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Optimality conditions for multidimensional control problems
with polyconvex gradient restrictions

Marcus Wagner

1. Introduction.

The present investigation continues a series of papers concerned with possible extensions of Pontryagin’s
principle to multidimensional control problems where the usual convexity of the data is replaced by genera-
lized convexity notions. We are concerned with so-called Dieudonné-Rashevsky type problems, which are

obtained from the basic problem of multidimensional calculus of variations
O(x) = / f(s,xz(s), Jz(s))ds — infl; =z € Wé’p(Q,Rn); QCR™ (1.1)
Q
in the vectorial case n > 2, m > 2 with m < p < oo by addition of constraints for the partial derivatives of

x. More precisely, we impose the gradient restriction

0x1(s)/0s1 ... 0z1(s)/Osm
Jx(s) = : : € ACR"™ for almost all s € Q (1.2)
0z (s)/0s1 ... 0xn(s)/0sm

where A C R™ is a compact set with nonempty interior. We thus arrive at a multidimensional control

problem of the shape

(P) F(x,u) = / f(s,x(s),u(s))ds — inf!; =€ WiP(QR™) x LF(Q,R"™™); (1.3)
Q
0x1(s)/0s1 ... 0x1(5)/0sm
Jx(s) = : : = u(s) for almost all s € Q; (1.4)
Oz (s)/0s1 ... 0xn(s)/0sm
u(s) € ACR™ for almost all s € Q). (1.5)

The motivation for a closer investigation of Dieudonné-Rashevsky type problems (P) is two-fold. First, due
to its close affinity to the basic problem of multidimensional calculus of variations, the problem (1.3) — (1.5)
is well-suited as a model problem in order to ascertain how the proof of optimality conditions is influenced
through the weakening of the convexity properties of the data. Since the classical proof of Pontryagin’s
principle is based on an implicit convexification of the integrand as well as of the set of feasible controls, °)
an answer to this question is of conceptual interest. On the other hand, Dieudonné-Rashevsky type problems
find applications in such different areas as convex geometry, °2) material sciences, °3) population dynamics *4

and mathematical image processing, % thus proving considerable practical importance.

Compare [ GINSBURG/IOFFE 96 ], p. 92, Definition 3.2., and p. 96, Theorem 3.6., where a “local relaxability” property
of the problem is required, as well as [IOFFE/TICHOMIROV 79], pp. 201 ff.

[ANDREJEWA /KLOTZLER 84A] and [ ANDREJEWA/KLOTZLER 84B], p. 149 f.
See, for instance, [ LUR'E 75], pp. 240 ff., [TING 69A], p. 531 f., [ TING 69B] and [ WAGNER 96], pp. 76 ff.
[BROKATE 85], [ FEICHTINGER/TRAGLER/VELIOV 03].

[ANGELOV/WAGNER 12], [ BRUNE/MAURER/WAGNER 09 ], [ FRANEK/FRANEK/MAURER/ WAGNER 12], [ WAGNER
10] and [ WAGNER 12].
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As yet, first-order necessary optimality conditions for the global minimizers of (1.3) — (1.5) have been
established in the case that the restriction set A is convex and the integrand f(s,&, -) is either convex or
polyconvex with respect to v. %) In the present paper, we will extend these results to problems (P) involving
a polyconvex integrand as well as a polyconvex gradient restriction.

Within the hierarchy of semiconvexity notions, polyconvexity is the closest one to usual convexity. °”) Poly-
convex integrands, which arise as a composition of the vector of all minors of a matricial argument with
a convex function, are well-introduced in optimization problems in material sciences, hydrodynamics and

8)

image processing. °® Polyconvex gradient restrictions frequently originate from volumetric constraints. A

nice illustration is given if the function = € WI’OO(Q7Q) within the transformation formula for multiple

integrals %)

/Q](S) ds = /Ql(a?(s)) | det Ja(s) | ds (1.6)

is considered as an unknown. In order to keep the formula applicable, we must ensure that det Ja(s) # 0
a. e. Consequently, we obtain a polyconvex gradient restriction for z, e. g. |det Jx(s)| > 0 or det Jz(s) > 0.
In the literature, an explicit statement of polyconvex restrictions is often avoided. Instead, the objectives
are augmented with corresponding penalty terms. ')

A similar idea is employed in the proof of Pontryagin’s principle for the problem (1.3) — (1.5) presented here.
Assuming that the restriction set A = K N P is the intersection of a convex body K with nonempty interior
and a polyconvex set P, we introduce an exact penalty term corresponding to P. Then the proof technique
developed in [ WAGNER 13], which makes explicit use of the polyconvex structure of the integrand as well
as of the restriction set, can be applied with specific modifications.

The outline of the present paper is running parallel to [ WAGNER 13]. This introductory section is closed
with some remarks about notation. Then in Section 2, we describe the notions of polyconvexity for functions
as well as for subsets of R"™. In Section &, we prove the equivalence of three different formulations of the
control problem (P), the last one containing an exact penalty term for the polyconvex gradient restriction
(Propositions 3.3. and 3.8.). Further, we prove the existence of global minimizers for the problems (Theorem
3.9.). In Section 4, we provide first the formulation of Pontryagin’s principle in the special case of dimensions
n = m = 2. Then we state and prove the first-order necessary optimality conditions in the general case as
our main result (Theorem 4.3.). The occurence of the regular case and the a. e. pointwise reformulation
of the maximum condition are discussed (Proposition 4.4. and Theorem 4.5.). The paper closes with an

application of our theorems to a problem of three-dimensional hyperelastic image registration (Section 5).

Notations.

Let Q C R™ be the closure of a bounded Lipschitz domain (in strong sense). Then C*(Q,R") denotes the

space of r-dimensional vector functions f: Q — R", whose components are continuous (k = 0) or k-times

[WAGNER 09], p. 549 {., Theorems 2.2. and 2.3. (convex case), and [ WAGNER 13], p. 7, Theorems 4.3. and 4.4. (poly-
convex case).

Cf. [BALL 77], [DACOROGNA 08], p. 156 f., and [ MULLER 99], pp. 126 fI.

We refer e. g. to [ LUBKOLL/SCHIELA/WEISER 12], [ KUNISCH/VEXLER 07 ], [ BURGER/MODERSITZKI/RUTHOTTO
13], [ DROSKE/RUMPF 04 ], [ POSCHL/MODERSITZKI/SCHERZER 10] and [ WAGNER 10].

[ELSTRODT 96], p. 208, Corollary 4.9.

See e. g. the discussion of the hyperelastic registration problem from [BURGER/MODERSITZKI/RUTHOTTO 13] in
Section 5 below.
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continuously differentiable (k = 1, ... , 00), respectively; L” (2, R") denotes the space of r-dimensional vector
functions f: 2 — R", whose components are integrable in the pth power (1 < p < co0) or are measurable
and esentially bounded (p = 00). Wé’p (,R") denotes the Sobolev space of r-dimensional vector functions
f: Q — R" with compactly supported components, which possess first-order weak partial derivatives and
belong together with them to the space L’(Q,R) (1 < p < o0). Wé’oo(ﬂ, R") is understood as the Sobolev
space of all r-vector functions f: € — R”, whose components are Lipschitz with zero boundary values. ')
Jx denotes the Jacobi matrix of the vector function x € W(l)’p (,R"). Q" is the space of all r-vectors with
rational coordinates. The abbreviation “(V)s € A” has to be read as “for almost all s € A” or “for all s € A
except a Lebesgue null set”. Finally, the symbol o denotes, depending on the context, the zero element or

the zero function of the underlying space.

2. Polyconvex functions and polyconvex sets.

a) Polyconvex functions.

Throughout the paper, the following notation for the vector of the minors of a matricial argument will be
used. 12)

Definition 2.1. (The operator T') Let n, m > 1 and denote Min(n,m) =n A m.

1) We consider elements v € R™ as (n,m)-matrices and define T'(v) = (v, Tov, Thv, ..., T(n/\m)v) €
RT™™ = R7W x R x R7®) x ... x R7™"™ as the row vector consisting of all minors of v: Tyv = adj,v,
Tzv = adjsv, ... , Tinam)v = adjam)v. Consequently, we have o(r) = (7:) . (T), 1<r<nAm. The sum
of the dimensions is denoted by T(n,m) =o(1) + ... +o(n Am).

2) Let (m An) < p < oo. We consider elements u € LP(Q, R™™) as (n, m)-matriz functions and define the
operator T: LP(Q,R™™) — LP(Q,R°M ) x Lp/2(Q’R"(2)) % Lp/g(Q,][{"(3)) % % Lp/(”Am)(Q,R"(”/\m))
by ur— Tu = (u, Tou, Tsu, ..., T(n/\m)u) with Tou = adjou, Tau = adjsu, ... , Tinam)t = adjpm)u-

As mentioned in the introduction, a polyconvex function is defined as a composition of the vector of all

minors T'(v) of a matricial argument v with a convex function.

Definition 2.2. (Polyconvex function) '®) We consider elements v € R™™ as (n,m)-matrices and ele-
ments V€ R™™™ as row vectors. A function f(v): R"™ — R U{(+00)} is called polyconvex iff there
exists a convex function g(V): R™™™ — R U{ (+00)} such that

fw) =g(T(v)) YveR™. (2.1)
The function g is called a convex representative for the polyconvex function f.

Note that a polyconvex function may possess more than one convex representative. To a given polyconvex

function f, we may associate the special convex representative '4)

7(n,m)+1 7(n,m)+1 7(n,m)+1
g(V) = lnf{ Z )\7‘ f(Ur) ‘ Z >\r T(vr) = V7 Z >\r = ]-7 >\r = 07 Uy € an, (22)
r=1 r=1 r=1

1<T<T(n,m)+1},

[EVANS/GARIEPY 92], p. 131, Theorem 5.

Concerning the notations related to polyconvexity and matricial arguments, we adopt the conventions from [ DACO-
ROGNA 08].

[DACOROGNA 08], p. 156 f., Definition 5.1.(iii).
Ibid., p. 163, Theorem 5.6., Part 2.
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which is called the Busemann representative of f.'%) Any polyconvex function is locally Lipschitz continuous
on the interior of its effective domain'® and, consequently, differentiable a. e. on its effective domain.
Stronger smoothness properties as continuous differentiability are not automatically inherited by the convex
representative. 1”) Consequently, as mentioned in [ WAGNER 13], within the framework of optimal control it
is advisable to state the growth and smoothness assumptions about a polyconvex integrand rather in terms
of a fixed convex representative than of the function itself.
det v

any polyconvex function f: R**? — R U{(+oc) } must take the form f(v) = g(v, detv) with a convex
function g: R® — R U{(+00)}. For n = m = 3, we have o(1) = 9, 0(2) = 9, ¢(3) = 1 and 7(3,3) = 19.

Here adjy v is the transpose of the cofactor matrix and adj; v = detwv.

In the special case n = m = 2, we get o(1) = 4, 0(2) = 1, 7(2,2) = 5 and T(v) = (). Consequently,
g

b) Polyconvex sets.

Definition 2.3. (Polyconvex set) ') We consider elements v € R™™ as (n,m)-matrices and elements
V e R™™™ as row vectors. A set P C R™ is called polyconvez iff there exists a convex set Q C R7™™)

such that
P={veR™ |T(v)eQ}. (2.3)

The set Q is called a convex representative for the polyconver set P.

Equivalently, a set P C R™™ can be defined as polyconvex iff its indicator function xyp: R"™ — R U{ (+0) }
is a polyconvex function.'? Elementary examples of polyconvex sets are quasiaffine hyperplanes H = {ve
R™*™ ’ (Vo, T(v)) = ag} for Vg € R™™™) a4 € R (e. g. the group SO(n) ), open quasiaffine half-spaces
HT = {v e R"™" | (V,T(v)) > ag} (e. g. the group GL*(n)), polyconvex polytopes obtained as the
polyconvex hull of finitely many points2®) and polyconvex polyhedral sets obtained as the intersection of
finitely many affine and quasiaffine half-spaces. Any convex set is polyconvex as well. 2

Analogously to polyconvex functions, the convex representative of a polyconvex set is not necessarily uniquely
determined. By the following lemma, the smallest possible convex representative is singled out, which will

be called the precise representative Q of P.

Lemma 2.4. (Precise representative of a polyconvex set) 1)2?) If P C R is a polyconver set then
Q=-co{T(v) e R™(mm) | veP} forms a convex representative of P.

2) For any convex representative Q) C R™™™) of P, it holds that Q cQ.
Proof. The proof of Part 2) is obvious. m

Lemma 2.5. (Compactness of the precise representative) If P C R"™ is a compact polyconvex set

then its precise convex representative Q c R™™™ of P is compact as well.

[BEVAN 06], p. 24, Definition 2.1. An effective numerical procedure for the evaluation of g(V') has been provided in
[ENEYA/BOSSE/GRIEWANK 13].

[DACOROGNA 08], p. 47, Theorem 2.31.

Cf. [BEVAN 03] and [BEVAN 06], pp. 44 ff., Section 5.

[DACOROGNA 08], p. 316, Definition 7.2. (ii). The definition goes back to [ DACOROGNA/RIBEIRO 06], p. 108,
Definition 3.1. (ii).

[DACOROGNA 08], p. 318, Proposition 7.5.

Cf. ibid., pp. 323 ff.

Ibid., p. 318, Theorem 7.7.

Ibid., p. 317, Theorem 7.4. (iii).



Proof. Consider the precise representative of P, which is given by Lemma 2.4. through Q = co { T(v) ‘ v e
P}C R™(™™)_ First, the continuous function 7: R™ — R7™™) maps the compact set P onto a compact
image. Secondly, the convex hull of a compact set is compact again, cf. [ SCHNEIDER 93], p. 6, Theorem
1.1.10. =

3. Existence of optimal solutions.

a) Statement of the control problem; basic assumptions.

We consider the following multidimensional control problem of Dieudonné-Rashevsky type:

(P)g F(x,u) = /f(s,:c(s),u(s))ds — inf!; (3.1)
Q

(z,u) € WiP(Q,R™) x LP(Q,R™™); (3.2)

E(z,u) = Jz(s) —u(s) =0 (V)seQ; (3.3)

u(s) e KNP CR™ (V)se. (3.4)

The basic assumptions about problem (P)g involve the presence of a polyconvex integrand as well as of a
polyconvex gradient restriction. In particular, the following properties of the data will be imposed.
Assumptions 3.1. (Basic assumptions about the data within (P)g)

1) We assume that n, m > 2 and m < p < oo (thus n Am < p).

2) Q C R™ is the closure of a bounded strongly Lipschitz domain, K C R™™ is a convez body with o € int (K)
and P C R™ is a nonempty compact, polyconvex set (cf. Definition 2.5. above).

3) The integrand f(s,&,v): @ x R" x R"™ — R is measurable with respect to s, continuous with respect to
& and v and polyconver as a function of v for all fired (§,é) €Q x R"™

4) The polyconverz integrand f(s,&,v) admits a convex representative g(s,&,v,w): QX R™ x R"™ x(]RU(Q) X
R°®) x ... x RZ(A™) ) — R, which is measurable with respect to s and continuously differentiable with respect

to &, v and w. Moreover, g satisfies the following growth condition:

| 9(s,&,v,w2,w3, .., Wnam) ) | < Ao(s) + Bo(€) + Co (1 + |v |p + U:ﬁ_f:) | wr |p/r) (3.5)
(V)s€Q V(&vw) € R® x R™ x (R7® x R7®) x ... x R7"™))
where Ay € L' (Q,R), Ao | int (Q) is continuous, By is measurable and bounded on every bounded subset of
R"™, and Cy > 0.
b) Equivalent formulations of the problem.

By Lemma 2.5., the compact polyconvex set P admits a convex, compact representative Q C R"™™ x R°? x
R7®) x .. x RZ™™) Further, we choose for the polyconvex integrand f(s,& v) a convex representative
g(s,&v,w): Q x R" x R™ x (IR‘T(Q) xR7G) x .. x R“("Am)) — R according to Assumption 3.1., 4).
Then the problem (P)y may be reformulated in the following way:

(P); G(z,u,w) = /Qg(s,x(s),u(s),w(s))ds — inf!; (3.6)
(z,u,w) € WHP(Q,R™) x LP(Q,R™™) (3.7)

x (LP2(QRTD)x L@ RT®) o P A (0 RIO) )

Ei(z,u) = Jz(s) —u(s) =0 (V)s € Q; (3.8)
Es(u,w) = wa(s) —adjyu(s) =0 (V)seQ; (3.9)



Es(u,w) = ws(s) —adjsu(s) =0 (V)se€Q; (3.10)

Eam) (U, w) = Wipam)(s) — adj(nAm)u(s) =0 (V)seQ; (3.11)
ueU = {2z € LP(QR") | z1(s) eK (V)s€Q}; (3.12)
(u,w) €W = { (21,22,28, s Zuam) ) € L'(QR™™) x L2(QR7®)) x L7 (Q,R7P) (3.13)

cx DX Q RICAMY | (21(s), 22(5) s 23(5) s ey Zmamy(5)) € Q (V) s € Q).

We establish the following properties of the data.

Lemma 3.2. Let Assumptions 3.1. hold. Then the sets U and W are nonempty, convez, bounded and closed
with respect to the norm topologies in L*(Q, R™™) and Lp/Q(Q,]R”(Q)) X Lp/?’(Q,]R”(S)) X . X Lp/("Am)(Q7
]RU("Am)), respectively. Consequently, U and W are weakly sequentially compact as subsets of the mentioned

spaces.

Proof. U and W are nonempty and convex together with the convex sets K and Q. Obviously, the restrictions
z1(s) € K and (21(s), 22(s), 23(8), -’y Z(mam)(s)) € Q will be conserved under norm convergence in the
mentioned spaces due to the existence of a. e. pointwise convergent subsequences. Now the weak sequential
compactness of the sets follows from [ROLEWICZ 76], p. 157, Theorem IV.5.6’, and its proof. m

Proposition 3.3. (Equivalent formulations of the basic problem, I) Let Assumptions 3.1. hold. If
(x*,u*) is a global minimizer of (P)g then (Jc*, w*, To(u*), Ts(u*), ..., Tnam) (u*)) is a global minimizer of

(P)1. Conversely, if (x*,u*,w*) is a global minimizer of (P)1 then (x*,u*) is a global minimizer of (P)g.

Proof. Assume that (z*,u*) is a global minimizer of (P)y and let (z,u,w) be a feasible triple within (P);.
Then, by definition of G, G(z,u,w) = F(z,u) > F(z*,u*) = G(z*,u*,w*) with w* = (Ta(u*), T3(u*), ...,
Tinnm) (u™) ), and (z*,u*,w*) is a global minimizer of (P); as well. Conversely, if («*,u*, w*) is a global
minimizer of (P); then, again by definition of G, we have F'(z,u) = G(z,u,w) > G(z*,u*, w*) = F(z*,u*)
for every feasible pair (z,u) within (P)o where w = (Ta(u), T3(w), ..., T(nam)(u) ). Consequently, (z*,u*)

forms a global minimizer of (P)g. m

In the proof of the necessary optimality conditions below, a further equivalent formulation of problem (P)g
will be used. Namely, we will introduce an exact penalty for the control restriction (3.13), thus obtaining
the problem

Py G(z,u,w) = /Qg(s,x(s),u(s),w(s))ds + K - Dist ((z,u,w), L°(,R") x W) — inf!; (3.14)
(z,u,w) € WHP(Q,R™) x LP(Q,R™™) (3.15)

x (LR x L2 (0, RTD) xx L7/ (@, R )

Ei(x,u) = Jz(s) —u(s) =0 (V)s € Q; (3.16)
Es(u,w) = wa(s) —adjyu(s) = (V)s € Q; (3.17)
Es(u,w) = ws(s) — adjsu(s) = (V)s € Q; (3.18)
Enpm) (U, 0) = Winam) (8) — adjiuam) u(s) = 0 (V) s € Q; (3.19)
uelU = {zeL’(QR") | z(s) €K (V)s€Q}, (3.20)

which turns out to be equivalent to (P) and (P); provided that a sufficiently large constant K7 > 0 will be

chosen (see Proposition 3.8. below) and the partial derivatives of g satisfy additional growth conditions.



These will be collected in the following assumptions:

Assumptions 3.4. (Additional assumptions about the data within (P)q) Assume that g(s,&,v,w):
QxR™" xR x (RU@) x R7G) x ... x RZ(™) ) — R is a convex representative of the polyconvex integrand
f(s,&,v), which is measurable with respect to s and continuously differentiable with respect to £, v and w.

Let the partial derivatives of g satisfy the following growth conditions:

0 1 (nAm) _1)/r
|%(s7f,v,wQ,W3, ...,w(n/\m))‘ < Ai(s) + Bi(€) + C; <1+ {U|P S ‘wr |(p )/ ) (3.21)
i r=2
V)seQ V(v,w)eR" x R"™ x (30(2) «R®) w Rd(n/\m,))
where A; € Lp/(p_l)(Q,IR), B; is measurable and bounded on every bounded subset of R", and C; > 0,
1<1<n;
09 (1) (1) (1) p—1 & ey
|87w(87£av7w2aw3a “~aw(n/\m))| < Al (3) +Bl (E) +Cl <1+|’U| + 2_32 {Wr‘ )(322)

(V) seN V(f,’U,w) c R® x R™ x (IRU(Z) % R0(3) N Ra(n/\m))

where Al(l) € Lp/(pfl)(ﬂ, R), Bl(l) is measurable and bounded on every bounded subset of R", and Cl(l) >0,
1<l<o(l) =nm;

Jg

aUJQ’l

5 (nAm) o/
(5.6.0.02.05 e otiunmy )| < AP ) + B + CF (14 [0 4 L [ |77 (329
(V)seQ V(& vw) eR" x R" x (R7® xR7® x .. x R7"™))

where Al(2) e P/P=2) (Q,R), Bl(z) s measurable and bounded on every bounded subset of R", and 01(2) >0,
1 <1< o(2);

|t —
aW(n/\m) N
(nAm)

+ Y |w, y“’—(”m))”) (¥)s€Q V(Evw) €R" x R"™ x (R7® x R7®) x .. x R7™)
r=2

(S,f,U,WQ,UJg, s WmAm) ) | < Al(n/\m) (S) + Bl(n/\m)(f) + Cl(n/\WL) (1 + |’U |P*(n/\7R) (324)

where Al(n/\m) € Lp/(pf("mn))(Q7 R), Bl(nAm) is measurable and bounded on every bounded subset of R™, and

Cl(nAm) >0,1<I<o(nAm).
Before stating the next lemma, let us define the closed balls
K(o, Ry) € WyP(Q,R") — Co(Q,R"); (3.25)
K'(o,R') = K(o,R') x K(o,R') x ... x K(o, R) (3.26)
c LPP(QR7P) x LPP(Q,RT®)) x ... x LV (@, RO
with the radii

Ry = sup{| = Hcg(Q’Rn) | JreU}; (3.27)

R' = Max C.-sup{|(adj,(v)),||1<I<o(r), veK} (3.28)
2<r< (nAm)



where the constants C, > 0 are taken from the imbedding inequalities
|z | porr < Crll2r|lpee, 2< 7 < (RAM). (3.29)

Lemma 3.5. Let Assumptions 3.1. together with Assumptions 3.4. hold. Then the functional G within (P);

satisfies the Lipschitz condition

(nAm)
| G(x’,u’,w’) _ G(m”,u”,w”) ‘ < K, (

lo/ =" o+l = o+ 3 Nwh—w] gorr ) (3.33)
r=2

for all triples (z',v/,w"), (", v, w") € K(o,Ry) x U x K'(o,R') C (Wé’p(Q,R") N Cg(Q,R")) X
LP(Q,]an) % (LP/Q(Q’]RJ(Q)) X Lp/3(Q’RJ(3)) X X LP/(nl\m)(Q,Ra(n/\m)))'

Proof. Fix a number ¢ > 0 and consider an arbitrary pair of elements (2/, v/, w’), (2,4, w") € K(o, Ry) X
U x K'(o, R’). By convexity, this set contains the whole segment S = [(m’,u’,w'), (x”,u”,w”)] . Assump-
tions 3.1. and 3.4. guarantee the Gateaux differentiability of the functional G with respect to x, u, ws, ws,
-, W(nam) even on the larger set K(o0, Ry +¢) x (U+K(o,¢)) x K'(0, R' +¢) and, consequently, along S.
Now the mean value theorem 2%) yields the estimate

| G(a', v/, ') — G2, u", w") | (3.34)
Ao A~ ! 1 / " (n/\m) / "
< sup HDG(Z‘,U,U}) ’(”Jf - HLT’J’_H’U’ —u ||L7’+ E ||w7‘_wr ||L”/“">
(&,2,0) €8 r=2
where
sup || DG(&,4,%) | < sup sup sup | DG(&, 4,) || (3.35)
(&,a,1) €S & €K(0,Ro+e) @€ U+K(0,e) € K’ (0,R/+¢)
n R n m 8 o
< sw sup sip (3 || 2 (@, 3 % 5G] (330
& €K(0,Ro+e) @€ U+K(o,e) b €K' (0,R/4+e)  Vi=1 = 0& /=0 =1 =1 O0vjj Lp/ (=1
0(2 o(nAm) 69
(&, 4, D) oo 2, 8,0 ) .
H 30021 | /(p—2) z; ‘ aw(n/\m)J( ) |Lp/<p—<mm)>

The suprema in (3.36) are formed over bounded function sets. Consequently, the expression in (3.36)
remains finite as far as the boundedness of the Nemytskij operators (&, @, ©) —s g(&, @, 10)/0¢; € LP/ P~
(&, 11, ) — Ag(&, @, ) /Ovi; € LP/P7Y (2, 10,1) —> 8g(, 0, 0)/0ws, € L/ P72 (2, 4,0) — dg(, 1, 0) /
dws € /e (&,0,0) — Og(&, 0, W)/ Ow(inam), € P/ P=(Am) can be guaranteed. However, this
is implied by the growth conditions (3.21) — (3.24). For example, from (3.21) it follows that

H 9% jj & ®) Lp/(p 1) /’ 651 > (s), (s)) e ds (3.37)
< / | 4(9) + Bi(a() + & (14| ts) \p‘1+(t§:) i, (s) 770" \”/ Y 4 (3.39)
c/ s/ 0D 4 By () )"+ Ci (14 Jas) | +("§n) () [77) ) ds (3.39)

< (A + (Bro+ ) 0 (14 [l + 5 el )) (340

%) [10FFE/TICHOMIROW 79], p. 40.



with an appropriate constant B;(Ro + ¢) > 0 such that ||| o0 < Ro +¢ = |Bi(2(s))| < Bi(Ro + ¢),
and (3.40) remains uniformly bounded for all (#,4,w) € K(o,Ro+¢) x (U+K(o,e)) x K'(0, R +¢). For
the other partial derivatives occuring in (3.36), we may reason analogously. Consequently, condition (3.33)
holds true with a constant Ko > SUp (z 4 @) € K(o, Ro+e) x (U+K(0,)) x K’ (0, R/+2) || DG(E, @, 0) ||. m

Remark 3.7. For the application of the mean value theorem in this proof, the Gateaux differentiability of the
functional G is required not only on the set K(o, Ry) x U x { (2’2, 23, w5 Z(nAm) ) ’ (zl, 29, 235« s Z(nAm) ) €
W }, which belongs in fact to the subspace W™ (2, R"™) x L(Q, R™™) x ( L™(Q,R°?) x L®(Q,R°®) x

. x L9, R"(”Am)) ), but on an open neighbourhood of it. In order to ensure this, the growth conditions
(3.21) — (3.24) must be imposed.

Now we are in position to prove the equivalence of the control problems (P)g, (P); and (P)s. The feasible
domains of the three problems will be denoted by By, B; and Bs, respectively. Obviously, we have By C
By C K(o,Rg) x U x K'(0, R).

Proposition 3.8. (Equivalent formulations of the basic problem, II) Let Assumptions 3.1. and
3.4. hold and fix in (3.14) a sufficiently large constant K; > Ky > 0.2%) Then every global minimizer
(x*,u*, w*) of (P)1 is a global minimizer of (P)a as well. Conversely, every global minimizer of (P)q is

feasible in (P)y and forms a global minimizer of (P)1.

Proof. Assume that (z*,u*,w*) is a global minimizer of (P);. Let us apply [CLARKE 90], p. 51 f,
Proposition 2.4.3., to the following data: S = By C LP(Q,R") x U x L”?*(Q,R°?) x L**(Q,R*®)) x
o X Lp/("/\m)(Q,IF{”("/\T"’))7 C=B=BnN(L°(LR")x W), and f: S — R is the functional G: B> — R.
By Lemma 3.5., G is Lipschitz on S with constant Ky. Moreover, since W is closed by Lemma 3.2., the
assertion follows from the cited result. Conversely, let a global minimizer (z*,u*,w*) of (P)a be given. Then

the cited theorem ensures that (z*,u*,w*) is feasible in (P); and forms even a global minimizer there. m

c) Existence of global minimizers.

We will see that the assumptions stated above guarantee the existence of a global minimizer for problem
(P); and, consequently, for problems (P)g and (P)2 as well. No structural assumptions about the polyconvex
restriction set P must be added.

Theorem 3.9. (Existence of global minimizers for (P)y — (P)2) Consider problem (P); under Assump-
tions 3.1. Then there exists a global minimizer (z*,u*,w*) of (P)1 and, consequently, a global minimizer

(z*,u*) of (P)o. If, additionally, Assumptions 3.4. are imposed then (P)s admits a global minimizer as well.

Proof. Due to the control restrictions (3.12) and (3.13), the feasible domain B of (P); forms a bounded
subset of WiP(Q,R™) x LF(Q,R™™) x LP2(QR7®) x LPPQR7®) x ... x [P/ RICAm)),
By Assumption 3.1., 4), the objective (3.6) remains bounded on Bj, and (P); admits a minimizing se-
quence { (zV, u™ w™)}. First, we must confirm ourselves that this sequence contains a subsequence, which
converges with respect to the product of the norm topology of W(l)’p (Q,R™) and the weak topologies of
LP(Q,R™) and L ?(Q,R7P) x LP3(Q,R®)) x ... x LP/(""™) (0, R7("™)) t0 a feasible element (&, i, 0).
It is clear that we may pass over to subsequences, which satisfy 2% — &, v — 4 and w" — 0 (we keep

the index N). By the Rellich-Kondrachev theorem, 2°) we may ensure further that 2™ converges uniformly

24) The constant Ky is taken from Lemma 3.5.

25) [ ADAMS/FOURNIER 07], p. 168, Theorem 6.3.



to &, and I satisfies the zero boundary condition. Moreover, the weak continuity of the generalized derivative
yields
Je¥ —uN = By (2N, u’) — By(¢,4) = Jt—a=o. (3.41)

Y

From [DACOROGNA 08], p. 395 f., Theorem 8.20, Parts 3 and 4, we infer that vV = Ja2¥ — Ji = @

implies
adjyu¥ = adj, Jo¥ — adj, J& = adjy i =  Fy(uM,w") — Ey(t,d) = o; (3.42)
adj;u” = adj; JoV — adj; Ji = adj; 0 = Bz, w") — Es(4,%) = o; (3.43)
= E(n/\m) (U'vaN) — E(n/\m) (avw) = 0.

By Lemma 3.2., 4 and (4, w) belong to U and W, respectively, and (&, @, w) is feasible in (P);. In order to
confirm the lower semicontinuity of the objective (3.6) with respect to the mentioned topology, we observe
that the growth condition (3.5) guarantees that the function f(s,&,v): © x R" x R"™ — RU{ +(c0) }
defined through

= _ 0 |(s,&v)eN x R"xK;
f(s,&,0) = f(8,§7v)+{(+oo) | (5.6.0) € Q x R" x (R"™\ K) (3.45)

belongs to the function class Fx mentioned in [WAGNER 11], p. 191, Definition 1.1., 2). Consequently,
the existence theorems [ WAGNER 11], p. 193, Theorems 1.4. and 1.5., imply the weak lower semicontinuity

relation
liminf G(z™,u™,w") = liminf / g(s, 2N (s),uN (s),w™ (s)) ds (3.46)
n—00 n—ro0 Q
= liminf / g(s,2N(s),u™ (s), To(uN(s)), T3 (u™(s)), ... ,T(n,\m)(uN(s)) )ds (3.47)
n—oo

Q
= liminf [ f(s,2"(s),u" (s))ds = liminf /Qf(s,xN(s),uN(s)) > /Qf(s,;%(s),ﬁ(s)) ds (3.47)

n— 00 Q n— oo

/f(s,i(s),ﬁ(s))ds = /g(s,i(s),ﬁ(s),w(s))ds = G(&,u,w), (3.48)
Q Q

and (&, @, w) is a global minimizer for (P);. Now Proposition 3.3. implies that (Z, @) is a global minimizer of
(P)g. If, additionally, Assumptions 3.4. are satisfied then (%, @, ) is a global minimizer of (P)s by Proposition
3.8. m



4. The first-order necessary optimality conditions.

a) The conditions in the special case n =m = 2.

In order to illustrate the structure of the optimality conditions, we state them first in the special case of
dimensions n = m = 2. For instance, this case appears in the two-dimensional image registration problems
discussed in [ WAGNER 10], p. 5 f.

Theorem 4.1. (Pontryagin’s principle for (P)y with n = m = 2)2%) Consider the problem (P)o with
n =m = 2 under Assumptions 3.1. and 3.4. mentioned above. Choose for the polyconvexr set P a compact,
convex representative Q C R® and for the polyconvex integrand f(s,&v) in (P)o a convex representative
g(s,&,v,wa) in accordance with Assumptions 3.1., 4) and 3.4. If (z*,u*) is a global minimizer of (P)g
then there exist multipliers Ao = 0, y1) € Lp/(p_l)(Q,R4) and y? € Lp/(p_Q)(Q,]R) such that the following

conditions are satisfied:

00 Ao [ (90" (5)us) wals)) = (s, o). (). et (9) ) s = [ (u(e) = () D) s (@)

Q

+ / (wa(s) — detu*(s)) yP(s)ds — [ V, det(u*(s) )T (u(s) —u*(s)) Yy (s)ds > 0
o Q

Y (1, ws) € (U x LP/Q(Q,IR)> nw;

Ao Z/ 3, (5 (6w (3), detu™(s)) (@i(s) — wi(s) ) ds (4.2)

2. 2 ox; ozt (1) 1p 5
_ 2 = W oP(Q,R7).
121321 Q(asj(S) asj())y”()ds 0 VoeWy (R

The function sets U and W are defined by means of K and Q through (3.12) and (3.13).

Theorem 4.2. (Pointwise maximum condition for (P)y with n = m = 2)?7) Consider the problem
(P)o with n = m = 2 under the assumptions of Theorem 4.1. If (z*,u*) is a global minimizer of (P)g then

the mazimum condition (M) from Theorem 4.1. implies the following pointwise mazimum condition:
. IR ) SRS " (1)
) o (9307 (s),viw) = g0 ()" (8).det ' (5)) ) = £ 3 (w3 = w5 (9)) 0 (5) (4.3)
=1 j=

+ (wgfdetu*(s))y@)( ) — i

det(u*(s)) (v — uis(s)) 4@ (s) > 0

V)seQ V(v,wr)e (KxR)NQ. =

HM[\D

1 Ovy;

b) Statement of the theorems in the general case n > 2, m > 2.

In the following main theorem, the first-order necessary optimality conditions for a global minimizer of the

multidimensional control problem (P)q will be stated for general dimensions n > 2, m > 2.

Theorem 4.3. (Pontryagin’s principle for (P)o ) Consider the problem (P)g under Assumptions 3.1. and
3.4. and choose for the polyconver set P a compact, convexr representative Q C R™ x R°® x R7®) x ... x
RC"A™) - Burther, choose for the integrand f(s,&,v) in (P)g a convex representative g(s,&,v,w) in accor-
dance with Assumption 3.1., 4) and Assumptions 3.4. If (x*,u*) is a global minimizer of (P)g then there

26) Special case of Theorem 4.3. below.

21 Special case of Theorem 4.5. below.



exist multipliers Ao > 0, y™V) € Lp/(pfl)(Q,R”m), y@ e Lp/(p&)(Q,R”(z)), y® e /=3 QRGO ..,
y(hm) ¢ LIJ/(IF(71/\7"))(S27 RO such that the following conditions are satisfied:

00 N [ (5.0 @uls)w(s)) = glsa” ()0 (s)w(s)) ) ds = [ (ule) =) Ty (s)ds (@)

Q
(nAm) T (nAm) T
+8 [(0n) —ui) YO s = % [ Foadi,(u(5)) (ul) w7 (5) 9O () ds > 0
r=2 Q r=2 Q

Y (u,w) € (U x LPP(QR®) x LPP(QR®)) x ... x Lp/("Am)(Q,]R"("Am))> nw;

(K) Xo Z/ % (s,2%(s),u(s),w*(s)) (wi(s) — x}(s)) ds (4.5)

£y (8””(5)— Oui () )yl () ds = 0 Ve WET(@QR").

?
i=1 j=1JQ 68] 68] J

The function sets U and W are defined by means of K and Q through (3.12) and (3.13).

Let us define
Q = { (wg, w3, ..., w(n/\m)) eR°P xR7G) x ... x RZ(™) | (v, wa, W3, ..., w(n/\m)) €Q } . (4.6)

Proposition 4.4. (Occurence of the regular case) Consider the problem (P)y under the assumptions
of Theorem 4.3. and let (z*,u*) be a global minimizer of (P)o. If there exists a number v > 0 such that
(Ta(u(s)), Ts(u*(s)), -\ Tinam) (u*(s)) ) +K(o,7) € int (Q) for almost all s € Q then in the necessary
optimality conditions (M) and (X) the regular case occurs, i. e. Ag > 0.

The maximum condition (M) from Theorem 4.3. implies the following condition (MP), which holds a. e. point-

wise:

Theorem 4.5. (Pointwise maximum condition for (P)y) Consider the problem (P)o under the as-
sumptions of Theorem 4.53. If (x*,u*) is a global minimizer of (P)g then the mazimum condition (M) from

Theorem 4.3. implies the following pointwise maximum condition:

(MP) Ao (g(s,2"(s),0,w) = g(s,"(5),u*(s),w(5)) ) = (v =u'(s))" y(s) (4.7)
(nAm) (nAm)

* T . * * T (r
+ X (@ —wi) 006 L Veadi(u(s)) (v =) 5 (s) 2 0
(V) s€Q V(v,ws, s, s Wnnmy ) € (K xRTD x RT®) x . x R7™)) 1 Q.

c) Proof of Pontryagin’s principle.

Proof of Theorem 4.3. e Sketch of the proof. The proof of Theorem 4.3. is based on the equivalence
of the problems (P)o and (P);. Thus to the given global minimizer (z*,u*) of (P)g, a global minimizer
(x*,u*, w*) of (P)y corresponds, which will be used in order to define a pair of convex variational sets C and
D as subsets of the space R x LP(Q, R™™) x LP?(Q, R°®) x LP*(Q, R7®)) x ... x L/ "™ R,
We establish first that C is closed, and the interior of D is nonempty (Step 1). Although the usual regularity
condition for the equality operator F, fails, ?®) we are able to show that C N D = @ by applying Lyusternik’s
theorem to the operators Es, E3, ... , Eam) and exploiting the Lipschitz property of the penalty term
in the objective of (P)2 (Steps 2 —4). This fact allows for the application of the weak separation theorem

28) See [IoFFE/TICHOMIROV T9], p. 73 f., Theorem 3, Assumption c), and [ITo/KUNIScH 08], p. 5 f.



and a subsequent derivation of the first-order necessary optimality conditions from the resulting variational

inequality (Steps 5 and 6).

e Step 1. The variational sets C and D. Let a global minimizer (z*,u*) of (P)g be given. Then, by Propo-
sition 3.8., (z*,u*, w*) = (ac*, u*, To(u*), T5(u*), ..., Tuam) (u*) ) is a global minimizer of (P)y provided that
K has been chosen in accordance with Proposition 3.8. We fix a number o > 0 and define the variational

sets
C = { (g, Z1, 22, 235 e, z(nAm)) (4.8)
€ R x LP(Q,R™) x LP?(Q,R7®) x LPA(QR7®) x ... x LP/™(Q R with
o0=¢+ D,Ga", v, w")(x —2%) + D,G(z",u", w*)(u — u*) + Dy G(z*, u™, w" ) (w — w*); (4.9)
zn=Jr—Jx" — (u—u"); (4.10)
22 = (ws — w8) — DuTo(u")(u — ) (4.11)
zg = (wg —w3) — D, T5(u*)(u — u*); (4.12)
Znam) = (Wnam) = Winamy) = DuT(am) (W) (w —u’); (4.13)
20, € WyP(QR"), ueU, (u,w) e W}; (4.14)
D = { (o, 21, 22, 23, -+» Z(nam) ) (4.15)
€ R x LP(Q,R™™) x LP2(Q, R°P) x LP3(Q,R7P) x ... x LY/ "™ RO with

4.16)
4.17)
4.18)
4.19)

~2Ks (1121 llpe + 22l ova + 125 s + o+ 1 2unm) lgosconm ) (
2 € K( L) C LP(Q,R™™); (
2 € K(o,a) € LP(Q,R7?)); (
z3 € K(o,a) c LP*(Q,R7®); (

Zmam) € K(0,a) € LP/ 0™ (Q REAM)) (4.20)

The value of the constant Ky > 0 will be specified later, cf. inequality (4.88) below.

Proposition 4.6. The variational sets C and D are nonempty and convex. Moreover, D admits a nonempty

interior.

Proof. The set C contains the origin and is convex together with U and K. The set D is described as the
subgraph of a concave function over a convex range of definition in the space L”(Q, R"™) x L” /2 (Q,R7?)) x
Lp/3(Q,IR”(3)) X ..0X Lp/("Am)(Q,IR”("Am). Consequently, D is convex as well. Obviously, the point
(—2K1, 0,0,0, .., 0) belongs to int (D) m

e Step 2. Definition of the sets C,. We denote by G = {21 € L"(Q,R™") | 3z € W(l)’p(Q,IR") such that
z1 = Jx } the subspace of the “gradients” within L”(Q,R™™) and by Uy = U N G the subset of those
admissible controls of (P)g, which may be completed to feasible pairs for (P)g. For every n > 0, we define a

set
Cn = { («Qa 21y 225 B3y +ees Z(n/\m)) (421)
€ R x LP(Q,R™) x LP2(Q,R7P) x LPPQR®) x ... x L/ (Q R with
z=Jr—Jx" —(u—u"), ||z <n; (4.22)

22 = (wg —w3) — Dy/To(u)(u—u"), || 22]lpp2 < (4.23)



z3 = (w3 — w3) = D Ta(u")(u—u"), ||z ]| pors <3 (4.24)

Z(nAm) = (w(n/\m) - wzkn/\m)) - DuT(n/\m) (U*)<u - u*) ) ” Z(nAm) ||LTJ/(”/\"L) <N (425)
x € WyP(Q,R"), u € Uy +K(o,n) C LP(Q,R™™), (4.26)
wy € PR wy € LPP(Q,R®)), .. wipam) € LP/ ™ (@RI L (4.27)

e Step 3. Proposition 4.7. The variational set D is a subset of C,.

Proof. We must confirm that the components of a given element (Q, 21y 22y 23y e z(,mm)) € D can be

represented through

zn=Jr—Jx" — (u—u"); (4.28)
2o = (wo — w3) — Dy/To(u™)(u — u™); (4.29)
zg = (w3 —w3) — D, T5(u")(u — u*); (4.30)

with functions z € WP (Q,R™), u € Uy +K(o, @) C LP(Q,R™), wy € LP*(Q,R7?), w3 € L3(Q, R7®),

- Winam) € L/ RZ(A™)) Indeed, since 0 € Uy € LP(€,R™™) and || 21 || .» < @, we may choose
z =0 WiP(QR"Y), u=o0+2 € Uy+K(o,a) C L (QR™), wy = 2 + D,To(u*)z € LF*(Q,R7?),
w§ = z3 + D, T3(u*)z; € Lp/3(Q,]R”(3)), ey w?n/\m) = Zinam) + DuT(am)(u*)21 € Lp/(”Am)(Q,]R”(”Am)),
thus obtaining the claimed representation. m

e Step 4. Proposition 4.8. Letn > 0 be given. If (g, 21, 22y 23, e z(n/\m)) belongs to C, N C then it
follows that 0 > —Kaon where Ko > 0 is a constant independent on 1.

Proof. Step 4.1. Assume that an element (g, Z1y 22, 23, e z(n/\m)) belongs to the intersection C, N C.
Consequently, there exist a number £ > 0 and functions & € W(l)’p(Q,]R"), @€ Un (Up+K(o,m)) C
LP(Q,R™™), i@y € LPP(Q,RP), @5 € LPPQR®), . | @npm) € L™ (QRT™A™) such that
(4, w) € W and

0 =+ DG, u",w) (& — ") + D,G(a", u*, w*) (i — u") + Dy G(z*, 0™, w*) (0 — w*);
z1 = JT—Jz* — (@ —u");
z2 = (Wg —w3) — Dy Ta(u”)(

zg = (w3 —w3) — D,/T5(u*) (0 —u*);

=g}
\
S
*
S~—"

Zinam) = (Winam) — U’Ekn/\m)) — DuT(am) (u™) (@ —u*)  as well as (4.36)

l2llpe <y 22 llpere <ns Ml 2z8 Ml pes <5y [ 2mam) | pproinm < (4.37)

First, in relation to @ € Up+K(0,7), we find u® € Uy with u® = Jz°, 20 € WP (Q,R™), and || @ — u || < 5.2

Thus we obtain

o= Jz' — Jr* — (u® —u*) and (4.38)
12 = T2 ||y = | T =’ [l < 1 JT =t +a—u’| <20 = (4.39)
17 =2 lywie < C1lJ3 = J2®| 1o < 2C1nm (4.40)

0

29) If n = 0 then we may employ u® = @, 2° = Z and w® = @ throughout the proof.



30)

31)

by application of the Poincaré inequality with constant C; > 0.3%) Next, we find that

Wy — wh = DyTo(u*) (@ — u*) 4+ 22 = D To(u*) (@ — u®) + D To(u*)(u’ —u*) + 20 — (4.41)
(w2 — D, To(u*) (i —u’) — 22) —ws = DyTo(u*)(u’ —u*). (4.42)

Using the abbreviation g — D, To(u*)(4 — u’) — 20 = w) € Lp/2(Q, R7?)), we obtain

0o = (w) —w}) — D To(u*)(u® —u*) and (4.43)

|| wg — s sz < || DuT(u”) ||L(LP,LP/2) o —u’ e + 22 llpee < (1+C2)m. (4.44)
Analogously, we find elements w) € LPBQ,R), .., w?n/\m) € Lp/("Am)(Q, R?(™ ™)) such that

0o = (w) —w}) — D, T3(u*)(u’ —u*) and (4.45)

[wS = @3 [l pors < 1 DuT3(u™) [l gopo porsy - |G =0 Mo + [l 25 [l pors < (1+C3)m; (4.46)

o= (w?m\m) — w?n/\m)) — DuT(n/\m)(u*)(uo —u*) and (4.47)

[ w?n/\m) — W(nam) ||L;D/(n/\m) <l DuT(ﬂ/\m)(U*) ||/;(LP7LP/<nAm>) |l - u’ 2 (4.48)

+ H Z(nAm) ||LP/(n/\m) < (1 + C(nAm)) n-.

The constants Co > 0, C3 > 0, ... , C(nam) > 0 depend only on (z*,u*) and the data of (P)g — (P)2.

e Step 4.2. As a next step, we will employ Lyusternik’s theorem, which reads as follows:

Theorem 4.9. (Ljusternik’s theorem) 3" Consider Banach spaces X, Y, the (possibly nonlinear) operator
M: X =Y and its kernel M = {r € X ‘ M(ry=o0}. Ifr* € M, M is continuously Fréchet differentiable
in a neighbourhood of v* and DM (r*) maps onto Y then the set of the tangential vectors for M at the point
r* coincides with the kernel {r € X | DM (r*)(r) = o }.

Let us apply Theorem 4.9. to the data

X = LP(Q,R™) x LP2Q,R°P) x LPAQR®) x .. x LV "™ RI(Am)y (4.49)
Y = LPP(QRP) x LP3(Q,R7P)) x ... x LX) RO (4.50)
M = (Ez, ..., Eqam) ) ; (4.51)
r* = (u*,w"). (4.52)

Then we may observe that the Fréchet derivative DM (u*, w*): X X Y — Y, which is given through

wo — wi — Dy/To(u*)(u — u*)
ws — wh — Dy, T5(u*)(u — u*)

DM (u*, w*)(u —u*,w—w") = , (4.53)

WinAm) — wztn/\m) - DuT(n/\’m) (U*)(u - u*)

is a mapping onto the target space Y. The continuity of DM with respect to the reference point is obvious.
Consequently, equations (4.43), (4.45) and (4.47) imply that (u® —u*,w® —w*) is a tangential vector for the

[ADAMS/FOURNIER 07], p. 184, Corollary 6.31.
[IOFFE/TICHOMIROW 79], p. 42.



set M ={(u,w) €X | M (u,w) =0} at (u*,w*), and we find elements (Q(u",\), R(w® X)) € X satisfying

(u + AW —u*)+ Q% A\, w* + A(w’ —w*) + R(w’,\)) € M <+ (4.54)
wi(s) + (wg —w3) +R2(w A) — adjy (u*(s )+ A (uo *)—i—Q(uO,)\)) =0 (V)seQ; (4.55)
wi(s) + A (w§ — wi) + Rz (w®, \) — adjs (u*(s) + A (u® —u*) + Q% A)) =0 (V)s€Q; (4.56)

— adj(uam) (u*(s) + A (W’ —u") +Qu’,\)) =0 (V)s€Q

for all sufficiently small 0 < A < 1 where

lim A Q%A ||,» = 0; (4.58)
A—040
lim A7 Ra(w® N) || o2 = 0; (4.59)
A—040
lim A7 R3(w® ) || a5 = 0 (4.60)
A—040
Iim A~ 1 || R(n/\m)(w A) ||Lp/(n/\m) =0. (461)
A—040

e Step 4.3. We perform the decomposition

adjy (u*(s) + A (u® —u*) + Q(u’,N)) = adjy (u*(s) + A (u® —u*)) + Sa(u*,u’,\); (4.62)
adjs (u*(s) + A (u® —u*) + Qul, )\)) = adj, (u*(s) + A (ul — u*)) + S(u*, u®,\); (4.63)

a'dJ(n/\m) (U*(S) + A (UO - u*) + Q(uov >‘) ) = adJ(n/\m) (U* (S) + A (UO - u*) ) + S(n/\m) (U*a qu >‘) ’ (464)

thus getting

wi(s) + A (wd — wh) + Ro(w®, X) — Sa(u*, u’, \) — adj, (u*(s) + A (u® —u*)) = 0; 4.65)
wi(s) + A (w§ — wi) + Ry(w’, \) — S5(u*, u®, \) — adjs (u*(s) + A (u® —u*)) = 0; 4.66)

— adj(am (v (s) + A (W’ —u*)) =0,
and the triples
(x* F A =), ut A (W —ut), w4+ A (0 — w*) + R(w®\) — S(u*,ul, )\)) (4.68)
are feasible in (P)q for all sufficiently small 0 < A < 1. We will convince ourselves that the expressions
S(u*,u’, \) satisfy limit relations analogous to R(w?, \).
e Step 4.4. Lemma 4.10. It holds that lim A71 || So(u*, u®, N) || o2 = 0, lim A7 [ Ss(u*, u®, \) || 1e/s

A—0+0 A—0+0

=0,.., lim A~ || S(n/\m)(u y U 7)‘) ||LP/(”AM) = 0.
A—040



32)

Proof.3?) We start with expanding (4.62). Then to every index 1 < [ < ¢(2) correspond indices 1 < i <
k<n,1<j<r<msuch that

Soa(ut,u®,A) = (ufy + A (@ — uly)) Que(u® A) — (uy + A (ul; — ;) Qur(u, \) (4.69)
+ Qi (u”, ) (g, + A (ug, — ug,) ) — Qg (u”, 3) (uy + A (g, — ;) )

+Qij (u®, ) Qrr (u°, ) = Quj (u°, ) Qi (u, ) =

/|521u w0 N |7 ds /}riu NP2 ds +/|Qwu ) [P72 ds +/|Q” @, N|"?ds  (4.70)

+ /}ij(u ,A)|P/2ds+/Q|Qij(u ) Qrr(u®, ) |p/2d8+/Q|ij(u ) Qin (19, ) |p/2d5)

since (uf;(s) + A(ufj(s) — uj;(5))), (wi;(s) + A(ug;(s) — ui;(s))s (ujp(s) + A(uf,(s) — uj,(s))) and
(up(s) + A (ud.(s) — uw(s))) belong to the compact set K for almost all s € 2. This implies the estimate

H SQ,I(U*au()’)‘) ||LIJ/2(Q) (4.71)
O (1 Qur (. Nl 11 Qa0 X)Ly + 11 Qig (. ) vy + 1| Qg (. ) 2y

1 Qi (1 M) gy + 1 Qi (80 I oy + 1l Qus (00 N) oy | @ (6 ) ey )

<C ( 1 Quer (u®, M) [l oy + 11 Qr (w0, M) 1oy + 11 Qi (@A) | oy + 1l Qi (u®s M) [l o (4.72)
+1 Qij(uo7)\) HLP(Q) N1 Qur(u®, ) HLP(Q) + |l ij(uoa)‘) HLP(Q) 1 Qir(u®, ) ||L”(Q)) -
Hm A7 Sou(u, u® A) || e (4.73)
A—040
< é( tim A7 Qur (N ey + Tim AT Qur(u”3) o)
A—0+0 —0+0
+ lim AT Qi (w0 N) ||LP(Q)+ lim A7 Quy(u®, N) ||Lp(Q)
A—=040 —0+0
+ lim A7 1”@11(“ A) ||LP(Q) lim || Qpr(u®, A) ||LP(Q)
A—0+0 A—0+0
+ lim AT Qi (u, ) [| 1o - Jim | Qir(u®, ) IILPm)) =0 (4.74)
A—040 —040

by assumption about Q(u”, ). Analogously, the limit relations A= || S5y (u*, u®, A) || 55 — 0 for all 1 <1<
a(3); o s AT Smamy i (@ u A) || pscanmy — 0 for all 1 <1< o(nAm) may be confirmed. =

e Step 4.5. We are ready to compute the limit

1/~
lim f(G(x*—i—/\(xo—m*),u*—l—)\(uo—u*), (4.75)
A—040 A
w* + A (w’ —w*) + R(w’,\) — S(u*,u’,\)) — G(z*,u*, w")
1
— lim f(G(x*+/\(x0—x*),u*+/\(u0—u*), (4.76)
A—0+0
w* + A (w” —w*) + R(w’,\) — S(u*,u’,\)) — G(x*,u*,w*))
K
+ lim —1(Dist((x*—l—)\(mo—x*),u*—l—/\(uo—u*),w*+)\(w0—w*)+R(wO,)\)—S(u*,uo,)\)),
A—0+0
LP(Q,]R")xW) - Dist((x*,u*,w*),Lp(Q,IR”) xw)) > 0.

The proof, which is identical with [ WAGNER 13], p. 12, Proof of Lemma 4.8., will be repeated here for sake of
completeness.



Since (z*,u*,w*) and (Z, 4, w) belong to the convex set L”(2,R™) x W, we have

Dist((m*, wt, w'), LP(Q,R") xw)) —0; (4.77)

Dist((x* FA@E -2, u A=), w A (D —w")), TP R") x W)) — 0, (4.78)
and in the last term of (4.76), the expression (4.77) may be replaced by (4.78). Thus we get

(4.79)

.+ lim % (Dist ((m* A" —2"), u AW —u), w A (W —w*) + R(w’, ) — S(ut,ulN)),

A—040
LP(Q,R") xW) —Dist((x*—l—)\(i—a:*),u*—i—)\(ﬂ—u*), w4 A —w*)), LP(Q,R") xw)) >0

= lim 1 (G(:v* + A @ —2"), u A (W — ), w A (w? —w*) + R(w’, ) — S(ut,u® \))  (4.80)
A—0+0 A

_ G(x*vu*’w*)) > _/\E{)r}ro /\ }Dlst( )—Dist(...)|

K
> — lim —1()\Hi—xOHLP—i—)\Hﬂ—uOHLP (4.81)
A—0+0 A

n/\m

+ (M = 0 e+ 1B (0, A) g+ 102, ) 0 ) )

since the distance function to a closed set of a normed space satisfies a Lipschitz condition with constant
1.%3) The left-hand side of (4.80) may be expanded as follows:

1

lim f(G(Jc*—l—/\(xo—x*),u*—i—)\(uo—u*), (4.82)
A—040 A

w* + A (w’ —w*) + R(w®,\) — S(u*,u’,\)) — G(z*,u*, w*)

= lim l(G(:ﬁ*Jr)\(:rof:r*),u*+)\(uofu*),w"‘Jr)\(wof’w"{)JrR(wO,)\)fS(u u’, \)) (4.83)
A—0+0 A

—G’(a:*,u*Jr/\(uOfu*),w*+/\(w07w*)+R(w0,)\) S(u*,u’, A)) )
1

+ lim f(G(m*,u*+)\(u0—u*)7w*—l—)\(wo—w*)—i—R(wo,)\)—S(u*,uOJ\))

A—0+0 A

—G(z*, u", w4+ A (W —w*) + R(w’,\) —S(u*,uo,)\)))

+ lim l(G(:z:”‘,u*,w*Jr)\(wOfu)*)JrR(wO,/\)—S(u*,uo,)\))fG(:E*,u*,w*))
A—0+0 A

= D,G(z*,u*,w*) (2° — 2*) + DG (x*, u*, w*) (u® — u*) + D, G(z*, u*, w*) (w® — w*). (4.84)
On the other hand, using (4.40), (4.44), (4.46) and (4.48), we may continue (4.80) and (4.81) through
D, G(z",u*,w*) (Z — z*) + D, G(z",u*, w*) (4 — u*) + DpG(z*,u*, w*) (0 — w*) (4.85)

+ D, G(z*, u*,w*) (2° — ) + D, G(x*, u*, w*) (u® — @) + DG (2*, u*, w*) (v’ — )

(nAm)
~Ki (200414 % (14C))

r=2

(nAm)

=l KA (R g S 6, A) )
A—040

33) [CLARKE 90], p. 50, Proposition 2.4.1.
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Consequently, the first component p of our element from Step 4.1. satisfies

0 =&+ D, Gx" u*,w") (& —z%) + D,G(z",u",w") (& — u*) + Dy G(z*, u*, w*) (0 — w") (4.86)
Z - (H D,G(z*,u*,w") ’ [ | + H D,G(z*,u*, w") } Nl —a Il .o (4.87)

. e . (nAm) 0 ~ (nAm)
+ || DuG utw) || 2 [ w? — i, ||Lw) 7K1n<201+1+ D (1+cr)) > —Kyn (4.88)

— r=2

with a sufficiently large number Ky > 0. The proof of Proposition 4.8. is complete. m

In particular, Proposition 4.8. implies that the origin (0, 0,0,0, ..., 0), which belongs to Cy N C, must be
a boundary point of C.

e Step 5. Separation of C and D. Propositions 4.7. and 4.8. imply together that the convex sets C and
D are disjoint while int (D) # @. Consequently, we may apply the weak separation theorem 3% in order
to find a nontrivial linear, continuous functional (Ao, ™), 4@, 43 ..y ™)) € R x Lp/(p_l)(Q, R™) x
Lp/(pﬁ)(ﬁ, R7?) x Lp/(pfg)(Q, R7®)) x ... x Lp/(pf(nAm))(Q, R7(™ ™)) which separates C and D properly.
Consequently, we arrive at the variational inequality

Moo + (gD, 2+ (y@, 25+ (P, 28+ L+ (g, Z(nam) ) (4.89)

> X"+ (v, )+ (y®, )+ (u®, )+ (W, 2wy

V (o, 21, 2, 25, o, ZEn/\m)) €eC V(0" 2, 24, 24, ..., 2 ) with

nAm)
127 e <@y 122 Ml ere <y 125 pers <@y s [ 20nm) | ppsuamy S @ and (4.90)
Q” < —2K ( H Zi/ HLp + || Zé’ ||Lp/2 + || z3 ||Lp/3 + ...+ ” Z(nAm) HLP/(TMM) ) ' (491)

e Step 6. Derivation of the optimality conditions from the variational inequality (4.89).

a) Nonnegativity. Inserting (1, 0, 0, 0, ..., 0) € C (generated with ¢ = 1, x = 2%, v = v* and w = w*) and
(=1, 0,0,0,..,0) €D into the inequality, we find Ay > 0.

b) Derivation of (M). Next we insert into the inequality (4.89) elements of C generated with e =0, x = z*
and functions v and w such that v € U and (u,w) € W together with (0, 0, 0, 0, ..., 0) € cI (D). This yields
the maximum condition (M), namely

Mo (G(z*,u,w) — G(z*,u*,w*) ) — (g, u—u*) (4.92)
(nAm) (nAM)
+ Y (W we—wi) = Y (Y7, DT () (u—uT)) > 0.
r=2 r=2

¢) Derivation of (X). Insert now into (4.89) elements of C generated with ¢ = 0, v = u*, w = w* and
arbitrary € WP (Q,R™) and (0, 0, 0, o, ..., 0) € cl (D). This yields

Ao DGz u,w*) (z — %) + (y V), Jo — Jz*) > 0. (4.93)

Inserting further the element of C generated with ¢ = 0, v = v*, w = w* and (22* — z) € Wé’p(Q,R”)

[IOFFE/TICHOMIROW 79], p. 152, Theorem 1.



instead of x, we obtain the reverse inequality
Ao Do G(z* v, w*) (z — %) + (y V), Jo — Jz*) <0, (4.94)

and we arrive at the canonical equation (X). The proof of Theorem 4.3. is complete. m

Proof of Proposition 4.4. Let us assume, on the contrary, that Ay = 0. Then, inserting v = u* into the

maximum condition (M), we obtain the inequality

(nAm) (nAm)

> (7w —wl) = E (g7 w = To(u)) > 0, (4.95)
r=2 r=2

which holds true for all functions w belonging to elements (u,w) € WN ( U x LP? (Q,R7?) x LP/B(Q, R7®))
X ... X Lp/("Am)(Q,IR”(”Am))). By assumption, we are allowed to insert into (4.95) arbitrary functions
we L¥(Q,R° D) x L®(Q,R®) x ... x L®(Q,R7™™) with

| w, = T (u*) ||LN(Q7RU(,.)) <7v,2<r<(nAm). (4.96)

Consequently, for 2 < r < (n Am), y™ vanishes on all functions 2z € Cy° (€, R°™M) N LP(Q,R°™) and thus
on the whole space L”(£2, ]RU(T)), cf. [ADAMS/FOURNIER 07], p. 38, Corollary 2.30., and we get y), y(3)
<. , Y™™ = o, Further, condition (X) reduces to

(y, Jz) = (y9, Ja*) Ve e WP(QR"), (4.97)
and this implies (y™), Jz*) = (y™), v*) = 0. Thus the maximum condition reduces to
(W u—uy = —(yM,u) 20 VYueU. (4.98)

Since o € int (K) by assumption, U contains some L™ (£2, R™™)-norm ball V, and we see from (4.98) that
(yM w) =0 for all w € UN V. As above, this implies that ") = 0, and we get a contradiction since the

sets C and D were separated by a nontrivial functional. Consequently, we arrive at A\g > 0. =

Proof of Theorem 4.5. Consider the countable subsets
K= (KN Q™) xQ@xQ"®x ... xQ "™ and (4.99)
Q= QN (QxQ™® x Q¥ x .. xQ "), (4.100)

which are dense in K and Q, respectively. Consider further the null sets of the non-Lebesgue points of the inte-
grable functions g( -, z*(+),u*(+), w*(+)), g(-,2*(+),0°,w0), (v* —u () gV (), (Wl —wi(-))" ¥ (),
Voadj,(u*(-)) (00— u*())T Yy (), 2<r < (nAm), for (v°,w?) € K° N Q°. We form the countable
union N of these null sets, which is still a null set. Since @ C R™ is the closure of a strongly Lipschitz
domain, its boundary 9 is a null set as well. 3*) Let us fix now a point s” € int () \ N as well as an element
(1%, w%) € K° N QY Then a closed ball B = K(s", &) with sufficiently small radius € > 0 is contained in
int (), and the pair (u,w) of the functions

ist (s ist (s, B) — Dist (s, 0
ist (s is 50,8 — Dist (s,0

35) [WAGNER 06], p. 122, Lemma 9.2.
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belongs to (U x LP2Q, R x LP3(Q,R7®)) x ... x LP/(m) (o R ))) N 'W. Observe now that all
0

above mentioned functions are continuous with respect to v and w and (u(s°),w(s?)) = (v°,w"). Conse-

quently, s° is a Lebesgue point of (-, a*(+),u( ), w(+)), (u(-)—u*(-)) yD (), (we(-)=wi(-))" g™ (-),
Voadj,(u*(+)) (u(-)—u*(-) )T -y (), 2 <r < (nAm), as well, and we may form the Lebesgue derivative
of (M) at the point s° after inserting (u,w) into the inequality.

In order to do so, let us consider a Vitali covering of €.36) We specify therein some decreasing sequence
{QN} of closed subsets of 2 N B with (), @V = {s°}. All function pairs (u”,w") with

uM(s) = Lo (s)u(s) + Lig\ on)(s) u(s); (4.103)
w™ (s) = Lon(s)w(s) + Lo\ any(s) w*(s) (4.104)

form admissible controls together with (u,w), and we arrive at

T e [ (a9 ), wN<s>>—g(s,x*<s>,u*<s>,w*<s>>)ds (4.105)

- e [ @) 0@+ S i e [ () - i) ) d
- leiomm/ Vaadi,(u'(5)) (4 () = () "y ) ds

= o (95,27 (5).0%6) = g5 (5)u () w(s)) ) = (2= () "y V(o) (4.106)

B wn9) YO -3 Vaadi, (1) (0~ () T 6) > 0.

This inequality holds for all fixed s° € int (Q) \ N for arbitrary (v°,w") € K® N Q°. Since its left-hand side is
a continuous function with respect to (v,w), it may be extended to the whole set (K xR® x R7®) x ... x
RO (™) ) N Q, and the proof is finished. =

d) Remarks and generalizations.
Our first remark concerns the polyconvex set P. Here Assumption 3.1., 2) may be weakened as follows:

Corollary 4.11. (General polyconvex restriction set) Propositions 3.5. and 3.8., Theorem 8.9. as well
as Theorem 4.3., Proposition 4.4. and Theorem 4.5. remain true as far as the polyconver set P C R"™ in
Assumption 3.1., 2) is closed but possibly unbounded.

Proof. Since K C R™ is convex and compact, we may replace P by P = K N P before starting the analysis
of the problems. This causes no change in the feasible domains. However, the set P is compact together

with K and polyconvex as an intersection of a convex and a polyconvex set. m

Remark 4.12. Compared with [ WAGNER 13], (4.123) — (4.126), the growth conditions (3.21) — (3.24) for
the partial derivatives of g from Assumption 3.4. are slightly more restrictive. The conditions, however, are

adapted to the L” case and in this form required by the penalty technique used in our proofs.

Remark 4.13. As a consequence of the consideration of a polyconvex gradient constraint, the number of
variables in (P); and (P)s as well as in the conditions of Pontryagin’s principle cannot be reduced even if the

integrand does not depend explicitly on some of them. For the same reason, in contrast to [ WAGNER 13],

[DUNFORD/SCHWARTZ 88], p. 212, Definition 2.
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38)

39)

)

41)

42)

(4.9) — (4.12), the pointwise condition (MP) from Theorem 4.5. allows for a decomposition into separate

conditions in special cases only.

Remark 4.14. For the purposes of optimization, it would be desirable to know the largest possible convex

representative of a given polyconvex set P, thus obtaining maximal significance of the conditions (M) and

(MP).

5. Application to a problem from mathematical imaging.

a) The image registration problem.

In this final section, we provide an application of our theorems to an optimal control problem arising in
mathematical image processing. Consider a given pair of greyscale images, which will be described through
at least measurable, essentially bounded functions Iy(s), I1(s): © — [0, 1] on a domain Q C R*, k > 2, and
assign Iy as the reference image. Based on the assumption that there is an overall correlation between the
greyscale intensity distributions as well as the geometrical properties of the images, the unimodal registration
problem for Iy, I consists in the search for a deformation field z: Q — R”, which satisfies the condition
L (z(s)) = Io(s) for a. a. s € Q. 37) Among the different approaches to determine a suitable vector field z, 3®)
the registration by means of an elastic deformation became particularly important.3?) In this approach, the
changes in I; with respect to Iy will be attributed to an elastic deformation of the pictured objects. (This
is particulary reasonable in medical imaging since human tissue behaves according to hyperelastic material
laws. 40) ) Consequently, the deformation field will be obtained as a solution of a multidimensional variational
problem, whose objective contains a stored-energy function connected with a linear-elastic or hyperelastic
material law. Typically, the objective consists of a data fidelity term, e. g. (1 (z(s))—Io(s) )2, and a convex
or polyconvex regularization term. For the numerical solution of these problems, a number of well-established
methods is available.

There are at least two reasons for incorporating constraints for the gradient Jz into variational problems of
this type. First, the validity of the underlying elasticity models is always bounded by a restriction for the
maximal shear stress generated by the deformation.*!) This leads to the introduction of a convex gradient
restriction of the type Jx(s) € K, thus altering the given variational problem into a multidimensional control
problem of Dieudonné-Rashevsky type.*?) Secondly, it is often desirable to keep the deformation bijective,

For a detailed introduction to the registration problem, we refer to [ HINTERMULLER/KEELING 09], [ MODERSITZKI
04] and [ MODERSITZKI 09].

Depending on the shape of the pictured objects and their motion behaviour, methods as different as viscous fluid re-
gistration, Monge-Kantorovi¢ transport optimization, rigid motion in a higher-dimensional space or level-set methods
have been proposed in the literature, cf. [ CHRISTENSEN/RABBITT/MILLER 96], [ MUSEYKO/STIGLMAYR/KLAM-
ROTH/LEUGERING 09], [ BREITENREICHER/SCHNORR 09] and [VEMURI/YE/CHEN/LEONARD 00], respectively.
The concepts of the optical displacement and the optical flow could be mentioned here as well, see e. g. [ ALVAREZ/
WEICKERT/SANCHEZ 00] and [ AUBERT/KORNPROBST 06 ], pp. 250 ff.

See e. g. [ BURGER/MODERSITZKI/RUTHOTTO 13], [ DROSKE/RUMPF 04 ], [ DROSKE/RUMPF 07], [ HENN/WITSCH
00], [HENN/WITSCH 00], [LE GUYADER/VESE 09], [ MODERSITZKI 04], pp. 83 ff., and [ POSCHL/MODERSITZKI/
SCHERZER 10]. The idea can be traced back to [ BROIT 81].

See e. g. [OGDEN 03]. [ BALZANI/NEFF/SCHRODER/HOLZAPFEL 06 | provides examples for polyconvex stored-energy
functions applicable in this context.

This is true for a wide range of materials and even for living tissue. See e. g. [ CHMELKA/MELAN 76], pp. 38 — 45,
(material sciences,linear-elastic model) as well as [ GASSER/HOLZAPFEL 02], p. 340 f., and the literature cited there
(human tissue, hyperelastic models).

Cf. [ANGELOV/WAGNER 12], [ WAGNER 10] and [ WAGNER 12] where this approach has been pursued.
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which will be guaranteed by the restriction det Jz(s) > 0. More generally, volumetric constraints lead to

different types of polyconvex gradient restrictions.

b) Three-dimensional registration with mass-preserving data term and polyconvex regularizer.

As an example, we will reformulate a three-dimensional image registration problem provided in [ BURGER/

MODERSITZKI/RUTHOTTO 13| within the framework of optimal control. Within this problem, which origi-

nates from medical imaging, the authors consider the mass-preserving data fidelity term *3)

2

/Q(Il(x(s)) ~det Jz(s) — Io(s) )" ds (5.1)

as well as a regularization with respect to Jz, its cofactor matrix and determinant. The resulting variational

problem may be stated as follows: 4%

(V) F(z)= /Q<Il(x(s)) det Jz(s) — Io(s) )2 ds + - /Q(c1 | Ja(s) — Es || (5.2)
+c2 || adjyJa(s) — adjyEs || gt cs (det Jx(s) — 1)2 ) ds — infl; 2 € Wé’p(Q,]Rg) .
For the reasons mentioned above, we incorporate the convex gradient restriction
Ja(s) € K = {veR*? | Jvij| <es, 1<4,5 <3 (V)seQ (5.3)
and, fixing a sufficiently small € > 0, the polyconvex gradient restriction
Ja(s) e P=KnN{veR>® |detv>e} (V)seQ (5.4)

which allows to dispense with the growth condition lim 4. ;, gyo F'(z) = (+00) and the corresponding
penalty term within the objective. Consequently, we obtain the multidimensional control problem

(R) F(z) — inf!; e WP RY); Jaz(s) e KNP (V)seQ. (5.5)

We assume that the region of imaging is a rectangular block Q ¢ R?, 6 < p < o, W, c1, C2, c3, cq4 > 0.
The image data Iy and I; belong to L™ (Q, R) and C’(l)(Q, R), respectively. We use the matrix norm || v ||* =
|’U11 ‘2 + ...+ ‘Ugg |2.

For f, we choose the convex representative g: Q x R® x R? x R? x R — R defined through

9(5,€ v, wa,w3) = (L(§) - ws —Io(s)) + ey ; g(%wﬁ—l)ﬂ(l—sﬁ) (vis)") (5.6)
303 2 2 2
tper 3030 (5z’j(‘”2,z‘j*1) +(1=0i5) (wai5) >+M03(W3*1)

=1 j=1

where d;; denotes the Kronecker symbol. Since Iy(s), I;(£) € [0, 1] for almost all s € Q and all £ € R?, the

function ¢ is convex with respect to (v,ws,ws) for almost all s € Q and all £ € R3. The partial derivatives

[ BURGER/MODERSITZKI/RUTHOTTO 13], p. B134, (2.3).

Cf. [BURGER/MODERSITZKI/RUTHOTTO 13], p. B134 f., (2.3) — (2.7). For our purposes, the second and third part
of the regularizer have been slightly modified.



of g read as

B) oI .
T (5,6, 0,03,w3) = 2 (L(E)wd — Io(s)ws ) 7—(€), 1<i<3; (5.7)
0&; 0s;
3 3
;}g (5,6, 0, w2, w5) = 2 ZZ( (vij — 1)+(1—5w)vm>,1<z’<3,1<j<3; (5.8)
(¥ i=1 5=1
dg 3.3 . .
(s,&,v,ws, w3) = 2 Z Z( (wQ,J 1)+(175ij)w271j),1<z§3,1§]<3; (5.9)
a(UQij i=1 j=1
)
893 (5,€,v,w0,ws) = 21,(€)>ws — 211(€) To(s) + 2pues (ws — 1) . (5.10)

As a convex compact representative of the polyconvex set P € R**?, we will employ the set Q € R' with

Q = { (v,wp,w3) € R? xR? x R ’ |vij | < ea, |0J2,ij‘<lig), 1<4,7 <3, €<W3</€(3)}; (5.11)
K = Max, ¢ |adjy o], 1<i<3, 1<) <3; (5.12)
kB3 = Max, ok | detv]. (5.13)

Note that we get still a convex, compact representative for P if the constants Iil(-?) and £©®) are replaced by
(2)+’yandn3)+7mth7>01 j<3.

In order to apply the theorems from Sectlons 3 and 4, we must verify Assumptions 3.1. and 3.4. for the prob-

lem (R). Obviously, Assumptions 3.1., 1) — 3) are satisfied. In order to confirm Assumption 3.1., 4) as well as

Assumption 3.4., we perform the following estimates wherein C' > 0 denotes a generic constant, which may

change from expression to expression. For almost all s € Q and for all (£,v,ws,w3) € R® x R? x R x R,

we obtain with p > 6

| 9(s,€ v,w2,03) | < C (| [ews |+ [To() [*) + (14 [0]*) + (14w [) + (14 [ws [*) ) (5.14)
<C(1+ o)+ |wa ]+ ws ) (5.15)

since Io(s), 11 (€) € [0, 1] for almost all s € Q and all ¢ € R*. Consequently, (3.5) is satisfied with Ag(s) =0
and By(£) = 0, and the problem (R) admits a global minimizer. For the partial derivatives of g, the following
estimates hold:

|a§ (5,6 vwaws) | < 20 (1@ [[ws |+ [ To(s) | Jews | ) [ T llee < € (14 ]ws [77), 1< <35 (5.16)

|£jg (s, vwaws)| < C(1+[v]) <C(1+]of7"), 1<i<3, 1<5<3; (5.17)
ZJ

|8w (5,6 vwzws) | < (14 [wn]) <O (1+]w] "), 1<i<3, 1<) <3 (5.18)
2,13

|a—w3(s,§,v,w2,w3)| < C(l—i—‘wﬂ) = C(1+|w3|(p_3)/3). (5.19)

Consequently, the partial derivatives of g satisfy the growth conditions (3.21) — (3.24) as well, and any global
minimizer of (R) must satisfy the necessary optimality conditions from Theorems 4.3. and 4.5. Moreover, the
box structure of Q allows for a decomposition of the maximum condition (MP). We arrive at the following
set of conditions:

Proposition 5.1. (Pontryagin’s principle for (R)) Consider the control problem (R) under the analytical

assumptions mentioned above. In particular, we choose p = 6. If (x*,u*) is a global minimizer of (R) then



there exist multipliers Ao > 0, y» € L/ P~V R?), y@ € LPP"D(QR?) and y® € L P~ (Q,R) such

that the following conditions are satisfied:

(MP)1 doper Zl 21< ((vij—1)2— (ufj(s)—l)Q) —&-(1—5”-) ((vij)Q—ufj(sf)) (5.20)
£ 5 (500 + £ a0 )5 6) + 5 det (06509 (05— 0 6)) > 0

3 3 2 2
(M(P)Q )\0/1,62 Z Z ((51] ((wg,ij — 1) - (adjm-ju*(s) - 1) ) (521)

+ (1 — 5ij) ((WQ,ij )2 - adj2,iju*(3)2)> + 29: (w2,l — adjz,JU*(S))yz(z)(S) >0
=1
(V)s€Q Ywr € R with |wa11| <, o, Jwags| <k
(MP)s Ao (Il(x*(s) )% ((ws)® = (detu(s))?) = 2Io(s) I (27 (s) ) (ws — detu(s)) ) (5.22)
+ Ao e cs ( (UJ3 — 1)2 — (detu*(s) — 1)2) + (w3 — detu*(s))y(3)(8) =0

M)seQ VYwseR with E<W3<I€(3);

2 3.0
(K) 2o /Q (Il(x*(s)) (detu*(s))” = Io(s) detu*(s)) % 55 () (ils) = wi(s) ) s (5.23)
3.3 Ox; oz} 1 1p
LDIPY Q(asj s _aTj(sU yD(s)ds = 0 Vo e WP(QR?).

Proof. Assume that (z*,u*) is a global minimizer of (R). As a consequence of (5.15) — (5.19), Theorems
4.3. and 4.5. may be applied, and we obtain the existence of multipliers Ay > 0, y!) € Lp/(pfl)(QJRg),
y? e Lp/(p_z)(Q,IRg) and y® e Lp/(p_?’)(Q,IR)7 which satisfy together with (z*,u*) the conditions (M),
(X) and (M?P). In particular, the pointwise maximum condition (MP) reads as

Ao (Il(m*(s))2 ((ws)® = (detu(s))*) = 21o(s) I (27(s) ) (ws — detu*(s))) (5.24)
+ e g )y (85 (i = 1)" = (uis(s) = 1)*) + (1= 055) ((vi5)" = uis()") )

+ doper 23: 23: (5ij ((wz,z‘j - 1)2 - (ad.jQ,ijU*(S) - 1)2> =+ (1 _5ij) ((wz,z‘j)2 _ade,ijU*(5)2>)

i=1 j=1
+ Aopcs ((w3—1)2_ (detw”(s) - 1)2)
—:”i@$@+§aimmm%nﬁk>a%®“<>MW@Mw—%®>

+ i (wa, — adjy ju* (5))yl(2)(5) + (w3 fdetu*(s))y(S)(s) >0
=1
(V)s€Q V(v,wrwz) € (KxRxR) N Q.

Observing that

Q:(Kxﬁng)mQ—KxH 2 kP x e, kP, (5.25)

1_771]
1,7=1



we may insert into (5.24) arbitrary vectors of the shape (v, adjyu*(s),detu*(s)), (u*(s),ws, detu*(s)) or
(u*(s),adeu*(s),wg) with v € K, |wa;] < Iﬂ;g), 1 <i4,j <3and e < ws < k3. Consequently, (MP)
implies the separate conditions (MP);, (MP)y and (MP)3. m

We close the study of (R) with the following observation:

Proposition 5.2. (Occurence of the regular case within the conditions) Under the assumptions of
Proposition 5.1., consider the control problem (R) together with its global minimizer (x*,u*). If detu*(s) >
e’ > e for almost all s € Q then the conditions from Proposition 5.1. hold true with a multiplier Ay > 0,
i. e. the reqular case occurs.

Proof. Together with u*, the functions adj,u* and det u* are essentially bounded. Consequently, we may

enlarge the constants HZ(?) and £ within the definition (5.11) — (5.13) of the convex representative Q until
(adjyu*(s), detu*(s)) € int (H3 [~k = (e —)/2, k2 + (¢ — )/2] x [e, k® + (¢ - 5)/2]) for

,j=1 ij
almost all s € ). Proposition 4.4. implies now the occurence of the regular case. m
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