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1 Introduction

This paper is meant as a contribution to the discussion of what is a suitable response

or containment strategy for the Covid-19 epidemy. It grew out of an earlier version,

[SL2]. The main part is an explanation of the type of models that have been developed

in mathematical epidemiology, the relationship between them, and in particular the

notion of an unstable state.

This is of great importance since some politicians seem to suggest that we can reduce

the number of active infections to zero and then return to normal life. Mathematics

on the other hand suggests, that if you want to return to normal life, without the

risk of a restart of the epidemy, you can only do so, if enough people are immunized.

And that probably means, that without an effective vaccine there is no way to keep

the total number of infected below a natural threshold - the so called herd immunity.

In the simplest mathematical model, whose only variables are the currently infected

and currently immunized individuals, this is just a percentage of the total population.

For Covid-19 this model is inappropriate - one has to deal with different subgroups of

the population, and I will explain later how this is done. To a large extent the mathe-

matical theory is applicable to any infectious disease. The respective differences lie in

the parameters of the model, and they are difficult to determine. These parameters

are crucial in order to give an estimate on the damage an epidemy will do. Therefore,

I will discuss data to begin with, and especially mortality or infection fatality rate,

as this is sometimes called in the literature. Data are basically results of tests, so I

will first, in a summary fashion, describe my (incomplete) understanding of tests, the

immune system and the process of infection.

The aspect I am not discussing is the destructive effect that the measures against the

epidemy have for the economy and the whole fabric of the society.

Further reading: [Ma], [Zin].
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2 Generalities about virus (PCR) tests, antibody

(serological) tests, and a layman’s picture of the

course of infection

In a simplified way we think about the process of an infection as a contact process: a

person with an active infection or an infectious person meets another, and if this one

is susceptible, i.e. not yet immunized, then with a certain probability the infected will

pass on the infection. Passing on the infection means realistically passing on a cer-

tain, not too small, virus load, which starts to grow exponentially. This will trigger a

response of the immune system of the newly infected, and in the cases with a positive

outcome eventually the virus will be eliminated. Part of this immune response is the

production of very specific blood cells (B cells) which in turn produce antibodies that

target the specific antigen (in this case the virus). One does not have this type of

cells before the first infection. By type of cell I mean cells with this precise genome.

They are ’newly invented’ by mutations in a small part of the genome of specific cells

- stem cells - in the bone marrow. The PCR tests try to find the virus, for Corona in

swabs from throat and nose. The serological tests try to find the antibodies in blood

samples. Both tests need minimum levels of virus respectively antibodies.

There is a big difference between SARS-CoV-1 or SARS and SARS-CoV-2, the virus

responsible for Covid-19. Like in influenza, infected persons become infectious before

or even without ever developing symptoms, as was pointed out e.g. in studies con-

ducted in Guangdong and Vo, [Guang], [Vo]. On the other hand the level of virus

associated with PCR detectability can be safely assumed to be somewhat lower than

the virus level which is necessary to become infectious. The antibody response, or

more specifically the monoclonal antibody response, starts later. There is a Lon-

don/Liverpool study [Lon] on SARS-CoV-2 which gives a variable delay from the

onset of symptoms of 5 - 40 days. 8.5% of the participants of that study never devel-

oped antibodies, at least not a detectable amount, or seroconverted as is the jargon.

For hospitalized patients of Covid-19, according to this study, the antibody level stays

constant for up to 2 months. This is certainly not true for asymptomatic or mildly

symptomatic infected, who represent the majority of all SARS-CoV-2 cases. This will

be explained in Section 3. But in any case the antibody count will go down when

there is no antigen to work on. Recovered persons will no longer be serologically pos-

itive but still be immunized against the Covid-19 virus, that means they are able to

crank up monoclonal antibody production without the delay of 10 days. See Figure

1 for a schematic picture of virus and antibody time evolution.

It should be noted though that Figure 1 refers to the dominant type of infection. It

has been observed that patients can become PCR negative and PCR positive again,

the virus probably attacking different organs. See the graph for patients P and H
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Figure 1: A schematic view of virus and antibody counts normalized to level 1 for

detectability. Numbers will be explained in the next section.

(mother and daughter) in the Guangdong study.

In many respects the SARS-CoV-2 virus infection resembles the flu. The virus passes

via aerosol inhalation to the sputum in the throat and nose region and proliferates

there. One does not even have to develop a cold before one starts to be infectious.

At least 40% of all infected among all age groups never develop symptoms at all, and

an overwhelming majority only develops mild symptoms. Under normal conditions,

represented e.g. by the ’new cases’ in the study [Vo], the ratio of asymptomatic is

60% - the Vo data will be discussed extensively in Section 5.

But whether you are asymptomatic or presymptomatic, you are still infectious [Mu]. If

one goes by the mild symptoms on the other hand, these are not specific. In the study

[Eng], 90% of the people who crossed one of the symptom boxes in the questionaire,

were serologically negative. The characteristic SARS like illness, and that is what

Covid-19 meant at the beginning, hits only very few of the infected, namely less than

5% in the age group below 50. On the other hand, there is overwhelming qualitative

evidence that whether you develop a mild cold, no symptom at all or the severe illness,

depends on the level of exposure to contaminated aerosol. The qualitative picture I

have in mind is Figure 2. There is evidence that people in Vo got the infection on

two different events, the percentage of severely symptomatic lower and the percentage

of asymptomatic higher (60%) for the later group.

Unfortunately there are many types of Corona viruses, and viruses are mutating

fast. So antibodies for Covid-19 are not 100% effective for Covid-20, and that is bad
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Figure 2: Conjecture of dependence of the outcome of the infection on aerosol

contamination c .

news. On the other hand antibodies for pre-Covid-19 Corona infections might have

some effectiveness for Covid-19. This might be called cross immunization, like the

vaccination a la Jenner, using the cowpox antibodies against smallpox. In any case,

whether a vaccine will produce antibodies as effective as the natural antibody against

Covid-19 or even more effective against Covid-20 remains to be seen. This is especially

true since the question whether flu vaccines prevent asymptomatic transmission has

not even been asked to my knowledge.

The studies quoted in this section are [Vo], [Guang], [Mu], [Lon], and [Eng].

3 Conclusions from the studies in Vo, Gangelt,

and Bad Feilnbach, with a view to application

to the study in Geneva

The study in the city of Vo, in Veneto is based on massive PCR testing of its ca.

3 000 inhabitants, mainly on the days of February 25, 26, 27, 28, 2020 which was

the carnival week, and a second test on March 7, 2020. The study proved that in a

small community with two tests about a week apart and strict quarantine rules plus a

lockdown of two weeks, February 23 - March 7, 2020 the infection can be eradicated.

The study also gives an estimate on the duration of the span of detectability - larger

than the time of infectiousness - of a Covid-19 infection: typically around 10 days. I

will explain in Section 5 how this is possible. Actually, I think this has to be modified

a bit, since, as I mentioned already, there seem to have been two separate infection
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waves in Vo.

The study in Gangelt was another carnival outbreak, in this case in the rhine region,

and traced back to a festivity on February 15th. In a community of 12 600 inhabitants

randomized PCR and antibody tests were performed on 900 people. 33 of those

participating in the test in the week of March 31 - April 6 tested PCR positive. This

has to be compared to 48 positive tests in the rest of the population during the same

week.

One can not directly compare these numbers, one has to take oversampling into

account, i.e. the fact that if you repeat the test every week you will test individuals

positive up to 3 times. More precisely, if you know the weekly rate of positive PCR

tests in a population as a percentage of the whole population, and you take a large

random subset of this population, where you find a percentag p of PCR positive, then

there are formulas connecting p, d and α, with α being the percentage of infected that

your PCR tests discover, and d being the rate of new infections per day. Disregarding

the change over time of p and d one has:

p∑
k f(k)

= α ,
α

7 · d
=
α

p
o , 7 · o =

∑
k

f(k) .

Here f(k) is the probability that an infected stays detectable for at least k days, and

o is the oversampling.

Taking the Vo data into account, a rough estimate gives the rate of 0.9 to 1.6 for

oversampling and a probability of at most 0.18 for an infection to be discovered by

the tests out of the study. Estimating the cumulative number of infected up to March

31st with the help of the number of positive antibody tests within the test group,

i.e. 105, and comparing with the total of 340 PCR positives in Gangelt up to March

31st, gives 0.22, which I think is not a huge but significant difference. And as I will

explain too in Section 5, this is a conservative estimate.

Moreover the data of Gangelt indicate that about 1
3

of all infections occured during

carnival and of those, after the first week of March only a tiny fraction could be

discovered by PCR testing. So the 0.18 is probably too much, which means that after

one month the rate of false serologically negatives will be already significant.

Also there is a statement in the study [Gang] that only 16% of those serologically

positive and who had participated in the carnival festivities were asymptomatic. But

in Vo in exactly the same situation, a carnival outbreak, 45% were asymptomatic.

This apparent contradiction is most easily resolved if you assume that the sensitivity

of the serological test among the asymptomatic, call it s, is significantly below 1.

Solving the linear system

0.55 + 0.45 · s = x ,
0.45 · s

0.55
=

16

84

gives a global sensitivity x = 0.55/0.84 ≈ 0.65.
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For the serologically positive who had not participated in carnival the Gangelt study

gives a rate of 36% asymptomatic. But for the people who had been infected later

in the 8th calendar week during the outbreak in Vo, the ratio between asymptomatic

and symptomatic is ≈ 60%/40% (similar to the data from China, which I have only

from the FT newspaper). Solving

0.4 + 0.6 · s = x ,
0.6 · s

0.4
=

36

64

gives x = 0.4/0.64 ≈ 0.63, so a similar number.

Compare this to the fact sheet published by the RKI on its website, about an antibody

test conducted in Bad Feilnbach in the 23rd calendar week. In Bad Feilnbach the

outbreak had similarly occured around March 1st. After approximately 9 weeks, 40%

of the serologically negative stated on the questionaire to have been positively PCR

tested. I will assume they were symptomatic. Only 14.5% of the serologically positive

stated they were asymptomatic. The formula as above gives x = 0.55·0.6
0.85

≈ 0.38, if one

assumes the total percentage of asymptomatic infected to be only 45%, a conservative

estimate. So my conjecture on the ’true’ sensitivity of the antibody tests is that it

differs significantly from the sensitivity tested on hospitalized Covid-19 patients: It

starts out below 0.7 and after around 2 months drops to a value less than 0.4.

The large scale study in Geneva was conducted starting on April 6, and the result

of the first 4 weeks of antibody tests is published in [Gen]. I think that there the

sensitivity should be comparable to Gangelt, [Gang], i.e. less than 0.7, since both

studies were conducted at the tail end of the outbreak. With this correction, my

guess is that by the beginning of May at least 15% of the population in Geneva had

gone through the infection. For Bad Feilnbach I guess a similar percentage, and for

Gangelt a percentage close to 20% . More precisely, if you take into account that

only 22 individuals who had been tested PCR positive previously showed up for the

antibody test in Gangelt, and if you assume 0.65 sensitivity for the antibody test,

then the number of infected in the test group would be ca. 170, i.e. about 19% by

March 31st. But the sensitivities might also be a bit lower. The calculations I did

above, except for the example of Bad Feilnbach, assume a sensitivity close to 1 for all

symptomatic. This is probably not true, my estimate is only a conservative estimate.

Going back to the question of oversampling, the corresponding estimate for the over-

sampling o would be

48

33 · 13
o · 0.19 =

340

1300
, so o = 1.23 .

These are all estimates which could be checked in larger scale randomized studies.

They are ’universal’ and not restricted to the studies from which they were obtained.

This holds not only for the sensitivity of the antibody tests (0.65% after 1 month,

0.39% after 2 month) but also holds for the oversampling o within PCR tests.

The studies quoted in this section are [Gen], [Guang], and [Vo].
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4 Data for the Covid-19 epidemy

Here I want to explain my understanding of the data on Covid-19, focussing mainly

on mortality. In politics and the media actually covid deaths and new infections

are constantly mentioned. Since there is a not explicitly stated but clearly notice-

able undercurrent claiming that covid is so much more dangerous than the flu, let

me begin with the likely flu mortality. The influenza virus is rapidly mutating and

unfortunately it does not seem to have lost virulence lately. The data I use are the

total number of monthly death from the federal statistical office in Germany. What

I propose to look at, are the months, where the number of deaths is above certain

quantiles, the median and the 2/3 quantile, and to use the excess mortality above

the median as an upper estimate for the number of victims of the epidemy, and the

excess mortality above the 2/3 quantile as a lower estimate respectively. For the 60

months from May 2015 up to April 2020 we have 28 months with more than 76 000

deaths and among those are 20 months with more than 78 500 deaths.

The months with more than 76 000 deaths in the respective periods May - April are:

2015/2016: January - March,

2016/2017: October - March,

2017/2018: December - April,

2018/2019: December - April,

2019/2020: October - April,

and two outliers, namely August 2018, and July 2019.

The months with more than 78 500 deaths in the respective periods May - April are:

2015/2016: January and March,

2016/2017: December - March,

2017/2018: December - April,

2018/2019: December - March,

2019/2020: December - April.

The estimate on the number of deaths from infectious diseases is

8 400− 14 000 for the period 2015/2016,

39 700− 50 700 for 2016/2017,

46 500− 59 000 for 2017/2018, with 28 600− 31 100 alone in March 2018,

19 900− 31 600 for 2018/2019,

and 17 700− 33 500 in 2019/2020.

The lower estimate for the number of victims of the epidemy in April 2020 is indeed

lower than the known number of covid deaths.

My conclusion is, that we had every year a ’flu’ epidemy in the winter months, cul-

minating in March. In March 2020 - by the lower estimate - we would estimate

6 400 flu deaths. against 1 800 covid deaths. April 2020, the peak of the covid epi-

demy, resulted in 5 800 covid dead, still much less than the flu deaths in March 2018.

The period 2014/2015 is outside the 60 months considered here, but would have an
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estimated 34 300− 45 000 flu deaths.

The first set of data that I want to compare the above numbers to are the data of

swedish covid deaths, because there was no complete lockdown in Sweden, and part

of Sweden has probably by now reached a stable state of immunization. That of

course does not mean that there are no infections, it only means that the number of

infections is a large fixed multiple of the imported infections, as in Iceland.

By the end of September 2020, Sweden had a little bit less than 5 900 covid deaths,

i.e. 0.59 per mille of its population of about ten million people. Comparing this to

the ’flu’ epidemies Germany experienced between 2015 and 2020, and especially to

the number of people killed by the ’flu’ in the single month of March 2018, i.e. at

least 0.35 per mille of the german population, puts the covid death toll of Sweden

into perspective.

Let me first estimate mortality, or as the technical term is IFR (infection fatality

rate) for the different age groups in Germany, and use this together with the swedish

data to get an estimate on the number of infected, i.e. immunized, in the swedish

poplation of the 20− 49 years old. I am using the German data from the RKI for the

PCR positive in the calender weeks 27− 39, 2020 (July - end of September) and the

covid deaths up to October 6th, in order to account for delays, to calculate a CFR

(case fatality rate) and compare with the weeks 10−22. These weeks are chosen since

mass testing was introduced during June. The result is in per mille for the CFR of

the respective age groups:

20− 29 years old: 0.08 , down from 0.3 in the calender weeks 10 - 22,

30− 39 years old: 0.43 , down from 0.85,

40− 49 years old: 1.2 , down from 2.25,

50− 59 years old: 6.0 , down from 9.3,

60− 69 years old: 25 , down from 41 ,

and the 70− 79 years old: 91, down from 138 in the calender weeks 10 -22.

The ratio of confirmed covid cases in these age groups, also given in per mille, are:

2.3, 1.5, 1.35, 0.85, 0.45, and 0.35.

Probably the older age groups get tested less frequently.

In the calender weeks 10 - 22 these numbers were

2.9, 2.4, 2.6, 2.4, 1.8, and 1.6.

These last ratios per mille are in good agreement with the observation in the Geneva

study [Gen], that the rate of infected is roughly constant in the population of the

20− 49 years old, and drops by a factor of 0.7 in the age group of the 50− 65 years

old.

So it seems that by increasing test capacities since June, we have quadrupled the

discovery rate of Corona infections in the age group 20 − 29, doubled the discovery

rate in the age group 30−49, but increased it only by 50% in the other age groups. We
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have to take into account that Geneva was a hotspot for Switzerland. The discovery

rate in hotspots is always higher than elsewhere, and nevertheless the discovery rate

was at most 10% in Geneva. We can be sure that the discovery rate in the whole of

Germany was not more than 5%, and probably even less before the end of May. That

gives us an estimated IFR of

• 0.02 per mille for the 20− 29 years old

• 0.04 for 30− 39

• 0.12 for 40− 49

• 0.5 for 50− 59

• 2.0 for 60− 69 and

• 7.0 per mille for the 70− 79 years old.

These are the numbers under the conditions of the epidemy in Germany in the months

of March to May 2020. If we assume the same IFR for Sweden, this would mean that

ca. 0.5 million people have been Corona infected among the 30− 39 years old swedes

by the end of September, 0.35 million among the 40 − 49 years old, and ca. 0.32

million among the 50 − 59 years old. That means roughly one third of the swedish

population in the age group 40 − 59 and two thirds in the age group below 40 have

gone through the infection. And that might correspond to the required level for

stable immunization during the summer months. The last number is not very reliable

because the number of Corona deaths is - luckily - so small in that age group. But you

can compare the total death toll of Corona in Sweden up to the end of September and

the estimated death toll of the flu epidemy January to March 2018 in Germany. The

swedish and german percentages in the different age groups are comparable. Actually

the swedish percentages are a bit less than the german ones.

Next I want to discuss - but only briefly - the antibody tests that have been conducted

in many of the Corona hotspots, apart from Geneva also Ischgl in Tyrolia, the province

of Bergamo in Lombardy, Greater London etc. All of them gave a huge discrepancy

between the PCR confirmed cases and the serologically proved cases. This reduced

the total IFR across all age groups, bringing them in line with the CFR observed in

Iceland, which is 0.5%.

For instance for Greater London where 17% of all tested persons were serologically

positive, one arrives at 0.6%. But as I pointed out already, the serological tests do

not give the true number of infected, most likely also not for Geneva, London and

Gangelt. Only 1
2

to 2
3

of the total number of infected were discovered by the antibody

tests. The ratio is certainly much lower for the antibody tests among blood donors,
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on the other hand it should be closer to one in Lombardy, because of the higher

percentage of severe cases.

Finally in this section I want to comment on an obvious fact.

Corona is not only more dangerous for the older people, but Corona is also dispro-

portionally dangerous for the elderly, who are living in nursing homes. The rate of

deaths occuring in nursing homes in Germany as a proportion of all covid deaths has

gone down from 40% to 23%, but it is still huge and could be avoided, as the study in

Vo has shown, by testing all staff working in nursing homes or ambulant care weekly.

The percentage of the elderly in ambulant care among the covid deaths is not avail-

able for Germany. But among those elderly who are in need of care according to the

legal definition, only one fourth live in nursing homes, another fourth receives profes-

sional care at home, and half are still cared for by family members. The latter ones

obviously have a vastly lower risk of being infected by the Corona virus or any other

infectious disease. The ones getting professional care at home have an intermediate

risk. It would be important for the statistics to know how high their risk is.

Some of the websites providing data are:

destatis.de (esp. ’Sonderauswertung monatlicher Sterbedaten’)

rki.de (data per age group of covid cases only on the Tuesday updates)

socialstyrelsen.se

folkhalsomyndigheten.se (latest data only in swedish)

bag.admin.ch

gov.uk

and london.gov.uk

5 Remarks on statistics and the data from Vo

When we speak about statistics we mean two different things: descriptive statistics

like the data of the RKI or the monthly death numbers of the national statistical

office, and predictive statistics. For instance, saying that a male person of age 65

has a probability of 98.5% to reach the age of 66, is of the second kind, as are all

the precentages/per mille given in the previous paragraph for total immunization of

populations based on randomized antibody tests. One should keep in mind that pre-

dictive statistics is always based on the law of large numbers. Confidence intervals

are calculated based on probabilities for a test to give a false positive or false negative

answer for given values of the quantity you want to estimate. This is, in a way, com-

pletely illogical in itself, but can be made rigorous if one assumes a probability for the

quantity you want to estimate, sometimes called a Bayesian prior. In this example

of the 65 year old man, e.g. there is as I explained a huge variation of frequency of

deaths from month to month, which is connected to infectious diseases. The year on
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year variation is much lower for Germany, and below 4% even in extreme flu years like

2018. We always explain that by using the law of large numbers. This law can be seen

as an hypothesis or as a theorem derived under certain assumptions - again on prob-

abilities. For applications probabilities mean nothing else than relative frequencies

of observable or non-observable data. So predictive statistics is impossible without

modelling assumptions. It is always based on the existence of a large number limit

of relative frequencies, and one should not place too much confidence in confidence

intervals.

One can distinguish two approaches to the teaching of mathematical statistics.

The first is usually called the Bayesian approach. It starts from a set of particular

e.g. Gaussian probability distributions (but there are many others). These are dis-

tributions jointly of the quantities you don’t observe but want to predict and on the

other hand on the observed quantities. Based on these distributions you calculate

e.g. confidence intervals for estimators, that is prediction algorithms whose input are

the observed quantities and whose output are the predictions.

The second approach goes under the title of nonparametric statistics. In this approach

one tries to replace the assumption on the specific formula for the joint distribution

by more general qualitative (independence) and quantitative (tightness) assumptions.

What one never can avoid, is the assumption that the joint distribution is well approx-

imated by one determined by finitely many alternatives, and that the observations

are (conditionally) independent.

I will now explain all this a bit more precisely with the example of the anonymized

public data of the Vo study [Vo], which is available as an Excel file on the web. Let

me first tell the story of the events in Vo, as you can reconstruct them from that file,

using also the Guangdong data, [Guang].

In the week before carnival, February 16−22nd, there were already a number of covid

infected in Vo, and among them the individual who was to become the first covid

dead in Italy. It was probably known that covid had arrived in Italy, but not that it

had arrived in Vo. So there were carnival celebrations. On Friday, February 21st, the

first covid death occured. The team in the University hospital of Padova found the

same day a second PCR positive. The team immediately swung into action, testing

40, probably contacts, on Saturday and about 60 on Sunday. In retrospect one has

to say that they hit on a chance correlation, because they found a large number

of people who had been infected on a single event in the week before. In any case

they had already discovered 21 infected individuals by Sunday, of which 5 did not

show any symptoms. So they were able to persuade the authorities to declare a lock

down of 14 days for Vo on Sunday, and started to test everyone in Vo, trying to find

as many of the infectious as early as possible. So about 200 people were tested on

Monday, February 24th, about 470 on Tuesday, about 410 on Wednesday, about 490

on Thursday, about 920 on Friday, and finally about 40 on Saturday, February 29th.
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At the end of the lockdown on March 7th almost everyone was tested again. Eight

new infections were discovered.

How can one conclude the dates or probable dates of the infection from this Excel

file? Apart from the first and the second test results, there are two more hard data.

The first is, whether a positively tested individual got severely ill - if I counted

correctly, these are 7 out of 79, excluding the person who was dead on Friday, February

21st. The second is, whether a person who tested positive with no symptoms did

develop symptoms later. Of these presymptomatic cases there were 10. Now these

presymptomatic individuals are clustering: One of them was discovered on Saturday,

4 of them on Sunday, 4 on Thursday and one on Friday. The only way to explain

this is, that a person is presymptomatic with overwhelming probability only for one

day; moreover, a majority of the discovered individuals got infected on two separate

occasions; and finally, that the incubation time, that is the time from infection to

the first day, when one is PCR detectable, is almost deterministic for a typical case.

To obtain this almost deterministic incubation time, one can use the anecdotical

evidence collected in the Guangdong, [Guang] and Munich, [Mu] studies. My guess is

that you become presymptomatic on the 3rd or 4th day after infectious contact (latin

numbering), so that the presymptomatic discovered on February 27th were infected

on February 24th or February 25th. This was some children’s carnival celebration

most likely. And similarly the presymptomatic of February 23rd were infected on

what was probably a more adult celebration on February 20th or 21st. I am telling

this also as a story to show, how easily seemingly anonymized data can be used with

a little bit of additional information e.g. as a starting point for a police investigation

into unruly behavior.

But here I want to use these data for an estimate of f(k), the probability to be

detectable by PCR tests for at least k days. As I said before, the use of nonparametric

statistics requires a model for a probability distribution, jointly for the quantity you

want to estimate and the observations.

I will try to estimate the number of infected in the group of people who were tested

on February 26/27th. The data I will use are the number of asymptomatic (7/8),

presymptomatic (0/4), newly discovered (2/2), positively tested (11/16), and indi-

viduals in the respective groups (410/490). I will assume that every infected person

was detectable first on either February 23rd or February 27th, which is in the end

only an assumption on the probability distribution of the first date of detectability,

and as usual there will be a lot of hidden independence assumptions.

Calling α the expected ratio of asymptomatic to symptomatic, n23, n27 the expected

number of infected which were detectable first on February 23rd, respectively on

February 27th, we derive empirical error functions, assuming already that α = 1
2
,

f(4) = 1, and that infected are assigned with probability 4.1/9, i.e. 410/(410 + 490),

to Wednesday and 4.9/9 to Thursday. That means independent assignment. These
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error functions are

e1 = n23
4.1

9
f(4)− 9 (5.1)

e2 = n27
4.1

9
f(10)− 2 (5.2)

e3 = n27
4.9

9
f(1)− 10 (5.3)

e4 = n23
4.9

9
f(5) + n27

4.9

9
f(1)− 16 . (5.4)

(5.5)

By linear regression, i.e. by minimizing
∑

j e
2
j we get the rough estimate

f(5) ≈ 0.56 , f(10) ≈ 0.24 .

I would not give confidence intervals for these numbers. But the estimate on
∑

k f(k)

one can infer from the data in [Guang] is
∑

k f(k) < 7.

If that holds true finally for the study in Gangelt, the oversampling o would be no

oversampling but o = 1
7

∑
f(k) < 1. And correspondingly the sensitivity of the

serological tests should be even considerably lower than the 0.65 after one month

and 0.39 after three months under normal conditions. In order to explain what is

a normal condition, it is useful to recall what I conclude from the Vo data. There

were two different events in the period February 16− 25th, when many got infected.

The first event produced, as far as I could make out, 5 presymptomatic individuals

and 4 severely symptomatic. It also apparently produced among the asymptomatic

individuals around 50% which were detectable for at least 2 weeks. The second event

at the end of the week, as far as I could make out, produced no severely symptomatic,

again 5 presymptomatic and apparently a proportion of 60% asymptomatic. These

numbers are of course far too small to give anything like a confidence interval. But

they provide a picture which is more or less in agreement with the data for 4 locally

infected individuals in the study of Guangdong.

There are two distiguishable courses the infection may take. If the infection is an

aerosol infection, a majority, ca. 2/3 if you believe my estimator, is detectable on

the 3rd or 4th day after infection, and stays detectable for not more than 5 days.

That means probably, that the virus does not progress to a significant extent from

the respiratory system to other organs. For the remaining 1/3 there is more than

one virus peak and probably a sequence of infections of several organs. Looking at

the Guangdong data for patients P and H, i.e. mother and daughter, one expects a

strong hereditary determinacy, whether you belong to the first or the second group.

But whether the infection produces the disease or remains asymptomatic, and if it is

symptomatic becomes severe, depends crucially on the virus load.

What I also infer from the two sets of data [Vo] and [Guang], is that the fact that one

becomes detectable and contagious about one day before symptom onset is typical
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only for the aerosol infection. For other infection categories associated with close

contact, see patients E and L, husband and wife, the picture is different. Again this

makes sense. The virus has already proliferated, say in the intestines, before reaching

large concentrations in the sputum.

The studies quoted in this section are [Guang] and [Vo].

The Vo data are available under github.com/ncov-ic/SEIR Covid Vo

Further reading: [Sil].

6 Basic results from mathematical epidemiology

Mathematical epidemiology is part of mathematical population dynamics. It tries to

predict the outcome of an epidemy. There are stochastic models of contact process

type and deterministic models, describing the evolution of the percentage of infected

individuals in a population with a differential equation. The stochastic models con-

verge in the limit of large numbers to deterministic ones. Nowadays often people

assume that the stochastic models are closer to reality. This is not necessarily the

case, since the notion of probability itself, if not seen as an abstract concept, relies

on the law of large number limit. If a probability is given for an individual to be

infectious for a period between times t1 and t2 after infection, that is a prediction of

the relative frequeny of observing that period, and more precisely to oberserve t1 and

t2 with a margin of error. The more ’realistic’ a stochastic model becomes, the more

data are needed to estimate its parameters. If one does not have a huge amount of

data, one has to work with assumed probability distributions of specific forms, which

have little to do with the underlying real process. In such cases one is better off using

deterministic models, which give a better picture of the underlying process in terms

of what we know about the ensemble behavior.

There are on the other hand questions that can be phrased only in terms of stochastic

models. One example is what happens, when one infectious individual is introduced

into a large population with previously no infection. Another example is, how long do

you have to wait in a population of finite size, till there are no more active infections.

The answers will then be phrased in terms of probabilities.

In epidemiology the oldest useful model is the SIR model. S stands for susceptibles,

I for currently infected, and R for removed, either dead, immunized, or quarantined

individuals. The model works with the assumption that individuals who have un-

dergone the infection will not be susceptible again on the time scale of the epidemy.

This is an idealization which will be true only approximately. In its simplest form

the model does not take the course of the infection, the incubation time etc. into

account. The duration of the infection just appears as a scaling of time. Also the

population is considered to be homogeneous. But this is not crucial. I will explain
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how to modify the SIR model to a model with many more parameters. The variables

of this ’state of the art’ deterministic model are nj, sj(t), ij(t, a), rj(t) where the index

j = 1, ..., k denotes subpopulations, t denotes time, and a the time which has passed

since infection for an infected individual.

• nj is the percentage of individuals in the jth subpopulation, not depending on

time t,

• sj(t) is the percentage of susceptibles, i.e. of individuals who have not yet been

infected in the subpopulation j,

• ij(t, a) is the percentage of infectious individuals who have been infected at time

t− a in the subpopulation j,

• rj(t) is the percentage of removed, i.e. those who are immune, dead, or in

quarantine in the subpopulation j,

We say that this model is of meanfield type. The probability of a not yet infected

individual to become infected depends on which subpopulation the indvidual belongs

to, and the percentages of infectious individuals of given time since infection in all

the different subpopulations. But it depends on nothing else.

For most of my exposition this probability will depend linearly on said percentages,

a ’mass action’ type law. For these models you have invariants - the equivalent of

energy and momentum in physics - that determine the outcome of the infection in

the population depending on the current state of its course, without the need to solve

the differential equations. These invariants have the form

log sj(t)−
k∑
l=1

Ajl sl(t)−
k∑
l=1

∫ d

0

Bjl(a) il(t, a) da .

Here the Ajl represent effective cross infection rates, and the integrals represent cur-

rent infection levels. Their form will be derived in Section 8. In Section 9, I will

discuss modificiations which may become important when the number of currently

infected becomes large.

But also for these non mass action type models the crucial obervation is still valid. It

depends on the percentages of immunized in the subpopulations rj whether a state

with zero infections is stable or not. To be precise, there still is a matrix with entries

Ajl as above, such that the question whether the state sj(t) = σj, ij(t, a) = 0 is stable

or unstable is equivalent to the statement that the matrix with entries σjAjl = A(σ)jl
has a spectral radius R(A(σ)) smaller or larger than 1. Or in other words whether

all iterates of the simple recursive system

xj(m+ 1) =
∑
l

A(σ)jl xl(m) . (6.1)
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are exponentially decaying or whether there exists an exponentially growing solution.

If the state sj = σj, ij = 0 is unstable then there exists a socalled heteroclinic

trajetory, starting at that state and leading to a stable state. For the deterministic

system any small introduction of infectious will lead to an epidemy following that

trajectory.

For the corresponding stochastic system the result can be phrased as follows:

introducing one infectious individual in a population where the percentage of suscep-

tibles is in an unstable state will, with a maybe small but positive probability, result

in the epidemy following the heterochlinic trajectory of the deterministic limit sys-

tem. It should be noted though that the quantity R(A(σ)) which is sometimes called

the reproductive factor of the virus does not determine the initial exponential growth

factor of the epidemy - sometimes described with socalled doubling times. The latter

is given by a more involved ’eigenvalue’ equation (8.6).

Trying to eradicate the infection by temporary measures is not having any effect

before you have reached a state of stable immunizations 1 − sj. In the case of one

homogeneous population, where s is a simple parameter, not a vector, that means

1− s > 1− σ̄ ,

where 1− σ̄ is the socalled herd immunity.

7 Classes of models

The oldest type of models in population dynamics are recursive sequences. Formula

(6.1) is an example, but probably the most famous are the Fibonacci numbers pro-

posed by Leonardo of Pisa around 1200 to model the unchecked growth of a rabbit

population. (Actually he was most probably not primarily interested in rabbits but

in continued fractions). In formulas these models are

nk+l+1 = f(nk, nk+1, · · · , nk+l) ,

for an algorithm f having as input the number of individuals in the preceding l

generations and as output the number of individuals in the current generation, i.e.

the rabbits of the l previous generations ”produce” the new generation. The recursive

system (6.1) is of this type. Generational models are still popular but mostly in the

form of stochastic processes in discrete time. There the final formula is

nk+l+1 = f(nk, nk+1, · · · , nk+l, ω) .

This is shorthand for an f that has as output not a number but probabilities. Mostly

the examples are of just three conditional probabilities, birth, death or keeping the
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status quo

pi(nk, · · · , nk+l) = P (nk+l+1 = nk+l + i | nk, · · · , nk+l) ,

where i = 1, 0, or −1 and
∑1

i=−1 pi = 1. As an algorithm that means that the output

is no longer one number but three positive real numbers. As a dynamical system that

is initialized with l natural numbers, it produces likewise a sequence not of numbers

but of probabilities to observe a natural number, i.e. a sequence of sequences of length

nk + l of positive real numbers.

The problem with generational models is that generations are not synchronized. Even

in humans it is not so rare to find e.g. an uncle who is younger than his niece. The

second problem is that time is continuous and not discrete. The simplest type of

stochastic model that avoids these types of shortcomings are mean field processes in

continuous time.

In order not to waste too many paragraphs I will switch now to the stochastic model

for the spread of an infectious disease of the SIR type for one homogeneous population.

That means we have a population of size N , S(t) is the number of individuals that

have not yet been infected at time t, I(t, a) is the number of individuals that have

been infected at time t− a, and R(t) is the number of removed individuals, i.e. dead,

immune, or quarantined.

From the point of view of an individual in the population the process or course of the

illness looks as follows. The individual is in the set of susceptibles up to a random

time t1, when it gets infected, then the virus starts to multiply within the individual.

When the virus count reaches a certain value, the infected becomes infectious with

infectivity α(a) at time t = t1 + a, and after a certain time length d, the function α

will become zero. Between t1 and t1 + d the infected individual will be removed at a

time t1 + a2, which again is random. The usual way to model these random times is

as independently exponentially distributed, that is

P (t1 > t)− P (t1 > t+ h)

hP (t1 > t)
≈ 1

N
ρ(t) ,

P (a2 > a)− P (a2 > a+ h)

hP (a2 > a)
≈ δ(a) .

Here ρ(t) stand for infection rate, and δ(a) for removal rate. The mean field assump-

tion is that

ρ(t) = α0

∑
t=t1+a; a<a2

α(a) ,

where α0 is the contact rate in the population. In words, this assumption means that

the probability of two individual meeting is independently identically distributed

(i.i.d.) - the magic notion in stochastics.

Historically the deterministic SIR model preceeds the stochastic model. It is around

100 years old and does not take effects like the incubation time of the disease into
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account. It is of the type of equations describing mass action kinetics in chemical

reactions, i.e. a simple system of O(rdinary) D(ifferential) E(quations). The simple

SIR model for one homogeneous population reads

∂ts = −αis
∂ti = αis− βi (7.1)

∂tr = βi .

The meaning is: s, i, r are the percentages of susceptibles, infected, and removed in

the population, α is the infection rate, and β is proportional to 1/d, where d is the

duration of the infection. The graphs that are usually shown on the web, namely the

Figure 3: Schematic picture of the solution curves.

time evolution of new and cumulative infections, roughly correspond to the solution

18



curves i(t), r(t), see Figure 3.

The connection between the stochastic SIR model and this deterministic SIR model

is indirect. This will be discussed in Section 8. Here I will just point out that

it is easy to show that in the large N -limit the stochastic SIR model will become

deterministic. The limit is not a simple ODE, since it keeps the information of

the time a since infection for the infected. Formally the equations are P(artial)

D(ifferential) E(quations) in t, a, albeit of the simplest type

∂ts(t) = −α0

[∫ d

0

α(a) i(t, a) da

]
s(t) = −i(t, 0)

∂ti(t, a) + ∂ai(t, a) = −δ(a) i(t, a) (7.2)

∂tr(t) = i(t, d) +

∫ d

0

δ(a) i(t, a) da .

Models of this type have been extensively studied. They are called delay differential

equations, integro-differential equations or (age)structured models. They define a

dynamical system but in the (infinite dimensional) space of functions i(t, ·) in the

interval [0, d]. So they are difficult to observe, e.g. by a virus test, which will be

negative during incubation and when the individual has ceased to produce the virus,

and which never will be so precise as to give you the a at the time of the test.

Further reading: [HRT] for general deterministic population dynamics and epidemi-

ology, [EP] for stochastic populations dynamics, and [DHB] for epidemiology.

8 Qualitative behavior of the SIR models (7.1),

(7.2), herd immunity.

I will start the discussion with the simplest SIR model (7.1) for a homogeneous

population and then move on to the ’state of the art’ SIR-systems.

The simple model is almost explicitly solvable. If you use the method of separation

of variables, which most science students will remember from their calculus class, the

equations become

∂t(s+ i+ r) = 0 , ∂t(log s+
α

β
r) = 0 , ∂ti = αis− βi .

So we have not one invariant or integral, but two:

i+ s+ r = 1 and ∂t

(
log s− α

β
s− α

β
i

)
= 0 ,

and as a consequence everything reduces to the equation

∂ts = β γ(0) s− β s log s+ α s2 , where β γ(0) = β log s(0)− α s(0)− α i(0) ,
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and the asymptotic limit for large times, i.e. ∞, will be given just by the identities

i(∞) = 0 and β log s(∞)− α s(∞) = β log s(0)− α s(0)− α i(0) ,

with the additional information ∂s

(
log s− α

β
s
)

(∞) ≥ 0, since s and i will both

eventually decrease. So the discussion of the simple curve β log s−αs tells everything

about the final outcome of the epidemy.

If you start with any s(0), i(0) > 0 for large times, the fraction of removed will

approach the unique solution of β log s−αs = β log s(0)−αs(0)−α i(0) with s < α
β
.

This value, α
β

is called herd immunity. Actually it has two interpretations. The first

is what I just explained: It is the maximal possible ratio of the population, which has

escaped the infection during the whole course of the epidemy. The second is: It is the

value of the ratio of susceptibles in the population at which the number of infected

starts to decrease.

If you believe in this simple model, the message for disease control is equally simple.

Suppose the epidemy starts with small i(0) and s(0) > β
α

, and suppose you are able,

but only temporarily, to decrease α, how far should you decrease α? Well, you know

in any case, that s(∞) ≤ β
α

eventually. So obviously to get there quickly and not to

overshoot the optimal choice is

α̃ = αβ
log β − logα− log s(0)

β − α[s(0) + i(0)]
.

If you reduce the contact ratio more, that will get you only to an s(T ), i(T ) at the

time T of lifting the temporary restrictions, which is the starting point of a new

epidemy. That is the second wave we are seeing at the moment in Germany.

Let me also briefly discuss what we call a singular perturbation of the simple SIR

model. The SIR model is very untypical for an ODE in two variables, s and i, since it

has the whole interval {(s, i) | 0 < s < 1, i = 0} as stationary points. If you perturb

it a bit (ε, as usual, means a small number) e.g.

∂ts = −αi s+ ε(1− s) , ∂ti = αis− βi .

the situation changes. The interpretation of the added term is that on a slower time

scale either removed individuals lose their immunity or the population changes by the

natural birth death process. For this singularly perturbed system there are only two

stationary states (i0, s0) = (0, 1) and (i1, s1) =
(
ε
(

1
β
− 1

α

)
, β
α

)
, and every solution

which starts with positive i(0) will spiral into (i1, s1). The behavior of the solutions

will be that of socalled relaxation oscillations, they will move fast from unstable s > β
α

and small i to stable s < β
α

and small i, but then on the slow time scale, s will increase

again, become unstable and so on. But the width of the oscillations will eventually

decrease exponentially, see Figure 4.

20



Figure 4: SIR with loss of immunization.

Now let us move to the state of the art deterministic s, i, r models. These are age

structured models of the type (7.2) discussed in the Section 7, but for several sub-

populations: sj, ij, rj, j = 1, · · · , k.

The equations read

∂tsj(t) = −ij(t, 0) (8.1)

(∂t + ∂a)ij(t, a) = −δj(a)ij(t, a) , 0 < a < d (8.2)

ij(t, 0) =

[∫ d

0

k∑
l=1

αjl(a) il(t, a) da

]
sj(t) (8.3)

∂trj(t) = ij(t, d) +

∫ d

0

δj(a)ij(t, a) da . (8.4)

Again, there is an almost explicit formula. With ∆j(a) =
∫ a

0
δj(σ) dσ, we have

∂a
(
e∆j(a) ij(t, a)

)
= −e∆j(a) ∂tij(t, a) , or

ij(t, a) = e−∆j(a) ij(t, 0)−
∫ a

0

e∆j(σ)−∆j(a) ∂tij(t, σ) dσ

= −∂t
(
e−∆j(a)sj(t) +

∫ a

0

e∆j(σ)−∆j(a) ij(t, σ) dσ

)
.

So apart from the k obvious invariants nj(t) = sj(t) +
∫ d

0
ij(t, a) da + rj(t), we have
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again the k additional invariants of the form

log sj −
k∑
l=1

Ajl sl −
k∑
l=1

[∫ d

0

Bjl(a) il(a) da

]
= fj(s, i) (8.5)

Ajl =

∫ d

0

αjl(a) exp(−∆l(a)) da , Bjl(a) = exp(∆l(a))

∫ d

a

αjl(σ) exp(−∆l(σ)) dσ .

And again we know that all sj are decreasing. Stability or instability of a point sj(0)

is determined by the matrix A(s(0)) with entries sj(0)Ajl. If sj(0) is exponentially

unstable, then the linearized system has an exponentially growing solution î with

positive îj, or a solution of the linear system of integral equations

ŝj(0) = sj(0)
k∑
l=1

∫ d

0

αjl(a) exp(−∆l(a)) exp(−λa) ŝl(0) da , (8.6)

with λ > 0 and all ŝl(0) of one sign. This is equivalent to R(A(s(0))) > 1, where

R(A(σ)) is the spectral radius of the matrix A(σ).

On the other hand, if R(A(s(0))) < 1 then s(0) is stable. So stability of the age

structured system is the same as for the system without age structure. It is also not

difficult to show, that if you start a Newton iteration to calculate

log sj −
k∑
l=1

Ajl sl = log σj −
k∑
l=1

Ajl σl + bj , with bj < 0

in a stable point σ, this will converge (monotonically in the sense of Krasnozelsky).

So you have your choice how to calculate the unique stable solution of

log sj −
k∑
l=1

Ajl sl = log sj(t0)−
k∑
l=1

Ajl sl(t0)−
k∑
l=1

[∫ d

0

Bjl(a) il(t0, a) da

]
.

Let me now turn to the calculation of overshooting in a recursive SIR model. The

SIR model for k subpopulations without delay is of the form

∂tsj = −
k∑
l=1

Ajl sj il

∂tij =
k∑
l=1

Ajl sj il − ij

where I scaled β to 1 by rescaling time. Examples of Ajl are

Ajl = αjαlnl/ᾱ , where ᾱ =
k∑
l=1

nlαl.
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Here αj represents the contact rate of the respective subpopulation and nj the fraction

of that subpopulation. If for l > j one has that αlnl is much smaller than αjnj, the

system has nearly a recursive structure. If Ajl = 0 for l > j, then we know that the

stable equilibria of the system are sj > A−1
jj for each j. So each subpopulation has its

own ’herd immunity’. But the problem is that the invariants are

log sj −
∑
l≤j

Ajl sl −
∑
l≤j

Ajl il .

So even if sj(0) < A−1
jj but sl(0) >> A−1

ll for l < j, one will produce a potentially

huge overshooting. If you want to avoid this, by temporarily reducing αj, the only

way is, to make sure that the subpopulation l reaches its ’herd immunity’ before the

epidemy starts again in the subpopulation j.

Figure 5 visualizes this effect. Two strategies are compared for a realistic situation

with two subpopulations, think about the older and the younger, more active popu-

lation. The system is not strictly recursive. If you follow the ’switch on switch off’

strategy, in the end more of the older generation have gone through the infection than

necessary. The reduction of cases in the younger generation is minimal, if at all.

Figure 5: Two strategies for containment in the case of a nearly recursive structure for two

subpopulations. The black crosses represent a two step strategy, where contact between

the subpopulations is kept minimal in the first step. The blue circles represent a strategy

of repeated lockdowns for the whole populations whenever infection levels have reached a

certain value.
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Further reading on system (8.1) - (8.4): [RR].

9 Looking more closely at the mechanism of con-

tagion. Superspreading events and non mass ac-

tion kinetics

The infection by inhalation of contaminated aerosol is for corana as for many other

virus infections the dominating mechanism, especially outside family circles. It cer-

tainly does not mean that this is the only mechanism, but the one important for the

spreading of the epidemy. It is clear that the probability to get infected and moreover

also the outcome of the infection depends crucially on the amount of virus contami-

nated aerosol that is inhaled. Except for heavily symptomatic persons, the amount

one individual is exhaling is not so large. Probably this consists of single viroids

which then act as a nucleation kernel for a microdroplet formed with condensating

exhaled water vapour. Therefore you have to come and stay close to this individual

to get infected. Outside - in the summer - it is unlikely that anyone gets infected

that way normally. This situation changes when one stays in a forced air ventilation

environment. In a turbulent flow the aerosol does not settle down. The situation also

changes when staying in a room packed with people. The aerosol concentration of the

virus depending on the number of infected can reach levels where basically everyone

gets infected (and a large proportion seriously ill). That is what is called a super-

spreading event. For Corona in Italy and to a limited extent in Germany, this was

carnival as I already mentioned in the context of the Vo and the Gangelt data. For

Austria it was the skiing season with its apres ski bars. If you think how to model this

effect as a stochastic process, you do that as a random walk on a complete graph with

contact processes at the nodes. The key change is that the probability to get infected

will depend nonlinearly on the number of infections at the respective node. When

taking the limit of large numbers, this nonlinear function will be evaluated under a

Bernoulli distribution. The point is: also the deterministic limit will be nonlinear. In

the system (8.1) - (8.4) the equation (8.3) will change to

ij(t, 0) =
M∑
m=1

fjm

(∫ d

0

k∑
l=1

ᾱml(a)il(t, a)da

)
sj(t) , (9.1)

where M is the number of node types. The system loses its invariants, but all the

statements about trajectories and stability of states are still valid. The matrix A of

cross infection rates Ajl determining the region of stability will just change to

Ajl =

∫ d

0

M∑
m=1

f ′jm(0)ᾱml(a) exp(−∆l(a)) . (9.2)
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What changes dramatically though, is that a state which is stable, is now stable not

under the introduction of an arbitrary amount of infectious, but only under the in-

troduction of a small number of infectious. In the stochastic model that means that

the probability that one infectious individual will start an epidemy will be exponen-

tially small in the population number. But the possibility of such an event - or large

deviation - is still there. This is what I would call a superspreading event. We say

that a stable state becomes metastable.

10 Drawing conclusions for Corona

The first conclusion is a simple one. Epidemiology tells you that without an effective

vaccine, indepently how often lockdows are declared, the epidemy will always start

again, before you finally have reached a stable state. Herd immunity for a nonho-

mogeneous population is a region of states, rather than an interval, so one can try

to reach the state which has the lowest cost in terms of human lives. If you want

to estimate the ’amount of’ immunization you need, there is in principle a whole

matrix of cross infection rates you have to determine. But if you have few age groups

only, with significantly different contact rates, then your system of equations will

have a triangular or recursive structure approximately. In that case one knows that

one should aim for the state where each subpopulation has its own ’herd immunity’.

What an effective strategy would look like was illustrated in Figure 5 in Section 8.

Having reached that state though, Corona has still not disappeard. The state itself

might be only metastable, and on a longer time scale you will in any case have a loss

of immunization and smaller epidemics, as this is the case for influenza.

If you really want to get numbers, then for small epidemics under partial lockdown

conditions, you can use the simple SIR model, its invariant, and the relationship

log s(0)/s(∞) = α(s(0) − s(∞)) to calculate α for the prevailing condition. One

has to keep in mind though, that this is an approximation. The approximation is

reasonable as long as the maximum number of active infections is small w.r.t. the

population size. and s(0) − s(∞) is not too large. That is because the trajectory

stays close to a two dimensional surface, determined by the eigenvalue equation (8.6),

which for each sj(t), j = 1, ..., k has a unique (up to multiplication by a constant)

positive solution ŝj(t).

11 Discussion

The first conclusion one has to draw is: Covid-19, the disease, is rare among the

totality of SARS-CoV-2 infected. There is little doubt that in Germany, up to the
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end of May at least, only 5% of the SARS-CoV-2 infections were discovered by PCR

testing. That means, the C(ase) F(atality) R(ate) has to be divided by 20 to get the

I(nfection) F(atality) R(ate). Up to the age of 70 these IFRs are a fraction of the

natural mortality - for the age group 60 − 69 it is 2 per mille versus 1% or 1.3%,

depending on whether you use 2016 or 2018 as reference year. So there is absolutely

no justification for lockdow measures decreed by governments. Moreover the data of

the large scale antibody tests in Geneva have been published on June 11th, and it is

a scandal that there was no hint of the implication for the ratio IFR versus CFR in

official statements or on the RKI website. Moreover there is only hidden information

on the CFR per age group, a fact which is tantamount to disinformation of the public.

The second conclusion refers to the comparison between Corona and the flu. This

is a useful comparison and not just a point made in the debate. In 2017/2018 we

had a terrible flu epidemy in Germany, claiming around 30 000 victims in March 2018

alone. Anybody looking at the data for monthly deaths, separated for the different

age groups, will immediately see the effect of this epidemy, down to the age group

below 30 but pronounced in the age groups 55 − 60 and above. Data are available

on the website of the German Federal Statistical Office. The first wave of the epi-

demy was probably over by May 2018. But one may assume that the two seasonal

epidemies of 2018/2019 and 2019/2020 were connected, maybe even caused by the

same, if slightly mutated, virus. The second and third wave of the flu claimed less

victims, and there was not such a pronounced peak as in March 2018. One should

keep in mind that we are told that there is a flu vaccine which we can trust, and still

the three waves of the flu epidemic were claiming 84 000 lives by the lower estimate

and 124 000 lives by the upper estimate. If you are not an incurable optimist, you

have to come to terms with the perspective, that after two and a half more years,

the number of Corona dead will be of the same order of magnitude. If I may make a

wild guess, the number will be half of the upper estimate above, namely ca. 62 000,

and of course not 14 to 26 fold as the journalist J. Müller-Jung claims in the Ger-

man newspaper FAZ, but still very high compared to the 10 000 victims we have

seen so far. Especially it is in my view irresponsible of (almost all) politicians and

(some) virologists to promise to the public that they will prevent this flu like outcome.

The third point is about what you can infer for the SARS-CoV-2 infection from the

data I quoted. This is partly conjectural because here I am speaking about small

data sets, namely [Guang], [Mu], [Gang], [Vo]. Firstly the data indicate that one has

to distinguish 2 by 2 types of infection, depending on the type of contagion and the

type of susceptible. There are direct contact infections on the one hand - think about

sharing food and drink, macroscopic droplet infection, kissing etc., and on the other

hand aerosol infections. There are on the one hand individuals where the infection
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visits many organs in sequence, and then there are others who get over it in one go.

Whether you are one type or the other type of susceptible may be hereditary, but it

could also depend on cross immunizations. The data can not give more than hints,

it may even be that whether you become the sequential type or not, depends on the

type of contact, but I doubt that.

The different types of infection seem to appear with all categories of symptoms. You

can be severely symptomatic probably only in conjunction with the sequential type

of infection, exactly as it was observed in SARS-CoV-1 patients [Hong], but you can

be symptomatic or asymptomatic with all types. And clearly both the ratio of severe

cases and the ratio of symptomatic versus asymptomatic crucially depend on the size

of virus load you are exposed to. This is particularly striking in the Vo example,

where there were two ’superspreading’ events. Among those infected in the earlier

event, there were at least 4 severe cases and only about a third asymptomatic, whereas

among the individuals infected during the later event, 60% were asymptomatic, and

as far as I could make out there were no severe cases.

The crucial difference between the aerosol infection and other ways of transmission,

is that after being infected by inhaled aerosol, the infected becomes infectious before

developing symptoms. But for both types of infection probably there are infectious

who never develop symptoms. Among the asymptomatic non-sequentially infections

- which represent under the conditions in northern and middle Europe the largest

group - and probably also among the mildly symptomatic, there are not so many

days, 4 − 9, during with they test PCR positive. That translates into a low value

of the quantity
∑

k f(k) = 7 · o, where f(k) is the probability to be PCR detectable

for k or more days. Under the conditions that we had in Vo, but probably also else-

where, my guess is that
∑

k f(k) will be between 6 and 7. I called it 7 · o, with o

for oversampling, because it relates weekly rates of positive PCR tests and rates of

randomized PCR tests, as explained in Section 5.

The third and a half point is about the sensitivity of antibody tests. This depends

crucially on the duration and severity of the infection, and on the time elapsed since

the infection. In my view it was naive to assume that the RKI study in the hotspot

Bad Feilnbach conducted almost 3 months after the peak of the epidemy would show

the same sensitivity as the study in Gangelt conducted ca. 2 weeks after the peak

there. But generally it holds that the highest percentage of asymptomatic among

any collective of seropositives I have seen, are the 36% in the study [Gang] among

the non carnivalists, but that percentage should have been 60% . This translates into

a sensitivity of 0.63 under normal conditions. And I want to repeat, that means a

discovery rate in Geneva, a hot spot for the infection, of 1
17

for a 20 − 49 year old

infected individual by PCR tests conducted in April and May, 2020.
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The fourth point I want to make is that the models of mathematical epidemiology

and in particular those involving differential equations are extremely useful in under-

standing also the Corona epidemy and its likely outcome. There are many reasons

why you cannot expect to directly measure the parameters of the state of the art

models, stochastic or deterministic. But you can take the engineering approach of

estimating parameters for coarser approximate models. You just have to take into

account that there is what we call an order one error, so a safety margin has to be

applied to the estimates. I did explain more or less precisely or at least in nearly

mathematical terms in which way the simple SIR model, which is about 100 years

old, is still a good approximation for the course of the epidemy. The formulas how

discovery and quarantining rates - which I called δ - and contact frequencies, levels of

aerosol, infectivity, incubation times etc. enter into the final effective cross infection

rates among different subpopulations are not that simple, and cannot be. The main

useful point is that there is in the end an effective cross infection matrix, and a set of

invariants, related to that matrix which for a lot of scenarios determine completely

the outcome of an epidemy. In any case the matrix of effective cross infection rates

determines whether a state is stable or not.

For those who are not so used to the notion of stability, let me repeat its meaning

here in the language of stochastics:

If you have several subpopulations with corresponding rates of immunization and you

know the prevailing effective (cross)infection rates for the subpopulations, then there

is a formula determining whether this state is in the region of stable states or in the

region of unstable states.

If the state is unstable, then with positive probability one infectious individual will

start the epidemy - it is like nitroglycerine. Now you never have only one infectious

individual, and you could phrase things differently: After having been visited by a

finite number of infected - independent of the size of the population, the epidemy will

start and infect a positive percentage of the whole population.

If on the other hand you are in a stable state of respective immunizations, the trickle

of infected visitors will produce a finite multiple of these infections.

In other words, if you start from a state in the region of instability the outcome is a

number of infections proportional to the whole population. If you start from a state

in the region of stability the outcome is a number of infections proportional to the

number of imported infections.

The fourth and a half point refers to the strategies of containment, that you could and

should devise based on the maths for the SIR model with different subpopulations.

One should follow a strategy that lets the part of the population with a very low risk

reach a state that is far in the stability region for that subpopulation and try to pro-
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tect the more vulnerable part of the population during this first unhindered(!) course

of the epidemy in the low risk subpopulation. This is going to save lives compared

to the (in my mind mindless) switch on switch off control, politics enforces now, see

Figure 5.

The fifth point: the covid deaths are mainly a nursing home phenomenon and most

likely in second place a phenomenon of people cared for by professional providers

at home. The rate of deaths in nursing homes has been halved in Germany from

40% up to the end of May, down to at least 23% between the beginning of June and

the beginning of October. This probably reflects the fact that many providers are

testing their staff regularly. Now there is talk to introduce this for all nursing home

providers, and I hope also for the providers of professional care at home. The long

delay is in my opinion a scandal. Instead of locking people up in nursing homes, not

allowing relatives to visit, staff should have been tested regularly; first everybody for

antibodies to see who is immunized, and then everybody not immunized on a weekly

basis with the PCR test. The responsibility for the long delay in implementing this

kind of measure in Germany lies clearly with our federal health minister and his pro-

crastinations, first starting a long discussion who has to pay for the PCR tests, and

then another one, whether it is ethical to let people know via antibody tests, if they

are immunized. But also his advisors share part of the responsibility.

The discussion of the IFR, vulgo Covid-mortality is based on German and Swiss data

mainly. Test strategies of course vary from country to country. So there was the

hope that the antibody tests would allow to discover all individuals who had been

infected - at least during the previous two months. I think I could show that this

is not the case - and by a wide margin. So tests of larger groups of asymptomatic

and mildly symptomatic cases need to be conducted to establish the time profile of

the PCR and serological tests for these individuals. The sensitivity I derived by ele-

mentary statistics for Gangelt and which is probably true for Geneva as well, might

apply also to London, and would bring total mortality in line with the 0.2 − 0.3%

you expect if there is no special protection for the elderly. It certainly does not apply

to Lombardy. What you see there on a large scale is what you can see in Vo on a

small scale. Depending on the virus load you are exposed to, the risk of a severely

symptomatic infection increases dramatically. (Such a situation was encountered in

carnival celebrations with many infectious participants and in apres ski bars in Ty-

rolia). But it seems to apply to the outbreaks in London or Geneva. That means

taking public transportation increases your chance of getting infected a lot. But it

does not increase the conditional probability of a serious illness.

So how can one contain Corona. It is not the number of infections you want to keep
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small, especially among the group of young people, but you can inform everybody

about the risk he/she runs in their respective age group and with their respective

activities honestly. And since the number of infections is now monitored, it is pos-

sible to know, where there is a heightened risk of going to a bar, of taking public

transportation etc., and then everybody has to decide individually, which risk they

want to take.

Waiting for an effective vaccine, which obviously we did not have against the flu in

2018, and going in and out of lockdown is no alternative. Letting a large number of

younger people get through the infection more quickly will instead save lives among

the older.
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