multilinear map

𝑇 ∶ 𝑉 ∗ × ... × 𝑉 ∗ × 𝑉 × ... × 𝑉 → ℝ

where there are 𝑘 slots for dual vectors and 𝑙 slots for ordinary vectors.

Thus, a tensor of type (0, 1) is just an element of 𝑉 ∗. Similarly, a tensor of type (1, 0)
is an element of 𝑉 ∗∗ which we can identify with an element of 𝑉 .
Because of this identification, we can view tensors of higher type in different ways. For
instance, take a tensor 𝑇 of type (1, 1). If we fix any 𝑣 ∈ 𝑉 , the remaining map is
𝑇 (⋅, 𝑣) ∶ 𝑉 ∗ → ℝ ∈ 𝑉 ∗∗ which we can identify with an element of 𝑉 . We have thus
input a vector in 𝑉 and recieved another vector in 𝑉 in a linear fashion. So, we can
view 𝑇 to be a map 𝑉 → 𝑉 , respectively as a map 𝑉 ∗ → 𝑉 ∗.

We denote the space of tensors of type (𝑘, 𝑙) as 𝒯 (𝑘, 𝑙). Defining addition and scalar
multiplication of multilinear maps in the obvious way, 𝒯 (𝑘, 𝑙) becomes a vector space.
Since such a multilinear map is uniquely defined by the values it takes on basis vectors
of 𝑉 and 𝑉 ∗, and since there are 𝑘+ 𝑙 slots with 𝑛 possible basis vectors each, we have
dim𝒯 (𝑘, 𝑙) = 𝑛𝑘+𝑙.
Let’s take a look at two important operations on 𝒯 (𝑘, 𝑙). For that let’s fix a basis {𝑣𝜇}
and its dual basis {𝑣𝜇∗}.
The first operation we call the contraction of a tensor with respect to the i-th and j-th
coordinates and define it as

𝐶 ∶ 𝒯 (𝑘, 𝑙) → 𝒯 (𝑘 − 1, 𝑙 − 1)

𝐶𝑇 ∶=
𝑛
∑

𝜎=1
𝑇 (⋅ .. ⋅ 𝑣𝜎∗ ⋅ .. ⋅ , ⋅ .. ⋅ 𝑣𝜎 ⋅ .. ⋅)

where the vectors of the basis and dual basis are put into the 𝑖 − 𝑡ℎ and 𝑗 − 𝑡ℎ slot
respectively. As we can see all this operation does is move the tensor it is applied to to
a lower type by determining two slots by filling them with basis vectors.
Note that the contraction of a vector 𝑇 of type (1, 1) is just its trace if viewed as a map
from 𝑉 to 𝑉 .
The other important operation is called the outer product. Given two tensors 𝑇 ∈
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𝒯 (𝑘, 𝑙) and 𝑇 ′ ∈ 𝒯 (𝑘′, 𝑙′), we say that the outer product of 𝑇 and 𝑇 ′, denoted 𝑇 ⊗𝑇 ′,
is a tensor of type (𝑘 + 𝑘′, 𝑙 + 𝑙′) defined by

𝑇⊗𝑇 ′(𝑣1∗, .., 𝑣𝑘+𝑘
′∗
, 𝑣1, .., 𝑣𝑙+𝑙′ ) ∶= 𝑇 (𝑣1∗, .., 𝑣𝑘∗, 𝑣1, .., 𝑣𝑙)⋅𝑇 (𝑣𝑘+1

∗, .., 𝑣𝑘+𝑘
′∗
, 𝑣𝑙+1, .., 𝑣𝑙+𝑙′ )

Therefore the outer product presents one way of constructing tensors of higher type.
Recalling "𝒯 (1, 0) = 𝑉 " and 𝒯 (0, 1) = 𝑉 ∗, we find that we can construct tensors by
taking the outer product of vectors and dual vectors. We can therefore define a basis of
𝒯 (𝑘, 𝑙) with respect to a basis {𝑣𝜇} of 𝑉 and its dual basis {𝑣𝜇∗}, by considering the
𝑛𝑘+𝑙 elements

{𝑣𝜇1 ⊗ .. ⊗ 𝑣𝜇𝑘 ⊗ 𝑣𝜈
1∗

⊗ .. ⊗ 𝑣𝜈
𝑙∗
}

where into each of the 𝑘+ 𝑙 slots we put one of the 𝑛 (dual) basis vectors. Because these
elements are oviously linearly independent and span a subspace of dimension 𝑛𝑘+𝑙, we
have indeed found a basis. We can therefore write T with respect to that basis, yielding

𝑇 = 𝑇 𝜇1,..,𝜇𝑘
𝜈1,..,𝜈𝑙 𝑣𝜇1 ⊗ ... ⊗ 𝑣𝜈

𝑙∗

employing Einstein index notation. We call the 𝑇 𝜇1,..,𝜇𝑘
𝜈1,..,𝜈𝑙 the components of 𝑇 with re-

spect to the basis {𝑣𝜇}.
The operations introduced earlier can obviously also be written in this way. Their com-
ponents are given by

(𝐶𝑇 )𝜇1,..,𝜇𝑘−1𝜈1,..,𝜈𝑙−1 =
𝑛
∑

𝜎=1
𝑇 𝜇1,..,𝜎,..,𝜇𝑘−1
𝜈1,..,𝜎,..,𝜈𝑙−1

where the 𝜎 are put into the i-th and j-th slots, and

(𝑇 ⊗ 𝑇 ′)𝜇1,..,𝜇𝑘+𝑘′𝜈1,..,𝜈𝑙+𝑙′ = 𝑇 𝜇1,..,𝜇𝑘
𝜈1,..,𝜈𝑙 ⋅ 𝑇 ′𝜇𝑘+1,..,𝜇𝑘+𝑘′

𝜈𝑙+1,..,𝜈𝑙+𝑙′

respectively.

Now that we have a foundation of understanding of tensors, let us take a look at the
case we are most interested in in this seminar, namely when 𝑉 is the tangent space at a
point 𝑝 on a manifold 𝑀 , 𝑉𝑝. Its dual space, 𝑉 ∗

𝑝 , is called the cotangent space, vectors
in it cotangent vectors. If we define a coordinate basis {𝜕∕𝜕𝑥𝜇}, the associated dual
basis is denoted as {𝑑∕𝑑𝑥𝜇}. It follows from the vector transformation law

𝑣′𝜇′ =
𝑛
∑

𝜇=1
𝑣𝜇

𝜕𝑥′𝜇′

𝜕𝑥𝜇

and the definition of the associated dual basis vectors that the components 𝑤𝜇 of a dual
vector transform by

𝑤′
𝜇′ =

𝑛
∑

𝜇=1
𝑤𝜇

𝜕𝑥𝜇

𝜕𝑥′𝜇′

when changing coordinate systems. Similarly, the components of tensors transform by

𝑇
′𝜇′1,..,𝜇

′
𝑘

𝜈′1,..,𝜈
′
𝑙

=
𝑛
∑

𝜇1,..,𝜈𝑙=1
𝑇 𝜇1,..,𝜇𝑘
𝜈1,..,𝜈𝑙

𝜕𝑥′𝜇
′
1

𝜕𝑥𝜇1
... 𝜕𝑥

𝜈𝑙

𝜕𝑥′𝜈
′
𝑙
.
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This is known as the tensor transformation law.

We are now ready to introduce the metric tensor. A metric tells us the "infinitesimal
squared distance" associated with an "infinitesimal displacement". In the last talk we
found that our notion of an "infinitesimal displacement" is exactly captured in the defi-
nition of a tangent vector. Therefore, we define a metric to be a linear map 𝑉𝑝×𝑉𝑝 → ℝ,
so a tensor 𝑔 of type (0, 2). In addition to that we require 𝑔 to be symmetric and nonde-
generate. We can write 𝑔 in terms of its components by

𝑔 =
∑

𝜇,𝜈
𝑔𝜇𝜈𝑑𝑥

𝜇 ⊗ 𝑑𝑥𝜈 .

Given a metric we can always find an orthonormal basis {𝑣𝑖} of the tangent space at
each point such that 𝑔(𝑣𝜇, 𝑣𝜈) = ± 𝛿𝜇,𝜈 .
There are of course other orthonormal bases of 𝑉𝑝 but it turns out that the number
of positive/negative signs of 𝑔(𝑣𝜇, 𝑣𝜈) are always the same. We call that number the
signature of the metric. One mostly deals with positive definite metrics, so metrics
of the signature (+ + ...+), also called Riemannian metrics. However, the metric of
spacetime has the signature (− + ++) and is called Lorentzian.
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