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1 Constructing the form of the metric

The Schwarzschild metric is the solution to the Einstein equations

Gµν = Rµν −
1

2
gµνR = 8πTµν (1)

for a static and spherically symmetric spacetime in vacuum. It describes the gravitational
field of the exterior of a round body, that does not change in time. The goal is to find
all 10 independent metric components gµν of the general metric

g =
3∑

µ,ν=0

gµνdx
µdxν . (2)

Definition 1 (Static spacetime). A spacetime is called static if there exists a one-
parameter group of isometries, ϕt, whose orbits are timelike curves. And there exists
a spacelike hypersurface Σ, which is orthogonal to the orbits of the isometries.

This corresponds to the condition, that there exists a timelike Killing vector field ξ
(along the orbits of the isometries ϕt), which is hypersurface orthogonal. A Killing vector
field satisfies

∇µξν +∇νξµ = 0. (3)

And by Frobenius’s theorem, which can be found in Wald’s General Relativity, hyper-
surface orthogonality is equivalent to the Killing vector field satisfying

ξ[a∇bξc] = 0, (4)
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where the brackets around the indices [a b c] denote the total antisymmetrization of the
Tensor ξa∇bξc.
These isometries describe the time translation and time reversal symmetry of a static
spacetime.

The next step is to choose coordinates for the static spacetime. Every point p in Σ
lies on a unique orbit of ξ. Therefore, they can be labelled by the parameter t and the
other (spatial) coordinates in Σ, which we call x1, x2 and x3. The points p can then be
translated along the orbits to another hypersurface Σt. Note that Σt is still orthogonal to
ξ and the coordinates of p from Σ are conserved along the orbits, because the parameter
t is independent of the chosen coordinates on Σ. Thus, there are no cross terms dtdxi

and the metric takes the form

g = −f(x1, x2, x3)dt2 +
3∑

i,j=1

hij(x
1, x2, x3)dxidxj. (5)

We also know that the function f takes the form f = −ξaξ
a.

Definition 2 (Spherically symmetric). A spacetime is called spherically symmetric if
its isometry group contains a subgroup that is isomorphic to SO(3). The orbits of that
isometry are 2-spheres.

The elements of SO(3) can be interpreted as rotations, hence the spacetime is invariant
under rotation. Each orbit 2-sphere is a multiple of the unit 2-sphere. Thus, the orbit
2-sphere can be completely characterized by its total area A. By introducing spherical
coordinates (r, θ, ϕ), where the radial coordinate r is defined as

r =

(
A

4π

) 1
2

, (6)

we get the induced metric on each orbit 2-sphere

g = r2(dθ2 + sin θdϕ2) =: r2dΩ2. (7)

It is important to note that r can not necessarily be interpreted as the distance from the
surface of the sphere to its center, because the manifold could look like R × S2 rather
than R3 = R≥0 × S2. In this case there is no center of the sphere.

If a spacetime is both static and spherically symmetric, then the Killing vector field
ξ (if unique) must be orthogonal to the orbit 2-spheres. Thus, ξ is invariant under all
rotational symmetries and the orbit 2-spheres lie wholly within the hypersurface Σt.
The full coordinates on the spacetime can now be constructed by selecting a sphere in
Σt and choosing spherical coordinates θ and ϕ on this sphere. These coordinates can be
extended to other spheres in Σt by means of geodesics. So if ∇ar ̸= 0, we have coordi-
nates (r, θ, ϕ) in Σt and by translating along the Killing vector field ξ, we can finally
choose the coordinates (t, r, θ, ϕ). In these coordinates a metric of a static spherically
symmetric spacetime takes the form

g = −f(r)dt2 + h(r)dr2 + r2(dθ2 + sin θdϕ2). (8)
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2 Calculating the Ricci tensor and solving the Einstein
vacuum equations

For the exterior of the body, the Energy-Momentum tensor Tµν vanishes, because there
is no matter field terms. Therefore, the Einstein equations in vacuum simplify to

Rµν = 0. (9)

A straightforward way to get the Ricci curvature tensor is to first calculate all Christoffel
symbols Γρ

µν for the metric from equation (8) with

Γρ
µν =

1

2

∑
σ

(
g−1

)ρσ (∂gνσ
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)
. (10)

This leads to the following nine independent, non-zero components.

Γt
tr =

1

2
f−1f ′, Γr

tt =
1

2
h−1f ′,

Γr
rr =

1

2
h−1h′, Γr

θθ = −rh−1,

Γr
ϕϕ = −rh−1 sin2 θ, Γθ

ϕϕ = − sin θ cos θ, (11)

Γθ
θr = r−1, Γϕ

ϕr = r−1,

Γϕ
ϕθ =

cos θ

sin θ
.

All other non-zero components can be constructed through the symmetric property of
the Christoffel symbols, Γρ

µν = Γρ
νµ. The Ricci curvature can now be derived from the

contraction of the Riemann curvature

Rµν = Rα
µαν = ∂αΓ

α
µν − ∂νΓ

α
µα + Γβ

µνΓ
α
βα − Γβ

µαΓ
α
βν . (12)

Then we finally get the Ricci curvature tensor components as

Rtt =
1

2
h−1f ′′ − 1

4
h−2h′f ′ − 1

4
(hf)−1 (f ′)

2
+ (hr)−1 f ′, (13)

Rrr = −1

2
f−1f ′′ +

1

4
(hf)−1 h′f ′ +

1

4
f−2 (f ′)

2
+ (hr)−1 h′, (14)

Rθθ = 1− h−1 +
1

2
h−2rh′ − 1

2
(hf)−1 rf ′. (15)

Additionally, we have Rϕϕ = sin2 θRθθ and all other components of the Ricci tensor are
vanishing. By setting all components to zero and adding f−1 times equation (13) to h−1

times equation (14), we get

f ′

f
+

h′

h
= 0, (16)
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which has the solution

f = Kh−1, (17)

where K is a constant. To check if the constant has any physical relevance or if they
can be chosen freely as nice numbers, we re-scale the time coordinate to t → K1/2t. The
metric then gives

g = −Kh−1(r)dt2 + h(r)dr2 + r2dΩ2

= −h−1(r)d(K1/2t′)2 + h(r)dr2 + r2dΩ2

= −h−1(r)dt′2 + h(r)dr2 + r2dΩ2. (18)

We can see that the constantK can be absorbed into the time coordinate and we continue
with the re-scaled time. This is equivalent to choosing K = 1. Inserting f = h−1 into
equation (15) now yields

−f ′r + 1− f = 0 ⇔ d

dr
(rf) = 1. (19)

A solution to this differential equation is given by

f = 1 +
C

r
, (20)

where C is a constant. Thus, the metric that solves the vacuum Einstein equations for
a static and spherically symmetric spacetime is

g = −
(
1 +

C

r

)
dt2 +

(
1 +

C

r

)−1

dr2 + r2dΩ2. (21)

3 The Newtonian limit

To determine the constant C, we can check the solution of the Einstein equations in
the Newtonian limit, because the new theory should agree with the well tested Newton
mechanics. For that, it makes sense to look at radial free fall in the Schwarzschild
spacetime for r ≫ |C|. The radial free fall is a geodesic curve of the form

γ =


γt

γr

γθ

γϕ

 =


t
r
θ0
ϕ0

 , (22)

where θ0 and ϕ0 are constant. The geodesic equation in coordinates is

d2γµ

dτ 2
− Γµ

αβ

dγα

dτ

dγβ

dτ
= 0. (23)

4



In the case of radial free fall only dγr

dτ
and dγt

dτ
is ̸= 0. So the geodesic equation for radial

free fall is

d2r

dτ 2
− Γr

tt

(
dt

dτ

)2

= 0, (24)

if we also assume that dt
dτ

≫ dr
dτ
. Calculating the Christoffel symbol gives

Γr
tt =

1

2

(
g−1

)rα (∂gtα
∂t

+
∂gαt
∂t

− ∂gtt
∂xα

)
= −1

2

(
g−1

)rr ∂gtt
∂r

= −1

2
f(−f)′

= − C

2r2

(
1 +

C

r

)
≈ − C

2r2
. (25)

For r big enough the radial geodesic equation gives

d2r

dt2
≈ C

2r2
, (26)

while Newtonian mechanics gives

d2r

dt2
= −GM

r2
, (27)

with M being the mass of the body and G being the gravitational constant. Thus, for
both theories to agree, it must hold

C = −2MG. (28)

In natural units one sets G = 1. And finally the Schwarzschild metric is

g = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2. (29)

In addition to the singularity at r = 0, the Schwarzschild metric has a breakdown in
coordinates at rS = 2M , which is called the Schwarzschild radius. Restoring the units
leads to the value

rS =
2GM

c2
≈ 3

(
M

M⊙

)
km (30)

for the Schwarzschild radius, where M⊙ is the mass of the sun. So for normal bodies
(i.e. close to the size and mass of the sun), the Schwarzschild radius lies inside the body,
where the coordinates of the exterior solution are not valid. It therefore has no relevance.
But if the mass of the body is compacted enough , rS lies outside of the body and we
have a black hole. The Schwarzschild radius is then the event horizon of the black hole.
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