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Optimal control of the bidomain system (III):
Existence of minimizers and first-order optimality conditions.
Revised version

Karl Kunisch and Marcus Wagner

1. Introduction.

In this work, we continue our investigations of optimal control problems for the bidomain system. After the
study of the monodomain approximation of the equations and a thorough stability and regularity analysis of
weak solutions for the full bidomain equations, as contained in the previous papers [ KUNISCH/WAGNER 12|
and [ KUNISCH/WAGNER 11], we are now in position to analyze the related control problems with respect
to the existence of minimizers as well as to provide a rigorous proof of the first-order necessary optimality
conditions.

Let Q ¢ R? be a bounded domain and 7 > 0 a fixed time horizon. Then the bidomain system, representing

a well-accepted description of the electrical activity of the heart, is given by °V)

0D,

8tt + Lion(®4, W) — div (M; V®; ) = I, for almost all (z,t) € 2 x [0, T]; (1.1)
0D,

Gtt + Lion(®4p, W) + div (M, V&, ) = —I, for almost all (x,t) € 2 x [0, T]; (1.2)
ow
s + G(Dy,, W) = 0 for almost all (z,t) € 2 x [0, T]; (1.3)
nTM;V®; = 0 forall (x,t) € 9Q x [0, T]; (1.4)
nTM,V®, =0 forall (z,t) €92 x [0, T]; (1.5)
Dy (2,0) = ®;(2,0) — Pe(x,0) = Po(x) and W(z,0) = Wy(z) for almost all x € Q. (1.6)

In this model, €2 represents the spatial domain occupied by the cardiac muscle, the variables ®; and ®. denote
the intracellular and extracellular electric potentials, and ®;. = ®; — &, is the transmembrane potential.
The anisotropic electric properties of the intracellular and the extracellular tissue parts are modeled by
conductivity tensors M; and M,.. The specification of the model for the ionic current Iy, in (1.1) and
(1.2) and the gating function G in (1.3) will be made below. We shall consider three so-called two-variable
models wherein [;,, and G depend on ®;. as well as on a single gating variable W, which describes in a
cumulative way the effects of the ion transport through the cell membranes (see Subsection 2.2.) ). Finally,
the inhomogeneities I; and I, represent the intracellular and extracellular stimulation currents, respectively.
We shall investigate optimal control problems of the form

(1.7)

T T
(P) F (P, P, W, 1) = / /r(m,t, (1), Pe(w,t), W(z,t)) dodt + % / / I.(x,t)? dx dt — inf!
0 JQ 0 JQcon
subject to the bidomain equations (1.1) — (1.6) in its weak formulation (see (2.1) — (2.4) below)

and the control restriction I, € C (1.8)

The bidomain model has been considered first in [TUNG 78]. A detailed introduction may be found e. g. in
[ SUNDNES/LINES/CAI/NIELSEN/MARDAL/TVEITO 06], pp. 21 — 56.
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where .., is a Lipschitz subdomain of €2 and
C=1{QI|IeL™[(0,T),L*Q)], supp () C Qeon x [0, T], (1.9)
| I(z,t)| < R (V) (2,t) €Qr} € LT[(0,T), L*(Q)].

For the description of the control domain, the linear operator Q: L* Qr) — L? (Qr) defined by

Q1) = 1(0.6) = Lo (0) - 75—

has been used. When applied to a function I with supp (I) C Qcon X [0, T'], Q extends by zero the ortho-

I(z,t) dx (1.10)

Qcon

gonal projection onto the complement of the subspace { Z | fﬂwn Z(Z,t)dz =0 fora.a. t € (0,T)} C
L2 [(O, T), L2(Qcon)]. Consequently, for I, € C, we have

/ I (z,t)dx = / I.(z,t)de = 0 for almost allt € (0,7, (1.11)
Q Qcon

what guarantees the solvability of the state equations (cf. Theorem 2.3. below). In problem (P), the extra-
cellular excitation I. acts as control, which is allowed to be applied on the subdomain Qg only.°?) The
pointwise constraint within the description (1.9) of C is included due to the obvious fact that one cannot
apply arbitrary large electrical stimulations to living tissue without damaging it. In mathematical terms, this
restriction is necessary in order to establish a stability estimate for the bidomain system (Theorem 2.4.).
Due to the complex dynamical behaviour of the state equations, an appropriate choice of the integrand
r within the first term of the objective (1.7) for concrete applications is quite delicate. With arrhyth-
mia or tachycardia in mind, it could be chosen as r(z,t,o,n,w) = (¢ — <I>,;ges(t))2 where ®4., denotes
some desired trajectory for the controlled state ®;., which is part of a solution of (1.1) — (1.5) as well,
cf. [NAGAIAH/KUNISCH/PLANK 11B]. The second term expresses the requirement that — regardless of
whether the pointwise restriction within (1.9) is active — the overall stimulus should be as small as possible.
Consequently, solutions with little intervention to the cardiac system are favored.

Besides an existence theorem for global minimizers (Theorem 3.4.), the main result of the present paper is
the rigorous proof of the following set of first-order necessary optimality conditions for sufficiently regular

local minimizers (@tr, b, W, fe) of (P), consisting of the variational inequality

T
/ / (ufe — QPg) . (Ie — fe) dxdt > 0 for all admissible controls I, (1.12)
Q(/OTL

and the adjoint system %)

//_3131+3[Zn(%,w)p1+‘;i(¢% W) P )wdxdt—i—/ /WT (VP +VP,) dwdt (1.13)
// @tr,Qe,W))wdxdt vy e L[(0,T), W(Q)], Pi(z,T) =0;

T T
/ /Vz/JTMiVPldxdt +/ /WT (M; + M)V Py dxdt = —/ /@(étr,ée,ﬁ/)wxdt (1.14)
o Ja 0o Ja o JaOn

Ve L2[(0,T), WH(Q)] with w(x,t)dxzofor a.a.te(0,T), [ Pz, t)de=0(V)te (0,T);
Q

/ / 8P‘3 Z"(éw,W)ng—G(cbw, W) Py ) dudt = —AT/S)<;Z(@tT,@e,W))wdxdt (1.15)

vy e L[(0,T), LX(Q)], Psy(z,T)=0

For physiological reasons, the intracellular excitation I; must be set zero.
Within the functions r(z,t, ¢, n,w), Lion(e,w) and G(p,w), the real variables ¢, n and w are the placeholders for
by, . and W, respectively.



for the multipliers Py, P, and P; related to the weak state equations (2.1), (2.2) and (2.3) below, respectively
(Theorem 5.2.). The proof, which will be given by fitting the problem (P) into the framework of weakly
singular problems in the sense of Ito/Kunisch (see [ITO/KUNISCH 08], p. 17 f.), is based on two main
ingredients. The first one is a stability estimate for the primal equations (Theorem 2.4.), whose proof has
been already provided in the previous publication [ KUNISCH/WAGNER 11]. Secondly, we need an existence
proof for weak solutions of the adjoint system, which is contained in the present paper (Theorem 4.2.).
In difference to the monodomain approximation considered in [ KUNISCH/WAGNER 12], the proof of the
optimality conditions requires additional regularity of the minimizer (Cﬁm o, W, fe) in the case of the full
bidomain system.

In the literature, only a few studies related to the optimal control of the bidomain system are available as yet,
mostly restricted to the monodomain approximation. We mention [ AINSEBA/BENDAHMANE/RUIZ-BAIER
12], [BRANDAO/FERNANDEZ-CARA/MAGALHAES/R0JAS-MEDAR 08], [KUNISCH/NAGAIAH/WAGNER
12], [MUzDEKA/BARBIERI 05], [NAGAIAH/KUNISCH 11], [NAGAIAH/KUNISCH/PLANK 11A] and [Na-
GAIAH/KUNISCH/PLANK 11B]| and refer to [KuNiscH/WAGNER 12], p. 1527, for a closer discussion.
Numerical work concerning open-loop control of the bidomain equations with the goal of dampening of ex-
citation and reentry waves has been realized in [ KUNISCH/NAGAIAH/WAGNER 12], [ NAGAIAH/KUNISCH
117, [NAGAIAH/KUNISCH/PLANK 11A] and [ NAGAIAH/KUNISCH/PLANK 11B]. The problems were treated
with gradient and Newton-type techniques applied to FEM discretizations of the state equations.

The paper is structured in the following way. In Section 2, the solution concepts for the bidomain equations
are outlined. We present the ionic models to be used and summarize the existence and stability theorems for
weak solutions of (1.1) — (1.6). Then, in Section 3, we restate the optimal control problem (1.7) — (1.8) within
function spaces, subsequently analyzing the structure of the feasible domain and establishing the existence
of global minimizers. Section 4 is concerned with the derivation of the adjoint system and the existence
proof for a weak solution of it. Finally, in Section 5, we state and prove the first-order necessary optimality

conditions for the control problem.

Notations.

We denote by L”(£2) the space of functions, which are in the pth power integrable (1 < p < o), or are
measurable and essentially bounded (p = o0), and by WP (©) the Sobolev space of functions ¢¥: @ — R
which, together with their first-order weak partial derivatives, belong to the space L”(Q,R) (1 < p <
00). For spaces of Bochner integrable mappings, e. g. L’ [(0,T), W1’2(Q)], we refer to the summary in
[KuNiscH/WAGNER 12], p. 1542. Qr is an abbreviation for  x [0, T']. The gradient V is always taken
only with respect to the spatial variables . The characteristic function of the set A C R? is defined as
To: R* - R with I5(z) =1 <= z € Aand Ix(z) = 0 <= =z ¢ A. Finally, the nonstandard
abbreviation “(V)t € A” has to be read as “for almost all ¢t € A” or “for all ¢t € A except for a Lebesgue
null set”, and the symbol o denotes, depending on the context, the zero element or the zero function of the

underlying space.

2. Weak solutions of the bidomain system.

2.1. Parabolic-elliptic form of the bidomain system; strong and weak solutions.

It is well-known that the bidomain system (1.1) — (1.6) can be equivalently stated in parabolic-elliptic form,
cf. [BouRGAULT/COUDIERE/PIERRE 09], p. 459, and [ KUNisSCH/WAGNER 11], p. 4, (2.1) — (2.9). In its

weak formulation, the system reads as follows:
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/ ( ag)ttr . w + VwTMZ( Vq)t»,» —|— V(I)e ) + Iion(q)t'm W) ¢> d.]? = / Ii w dx (21)
Q Q

Vi e WH(Q), fora.a. te(0,T);

/Q(wTMiV% + VT (M; + M,) V(I)e) dz = / (IZ- + Ie> b dx (2.2)

Q
Vi e WH(Q) with /w(x)dx:O, fora.a. te(0,T);
Q

/ (8872/ —|—G(<I>t,.,W)) Ydr =0 VyeL*(Q), fora.a. te(0,T); (2.3)
Q
Dy (2,0) = Pg(x) and W(x,0) = Wy(x) for almost all z € Q. (2.4)

Throughout the paper, the following assumptions about the data will be made:

Assumptions 2.1. (Basic assumptions on the data)

1) Q C R? is a bounded Lipschitz domain.

2) My, M, : cl () — R**® are symmetric, positive definite matriz functions with L™ (Q)-coefficients, obeying
uniform ellipticity conditions:

0< €17 <ETMi(x) € < pa || €11° and 0 < [ €)17 S ETMe(2)E < p2 || €7 VEER® YaeQ  (25)

with @y, pe > 0.
The notions of strong and weak solutions are as follows:

Definition 2.2. 1)%% (Strong solution of the bidomain system) A triple (®y,, ®., W) is called a strong
solution of the bidomain system (2.1) — (2.4) on [0, T'] iff the functions @y, D. and W satisfy (2.1) — (2.4)

and belong to the spaces

®,. € L[(0,T), W>*(Q)] n W"?[(0,T), L*(Q)]; (2.6)
d, e L*[(0,T), W**(Q)]; (2.7)
Wew" [ (0,T), L*(Q)] (2.8)

where [, ®e(x,t)dz = 0 holds for almost allt € (0, T).

2)9) (Weak solution of the bidomain system) A triple (®,, ., W) is called a weak solution of the
bidomain system (2.1) — (2.4) on [0, T'] iff the functions @, P and W satisfy (2.1) — (2.4) and belong to

the spaces

@, € C°[[0, T], L2 ()] n L*[(0,T), W *(Q)] n L*(Qr); (2.9)
o, € L*[(0,T), W(Q)]; (2.10)
wec’[[0,T], L*(Q)] (2.11)

where [, ®(x,t)dx = 0 holds for almost all t € (0, T).

2.2. Two-variable models for the ionic current.

For the ionic current I;,, and the function G within the gating equation, the following three models will be

considered:

Slightly modified from [ BOURGAULT/COUDIERE/PIERRE 09], p. 469, Definition 18.
[BOURGAULT/COUDIERE/PIERRE 09], p. 472, Definition 26.
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a) The Rogers-McCulloch model. °®)

Lion(p,w) = b-p(p—a)(p—1)+o-w =bp’—(a+1)bp’ +aby +pw; (2.12)
Glp,w) = cw—cky (2.13)

with 0 <a <1,b>0, k>0 and € > 0. Consequently, the gating variable obeys the linear ODE
OW/ot+eW = ek Dy,. (2.14)
b) The FitzHugh-Nagumo model. °7)

Lion(p,w) = ¢(p—a)(p—D 4w =¢*—(a+1)p* +ap+w; (2.15)
Glp,w) = cw—ckep (2.16)

with 0 < a < 1, k > 0 and € > 0. Consequently, the gating variable obeys the same linear ODE (2.14) as
before.
¢) The linearized Aliev-Panfilov model.®®)

Lion(p,w) = b-p(p—a)(p—1)+o-w =bp*—(a+1)bp’ +aby +pw; (2.17)
Glp,w) = ew—ck((a+1)p—¢*) (2.18)

with 0 <a <1,b>0, k>0 and € > 0. The linear ODE for the gating variable is

OW/ot +eW = ek ((a+1) By — Py°). (2.19)

2.3. Existence and uniqueness of weak solutions; the stability estimate.

In [KUNISCH/WAGNER 11], the following results about weak solutions of the bidomain system (2.1) — (2.4)
have been obtained:

Theorem 2.3. (Existence and uniqueness of weak solutions) %) Assume that the data within (2.1) —
(2.4) obey Assumptions 2.1., and specify the Rogers-McCulloch or the FitzHugh-Nagumo model. Then the
bidomain system (2.1) — (2.4) admits for arbitrary initial values ®y € L*(Q), Wy € L*(Q) and inhomo-
geneities I, I, € L™ [(O, T), (W1’2(Q) )* } , which satisfy the compatibility condition

/ (Ii(x,t) + Ie(x,t)) dex = 0 for almost all t € (0,T), (2.20)
Q

a uniquely determined weak solution (P, o, W) on [0, T'] according to Definition 2.2., 2). If the linearized
Aliev-Panfilov model is specified, this assertion remains true provided that Wy belongs to W1’3/2(Q) instead

of L*(9).

Introduced in [ROGERS/MCCULLOCH 94 ] .

See [FiTzHUGH 61] together with [NAGUMO/ARIMOTO/Y OSHIZAWA 62].

The model, which appears to be a linearization of the original model derived in [ ALIEV/PANFILOV 96, is taken from
[BourcAULT/COUDIERE/PIERRE 09], p. 480.

[BOURGAULT/COUDIERE/PIERRE 09], p. 473, Theorem 30, together with [ KUNISCH/WAGNER 11], p. 8, Theorem
2.8., slightly modified. An error within the proof of this and the next theorem will be fixed in a subsequent publication.



In fact, a closer regularity analysis reveals that, under the assumptions of Theorem 2.3., the components
(P4, W) of a given weak solution of the bidomain system belong to (L2 [(0,T), L6(Q)} N L' (0,T),
L'(Q)]) x c’ [[0,T], L4(Q)} in the case of the Rogers-McCulloch or the FitzHugh-Nagumo model and to
(L*[(0,T), L)) n L0, T), L"(Q)]) x C°[[0, T], L?*(Q)] in the case of the linearized Aliev-
Panfilov model where 1 < ¢ < oo and 4 < r < 6.

Theorem 2.4. (Stability estimate for weak solutions) '?) Assume that the data within (2.1) — (2.4)
obey Assumptions 2.1., and specify the Rogers-McCulloch or the FitzHugh-Nagumo model. Consider two weak
solutions (&, @', W'), (B, @, W") of (2.1) — (2.4), which correspond to initial values ) = & = &g €
L*(Q), W, = WY = Wy € L*Q) and inhomogeneities I', I/, I," and 1.,” € L>[(0,T), (le(Q))*]
with

/Q(Ii'(a:,t) + Ie'(x,t)> dr = /Q(Ii”(x,t) + Ie”(x,t)) dx = 0 for almost all t € (0,T), (2.21)

whose norms are bounded by R > 0. Then the following estimate holds:

/ "2 / "2
|‘¢tr *(I)tr ||L2[(O,T),W1’2(Q)] +||(I)fr *@tr ||C0[[O,T],L2(Q)] (222)
2
+ || (I)tr/ _cI)trI/ HW1*4/3[(O,T),(leQ(Q))*] + || q)e/ _(I)e” ||L2[(O,T),W1>2(Q)}
/ "2 / 1712 ’ 7”2
+w =W ||L2[(0,T),L2(Q)] HIIW =W Hc”[[o,T],LZ(Q)} HIw -w ||W1»2[(07T),L2(Q)}

2 2
< C(HI/ L e [0, 7), (wrac) ] T~ L [0, (wize)) ] )

The constant C > 0 does not depend on I, I/, I” and I.” but possibly on Q, R, ®y and Wy. If the linearized
Aliev-Panfilov model is specified then the assertion remains true provided that W5 = W{ = Wy belong to
W1’3/2(Q) instead of L*(9).

The assumptions in Theorems 2.3. — 2.4. are in accordance to the analytical framework wherein the control

problem (P) will be studied in the next sections.

3. The optimal control problem.

3.1. Formulation of the problem within function spaces.

In order to provide a precise statement of the optimal control problem (1.7) — (1.8) within an appropriate

function space framework, we introduce the following spaces:

Xy = L*[(0,T), W(Q)]; Xg:Xlﬁ{Z]/QZ(x,t)d:vzo(V)te(O,T)}; (3.1)
X3 =L

2[(0,T), L2 ()]; Xa=L7[(0,T), L*Q)]. (3.2)
We will further specify the subspaces

X, =X, n w0, Ty, (W) ] n C°[[0, T], L*(Q)]; X = Xo; (3.3)
X; = Xz nWH[(0,7), (L) ] nc®[lo, T], L*()], (3.4)

10 [KuNIsCH/WAGNER 11], p. 7 f., Theorem 2.7., slightly modified.



which contain all polynomials and, consequently, lie dense in X7, X9 and X3, as well as the target spaces
Zy = LYP[0, 1), (WH(Q)" ] 2o = LP[(0,T), (W"*(Q))"]; (3.5)
Zs = L*[(0,T), (L*()"]; Za =25 = L*(Q). (3.6)

The quadruples (P4, D, W, I..) of state and control variables will be chosen from the space )~(1 X )~(2 X )~(3 X Xy4.
Recall the definition of Q: L*(Qp) — L*(Qr) as

1
QI(z,t) = I(z,t) — Lag,(T) - Qo] I(z,t)dz . (3.7)
con Qcon
With the aid of the operators
FZX1XX2XX3XX4—>R; (38)
Fy: 5{1 X 5{2 X i3—>21; FEs: 5{1 X iQ X X4—)Z2; E32 il X )Eg—)Zg; (39)
E,: il 4)24; FEs: Xg 4)25, (310)

the problem (P) will be restated now in the following way:
T
(P) F(®y, &, W, 1) / / r(2,t, @, 1), Dol 1), Wz, 1) ) d di (3.11)
0o Jo

T
+H~/ /Ie(x,t)2dxdt—>inf!;
2 Jo Ja

Ey (@4, B, W) = 0 < / (83’;7“ + Lion(®yr, W))wder / VYT M; (VO + VP, )dz = 0 (3.12)
Q Q
Vi e WH(Q) (V)te (0,T);

Eo(®y, ®p, 1) = 0 <= /(Vz/JTMdim—i—VwT(Mi+M6)V<I>e)dx—/Iewdx —0 (3.13)
Q Q

Vi e WH(Q) with /z/J(x)dx:O (V)te (0,T);
Q

Ey(®y, W) = 0 /Q(aw(t) +G(<I>t,(t),W(t))>wdx =0 Vyel’Q) (Wte(0,T); (3.14)

ot
Ey(Py) =0 <= Du(2,0) — Pp(zx) =0 (V)z € Q; (3.15)
EsW) =0 < W(z,0)—Wy(z) =0 (V)zeQ; (3.16)
IeC={QI|IeL™[(0,T),L*Q)], supp () C Qeon x [0, T], (3.17)

| I(z,t)| < R (V) (2,t) € Qr } € L¥[(0,T), L*(Q)].

Assumptions 2.1. are imposed on the data of problem (P). The numbers T > 0, u > 0 and R > 0 as
well as the Lipschitz subdomain €.,, C € are fixed. The functions I,,, and G will be specified according
to any of the models from Subsection 2.2. In the case of the Rogers-McCulloch or the FitzHugh-Nagumo
model, we fix initial values ®y € L*(€2) and W, € L*(Q) while in the case of the linearized Aliev-Panfilov
model, ®y € L*(Q) and W, € W1’3/2(Q) will be used. Concerning the objective functional F', we assume the
integrand

r(z,t,omw): Q x [0, T] x R® = R (3.18)

to be measurable with respect to x and ¢ and continuous with respect to ¢, n and w. With regard to (3.7)
and (3.17), in the second term of F' the original integration domain €., from (1.7) can be replaced by §2.



3.2. Structure of the feasible domain.

Proposition 3.1. For the problem (3.11) — (3.17), the control-to-state-mapping C > I, — (P, P, W) €
X1 x Xo x X3 is well-defined.

Proof. Recall that fQ I.(z,t)dz = 0 for almost all ¢t € (0, T'). Consequently, the data within the problem
(3.11) — (3.17) satisfy the assumptions of Theorem 2.3. with I; = o, and the existence of a uniquely
determined weak solution (®4., P, W) of the bidomain system is guaranteed for any feasible control I, €
CcL™[(0,T),L*Q)]. =

Proposition 3.2. The control domain C C L™ (Qr) forms a closed, convex, weak*-sequentially compact

subset of the space X4.

Proof. Obviously, C is a convex subset of X4. In order to confirm closedness, consider a norm-convergent
sequence { Q IV } with members in C N X, and limit element I. Since the sequence { IV } of the generating
functions is uniformly bounded in L[ (0, T'), L*(Qon) |, it admits a weak*-convergent subsequence IV’
with a limit element I still satisfying the conditions supp (I) € Qeon x [0, T'] and | I(z,t)| < R (V) (z,t) €
Qp. The weak*-continuity of the operator () implies then Q) N 2 Xa QI and I = QI eC. Now the weak*-
sequential compactness of C is obtained from [ ROLEWICZ 76 ], p. 301, Theorem VI.6.6., together with p. 152,
Theorem IV.4.11. Finally, || I || ;o (g, < R implies | QI (g, < 2R, and C belongs even to L (Qr). =

Proposition 3.3. The feasible domain B of the problem (3.11) — (3.17) is nonempty and closed with respect
to the following topology in X1 x Xo X X3 X Xy: weak convergence with respect to the first three components,

and weak® -convergence with respect to the fourth component.

Proof. The existence of feasible solutions follows via Theorem 2.3. from Proposition 3.1. Consider now a
sequence of feasible solutions { (¥4, &N, WV, I,N)} with ®,~ —~%X1 &, &NV ~X2 o, WV X5 |}/ and
LN 2~ Xa [ From Proposition 3.2. we already know that I belongs to C. Further, from | KuNisCcH/WAG-
NER 11], p. 7, Theorem 2.6., we obtain uniform bounds with respect to N for the norms of o, N, o,
W, 8<I>trN/8t and OWN /9t, implying weak convergence of aq)tTN//@t, vq;tTN’ and aWNl/at as well as
a. e. pointwise convergence of @, "on Qr along a suitable subsequence. Consequently, passing to the limit
N’ — oo in (2.1) — (2.4), we may confirm that (®,,., ®., W) solves the bidomain system with right-hand sides
I;=0and I,. =

3.3. Existence of global minimizers.

Theorem 3.4. (Existence of global minimizers in (P)) We impose the assumptions from Subsection
3.1. on the data of the problem (3.11) — (3.17). Assume further that the integrand r(z,t,,n,w): Q X
[0, T] x R® = R is bounded from below and convex with respect to ¢, n and w. Then the problem (3.11) —

(3.17) admits a global minimizer.

Proof. Since  is bounded from below, the problem (3.11) — (3.17) admits a minimizing sequence { (&,
® N, WN I,V)} of feasible solutions. Due to the uniform boundedness of || I, |x, with respect to N, the
norms | @, %, | o N x, and || wH |x, are uniformly bounded as well (cf. again [ KuNiscH/WAGNER
11], p. 7, Theorem 2.6.), and we may pass to a subsequence { (<I>tTN/, <I>5N/, whN', ISN/) }, which converges to
a feasible quadruple (‘i)m <i>e7 W, fe) in the sense of Proposition 3.3. The lower semicontinuity of the objective
follows as in [ DACOROGNA 08], p. 96, Theorem 3.23., and p. 97, Remark 3.25.(ii). Consequently, denoting

the minimal value of (P) by m, we get

m = lm o F(@,N &N W 1.V (3.19)

> liminf 5, F(®,Y 0. Np,WN 1Y) > F(&,,, ., W, 1) > m,



and the quadruple (., d., W, 1,) is a global minimizer of (P). m

4. The adjoint equations.

4.1. Derivation of the adjoint system.

Throughout the following sections, we will further assume that the integrand r(z,t, ¢, n, w) within the ob-
jective (3.11) is continuously differentiable with respect to the variables ¢, n and w. For the optimal control
problem (P), let us introduce now the formal Lagrange function
E((bt’ra ¢€7 W Ie> Pl; P27 P37 P47 PS) = F((Dt’ra ¢€7 W Ie) + <P1 ) El(q)t’rv (I)e7 W) > (41)
(P, Ea(Pir, @e, Ie) ) + (Ps, E3(Ptr, W)) + (P, Ea(Prr)) + (5, Es(W))
with multipliers
4 1,2
Pre L°[(0,T), W =(Q)]; (4.2)
Pye L*[(0,T), W] n{Z| / Z(x,t)de = 0 (V)te (0,T)}; (4.3)
Q

*

Py e L’[(0,7),L*Q)]; P, Pse (L*(Q)". (4.4)

Differentiating £ at the point (ém <i>e, W, fe) in a formal way with respect to the variables ®;,., ®, and W,
we find the adjoint equations

D‘?tTF ((it’r) é67 Wa je) + <P1 ) Dq)t’r El(qA)hV (Abea W)> (45)

+(Py, Dy, Es(®4,®c, 1)) + (P3, D, E3(®er,W)) + (Py, Do, Es(®y)) = 0;

D‘I’BF ((i)t’!‘) (i)e,W,fe) + <Pl ) D‘Pe El(qA)t’ra(i)E7W)> + <P2; D‘I)e EQ((i)tT) (i)(%je)) = 03 (46)
DWF((i)tra(i)€7W7j€) + <P15DWE1(i)t7'7(§€7W)> + <P3aDWE3((i)t7‘aW)> + <P57DWE5(W)> =0.

(4.7)

After choosing Py = —P;(-,0) and Ps = —P5(-,0) (this choice is possible by Theorem 4.2. below), the
adjoint system takes the following form:

|2 2o i Py 9 ) P ) vaeat + [ [ 0T M (VR 4R deat (1)

—// @(étr,éew))wdwdt v e L[(0,T), W(Q)], Pi(e,T) =0;
T ror . . .
T T -
/ /w MVPlda:dt+/ /w (M; + M,)VPydxdt = A/Qan(q)m(be,W)zbdzdt (4.9)
Ve L2[(0,T), WH(Q)] with /w:zrt (V)te(0,T), /Pg(x,t)dxzo (V)te(0,T);
Q

T
/ / 8P3 Mwn(q)mw)leraG(@tr, )P3)1pd;cdt = _/ /(@(étr,ée,lfv))wxdt (4.10)
ow 0 Ja\ow

Ve L2[(0,T), L*(Q)], Py(x,T) =0.
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4.2. The reduced form of the adjoint system.

First, we apply to the system (4.8) — (4.10) the transformation s = T'—¢, thus defining ]57(50, s) = Pi(x, T—s),
1<i<3, (f;;r(x,s) = &y (x, T—5), i(x,s) = & (x,T—5), W(w,s) =W(z,T—s)and I(z,s) = I.(z,T—s)
etc. By abuse of notation, we suppress all tildes, thus simply replacing ¢ by s and —9P; /dt, —0Ps/0t by
OP;/0s and OP5/Js, respectively. Then the adjoint system, in analogy to the primal bidomain equations,

can be rewritten in terms of the bidomain bilinear form as a reduced system:

SR 0)+ AP, 0) + [ (G20 W) P @ W) P ) wde = (S(6),0) (@)
Vi e WHHQ):

%(Pg(s),”gb) +/§2(852”(é>tr, W) P, + %(@m W) Pg) bde = 4%@”, b, W), ) (4.12)
Vi e LP(Q);

Pi(z,0) =0 (M)xeQ; Pz,00=0 (V)zeQ (4.13)

on [0, T'] in distributional sense, cf. [ KUNISCH/WAGNER 11], p. 5 f., Theorem 2.4. Here the bidomain
bilinear form A: W1’2(Q) X W1’2(Q) — R is defined as ibid., p. 5, (2.22), through

A, 2) = / VT M; Vo da + / Vi M; Vi da (4.14)
Q Q
where 1, € W'2(€) is the uniquely determined solution of the variational equation

/V{/JVST(MZ-—kMe)dex = —/ VI M; Vipdr Y € Wl’z(Q) with /1/1dxz0 (4.15)
Q Q Q
satisfying /{[;e der =0,
Q

and the linear functionals S(s) € (Wl’2 Q) )* are defined through

_ or .

<S(S)’ ¢> = —<%(<Dtr7fi>e,W), ¢>_/QV@E‘MZV’L/JCZSE (4.16)

where 1, € wh? (€) is the uniquely determined solution of the variational equation

or

—T
Vip, (M; + M) Vpdr =
| O M) Vi ds = (5

(D4, Do, W), ) Vip € WH(Q) with / Ydx =0 (4.17)
Q
satisfying / Podr=0.
Q

The component P, of the solution of (4.8) — (4.10) is uniquely determined as the sum P, = ¢, + ¢,. Note

that this reformulation is even possible without imposing the additional compatibility condition

/Qg:;(fi)tr(x,s),@e(z,s),W(x,s))d:c =0 (V)s€(0,T). (4.18)

4.3. Existence and regularity of weak solutions.

Theorem 4.1. (A-priori estimates for weak solutions of the adjoint system) The optimal control
problem (3.11) — (3.17) is studied under the assumptions from Subsection 3.1. Within the problem, we specify
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the Rogers-McCulloch model. Assume further that the integrand r(z,t, p,n, w) is continuously differentiable
with respect to @, n and w.

1) If (B4, @, W, 1) is a feasible solution of (P) with

O o b ), T (g b, W), o (b b, W) € L3(27) (1.19)
then every weak solution (Py, Py, P3) € LQ[(O, T), Wl’Z(Q)} X LQ[(O, T), W1’2(Q)] x L*(Qr) of the

adjoint system (4.8) — (4.10) obeys the estimate

2 2 2 2
HPlHL‘”I:(O,T),LZ(Q):I+||P1 HLZI:(07T),W1’2(Q):|+ HP2||L2|:(0,T),W1’2(Q):|+||P3||L°°|:(O,T),L2(Q):|
or ,~ ~ . ar ,~ & - or ~ + .-
< C (“ %(ét’r‘y @67 W) ||i2(QT) + || %(Qt’r‘y (Pe7 W) ||iz(SZT) + H %(@t’ra (Pe7 W) ||i2(£2T)) (4.20)

where the constant C > 0 does not depend on Py, Py, P; but on (étr, P, W,fe) and the data of (P).
2) Let ¢ =10/9. If (®4,, &, W, I..) is a feasible solution of (P) with

@(ém d., W), @(cﬁtr,cﬁe,ﬁ/), gf;(ém o, W) e L*[(0,T), L*(Q)] (4.21)

then every weak solution (Py,Ps, P3) € L*[(0,T), W"*(Q)] x L*[(0,T), W"(Q)] x L*(Qr) of the
adjoint system (4.8) — (4.10) obeys (4.20) as well as the further estimate

+1oP/s | I Ps o

«[o,m), (wh2@)] (4.22)

2
WPl o 0,7y, 2] [0.7]. 23®)]

or - -
8P 8 q < 1 7¢T‘ (be W %
+ [[0Ps/ SHLQ[(O,T),LZ(Q)] ( i 8g0( trs Ter )”LQ"[(O,T%LQ(Q)]
or » & 9 o & & i
(o, b, ‘ o (Prs @, W) [ )
1l 5 (B A,W)IILQC,[(O,T),LQ(Q)}*” gu Per P Wllzaar)

where the constant C > 0 does not depend on Py, Py, P; but on (étr, P, W,fe) and the data of (P).
The a-priori estimates yield the following existence and uniqueness theorem for the adjoint system:

Theorem 4.2. (Existence and uniqueness of weak solutions for the adjoint system) Under the
assumptions of Theorem 4.1., 2), the adjoint system (4.8) — (4.10) admits a uniquely determined weak
solution (Py, Py, P3) with

P e C°[[0, 7], 2] n L2[(0,T), W ()] n W[ (0, T), (W) ]; (4.23)

Py € L2[(0,T), W3] /Pg(:c,t)dsz W) te(0,T): (4.24)
Q

Py € C°[[0,T], L] n W™ [(0,T), L*(Q)]. (4.25)

Note that, even under the assumptions of Theorems 4.1., 2) and 4.2., the regularity of P; € L4[(0, T),
WI’Q(Q)] as required in (4.1) and (4.2) cannot be guaranteed.

4.4. Proofs.

Proof of Theorem 4.1. Throughout the proof, C denotes a generical positive constant, which may appro-
priately change from line to line. Further, we will specify in (3.12) — (3.14) the Rogers-McCulloch model.
The necessary alterations in the case of the other models will be discussed at the end of the subsection.



12

e Step 1. An estimate for the right-hand side of (4.11). We start with

Lemma 4.4. Under the assumptions of Theorem 4.1., for arbitrary €, > 0 the following estimate holds:
[(S(s), ¥)| < (|| (Do Be, W) 22 + H (BB ) ) ) + Ot 116 o) - (426)

The constant C > 0 does not depend on &( and 1.

Proof. Inserting v, € Wl’z(ﬂ) as a feasible test function into (4.17), we get from the uniform ellipticity of
M; and M, and the Poincaré inequality:

— 2 —T —T or ~ +» .~ —T
CllFe Ny < [ VO M+ M)VE, da < (G 00 50 (4.27)
1 or 61 — 2
< * —_— 1,2 , s
S 25 || a (¢tT7(b67W)H(W1,2(Q)) + 2 ”we ”W (Q) (V)SE (0 T)
for arbitrary d; > 0. Inserting §; = C, we arrive at
c - 2 1 ,0r 1 9
S 1Tl < 56 1@ W) - < 51 5 BB ) o (4.28)
From (4.16), we obtain
3 or
[(S(), )| < [(55(@ers @e, W), ) [+ [(VWe Mz,vw>| (4.29)
1 37‘ 52 2 2
<25, ||(9 (‘Pm‘I’e,W)|\(W1,2(Q))*+*||¢||W1,2(Q) ||¢ ||L2(9)+ | M1 14 172 (4:30)
o2 | (w
< 5 | 9@ W) g + 5 1 iy + (2 +("')T‘°’) 19 ey (4.31)
C’ 87" C’ or 92 ( 2)203 2
5, 155 @ e W) ooy + 1 0 (@ e W) [y + O (5 47557 ) 19 ey (432

by (2.5) and (4.28). Taking d3 = 02/ (u2)?, we get (4.26). m

e Step 2. The estimates for || P || and || Ps || . Specifying the derivatives of

LOO[[O,T],LZ(Q)] LOO[[O,T],LZ(Q)]
I;on, and G according to the Rogers-McCulloch model, we have

aI’Lon 3 T = 2 a 0G . N

B (P, W) = 3b(<I>tr)2 —2(a+1)bPy+ab+ W, %(‘Pm W) = —ek; (4.33)
8Iion 2 o 2 8G 2 S

811} (q)tr‘v W) = q)tr; %(@tﬁ W) = €. (434)

Inserting P (s) as a feasible test function into (4.11), we get for arbitrary ef, £1(s) > 0 with [ KUuNISCH/ WAG-
NER 11], p. 6, Theorem 2.4., 2), and Lemma 4.3. above ')

1 d aIion 3 T
1 Pis >Hiz<m+(A<P1,P1>+5||P1 ||iz<m)+ | W) Pi()* da (4.35)
aG
/‘ (2, W ’|P1P3|+| PO +81 P =
1d L \2 2
5 72 | Pr) 20 + Bl Pr i) + | (ab+3b(€4)?) Pi(s)* do (4.36)
2 ds O

<0/ ‘(i)tr|+]W‘)]P1]2das+eﬁ/|P1P3‘dx

(H D@ e W) a0y + 1 5 <<I>tr,<1>e,w>||pm)+050|\P1||W12(Q)+6\|P1Hm —

) Note that ¢ > 0 is fixed from the Rogers-McCulloch model.
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1 d
5 2= 1PLS) 33y + BILPL Iz (4.37)

N

Cerls /(|<I>tr! i’ )!Pd dot =5 1Py + € (I P ey + 1 Pol )

+ = (H D@ e W) a0y + 1 5 <<I>m<1>e,W>||Lzm))+Oea|\P1||€V1,z(m+m|P1Him)

N

Ce(s) (11 du oy + 1 ||L4(m) I P+ (L+ 55 ) 1 P ey (4.39)
+ = (H (Buy oo, W) 22 )+ 1 o o (B W) a0y ) + O 1P g + Cll Pz

We choose £1(s) =/ (1 + || B(s) ||L4(Q) + || W (s) ||L4(Q) ) with £} > 0 and continue (4.38) with

<O Py gy + € (L4 5 (14 1800 ey + 1) @) ) -1 P oy (439

2 2
(H 5@ e W) a0y + 1 5 <<I>tr,<1>e,w>||m))+ceg|\P1||W1,z(m+c\|P3|\Lz(m.

Further, 1nsert1ng Ps(s) as a feasible test function into (4.12), we find with e2(s) > 0

1 d
= Ps(s) 2
I ~
/‘8 ion (I’t,.,W)“PlP3|dx+/‘aG (b4, W ’ Py |* da:+/’ O (&0, 0,70 ’|P3\dx (4.40)
Q
/|(I)trP1 P3‘d33+5||P5 ||L2(Q +CH (‘btr?q)evw) || Q)+C||P3 ||L2(Q) (4.41)
1
< Ceols /|c1>trp1| d:v+C’(1+ T )>||P3 ||L2(Q)+C|| (<I>tr,<I>@,W) 1220 (4.42)
1

< 082(5) || (I)tr HL4(Q) . || P ||W12(Q) +C (1 + — ) || Ps HLZ(Q +C || (‘I)t7,(1)e,W) || . (443)

£2(s)

Choosing now e5(s) = &5/ (1 + || By (s) ||i4(Q) ) with €}, > 0, (4.43) may be continued as
2 1 < 2 2
< Cey|| Pt g +C (1 + 5 (1411 20() sy ) ) I Py 220 (4.44)
2

+CH ((I)trv@evw) HL2(Q)~

Combining (4.39) and (4.44), we obtain
d
1P Py + 1 Po(3) By ) + 281 sy (1.45)

2 1 A 2 . 2 5
C (ch+er+ ) 1Py oy + C (14 5 (1418009 sy + 1 W) Iy ) ) 121 132
1

N

1 2 2
(14 180 (5) o) ) I P Hm)

7
€2

(H (@tr,cbe,W)||L2(Q+|| (étr,@e,W)lle(mMCH (Do, @, W) [ -

+C(1

Now we fix the parameters £q, 1, €5 > 0 in such a way that the terms with || Py [|y;1.2(q) on both sides of
(4.45) will be annihilated, thus arriving at

L) gy + 1 Po(s) By ) < ALs) (|| Pi(s) 320y + I Pa(3) 320y ) + B(s) where  (4.46)
A(s) =c(1+||<i>w< 9) Iz + W (s ||L4 @) ) (4.47)

Bs) = (1o <<1>tr,<1>e,w>||L2(m+H (BB ) [y +1l 50 O G b ) [y ) - (449
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Then Gronwall’s inequality yields for all s € [0, T']:

° A(o) do s
1 P1(s) 320y + 11 Ps(s) 2y < elo 2% () Pu(o) I Q>+||P3<o> 220 + / B(o)do)  (4.49)

<e (H o (B8 W) oo, + || (B ) [, + || (B, 0o W) 2,y ) (450)
since &4, € L*(Qp) and W e C° [[0,T], LY(Q) |. Consequently, we get the estimate

2
Py

=[(0.7),L2@)] + 11 Ps

&, &, W) (4.51)

=0, 7),12@] S <” ( IZ2n)

+ || (q)t'ry q)e; W) ||L2(QT + || (q)t'ry q)e; W) ||i2(QT) ) .

e Step 3. The estimate for | Py | We return to (4.45). Then g, €}, €5 > 0 may be

[ (o0, 1), W”(Q)]
alternatively chosen in such a way that C (¢, + €} + €5) = 8 and, consequently,

d
= (I1P1(3) 132y + 11 Po(s) 2 ) + B 1 P1(s) Inagey (4.52)

< A) (I1PLS) G2y + 11 Po(s) 2y ) + Bs)

where A(s) and B(s) are calculated as above. Together with (4.51), we obtain

d
= (|| Pu(s) 220y + | Ps(5) 20y ) + B Pa(s) Hivm(m (453)

( ) (H ((I)tra (I)p, W) HL2(QT) =+ ” (q)tra (I)p, W) ||L2(QT) =+ ” (q)tra CI)p, W) ||L2(QT) ) + B(S) .
We integrate (4.53) over [0, T'] and get, inserting the initial values P;(0) = 0, P5(0) =

I PUT) (72 + I P5(T) 2y + B P11 (4.54)

Lz[(O T), wh2(e)]
(|| <<I>tr,<1>e,w>||m)+|| (BB ) [, 1 50 O (o e W) [y ) =

H Pl ||L2[(0 T) W1’2(Q)] (455)

(|| (D47, B, W) |12 QT)+|| cbtr,@@,W)n QT)+|\ (@0, &, W) 320, ) -

e Step 4. The estimate for || 0P, /0s Hi

the dual norm, we start with

0.1y, (Wra@)’] with ¢ = 10/9 < 2. Exploiting the definition of

T
P, /s ||? . :/ P (s)/ds, w) | d 4.56
VORIO 0,0, (wren) ]~y nwufﬁgmle e e [ o

T OLion » = oG .
:/0 S?P‘—A(Pl,w)—/g( R (1 ) Py + G (0 W) P ) wde+ (8(s), 0) | ds (4.57)

< C/OT(S?P}A(P1,¢)|q+s?P</(2<|<i)tr|2+|<i>tr
+S.1~1.psq/<;q(/Q|P3||w|dm)q+sgp‘<§(s),w>’q)ds.

P |w]de)” (4.58)
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The four terms on the right-hand side of (4.58) will be estimated separately. For the first term, we get with
[KuNISCH/WAGNER 11], p. 6, Theorem 2.4., 2), and (4.55)

T T
/0 sup | A(Pr,7) |q ds < /O sup v || P1(s) H(II/VIQ(Q) (K% H?/Vl,z’(g) ds (4.59)

q q
<A HL‘Z[(O Ty, wh2Q)] s cln ||L2[(o T), wh2(9)] (4.60)

q/2
(||—<<I>W,<I>6,W>||L2(QT>+|| (@ir, &, W) 320y + | 5o <<I>tr,<1>e,W>||Lz<QT)) o (461)

For the second term, we obtain

T
/0 sup(/g(|q3tr|2+|q3tr|+‘W|+1)|P1||w|dx)qu (4.62)
T T
<c(sup/ /\@trfqyplyqy¢yquds+sup/ /yé”yqyplyqywdxds (4.63)
Sm{/ /|W¢ |¢|dx@+ﬁm{/ /|P||w‘dx®)gfh4nb+ly+h

We start with the estimation of Jj, thus getting

T
lesgp/ /fﬁ)tr|20/9|P1|10/9|1/)\10/9dxds (4.64)
:ﬂw/ /mwwn %mtﬂ Wt 11/54/| wm@ (4.65)
= sup / o 50s gy 1Py [ 1 1122 dis (4.66)
< sup € / | B 1720711y 1Py 1204 g < 11 1015y ds = € /OTnéwni%?um | Py IS o) ds - (4.67)
<o / 90 ooy ds ) ( / I Py(s) [y ds) (4.68)
<O o2} AP . (4.69)

s[co,m), L% ()] [ (0, 1), w2@)]

Since ®y, € Lp,[(O7 T), LPH(Q)] forall 1 < p’ < oo, 4 < p” < 6, we get a bound analogous to (4.61).

Continuing with .J5, we find in completely analogous manner

Jp = sup /()T/Q|<i>w|1°/9|p1 117 | 17 gz ds (4.70)
< sup © / e 20710y | P I ) - 11 1A g ds = € / | B 2011y | Py 110 g s (4.71)
< ([ 18 ey s)™" ([P Py ) (172)
< Nl o 7y, gromgey] 1P . (4.73)

zlo,m) wiz@]

Noticing that, in the case of the Rogers-McCulloch model, W belongs even to C° [[0,T], LY(Q) |, we may
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estimate J3 in the same way:

Js = sup /OT/Q[W|10/9]P1|10/9|¢|10/9dzds (4.74)
< sup € / 1V [l gy - [Py ks g < 11 14 g 5 = € / | [l gy - | Py g ds - (4.75)
<o / W (s) 5y ds ) ( / | Pr(s) s ey ds) " (4.76)
< O IW a0,y aorngey] -1 P17 (4.77)

izl o,m) wiee)]

Py |0 . 4.
H 1HL2[(0,T),W1*2(Q)] ( 78)

10/9

<C AW (o 1y o]

Defining the function S(z,s) = 1, the estimation of J4 yields

T 10/9 10/9 10/9
Ji = sup/ /|s| Py |1 di ds (4.79)
.. Jo Ja

10/9
< C- HS||L1°/4[(0,T),L20/11(Q)] ’

Summing up, we get from (4.63), (4.69), (4.73), (4.78) and (4.79):

P [10/9 .
I 1||L2[(0,T),W1=2(Q)]

T
0 .
q/2
(II (B, B, W) [y, + || (B b 1) 2 + H " (@1 W) 220, )

The third term at the right-hand side of (4.58) will be estimated through

r q q< q T 10/9 10/9
sup €%k |P3||w|d:v> ds < sup C |P3| |1/J| dx ds (4.81)
0 Q 0 Q
T 2 10/18 10/4 8/18 r 10/9 10/9
<o e [([1rPar) " ([lof a) as = s [C1n1 i, @
< supo/ 125 Wy 10 Iy = CUP G o oy o] < CNPISC T 0 o] (4.83)

q/2
(|| (Bor, B, ) |12, QT)+|| (B e W) a0,y + 1 50 <<1>tr,<1>evw>||L2(QT)) L (484)

Finally, Lemma 4.3. implies for the fourth term at the right-hand side of (4.58):

T ~ . T q
/0 sup [ (S(s), v)|"ds < ¢ (1+ / (||—<<I>W,<I>e,w>||Lz(m+n (BB ) ) ) ds) - (4.85)

T
or i .
< c(1+/ (155 @ 6T 35 + o (b 1) 2, ) ) (4.86)
5\ 12079 or 5\ 12079
(1 + H ((I)"’(I) W) HL”/Q[(O,T),L?(Q)] o 877(@”’(1) W) ||L20/9[(0,T),L2(Q)] ) ’ (4.87)

Together with (4.61), (4.80), (4.84) and (4.87), (4.58) yields the claimed estimate

0P /0s | (4.88)

‘1[(0 ), (w2@)" ]

a/2
(II iy (B e W) o, + || (B B W) 2o, + H o (@ @ W) 200, )
or ~ ~
— (b (D 20/9 —(® T q)e 2079 :
+ C (1 + || 8QD( try e7W) ||L20/9[(0,T),L2(Q)} + || 877( trs 7W) ||L20/9[(0,T),L2(Q)} )
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e Step 5. The estimate for || OP3/0s ||qL [

W (0.7). (L2(Q))*] . We start again by using the dual norm

T
OP5 /s || *:/ OP5(s)/0s, ¥)|'d 4.89
10RO o,y (r200) ] T o uwnil:i):l“ s i e
T 2 87" 2 2 o q
:/ sup\/ —<I>trP1—ng—a—(tbtr,CI)e,W))wdx] ds (4.90)
0
gc/ sup /|<I>tTHP1}|1/)|dx /|P3||¢|d;z: /|—<I>tr,<1>e,W||w|dz> ) ds
0
< C(Sup/ /“i)tr|q|P1|q|¢‘qd$d3+5ul3/ /|P3H1/)|dm) ds (4.91)
0 Q
—|—sup/ /|—(I>tr,<1)e,W||w|dx> ds):J5—|—J6+J7.

The three terms on the right-hand side of (4.91) will be estimated separately. For the first term, we get

T
J5:supC//

|10/9 10/9

| ' da ds (4.92)

| P1 |

2/3 5/9
< sup C / /‘(Ptr‘ dxds / /’Pﬂ dxds / /‘w‘ dxds (4.93)
5/9

= w2, IR, ([ \|w<>\\L2(mdwds) (199

l4(s) lL2 o) =1

10/9 10/9 10/9 5/9

<O P Py )T 4.

Cll®ullsn - (“ 1“L2[(0,T>,W1=2<9 ] +19F1/0s | Lo, 1), (wiz) ]> (495)

by application of the Aubin-Dubinskij lemma to Py. Since &, € L°(Q7), we may use (4.55) and (4.88) in
order to conclude that

q/2
(H ((bth ‘bev W) HLQ(QT + || ((I)tra (I)ey W) ||L2(QT =+ || ((I)tra (I)ey W) ||22(QT)) (496)
or ~ 2~ -
1 b, & 20/9 e b 20/9 )
+C( +” ( irs &es W) ”LQ"/Q[(O,T),LQ(Q)} * 377( ir Be, W) ”LQ"/Q[(O,T)-,LQ(Q)}

For the second term, we find

10/9
Js —supc/ /|P3 |4 |der)"ds < supc/ 1 P5(s) I2agay + 1605 [Bagey ) ds (4.97)
20/9
<c(1+1p (AT LZ(Q)]) (4.98)

q
(1+H—<<I>tr,<1>e,w>umm+\| (B W) [, 1 50 <<I>m<1>e,w>||L2m) (4.99)

by (4.51). For the third term, we get

T or -~ +
Jr = s?p/ /|— b, b0, W) ||w|da:) ds < s?_p/o (\\a—w(¢tr,@e,W)|\2LQ(m (4.100)
£ 1120/9
#1000 ey )t < O (LI G b LS ). (4.101)
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Combining now (4.91) with (4.96), (4.99) and (4.101), we arrive at the claimed estimate

q
Hapg/as||Lq[(0,T)y(L2(Q))*] (4.102)
or » 2 - or ~ -~ or ~ -~ = qa/2
< O (I g @ Bes W) a0,y + 1l 5o (B @ W) [y 1 g (BB W) 20, )

Or = - = 20/9 Or & & i 20/9
1 (praq)n (praq)m .
+ C( + asp( @, W) ”LQO/Q[(O,T),L?(Q)} * 877( tr: e, W) ”L"‘O/g[(O,T)’LQ(Q)})

e Step 6. The estimate for || Py ||2L2[(0 )W) Inserting Py(s) € W"?(Q) with Jo Po(z,s)dr =0 as a

feasible test function into (4.9), the uniform ellipticity of M;, M, and the Poincaré inequality imply

| Pa(s) 212y < C / VEI(M; + M,) VP do (4.103)
Q
< c]/VPQTMi VP, d:r+/ O (G0, 0, W) P dx‘ (4.104)
Q o on
o . .
< (P oo ||P2HWM(Q)+Ly%(¢t,.,¢e,W)|ypgydx) (4.105)

since, by Assumption 2.1., 2), the entries of M; are essentially bounded. Consequently, applying the genera-
lized Cauchy inequality twice, we get

2 ]- 2 2
1 Po5) ey < C (2 1P sy + 4 1 Bs s (1.106
3
1 Or . . a2 )
= | Ly, b, W e || Py |20 )
I3 W, + &Pl

for arbitrary €}, €) > 0. Choosing (¢4 + &) = 1/(2C), we arrive at

or 2

1 2 2 P
3120 ey < € (1P s + 1 5@ b)) = (1.107)

L2(Q))
2 2 or . . .2
12211 1< (IR |+ 1 (@ BT (4.105)

(0,7),wh2(Q) (0,7),Wh2(Q)

LZ(QT) )
where the right-hand side is bounded by (4.55).

e Step 7. Conclusion of the proof. The fact that P; belongs even to o [[O, T], LZ(Q)] can be confirmed
analogously to [ BOURGAULT/COUDIERE/PIERRE 09], p. 478, Subsection 5.3. As a consequence of the
imbedding theorem [EvANS 98], p. 286, Theorem 2, P5 € CO[[O, T], L2(Q)] holds true as well. Conse-

quently, the norms on the left-hand side of (4.51) can be replaced by C° [[0,T], L*(Q) |-norms, and the
proof is complete. m

Proof of Theorem 4.2. e Step 1. Approzimate solutions for the reduced adjoint system. By [ BOURGAULT/
COUDIERE/PIERRE 09 ], p. 464, Theorem 6, the bidomain bilinear form A( -, -) gives rise to an orthonormal
basis of eigenfunctions { +; } within the space wh? (), which are related to eigenvalues 0 = Ay < A1 < A2 <
.... For N € INg, let us define the subspaces

N
XN@Q) = {v=3 cvi|co, nen €R}CWH(Q), (4.109)
i=0
and the functions PV, PN : Q x [0, T'] = X¥ according to

PN (z,5) = % pin(s)a(e): PY(xs) = % 4i v (5) (@) (4.110)
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where p; n, ¢;n: [0, T] = R are solutions of the initial value problem

dpj7d7]\;(8) PN () + Z p’N / 310” q)tr’ )1/)1( )wa( ) dx (4.111)
+ z:() qivN(S) ’ ?)G((I)th )1/%(95) ¢j(x) der = <§(S), ¢j >, 0<j<N;

CZ(]LTI\;(S) + zﬁ_v:o pi,N(S) / a;ion ((Aptra ! )1;[}2( )7/)3( ) (4]_12)
+Z%N / (D4, W) () ¥ (z) da = <gr(<1>tr,d>e7W) ¢;), 0<j<N;

pin(0) =05 ¢jn(0) =0 0<j<N. (4.113)

Specifying the data for (4.111) — (4.113) according to the Rogers-McCulloch model, the problem reads as

dpin(s) o S b 30 (D)2 +2(a+1)bdy+ W +ab) ;b d 4.114
T Jp],N(S) + lgo pz,N(S) : o ( tr) + (a + ) tr + +a 7/)1 7/’] T ( . )
—ergin(s) = (S(s),¥;), 0<j<N;
dg;,n(s) N - or )
L S pin(s) | Putityda + eqin(s) = —( 5 (Pu, P, W), W), 0<j<N; (4.115)
ds i=0 Q ow
pin(0) =05 ¢jn(0) =0 0<j<N. (4.116)

Obviously, all integrals with respect to x are well-defined and the coefficients as well as the right-hand sides are
integrable with respect to s at least. Then, by [ WARGA 72], p. 92, Theorem II.4.6., the initial-value problem
(4.114) — (4.116) admits a unique solution (Po.y, -\ PN 5 don s s avy ) € (W0, 7))V Asa
consequence of the orthogonality relations, P/¥ and PJ obey the equations

SO0+ AP, 0) + [ (L@ RY + 5 @)Y ) o (@117
= (S(s), v) Ve¢exN(Q);
PN+ [ (2@ 1) P+ 5 (00 W) PY ) b (4.118)

0
= (5 (G b W), ) Ve EXV(Q).

In this sense, the functions P{¥, P{¥ can be interpreted as approximate solutions of the reduced adjoint
system.

e Step 2. A-priori estimates for the approzimate solutions P}, Pi¥. The functions P{¥, P obey the a-priori
estimates from Theorem 4.1., 2). More precisely, the following holds:

Lemma 4.5. Let the assumptions of Theorem 4.1., 2), hold for the data of (P) and a feasible solution
(@tﬁ(i)& W,fe) where ¢ = 10/9. Then for all N € Ny, the functions PN, PY satisfy the estimate

leN ”CD[[O T],L> Q)] +”PlN ||L2[(0,T),W1'2(Q)] +H8P1N/85||qq[ 0,T), (W1>2(Q))T (4'119)

+1 P + 0P jos ]I},

||c°[[o T],L%(9) | ] <C

L[ (0,7),L%(%)

for a constant C > 0 independent of N.
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Proof. We rely on the proof of Theorem 4.1. First, we observe that Lemma 4.3., (4.51) and (4.55) remain
true if P, and Ps are replaced by P and P} since, in Steps 2 and 3 of the proof above, the reduced
equations must be studied only for the special test functions P{¥(s), P (s) € X (Q2). Further, we observe
that

T
oPN /9s || 1o * :/ su oPN(s)/ds, “ds 4.120
H 1 / ||Lq|:(O,T),(W’(Q)> ] 0 ‘|1/)HW1,2IZQ)=1|< 1 ( )/ QZ)>’ ( )
T
dpi,
_ / sup I N( pints) oSS gy | ds (4.121)
0 & i=0 §=0
1220 e5 9 w2y =1
T
dpi
:/ sup \<Z bi N( )qpl, Z iy )| ds (4.122)
0 = i=0 j
I Z ¢ ¥jllwi2) =1
j=0
T
= / sup | (0PN (s)/0s, v) ’qu. (4.123)
0 peXN, Hd’”wlﬁ(g):l

By (4.117), the calculations from the proof of Theorem 4.1., Step 4, can be repeated now, resulting in a

uniform bound for || 9P /9s |’

LQ[(O,T),(WL?(Q))*]' In the same manner, we may repeat the derivation

from Step 5 since

T
10PY 105 3u 0.y ()] = | s [(OPY ) os, v | ds (4.124)
L2(Q) —
T
:/ sup ’<8P§V(s)/8s,w>’qu, (4.125)
0 HpeXN |Pllp2g =1

and we obtain a uniform bound for || dPYN /ds |’ ] as well. The arguments from Step 7 hold

L‘?[(O T),L%(Q)
without alterations. m

e Step 3. The solution for the reduced adjoint system. Lemma 4.4. implies that we may select a subsequence
{(PN",PN")} of {(PN,PN)} with convergence to limit elements in the following sense:

PV el wr@] p (4.126)
PN s [0 1) (@) ] B (4.127)
py _rfom.r@] p (4.128)
dPN' jds Lo (@) ] 5 (4.129)
Consequently, taking an arbitrary element 1; € Wl’Q(Q) from the orthonormal base, we find
~ 8Iion 2 T G - T Q
(P(s), ¢5) + A(Pi(s), 1) +/ ( (D4, W) Pr + 7(c1)tr>W)P3) Yjdr — (S(s), ¥5)
a\ 9¢ dp
= lim (i<PN’(s) ¥;) + A(PN (s), ¥) +/ ( ‘9]“’”(@ W) PN (4.130)
N'—oo \ ds ! n ! T o\ Op " ! '
oG

5, @ W)Y ) uydr = (S(5), ) ) = 0
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since 1; € XN for all sufficiently large N’ € IN. For the same reason, it holds that

~ OlLion oG or -~ .~
(QUs). )+ [ (20 W0) P+ o (@00 Py ) o (G (e W) )
d Olion o 0G . . ,
= Jim () v+ [ (TG W) PY G o W) PY ) vy da (4.131)
0
<ar((1)tr7q)evw) %)) = 0.

Weak continuity of the distributional differential operator implies that P= dP; /ds and QNQ = dPs/ds in the
sense of distributions. Further, it obviously holds that Pj(z,0) = lim ., P{¥(2,0) = 0 and P3(z,0) =
lim y, ., PN (x,0) = 0. Since {¢; } lies dense in W"*(Q) as well as in L*(Q), the functions P and Ps form
a weak solution of the reduced adjoint system.

e Step 4. Completion of the adjoint solution. As indicated in Subsection 4.2., the solution (Py, P3) of
the reduced adjoint system may be completed to a weak solution (P, Py, P3) of the adjoint system where
P, e LQ[(O, T), W1’2(Q)] with [, Py(x,s)de =0 (V)s € (0, T) is uniquely determined by Py, Ps. The
claimed regularity of the solution is guaranteed by Theorem 4.1., 2).

e Step 5. Uniqueness. Since the reduced adjoint system is linear with respect to P; and Ps, estimate (4.20)
yields the uniqueness of its weak solution (P;, P3) within the space (L°° [(0, T), LQ(Q)} N LQ[(O, T),
Wh(Q)]) x L[ (0, T), L*(R)]. The completion of (Py, Ps) to a weak solution (Py, Ps, P3) of the adjoint
system is uniquely determined as well. This finishes the proof of Theorem 4.2. m.

Remarks. 1) If the Rogers-McCulloch model in (3.12) — (3.14) is replaced by the FitzHugh-Nagumo model

then the proofs of Theorems 4.1. and 4.2. can be repeated with only minor alterations.

2) Theorems 4.1. and 4.2. remain even true if (3.12) — (3.14) is considered with the linearized Aliev-Panfilov
model. In the proofs, we must work with

oG

% (D1, W) = —ch(a+1)+2er Dy (4.132)

instead of OG(®y,, W)/ = —e k. Thus the estimations (4.36) — (4.55) have to be modified in the following
way: On the right-hand side of (4.36), the term e s [, | Py P3| dz must be replaced by

m(a+1)/|P1P31dx +€m/‘(i)trP1P3}dx. (4.133)
Q Q

The estimation of the first member of (4.133) runs as above, for the second one we get with arbitrary
ez(s) > 0:

/’qA)tTP1P3|d$ 063 /|(I)t,«P1| dx + ()HP3HL2(Q (4134)
Q

C
< Ces(s) || oy, ||L4 Q) RS HL4(SZ ( ) | P ||L2 Q) - (4.135)

L2
We choose £3(s) = &5/( 1+ || D4 HL4(Q)) with €5 > 0, thus getting

c
/|<1>t,np1 Py|dr < € Py oy + 7 (141 Burl2eiey) I Ps e - (4.136)
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and with appropriate choices of £§ > 0, we may proceed as above. Further alterations concern the estimations
(4.58) — (4.88). In (4.58), the term sup 77 ([, | Ps ||| da:)q must be replaced by

sup gqnq(a—&—l)q(/ |P3||1p|d:1c)q—|—sup 5’1/41(/ ‘Ci)trpg’ll}ld.’lﬁ)q. (4.137)

Despite of the lesser regularity of W for the linearized Aliev-Panfilov model, the estimations (4.70) — (4.80)
can be maintained since the solution satisfies W e C° ([0, 7], L8/3(Q)] — L10/4[(0, T, L*' () ]. In
(4.81) — (4.84), we must add an estimate for the second term from (4.137). Consider therefore

T
sup/ /’étr|10/9]P3 ’10/9‘¢’10/9dxd8

< ngp/o (/ | d:c 4/18 /| (/Q|P3}2dz)10/18ds (4.138)

T
10/9 10/9 10/9 10/9 10/9
< C sup / (%0110, - ||¢||Wé,2m ||P3||L2/Q))ds=c | (el 1R e, as (4130
10/9
oo (0,1, 5] " |

Py )" (4.140)

< C| 9y ’
C| @l M=l (0,1),2@]

and we may proceed as above. The remaining parts of the proof of Theorem 4.1. as well as the proof of

Theorem 4.2. remain unchanged.

5. Necessary optimality conditions.

5.1. Statement of the theorems.

Definition 5.1. (Weak local minimizer) A quadruple (®., ®., W, 1.), which is feasible in (P), is called
a weak local minimizer of (P) iff there exists a number € > 0 such that for all admissible (P4, P, W, I.) the

conditions

H‘btr*q)trnxl <e, |- ||X2 <€, ||W*WHX3 <e, [ Le— I ||X4 S e (5.1)
imply the relation F(&tr, ., W, fe) < F(®y, O, W, IL).
The necessary optimality conditions for weak local minimizers of (P) can be formulated as follows:

Theorem 5.2. (First-order necessary optimality conditions for the control problem (P)) We
consider problem (P), (3.11) — (3.17), under the assumptions of Subsection 3.1. with the Rogers-McCulloch or
the FitzHugh-Nagumo model. Assume further that 1) Q C R® admits a Cl’l-boundary, 2) M;, M.: cl(Q) —
R**3 are symmetric, positive definite matriz functions obeying (2.5) with W' (Q)-coefficients, and 3) the
integrand r(z,t, p,n,w) is continuously differentiable with respect to ¢, n and w. Let (CTDW, P, W,fe) be a
weak local minimizer of (P) such that (®y,., ®., W) is a strong solution of the bidomain system on [0, T],
e wh?[(0,T), L*(Q)] and

or o o o O oo L L O

), a*((i)”’ ., W), aw@"’ o, W) e L*[(0,T), L*(Q)] (5.2)

where q > 10/9 Then there exist multipliers P, € L* [(O, T), Wl’Q(Q)], P, € LQ[(O, T), wh (Q)]
{Z] [, Z(@ t)de = 0 (V)t € (0,T)} and P3 € L*(Qr), satisfying together with (&, e, W, 1,) the

adjoint equations (4.8) — (4.10), which are solved in weak sense, as well as the optimality condition

T
// (ufe—QP2)~(Ie—fe)dxdt>0 VI eC. (5.3)
O QCUTL
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If the linearized Aliev-Panfilov model is specified then all assertions remain true provided that 6r(<i>m o, W)/
dw belongs to L*(Qr) instead of L*(Qr).

The assumptions of Theorem 5.2. reflect the fact that there is a regularity gap between the weak solutions of
the primal and adjoint equations. The duality pairing between 0®,,./0t € L4/3[(0, T), (Wl’Q(Q) )*] and
P el’ [(07 T), W1’2(Q)] is not well-defined, and hence further regularity is required. In order to gain
this regularity, we have to impose that (@tr, <i>e, W) is a strong solution of the bidomain system rather than
a weak one. Sufficient conditions for strong local solvability of (3.12) — (3.14) may be found in [ VENERONI
09].
Corollary 5.3. (Pointwise formulation of the optimality condition) Under the assumptions of Theo-
rem 5.2., let the optimal control I, be represented as I, = Q1 with I € LOO[(O, T), L2(Q)], supp (f) -
Qeon X [0, T] and |I(x,t)| < R for almost all (z,t) € Qp. The optimality condition (5.3) from Theorem
5.2. then implies the following Pontryagin minimum condition, which holds a. e. pointwise:
(o, t0) - (1-QI(ro 1) = @ Palwo,t0) ) = Min (- QI(ro,t0) = @ Palio, o)) (5.4)
- g ns
(V) (zo, to) € Qeon X [0, T].

Consequently, for a. e. (x,t) € Qeopn X [0, T the following implications hold:
Qf(z,t)—iQPg(z,t) >0 = I(z,t) = —R;
QI(x,t)— iQPg(z,t) <0 = I(z,t) = R and (5.5)
i) € (=R, R) —> Qf(x,t)—%QPQ(x,t) ~ 0.

Corollary 5.4. (Regularity of weak local minimizers) Under the assumptions of Theorem 5.2., consider
a weak local minimizer (ci)m o, W, fp) of (P), whose control part I. = Q1 is generated by a function I with
| I(z,t)| < R a. e. Then I, | Qeon belongs to the space L™ (Qeon x [0, T]) N Lz[(O, T), W1’2(an)] .

Fur numerical purposes, it is useful to specify the Gateaux derivative of the reduced cost functional F:C—
R. It is defined through

F(I.) = F(@u(I), ®c(L.), W(I), L. ) (5.6)
with the aid of the control-to-state mapping I, — ((I>zsr(.fe)7 b (1), T/V(.Te))7 which is well-defined by
Proposition 3.1.

Corollary 5.5. (First variation of the reduced cost functional) Under the assumptions of Theorem

5.2., the Gateaux derivative of the reduced cost functional F at I.ecCis given through

Dy F(j) = Ufe_QPQ(fe) (5.7)

where ( Py( e) 5 (1L), Ps( e)) denotes the solution of the adjoint system (4.8) — (4.10) corresponding to
(q)tv"( 6)7 e( e I )7 Ie)

5.2. Proof of the necessary optimality conditions.

Proof of Theorem 5.2. As mentioned in the introduction, the proof of the necessary optimality conditions
for (P) is based on the stability estimate for the bidomain system (Theorem 2.4.) and the existence theorem
for the adjoint system (Theorem 4.2.), which will be invoked in Steps 2 and 3 of the proof, respectively.
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e Step 1. Variation of the weak local minimizer in a feasible direction. Assume that (@tr, §>67W,fe) is a
weak local minimizer of (P). If I, € C is an arbitrary feasible control with || I, — I, [ [(0.7). 2] <e
then, by Proposition 3.2., all controls

I(s) =I.+s(I.—1I), 0<s<1, (5.8)

belong to C as well. By Proposition 3.1., for every I.(s) € L™ [ (0,T), LQ(Q) ] , there exists a corresponding
weak solution (®-(s), Pc(s), W(s)) € X1 x Xg x X3 for the bidomain system on [0, T'| . Thus the quadruples
(Dyr(5), @e(s), W(s), Ic(s)) are feasible in (P) for all 0 < s < 1. On the other hand, from [ KUNISCH/ WAGNER
11], p. 7, Theorem 2.7., it follows that every feasible solution of (P) within a closed ball

U (D4, Do, W, 1) = K(Byy, C) x K(®e, Ce) x K(W,Ce) x K(I,e) € X3 xXog x Xz x Xy  (5.9)

can be generated in this way.

e Step 2. Lemma 5.6. For all I, € C, || I. — I.|| ] < e implies that

L=[(0.1), L2

. 1 A2 . 1 A2

lim = || @4(s) = P |, = 0; lim = || @4(s) — P |z, = 0; (5.10)
5—0+0 S s—0+0 S

1 ~

lim = [ ®,(s) — &, ||, = 0; (5.11)
s—0+0 S

. 1 A2 i 1 L2

lim —||W(s)—W ||X3 =0 and lim —||W(s)-W Hgs =0. (5.12)
s—0+0 S s—04+0 S

Proof. The stability estimate [ KUNISCH/WAGNER 11], p. 7, Theorem 2.7., (2.38), implies

N 2 2 2 A 2
[@er(s) = Cerllx, = [ @er(s) = Lurllr2[ 0,7y, wr2)] S O I1Le(s) = Lellz=[(0, 1), (wr2(2))"]

L2 A2
< C'HIe(S)_IeHLm[(07T)7L2(Q)] = Cs? ||Ie—IeHL°°[(07T)7L2(Q)] = (5.13)

i 1 A 2 . A 2

m  — || @4(s) = Py [lx, < lim Cs|ll.— L ||Loo[(O7T)7L2(Q)] =0 (5.14)
s—0+0 S s—040
as well as

A 2 A 2 2 2
[ @e(s) — Pellx, = ||¢'6(5)_q)eHLz[(O,T),Wl*z(Q)] < O 1e(s) — L HL"O[(O,T),(WLQ(Q))*]

~ 2 2 2
<C- HIe(S)—IeHLOC[(o,T),LQ(Q)] =Cs’ ||Ie_IeHL°°[(07T)7L2(Q)] = (5.15)

. 1 A2 ) A2

lim = || @c(s) = P, < lim Cs| I — 1 ||Loo[(O}T)’L2(Q)] =0 (5.16)
s—0+0 S s—04+0
and

A2 A2 A 2
[W(s) =Wilx, = IW(s) = Willp2apy < C-llLels) = el 0,7y, (wr2()"]
A 2 ~ 2
< C‘H]e(s)—IeHLW[(o,T),H(Q)] =Cs’ ||Ie_IeHL°°[(0,T),L2(Q)] = (5.17)

. 1 A2 ) .2
lim —[[W(s) =W, < lim C’8||IE—IG\|Lx[(07T)7L2(Q)] =0. (5.18)
s—0+0 S 5—040
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s2
In an analogous manner, the relation with || W(s) — W ||z, can be confirmed. In order to establish the relation

L2
with || ®@4(s) — 4[|, , we rely on [KUNISCH/WAGNER 11] p. 7, Theorem 2.7., (2.39), which leads to

| ®er(s) — Do ||§~<1 = || ®u(s) — D4y ||?/I/1*4/3[(0,T), (wr2@))"] (5.19)
< €% Mas (|| Le(s) = Le e 0,7y, (wry) ] - Mels) = Le w0 7y, (wree) '] ) (5.20)
< CMax (8| L= Lo~ [0, 1, 120 ] > 5 1 e = Eellpe (0,7 2] ) = (5.21)
dim () - b |, (5.22)

. A 2 3 A~ 4 .
< sl}gj_OC-Max(sHIe—Ie le=[(0, 7y, 220] » 8 M e = Lo N[ 0,7) 22y] ) = O+

e Step 3. By Theorems 4.1. and 4.2., in correspondence to (@tr,ée,W,fe), there exist functions P, €
(L*2[(0, ), (W (@)"])" = L*[(0,T), W), Py e (L*[(0,T), W) ])" = L*[(0, T),
W?(Q)] with [;, P(x,t)dz = 0 for almost all € (0, T') and Py € (L*[(0, T), (L*())"])" = L*(Qr)
satisfying the system (4.8) — (4.10) as weak solutions. Consequently, Py, P» and Pj solve the adjoint equations
(4.5) — (4.7) together with P, = —P;(-,0) and Ps = —P5(-,0). With these functions, we may derive the

following estimates:

Lemma 5.7. The following estimates hold true:

SEIOIJeré (P, Do, By (P4, e, W) (D4r(s) — D4y) + Do, By (P, B, W) (De(s) — De) (5.23)
+ Dw By (®4, &, W) (W(s) = W) ) = 0;
) Efﬁ . % (P, Dy, Es(®yy, @c, L) (D1(3) — D1y) + Do, En(Dyr, e, L) (e (s) — D) (5.24)
+( Py, Dy, Bo(®4y, @, 1) (I. — 1) ) = 0;
SEEIJer% (Ps, Do, By(®4, W) (D4(8) — D) + Dy E3(Dyyr, W) (W () — W) ) =0. (5.25)

Proof. We restrict ourselves to the proof of (5.23), noting that (5.24) and (5.25) can be confirmed in a
completely analogous manner. Due to our assumptions on the differentiability of 7, the principal theorem
of calculus in its Bochner integral version is applicable, c¢f. [BERGER 77], p. 68, (2.1.11). For the feasible
solutions (®,.(s), Pe(s), W(s), Io(s)) and (B, B, W, 1), we get from the first state equation in (P), (3.12):

1
0 = E(Py(5), Pe(s), W(s)) — E1 (P, @e, W) = / D&, s.,.w) E1<(I)tr + 7 (Pi(s) — Dyp)
0

Do+ 7 (Be(s) = Do), W+ T (W(s) = W)) (Prr(8) — Doy Pe(5) — e, W(s) — W)dr = (5.26)

1
0= <P1,/0 (D(@MS,W) Ei( @4+ 7 (@u(s) — Piy), P + 7(De(s) — Do), W47 (W(s) = W))

(B () — Py, Be(s) — Do, W(s) — W)
— Doy ) E1 (D, Do, W) (@4(5) — By, B (5) — b, W(s) — W)) dr )
+ <P1 ’ D(CDtT,fbe,W) El(é)trv (i)e; W) ((I)tr(s) - étm CDe(s) - (i)ea W(S) - W) > (527)

1
= <P1 5 / (Dcptr E]((I)tr +T7... 5 (I)e +7... 5 w +7... ) (@tr(s) - q)tr) - Dq)tr‘ El(ét'm q)ea W) (CI)W(S) - (I)t'r‘)
0
+ Do, By (4p+7 .0, e+ 7.0 W 47...) (Be(s) — Do) — Do, By (B, Do, W) (®e(s) — D) (5.28)

4 Dy By(@py 4 7o B+ 7o, WA 7. ) (W(s) = W) — Dy By (S, e, W) (W (s) — W)) dr )
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+ <P1 ) D‘th El((i)tra (i)ey W)((I)tr<s> - ci)tr) + D<I>€ El ((i)t'r; (i)ea W)((I)e(s> - (i)e)
+ Dy By (®pr, B, W)(W(s) — W) ).
By [YospA 95], p. 133, Corollary 1, we have

(P [ ) < 1P L [ Carly, <)

Consequently, for the first summand within (5.28), it holds that

1
» / | o Il dr (5.29)
0

1
. (/ | Doy By (@4t 7., o+ 7, Wt 7.0) (5.30)
s—040 S 1 0

1
lim 1]<P17/ (..)dr)| < lim || P
0 s—04-0

~ ~ o 1 A
- D<I’t7. El ((bt'ra (I)Ea W) ||£(i17Z1) ; || (I)tr(s) - cI)tr H%l dr

1
~ ~ ~ ~ ~ ~ 1 ~
+ / | Do, Er(®4p+ 7., @+ 7 ... ,W+7...,) = Do, E1(P4r, D, W) HC(X2_Z1) " | ®c(s) — Pe ||, dr
0 :

1
~ ~ ~ ~ ~ ~ 1 ~
T / | Dw Ey(®4+ 7, @+ 7o, W 7)) = D Br(@1r, 00, W) || 5, 4, SIW(s) = Wi, dT)
) :

1
. A . . 1 .
< lim || Pyl (/O Lit (H Bi(s) — Dirllg, + | Dels) — D [, + | W(s) — W ||§3) ~[[@4(s) = Doy g, dr

s—0+0

1
o ~ o 1 o
[ Lar (190(s) = Burllg, +190() = B, + W) = Wlg, ) 5 190(5) = e x, dr
1
A o o 1 o
[ Lar (19000) = il + 190 = b, + W) = Wg, ) $ I W) =Wl dr (531

with Lipschitz constants L1, Lo, L3, whose existence is ensured by the twice continuous Fréchet differen-
tiability of E; with respect to @y, &, and W. With reference to Lemma 5.6., the estimate (5.31) may be
continued as follows:

lim 1]<P1,/01(...)d7->]

s—040 S
. 1 1 N N . 2

< tim P 5 (20 + Lot a) | (19009) = @urllg, +11@e(s) = e, +1WE) - W, ) (5:32)
. 1 A2 1 L2 1 L2

< tim [Py © (S 1 @uls) = iR, + = | @els) = Do lix, + - W () = WK, ) =0, (5.33)
—0+0 s s 5

S

and this implies the first of the claimed relations, namely

lléno ; <P1 ) D‘I’tr El(q)tra (I)e, W) ((btr(S) — (I)tr) + D(be El((ptr, <I>e7 W) ((I)e(g) — (I)e) (534)
s—0+

+ Dy By (®4r, @, W) (W(s) = W) ) = 0.

From the second and third state equations (3.13) and (3.14), the limit relations (5.24) and (5.25) can be
derived in a completely analogous way. m

Since ®.(s) and W (s) take the same initial values as &, and W, respectively, it holds further that

o1 < .1
lim - <P4 5 D‘i’tr E4((I)tr) (‘I)tT(s) - (I)tr) > = lim - <P5 5 DW E5(W) (W(S) - W) > =0. (535)
5—0+0 S 5—040 S

e Step 4. The first variation of the objective. Choose now € > 0 small enough in order to ensure that
the difference F(®,(s), ®.(s), W(s), I.(s)) — F (¢, @, W, I.) of the objective values is nonnegative for all
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quadruples (®,(s), ®c(s), W(s), I(s)) belonging to the closed ball U.(®y,., b, W, 1,) defined in (5.9). As a
consequence of our assumptions about the integrand r, the first variation may be written as

0 < 5+F((i)tra éev W, fe) ((I)tr(]-) - (i)tra (I)e(l) - éev W(l) - W, Ie - fe)

1 ~ ~ A~
= lim - (F(@”(SL Bo(s), W(s), L(s)) — F(byr, b, W, Ie)) (5.36)
s—040 S
1 ~ ~ A~ ~ ~ ~ A~ ~
= lim - (Do F(ur, b, W, 1) (@1r(5) = bir) + Do, (i, b, W, 1) (e (s) — b) (5.37)
s—040

+ Dy F(Biy, b, W, 1) (W(s) = W) + Dy, F(Biy, b, W, L) (e(s) = L) ) -
Together with Lemma 5.7. and (5.35), we obtain

1 ~ N n A ~
0< lim - (D%F(cpm Go, W, 1) (®4(s) — by (5.38)
s—0+0 S

+ < Py, D‘i’tr El((i)tra (i’ea W) (@4r(s) — (i)tr) > + <P2 ) D‘i’tr E2((i>tra (i)ea fe) (Per(s) — (i)tr) >
+(Ps, Dy, E3(®4r, W) (®t,(s) — @4) ) + ( Pa, Dap,, Ea(@4y) (1r(5) — Pty) )
+ Do, F(®y, ®e, W, 1) (Do(s) — Do)
+ < Pl ) Dtbe El(ci)tm qA)ea W) ((I)@(S) - (j:)e) > + <P2 ) D<I>ﬁ EQ((i)tra éev fe) ((I)e(s) - qA:)e) >
+ Dy F(®4y, &0, W, 1) (W (s) — W)
+{Pi, Dy By(®4, e, W) (W(s) = W) )+ ( Po, Dy En(®y,, &, L) (W(s) — W
+{Ps, Dy E3(®4, W) (W(s) = W) )+ ( Ps, D Es(W) (W(s) — W
+ Dy, F(8y, &0 W 1) (Ie(s) = L) + (Po. Dr, By(®yy, b L) (I~ 1)) )

where the first three parts vanish since Py, Py, P5 together with Py = —P;(-,0) and Ps = —P5(-,0) solve
the adjoint equations (4.5) — (4.7). Note that, by Subsection 4.1. above, these equations take the claimed
form. Consequently, we arrive at

0 < lim 1(D,eF(<i>tr,ci>e,W,fe) (Ie(s)—f€)+<P2,DIEEQ((i)mi)e,fe)(Ie—fe)>) (5.39)
5040 S
T R . T . R

:/ /(uIE—Pg)-(Ie—Ie)dxdt:/ /(MIG—QP2)~(IE—Ie)dxdt (5.40)
0 Q 0 Q

for arbitrary I, € C. Since I, and fe vanish outside Qe X [0, T'], this confirms the claimed optimality
condition (5.3), and the proof is complete. m

Proof of Corollary 5.3. Using the representations I, = @I and I, = Qf, inequality (5.40) may be

rewritten as
0 < /OT/Q<,u-Qf—QP2)-(QI—Qf)dxdt — ATA(M-Qf—QPQ)-(I—f)dxdt (5.41)

T
:/ / (/,L~Qf—QP2)-(I—f)d:cdt (5.42)
0 Qcon
VIELOC[(O,T),LQ(Q)} with supp (I) C Qeon, X [0, T and | I(z,t)| < R (V) (z,t) € Qr.

To (5.42), we may apply a Lebesgue point argument analogous to [ KUNISCH/WAGNER 12], p. 1541, Proof
of Corollary 3.6., in order to get

(/,c . Qi(l’o,to) — QPQ(I‘(),LL())) . (770 —j(l‘o,to)) >0 V’I]O S [—R, R] (V) ($07t0) (S Qcon X [O, T], (543)

and this implies the conditions (5.4) and (5.5). m
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Proof of Corollary 5.4. This is implied by (5.5) since Q P, ‘ Qeon € LQ[(O7 T), W1’2(Qcon)] together
with P, € L*[(0, T), W"?(Q)]. u

Proof of Corollary 5.5. We can follow the proof of Theorem 5.2. where only in (5.36), (5.38) and (5.39)
the minorization by 0 must be deleted. m
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