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Multimodal image registration

by elastic matching of edge sketches via optimal control

Angel Angelov and Marcus Wagner ∗

Abstract. For the problem of multimodal image registration, an optimal control approach is presented. The geo-

metrical information of the images will be transformed into weighted edge sketches, for which a linear-elastic or

hyperelastic registration will be performed. For the numerical solution of this problem, we provide a direct method

based on discretization methods and large-scale optimization techniques. A comparison of a separated and a joint

access for the generation of the edge sketches and the determination of the matching deformation is made. The

quality of the results obtained with the optimal control method competes well with those generated by a standard

variational method.

1. Introduction.

Among the most challenging tasks of mathematical image processing is the registration of images with

different modalities. In many application areas, e. g. medical tomography, astrophysics and geology, certain

objects are imaged by different devices, at different wavelenghts and by use of different imaging protocols. 01)

In medical imaging, an analogous situation arises when contrasting agents or markers are applied, leading

to intermittent changes of the modality even of images subsequently generated by a single device (compare

Figs. 1 and 3 below). In all these cases, the question arises how to bring the different data sets into spatial

correspondence.

In the mathematical formulation of this problem, two greyscale images are given, which will be modeled as

functions I(s), J(s) : Ω → [ 0 , 1 ] on a rectangular domain Ω ⊂ R2. 02) I is considered as reference image.

If both images have the same modality, i. e. if the greyscale intensity scales in I and J are closely related

then we may search for a deformation field Z(s) : Ω → R2 fulfilling the condition J(s − Z(s)) ≈ I(s), thus

modifying the template J such that it matches the reference image I in a best possible way. 03) In multimodal

matching, however, we cannot expect from the outset that the intensity scales in I and J correspond in a

definite way. Consequently, the information contained in both images must be transformed into a quantity,

which allows for a subsequent comparison. Now the condition to be fulfilled is F ′
(
J(s−Z(s))

)
≈ F ′′

(
I(s)

)
where F ′, F ′′ denote appropriate transformations of the image data.

Depending on the particular situation, different transformations of multimodal data have been proposed

in the literature. Most frequently, the registration will be based on statistical quantities like correlation

or mutual information, cf. [Hermosillo/Chefd’hotel/Faugeras 02 ] , pp. 332 ff., and [Modersitzki

09 ] , pp. 97 ff., or on the geometrical information contained in the images (comparison of gradient or

curvature properties), cf. [Droske/Rumpf 04 ] , [Droske/Rumpf 07 ] , [Fischer/Modersitzki 03 ] ,

[Haber/Modersitzki 07 ] and [Modersitzki 09 ] , p. 331 f. For example, considering the definition

gσ
(
I(s)

)
= ∇I(s)/

√
‖∇I(s) ‖2 + σ2 (1.1)

∗ Corresponding author.
01) For example, [ Gallardo/Meju 05 ] addresses the matching of electrical resistivity and seismic velocity data in order

to draw conclusions about flow and transport processes in rocky near-surface materials.
02) In the following, we confine ourselves to the registration of two-dimensional data. The approach presented in this

paper, however, works in higher dimensions as well.
03) [ Modersitzki 09 ] and [ Zitová/Flusser 03 ] provide general surveys of image registration methods.
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of the normalized gradient field of a given image I(s) ∈ C1
(Ω,R) (cf. [Haber/Modersitzki 07 ] , p. 295)

where σ > 0 is sufficiently small, the deformation Z(s) can be determined in such a way that the distance

functional∫
Ω

(
1−

(
gσ
(
J(s− Z(s))

)T
gσ
(
I(s)

) )2 )
ds (1.2)

will be minimized, cf. [Modersitzki 09 ] , p. 107 f.

In the present paper, we pursue the second way but present a slightly different approach of exploiting

the geometrical properties of the images. Instead of normalized gradient fields, we generate weighted edge

sketches SI , SJ : Ω → [ 0 , 1 ] of I and J (as shown e. g. in Figs. 4 and 6) and attribute the differences

between them to an elastic deformation Z of the pictured objects. 04) Consequently, Z must satisfy the

condition SJ(s − Z(s)) ≈ SI(s). Since human tissue behaves according to hyperelastic material laws (see

e. g. [Ogden 03 ] ), the proposed approach is particularly reasonable in medical imaging. Like other problems

in mathematical imaging, the resulting elastic registration problem allows for an effective solution within the

framework of multidimensional control within Sobolev spaces. 05) In this problem, the objective

F (Z;SJ , SI , µ) =

∫
Ω

(
SJ (s− Z(s))− SI(s)

)2
ds+ µ

∫
Ω

r
(

JacZ(s)
)
ds (1.3)

consists of a fidelity term for the minimization of the grey value difference (SJ(s − Z(s)) − SI(s) )2 of the

weighted edge sketches and a regularization term, 06) which corresponds to a particular elasticity model via

the Euler-Langrage equations of the problem. Since the validity of the underlying elasticity models can be

guaranteed only as far as the shear stress generated by the deformation Z remains below a certain bound, a

gradient restriction for the unknown deformation must be incorporated into the statement of the problem.

Following [Franek/Franek/Maurer/Wagner 12 ] , pp. 287 ff., the edge sketches SJ and SI can be

obtained from a solution of a multidimensional control problem of analogous type as well.

First, we study the separated access where the three arising control problems for edge detection and matching

of the edge sketches are subsequently solved. Then we investigate a joint control problem, which searches for

the edge sketches and a matching deformation between them simultaneously. Selected numerical results of

both accesses are presented. The registration quality will be quantified and evaluated by different indicators,

e. g. by the relative reconstruction error for the edge sketches. Although the results of multimodal matching

do not reach the reconstruction quality of comparable unimodal registration experiments (cf. [Wagner 12 ] ,

pp. 497 ff.), the output of the optimal control method competes well with those of the state-of-art variational

method FAIR, which has been chosen as a reference. 07) The computations have been carried out within the

framework of the diploma thesis [Angelov 11 ] of the first author.

The plan of the investigation is as follows: In Section 2 , we present an optimal control approach to the

edge detection as well as to the elastic image registration problem. In the latter, the underlying elasticity

models have been chosen in a representative way for describing linear-elastic and hyperelastic deformations,

respectively, but we neither made adaptations to a particular material nor specified material parameters. In

04) In the literature, elastic registration is documented to be among the most popular methods in unimodal image

matching. More details may be found in [ Hintermüller/Keeling 09 ] and [ Modersitzki 04 ] , pp. 83 ff. The

majority of approaches relies on linear elasticity, but recently there is a growing interest in hyperelastic models,

cf. [ Burger/Modersitzki/Ruthotto 13 ] , [ Wagner 10 ] and [ Wagner 12 ] .
05) As documented in [ Wagner 10 ] and [ Wagner 12 ] .
06) Cf. [ Scherzer/Grasmair/Grossauer/Haltmeier/Lenzen 09 ] for regularization methods in image processing.
07) FAIR has been documented in [ Modersitzki 09 ] , pp. 9 ff., the software being distributed together with the textbook.
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Section 3 , we formulate a further control problem for joint determination of the edge sketches SI , SJ and the

elastic deformation Z and discuss the relation between its solutions and those of the separate problems from

Section 2. Section 4 is concerned with a common discretization scheme for the problems and its numerical

solution. In Section 5 , we describe first how to visualize the solutions and discuss different criteria for their

quantitative evaluation. Then the test images used in the numerical experiments are documented. Finally,

selected results of numerical experiments for the separated as well as for the joint access will be presented

and discussed.

Notations.

Let Ω ⊂ Rm be the closure of a bounded Lipschitz domain (in strong sense). Then L
p
(Ω,Rr) denotes the

space of r-dimensional vector functions f : Ω→ Rr, whose components are integrable in the pth power ( 1 6

p <∞) or are measurable and essentially bounded (p =∞). Further, W
1,p
0 (Ω,Rr) denotes the Sobolev space

of r-dimensional vector functions f : Ω→ Rr with compactly supported components, possessing first-order

weak partial derivatives and belonging together with them to the space L
p
(Ω,R) ( 1 6 p <∞). W

1,∞
0 (Ω,Rr)

is understood as the Sobolev space of all r-vector functions f : Ω→ Rr with Lipschitz continuous components

and boundary values zero, cf. [Evans/Gariepy 92 ] , p. 131, Theorem 5. JacZ denotes the Jacobian matrix

of the vector function Z ∈W 1,p
0 (Ω,Rr). The symbol o denotes, depending on the context, the zero element

or the zero function of the underlying space. Finally, the abbreviation “(∀) s ∈ A” has to be read as “for

almost all s ∈ A” or “for all s ∈ A except a Lebesgue null set”.

2. Separate search for the edge sketches and the matching deformation.

a) Edge detection by optimal control.

The geometrical information contained in a pair (I, J) of template and reference image with different modali-

ties will be extracted by generating a pair of weighted edge sketches SI , SJ . Following [Franek/Franek/

Maurer/Wagner 12 ] , this can be done by solving the multidimensional control problems

(E)1 Fedge(X; I, λ) =

∫
Ω

(
X(s)− I(s)

)2
ds+ λ

∫
Ω

(( ∂X
∂s1

(s)
)2

+
( ∂X
∂s2

(s)
)2

+ δ2
)1/2

ds −→ inf ! ; (2.1)

X ∈W 1,p
0 (Ω,R) ;

∣∣∇X(s)
∣∣2 6 R2 (∀) s ∈ Ω and (2.2)

(E)2 Fedge(Y ; J, λ) =

∫
Ω

(
Y (s)− J(s)

)2
ds+ λ

∫
Ω

(( ∂Y
∂s1

(s)
)2

+
( ∂Y
∂s2

(s)
)2

+ δ2
)1/2

ds −→ inf ! ; (2.3)

Y ∈W 1,p
0 (Ω,R) ;

∣∣∇Y (s)
∣∣2 6 R2 (∀) s ∈ Ω , (2.4)

which result in denoising/smoothing of the original image data while allowing for simultaneous edge detection:

we interpret those subsets of Ω as edges where the gradient restrictions (2.2) or (2.4) become nearly active.

In (E)1 and (E)2, we use p > 1, δ > 0, a regularization parameter λ > 0 and a further parameter R > 0

providing a restriction for the intensity gradients in the denoised versions X and Y of I and J . For sufficiently

small values δ > 0, the anisotropic regularization term
∫

Ω

√
| ∇X |2 + δ2 ds may be understood as an

approximation for the total variation norm of ∇X avoiding its main disadvantages 08) while conserving quite

fairly the edge structure within the image. Given optimal solutions X̂ and Ŷ of (E)1 and (E)2, we interpret

08) In this approximation, the integrand is differentiable at o and produces only reduced staircasing.
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as “edges” those subsets of Ω where the gradient restrictions (2.2) and (2.4) become nearly active. Thus the

edge sketches SX̂ , SŶ ∈ L
∞

(Ω,R) will be obtained through

SX̂(s) = 1− 1

R2

(
| ∇X̂(s) |2 + ε2

)1/n

; (2.5)

SŶ (s) = 1− 1

R2

(
| ∇Ŷ (s) |2 + ε2

)1/n

(2.6)

with ε > 0 and n ∈ N, n > 2. Since enlargement of n results in a moderate fill-in effect for the edge sketches,

we used n = 4 in most of the subsequent experiments. 09) As the following theorem states, the existence of

minimizers in (E)1 and (E)2 can be ensured.

Theorem 2.1. 10) Under the assumptions mentioned above, the problems (E)1 and (E)2 admit global mini-

mizers X̂, Ŷ ∈W 1,∞
0 (Ω,R).

b) Elastic/hyperelastic image registration by optimal control.

The next step is the unimodal registration of the edge sketches SX̂ and SŶ . As shown in [Wagner 10 ] and

[Wagner 12 ] , this problem allows for an optimal control formulation as well. Let us consider the problem

(R) F (Z;SŶ , SX̂ , µ) =

∫
Ω

(
SŶ (s− Z(s))− SX̂(s)

)2
ds + µ

∫
Ω

r
(

JacZ(s)
)
ds −→ inf ! ; (2.7)

Z ∈W 1,p
0 (Ω,R2) ; JacZ(s) ∈ K (∀) s ∈ Ω (2.8)

with p > 1. Here Z denotes the unknown elastic deformation, µ > 0 is the regularization parameter, the

convex or polyconvex function r(v) : R2×2 → R (cf. [Dacorogna 08 ] , p. 156 f., Definition 5.1., (iii) )

specifies the underlying elasticity model, and K ⊂ R2×2 is a convex, compact set with o ∈ int (K). The

introduction of the gradient constraint (2.8) reflects the fact that the validity of any underlying elasticity

model can be ensured only while the shear stress generated by the deformation Z, which is proportional

to ‖ JZ ‖, remains uniformly bounded. In particular, for a linear-elastic registration we choose the convex

integrand

r
(
a b
c d

)
= 4 a2 + 2 (b+ c)2 + 4 d2 , (2.9)

cf. [Henn/Witsch 01 ] , p. 1079 f., and for a hyperelastic registration the polyconvex integrand

r
(
a b
c d

)
= γ1

∥∥E2 −
(
a b
c d

) ∥∥ p + γ2 Det2
(
E2 −

(
a b
c d

) )
(2.10)

with positive weigths γ1, γ2 > 0 and p > 1 while E2 denotes the (2, 2)-unit matrix. 11) As discussed in

[Wagner 10 ] and [Wagner 12 ] , it is advisable to replace the fidelity term in (2.7) by a second-order Taylor

expansion with third-order remainder term, and to replace further the (formal) derivatives of SŶ within this

expansion by appropriate finite-difference approximations ∇SŶ ≈ DSŶ ∈ L
∞

(Ω,R2) and ∇2SŶ ≈ D2SŶ ∈
L
∞

(Ω,R2×2), see (4.1)− (4.5) below. As a result, we obtain the following approximation for the integrand

within the fidelity term in (2.7):

SŶ (s− Z(s))− SX̂(s) ≈ SŶ (s) − DSŶ (s)T Z(s) (2.11)

+ 1
2 Z(s)TD2SŶ (s)Z(s) + 1

6 G(s) · ‖Z(s) ‖3 − SX̂(s) .

09) In the following, exceptions are explicitely mentioned.
10) [ Franek/Franek/Maurer/Wagner 12 ] , p. 280, Theorem 2.1., together with p. 289.
11) This regularization is related to a generic hyperelastic material law, cf. [ Droske/Rumpf 04 ] , p. 673.
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When inserting an admissible state Z ∈ W 1,∞
0 (Ω,R2) into (2.11), we may identify G( · ) as a measurable,

essentially bounded function. As long as G remains sufficiently small, which will be ensured by considering

an additional state constraint |G(s) | 6 ηmax, the character of Z as an elastic deformation will be preserved.

G may be interpreted as a small grey value correction, to be applied to the reconstructed edge sketch.

c) Final statement of the registration problem.

Summing up, we arrive at the following multidimensional control problems:

(R)lin Flin(Z,G;SŶ , SX̂ , µ) (2.12)

=

∫
Ω

(
SŶ (s) − DSŶ (s)T Z(s) + 1

2 Z(s)TD2SŶ (s)Z(s) + 1
6 G(s) · ‖Z(s) ‖3 − SX̂(s)

)2

ds

+ µ

∫
Ω

(
4
( ∂Z1

∂s1
(s)
)2

+ 2
( ∂Z1

∂s2
(s) +

∂Z2

∂s1
(s)
)2

+ 4
( ∂Z2

∂s2
(s)
)2 )

ds −→ inf ! ;

(Z,G) ∈W 1,p
0 (Ω,R2) × L

∞
(Ω,R) ; (2.13)

|G(s) | 6 ηmax (∀) s ∈ Ω ; (2.14)

JacZ(s) ∈ K =
{ (

a b
c d

)
∈ R2×2

∣∣ a2 + b2 + c2 + d2 6 T 2
}

(∀) s ∈ Ω (2.15)

(linear-elastic registration of edge sketches, unimodal) with p > 1, ηmax > 0, a regularization parameter

µ > 0 and the control parameter T > 0 occuring in the description of the convex set K ⊂ R2×2. Further, we

state

(R)hyp Fhyp(Z,G;SŶ , SX̂ , µ) (2.16)

=

∫
Ω

(
SŶ (s) − DSŶ (s)T Z(s) + 1

2 Z(s)TD2SŶ (s)Z(s) + 1
6 G(s) · ‖Z(s) ‖3 − SX̂(s)

)2

ds

+ µ

∫
Ω

(
γ1

∥∥E2 − JacZ(s)
∥∥ p + γ2 Det2

(
E2 − JacZ(s)

) )
ds −→ inf ! ;

(Z,G) ∈W 1,p
0 (Ω,R2) × L

∞
(Ω,R) ; (2.17)

|G(s) | 6 ηmax (∀) s ∈ Ω ; (2.18)

JacZ(s) ∈ K =
{ (

a b
c d

)
∈ R2×2

∣∣ a2 + b2 + c2 + d2 6 T 2
}

(∀) s ∈ Ω (2.19)

(hyperelastic registration of edge sketches, unimodal) with p > 1, γ1, γ2, ηmax > 0, a regularization parameter

µ > 0 and the control parameter T > 0. Again, the convex set K has been specified as a four-dimensional

closed ball with radius T . For the convex problem (R)lin as well as for the polyconvex problem (R)hyp, the

existence of minimizers can be proven.

Theorem 2.2. 12) Under the assumptions mentioned above, the problems (R)lin as well as (R)hyp admit

global minimizers for any pair of edge sketches X̂, Ŷ ∈ L
∞

(Ω,R2) and finite-difference approximations

DSŶ ∈ L
∞

(Ω,R2), D2SŶ ∈ L
∞

(Ω,R2×2) for the derivatives of Ŷ .

12) [ Wagner 12 ] , p. 492, Theorems 2.1. and 2.2.
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3. Joint generation of the edge sketches and the matching deformation.

a) Statement of the joint problem.

Instead of obtaining a matching deformation as a result of the subsequent solution of three separate optimal

control problems, we may combine the three tasks of determining SX , SY and Z into a joint problem. As

suggested in the literature, the objective in the joint problem arises as an appropriate linear combination of

the objectives of the separate problems. 13) We obtain

(R)joint,lin Fjoint,lin (X,Y, Z,G) (3.1)

= αFedge(X; I, λ) + αFedge(Y ; J, λ) + β Flin(Z,G;SY , SX , µ) −→ inf ! ;

(X,Y, Z,G) ∈W 1,p
0 (Ω,R) × W

1,p
0 (Ω,R) × W

1,p
0 (Ω,R2) × L

∞
(Ω,R) ; (3.2)

SX(s) = 1− 1

R2

(
| ∇X(s) |2 + ε2

)1/n

∀ s ∈ Ω ; (3.3)

SY (s) = 1− 1

R2

(
| ∇Y (s) |2 + ε2

)1/n

∀ s ∈ Ω ; (3.4)∣∣∇X(s)
∣∣2 6 R2 ,

∣∣∇Y (s)
∣∣2 6 R2 ,

∣∣G(s)
∣∣ 6 ηmax (∀) s ∈ Ω ; (3.5)

JacZ(s) ∈ K =
{ (

a b
c d

)
∈ R2×2

∣∣ a2 + b2 + c2 + d2 6 T 2
}

(∀) s ∈ Ω (3.6)

(linear-elastic registration, multimodal) with p > 1, α, β, δ, ε, ηmax > 0, n ∈ { 2 , 4 }, regularization

parameters λ, µ > 0 and control parameters R, T > 0, and

(R)joint,hyp Fjoint,hyp (X,Y, Z,G) (3.7)

= αFedge(X; I, λ) + αFedge(Y ; J, λ) + β Fhyp(Z,G;SY , SX , µ) −→ inf ! ;

(X,Y, Z,G) ∈W 1,p
0 (Ω,R) × W

1,p
0 (Ω,R) × W

1,p
0 (Ω,R2) × L

∞
(Ω,R) ; (3.8)

SX(s) = 1−
(
| ∇X(s) |2/R2 + ε2/R2

)1/n

∀ s ∈ Ω ; (3.9)

SY (s) = 1−
(
| ∇Y (s) |2/R2 + ε2/R2

)1/n

∀ s ∈ Ω ; (3.10)∣∣∇X(s)
∣∣2 6 R2 ,

∣∣∇Y (s)
∣∣2 6 R2 ,

∣∣G(s)
∣∣ 6 ηmax (∀) s ∈ Ω ; (3.11)

JacZ(s) ∈ K =
{ (

a b
c d

)
∈ R2×2

∣∣ a2 + b2 + c2 + d2 6 T 2
}

(∀) s ∈ Ω (3.12)

(hyperelastic registration, multimodal) with p > 1, α, β, γ1, γ2, δ, ε, ηmax > 0, n ∈ { 2 , 4 }, regularization

parameters λ, µ > 0 and control parameters R, T > 0. In both problems (R)joint,lin and (R)joint,hyp, the

convex set K has been specified as a four-dimensional closed ball with radius T .

b) Comparison with the separated access.

Let us assume that minimal solutions X̂, Ŷ and (Ẑ, Ĝ) for the problems (E)1, (E)2 and (R)lin from the

separated access are given where (R)lin has been solved for the edge sketches SŶ and SX̂ generated from Ŷ

13) Similar approaches have been proposed for a number of image processing problems. To mention only a few examples

related to the problems studied in the present paper, we refer to [ Bourdin 99 ] , p. 232, (7), [ Droske/Rumpf 07 ]

and [ Han et al. 06 ] , p. 247.
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and X̂. The corresponding minimal values are denoted by m1, m2 and m3. Then, keeping the parameters

p, δ, ε, ηmax, n, λ, µ, R and T and inserting them into (R)joint,lin, we observe that (X̂, Ŷ , Ẑ, Ĝ) forms a

feasible solution for this problem. Consequently, the minimal value m of (R)joint,lin satisfies

Fjoint,lin(X̂, Ŷ , Ẑ, Ĝ) = α (m1 +m2) + β m3 > m. (3.13)

In complete analogy, we observe that a quadruple of minimal solutions X̂, Ŷ and (Ẑ, Ĝ) for the problems

(E)1, (E)2 and (R)hyp forms a feasible solution for (R)joint,hyp as far as the corresponding parameters have

been transferred. Consequently, we may expect that the joint access is able to refine the results obtained

from the separated strategy. The price to pay is that we must deal with a much larger problem involving a

nonlinear coupling of the unknown variables, namely (3.3), (3.4), (3.9) and (3.10). In fact, we cannot even

guarantee the existence of global minimizers in (R)joint,lin or (R)joint,hyp due to the incompatibility of (3.3),

(3.4), (3.9) and (3.10) with the weak∗-convergence of subsequences {∇XN } and {∇Y N } derived from a

minimizing sequence. In our numerical experiments, however, an appropriate choice of the global weights α

and β in (3.1) and (3.7) turned out to be α = 6000 and β = 1; thus the image representations X̃, Ỹ and the

edge sketches SX̃ , SỸ obtained from an approximate solution of (R)joint,lin or (R)joint,hyp can be considered

as nearly optimal in (E)1 and (E)2.

4. Numerical solution by direct methods.

a) The discretization strategy.

For the numerical solution of the multidimensional control problems (E)1, (E)2, (R)lin, (R)hyp, (R)joint,lin and

(R)joint,hyp from Sections 2 and 3, we pursue the strategy “first discretize, then optimize”. Within the square

domain Ω = [ 0 , K ] × [ 0 , L ] with K = L = 2N , we generate a regular triangulation (cf. [Goering/Roos/

Tobiska 93 ] , pp. 28 and 40, (Z1)− (Z4), and p. 138, (Z5) ), introducing first a grid of squares Qk,l =

� (sk−1,l−1, sk,l−1, sk,l , sk−1,l), 1 6 k 6 K, 1 6 l 6 L, with edge length 1 and then splitting every square

along the principal diagonal into two triangles ∆′k,l = ∆(sk−1,l−1, sk,l−1, sk,l ) and ∆′′k,l = ∆(sk−1,l−1, sk,l ,

sk−1,l), thus getting discretized problems (E)N1 , ... , accordingly.

The necessary optimality conditions for the discretized problems take the form of large-scale systems of

nonlinear equations, for those solution an interior-point method has been employed, cf. [Jansen 97 ] . As

the input/output platform for the image data, MATLAB has been used; the discretized problems have been

programmed with the help of the modelling language AMPL (cf. [Fourer/Gay/Kernighan 03 ] ) and

then transferred to the interior-point solver IPOPT. 14) The results have been represented and evaluated

with MATLAB again.

b) The access with three separate problems.

For the discretization of the problems (E)1, (E)2 and (R)lin, (R)hyp, we refer to [Franek/Franek/Mau-

rer/Wagner 12 ] , p. 289 f., and [Wagner 12 ] , p. 493 f. Note that in all problems, in order to cope with

the possible discontinuity of the generalized partial derivatives belonging to L
∞

instead of C
0
, the number

of the corresponding discretization variables must be doubled. On Qk,l, 2 6 k 6 K − 2, 2 6 l 6 L− 2, the

finite-difference approximations for the partial derivatives of SŶ in (2.11) read as follows:

∂SŶ
∂s1

(s) ≈ Ds1SŶ (sk,l) =
1

9
·

1∑
i,j=−1

( 1

2

(
SŶ (sk+1+i , l+j)− SŶ (sk−1+i , l+j)

) )
; (4.1)

∂SŶ
∂s2

(s) ≈ Ds2SŶ (sk,l) =
1

9
·

1∑
i,j=−1

( 1

2

(
SŶ (sk+i , l+1+j)− SŶ (sk+i , l−1+j)

) )
; (4.2)

14) Cf. [ Laird/Wächter 09 ] and [ Wächter/Biegler 06 ] . The experiments have been performed with version 3.8.
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∂2SŶ
(∂s1)2

(s) ≈ D2
s1s1SŶ (sk,l) =

1

9
·

1∑
i,j=−1

( 1

2

(
SŶ (sk+1+i , l+j)− 2SŶ (sk+i , l+j) + SŶ (sk−1+i , l+j)

) )
; (4.3)

∂2SŶ
∂s1 ∂s2

(s) ≈ D2
s1s2SŶ (sk,l) =

1

9
·

1∑
i,j=−1

( 1

4

(
SŶ (sk+1+i , l+1+j) (4.4)

−SŶ (sk−1+i , l+1+j)− SŶ (sk+1+i , l−1+j) + SŶ (sk−1+i , l−1+j)
) )

;

∂2SŶ
(∂s2)2

(s) ≈ D2
s2s2SŶ (sk,l) =

1

9
·

1∑
i,j=−1

( 1

2

(
SŶ (sk+i , l+1+j)− 2SŶ (sk+i , l+j) + SŶ (sk+i , l−1+j)

) )
, (4.5)

cf. [Wagner 12 ] , p. 490, Subsection 2.b). In order to find appropriate values for the regularization parame-

ters λ, µ > 0 and the control parameters R, T > 0, based on the range indications from [Franek/Franek/

Maurer/Wagner 12 ] and [Wagner 12 ] , a number of additional experiments has been made.

In the numerical solution of the discretized problems (E)N1 and (E)N2 , we observed that the final solution is

approached by IPOPT remarkably fast. Consequently, we must perform only a few iteration steps in order

to get the desired edge sketches. 15)

c) Remarks about the solution of the joint problem.

For the joint problem (R)joint,lin, we will provide the complete formulation of the corresponding discretized

problem (R)Njoint,lin. In the following, X corresponds with the discretization variables xk,l, ∇X with
(
v(1,1)

v(2,1)

)
and

(
v(1,2)

v(2,2)

)
, Y with yk,l, ∇Y with

(
w(1,1)

w(2,1)

)
and

(
w(1,2)

w(2,2)

)
, SX with σ

(x)
k,l , SY with σ

(y)
k,l , Z with z

(1)
k,l and z

(2)
k,l ,

JacZ with
( ζ(1,1,1) ζ(1,2,1)
ζ(2,1,1) ζ(2,2,1)

)
and

( ζ(1,1,2) ζ(1,2,2
ζ(2,1,2) ζ(2,2,2)

)
, and G with ηk,l.

(R)Njoint,lin F̃joint,lin

(
x0,0, ... , xK,L, v

(1,1)
1,1 , ... , v

(2,2)
K,L , y0,0, ... , yK,L, w

(1,1)
1,1 , ... , w

(2,2)
K,L ,

z
(1)
0,0, ... , z

(2)
K,L, ζ

(1,1,1)
1,1 , ... , ζ

(2,2,2)
K,L , η0,0, ... ηK,L, σ

(x)
1,1 , ... , σ

(x)
K,L, σ

(y)
1,1 , ... , σ

(y)
K,L

)
= α F̃edge

(
x0,0, ... , xK,L, v

(1,1)
1,1 , ... , v

(2,2)
K,L

)
+α F̃edge

(
y0,0, ... , yK,L, w

(1,1)
1,1 , ... , w

(2,2)
K,L

)
(4.6)

+ β F̃lin

(
z

(1)
0,0, ... , z

(2)
K,L, ζ

(1,1,1)
1,1 , ... , ζ

(2,2,2)
K,L , η0,0, ... ηK,L, σ

(x)
1,1 , ... , σ

(x)
K,L, σ

(y)
1,1 , ... , σ

(y)
K,L

)
−→ Min ! ;(

x0,0, ... , v
(2,2)
K,L

)
×
(
y0,0, ... , w

(2,2)
K,L

)
×
(
z

(1)
0,0, ... , z

(2)
K,L, ζ

(1,1,1)
1,1 , ... , ζ

(2,2,2)
K,L , (4.7)

η0,0, ... , ηK,L
)
∈
(
R(K+1)(L+1)×R4KL

)2 × (R3(K+1)(L+1)×R8KL
)

;

x0,l = xK,l = 0 , xk,0 = xk,L = 0 , 0 6 k 6 K , 0 6 l 6 L ; (4.8)

y0,l = yK,l = 0 , yk,0 = yk,L = 0 , 0 6 k 6 K , 0 6 l 6 L ; (4.9)

z
(i)
0,l = z

(i)
K,l = 0 , z

(i)
k,0 = z

(i)
k,L = 0 , i = 1, 2 , 0 6 k 6 K , 0 6 l 6 L ; (4.10)(

v
(1,1)
k,l

v
(2,1)
k,l

)
=

(
xk,l−1 − xk−1,l−1

xk,l − xk,l−1

)
,

(
v

(1,2)
k,l

v
(2,2)
k,l

)
=

(
xk,l − xk−1,l

xk−1,l − xk−1,l−1

)
, 1 6 k 6 K , 1 6 l 6 L ; (4.11)(

w
(1,1)
k,l

w
(2,1)
k,l

)
=

(
yk,l−1 − yk−1,l−1

yk,l − yk,l−1

)
,

(
w

(1,2)
k,l

w
(2,2)
k,l

)
=

(
yk,l − yk−1,l

yk−1,l − yk−1,l−1

)
, 1 6 k 6 K , 1 6 l 6 L ; (4.12)(

ζ
(1,1,1)
k,l ζ

(1,2,1)
k,l

ζ
(2,1,1)
k,l ζ

(2,2,1)
k,l

)
=

(
z

(1)
k,l−1 − z

(1)
k−1,l−1 z

(1)
k,l − z

(1)
k,l−1

z
(2)
k,l−1 − z

(2)
k−1,l−1 z

(2)
k,l − z

(2)
k,l−1

)
, 1 6 k 6 K , 1 6 l 6 L ; (4.13)

15) Typically less than 10 iterations, cf. [ Angelov 11 ] , p. 74.



9

(
ζ

(1,1,2)
k,l ζ

(1,2,2)
k,l

ζ
(2,1,2)
k,l ζ

(2,2,2)
k,l

)
=

(
z

(1)
k,l − z

(1)
k−1,l z

(1)
k−1,l − z

(1)
k−1,l−1

z
(2)
k,l − z

(2)
k−1,l z

(2)
k−1,l − z

(2)
k−1,l−1

)
, 1 6 k 6 K , 1 6 l 6 L ; (4.14)

σ
(x)
k,l = 1− 1

R2

( 1

2

(
v

(1,1)
k,l

)2
+

1

2

(
v

(2,1)
k,l

)2
+

1

2

(
v

(1,2)
k,l

)2
+

1

2

(
v

(2,2)
k,l

)2 )1/n

, 1 6 k 6 K , 1 6 l 6 L ; (4.15)

σ
(y)
k,l = 1− 1

R2

( 1

2

(
w

(1,1)
k,l

)2
+

1

2

(
w

(2,1)
k,l

)2
+

1

2

(
w

(1,2)
k,l

)2
+

1

2

(
w

(2,2)
k,l

)2 )1/n

, 1 6 k 6 K , 1 6 l 6 L ; (4.16)∣∣ ηk,l ∣∣ 6 ηmax , 0 6 k 6 K , 0 6 l 6 L ; (4.17)(
v

(1,1)
k,l

)2
+
(
v

(2,1)
k,l

)2
6 R2 ,

(
v

(1,2)
k,l

)2
+
(
v

(2,2)
k,l

)2
6 R2 , 1 6 k 6 K , 1 6 l 6 L ; (4.18)(

w
(1,1)
k,l

)2
+
(
w

(2,1)
k,l

)2
6 R2 ,

(
w

(1,2)
k,l

)2
+
(
w

(2,2)
k,l

)2
6 R2 , 1 6 k 6 K , 1 6 l 6 L ; (4.19)(

ζ
(1,1,1)
k,l

)2
+
(
ζ

(1,2,1)
k,l

)2
+
(
ζ

(2,1,1)
k,l

)2
+
(
ζ

(2,2,1)
k,l

)2
6 T 2 , 1 6 k 6 K , 1 6 l 6 L ; (4.20)(

ζ
(1,1,2)
k,l

)2
+
(
ζ

(1,2,2)
k,l

)2
+
(
ζ

(2,1,2)
k,l

)2
+
(
ζ

(2,2,2)
k,l

)2
6 T 2 , 1 6 k 6 K , 1 6 l 6 L . (4.21)

The discretized functionals F̃edge( ... ) read as follows:

F̃edge

(
x0,0, ... , xK,L, v

(1,1)
1,1 , ... , v

(2,2)
K,L

)
=

1

2
·
K∑
k=1

L∑
l=1

( (
xk−1,l−1 − I(sk,l )

)2
+
(
xk,l − I(sk,l )

)2
(4.22)

+λ

√(
v

(1,1)
k,l

)2
+
(
v

(2,1)
k,l

)2
+ δ2 + λ

√(
v

(1,2)
k,l

)2
+
(
v

(2,2)
k,l

)2
+ δ2

)
;

F̃edge

(
y0,0, ... , yK,L, w

(1,1)
1,1 , ... , w

(2,2)
K,L

)
=

1

2
·
K∑
k=1

L∑
l=1

( (
yk−1,l−1 − J(sk,l )

)2
+
(
yk,l − J(sk,l )

)2
(4.23)

+λ

√(
w

(1,1)
k,l

)2
+
(
w

(2,1)
k,l

)2
+ δ2 + λ

√(
w

(1,2)
k,l

)2
+
(
w

(2,2)
k,l

)2
+ δ2

)
.

Denoting the integrand within Flin(Z,G;SY , SX , µ) by ϕ
( (

Z(1)

Z(2)

)
,
(Z(1)

s1
Z(1)

s2

Z
(2)
s1

Z
(2)
s2

)
, G, SY , DSY , D

2SY , SX
)
, the

discretized functional F̃lin( ... ) can be written as

F̃lin

(
z

(1)
0,0, ... , z

(2)
K,L, ζ

(1,1,1)
1,1 , ... , ζ

(2,2,2)
K,L , η0,0, ... ηK,L, σ

(x)
1,1 , ... , σ

(x)
K,L, σ

(y)
1,1 , ... , σ

(y)
K,L

)
=

1

2
·
K−2∑
k=2

L−2∑
l=2

[
ϕ
(( z(1)

k−1,l−1

z
(2)
k−1,l−1

)
,

(
ζ

(1,1,1)
k,l ζ

(1,2,1)
k,l

ζ
(2,1,1)
k,l ζ

(2,2,1)
k,l

)
, ηk−1,l−1, σ

(y)
k,l , Dσ

(y)
k,l , D

2σ
(y)
k,l , Dσ

(x)
k,l

)
(4.24)

+ ϕ
(( z(1)

k,l

z
(2)
k,l

)
,

(
ζ

(1,1,2)
k,l ζ

(1,2,2)
k,l

ζ
(2,1,2)
k,l ζ

(2,2,2)
k,l

)
, ηk,l, σ

(y)
k,l , Dσ

(y)
k,l , D

2σ
(y)
k,l , Dσ

(x)
k,l

) ]
.

In complete analogy, (R)Njoint,hyp can be described. An appropriate ratio α : β for the global weights has

been found by experiment. Note that, by the Weierstrass theorem, the discretized problems (R)Njoint,lin and

(R)Njoint,hyp admit global minimizers.

5. Selected results.

a) Visualization and evaluation of the solutions.

After the determination of optimal solutions X̂, Ŷ and (Ẑ, Ĝ) of (E)1, (E)2 and (R)lin / (R)hyp or an optimal

solution (X̂, Ŷ , Ẑ, Ĝ) of (R)joint,lin / (R)joint,hyp, we calculate

Jrek(s) = J(s) − DJ(s)T Ẑ(s) + 1
2 Ẑ(s)TD2J(s) Ẑ(s) ; (5.1)

SJ,rek(s) = SŶ (s) − DSŶ (s)T Ẑ(s) + 1
2 Ẑ(s)TD2SŶ (s) Ẑ(s) + 1

6 Ĝ(s) · ‖ Ẑ(s) ‖
3

; (5.2)
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which will be considered as the corresponding reconstructions of the deformed template image J(s − x(s))

and the deformed template edge sketch SJ (s − x(s)). SI will be represented by SX̂ . Note that, within

the following calculation of the indicators Q0, ... , Q4, a frame ΩB dyed in black of 4 pixels width will be

excluded.

The influence of the remainder 1
6 Ĝ(s) · ‖ Ẑ(s) ‖

3
can be quantified by means of the indicator

Q0(Ẑ, Ĝ) = Max
s∈Ω \ΩB

∣∣ 1
6 Ĝ(s) · ‖ Ẑ(s) ‖

3 ∣∣ . (5.3)

In the experiments documented below, we get typically very small values of Q0. 16) Depending on the image

data, experiments with values of Q0 6 0.02 to Q0 6 0.08 will be considered as reliable.

In the literature, there is no commonly accepted criterion for the evaluation of the results of multimodal

registration. In most cases, the authors check the reliability of their calculations merely by a visual inspection

of the results. In the present paper, in order to perform a quantitative evaluation of the results, we calculate

three indicators. The first one is based on the correlation coefficient

CC(I, J) =

∫
Ω\ΩB

(
I(s)− Ĩ

) (
J(s)− J̃

)
ds(∫

Ω\ΩB

(
I(s)− Ĩ

)2
ds ·

∫
Ω\ΩB

(
J(s)− J̃

)2
ds
)1/2

(5.4)

with Ĩ =
1

|Ω \ ΩB |

∫
Ω\ΩB

I(s) ds and J̃ =
1

|Ω \ ΩB |

∫
Ω\ΩB

J(s) ds ,

cf. [Modersitzki 04 ] , p. 59 f., and [Richter 66 ] , p. 263. Now the indicator

Q1 =
(

CC(I, Jrek)− CC(I, J)
)
· 100%

CC(I, J)
(5.5)

measures the improvement of the correlation between the images after applying the deformation Ẑ to J . In

order to define the second indicator, we consider the definition (1.1) of the normalized gradient field of a

given image. Then we may ask for the improvement of the average angular error

AAE( gσ(I), gσ(J) ) =
1

|Ω \ ΩB |

∫
Ω\ΩB

arccos^
(
gσ
(
I(s)

)
, gσ

(
J(s)

) )
ds (5.6)

between the normalized gradient fields, which leads to the indicator

Q2 =
(

AAE( gσ(I), gσ(J) )−AAE( gσ(I), gσ(Jrek) )
)
· 100%

AAE( gσ(I), gσ(J) )
(5.7)

where σ = 10−10 has been employed. The third indicator proposed here is the improvement of the relative

reconstruction error of the edge sketches SX̂ , SŶ , which is expressed through their squared distance:

Q3 =
[ ( ∫

Ω\ΩB

(
SX̂(s)− SŶ (s)

)2
ds
)1/2

−
(∫

Ω\ΩB

(
SX̂(s)− SJ,rek(s)

)2
ds
)1/2 ]

(5.8)

· 100%(∫
Ω\ΩB

(
SX̂(s)− SŶ (s)

)2
ds
)1/2

.

16) Note that a maximal grey value correction of a single step corresponds to Q0 6 1/255 ≈ 0.0039.
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Note that all of the three indicators are allowed to take positive as well as negative values. As our experiments

show, it is possible that the indicators will not move uniformly.

When visualizing the results of a particular experiment, we provide six images. First, we print the edge sketch

SŶ of the template. Next, we produce an overlay of alternating stripes from the reconstructed template Jrek

as calculated in (5.1) and the reference image I. We further visualize the deformation field Ẑ used for the

generation of Jrek by a colorful orientation plot wherein the direction and the magnitude of the deformation

vector is coded by the hue and intensity of a colored pixel. The correspondence between orientation and

color can be read from the colored border (see e. g. Fig. 15). 17) In a second row, we will depict the edge

sketches SJ,rek and SX̂ of the reconstructed and the reference image left and right as well as their overlay

with alternating stripes in the center.

b) Image data used in the experiments.

For the numerical experiments, we selected two image pairs from medical imaging, which represent both

situations mentioned in the introduction.

Image pair 1: MR tomography of the kidney region, cut-out.

Figs. 1− 6. Top left: template J . Top center: overlay of I and J in alternating stripes. Top right: reference image I.

Bottom left: edge sketch SJ . Bottom center: overlay of SI and SJ in alternating stripes. Bottom right: edge sketch

SI .

17) The visualization has been realized using a HSI color model where every color is represented by the three coordinates

hue, saturation and intensity, cf. [ Brune/Maurer/Wagner 09 ] , p. 1197, and [ Plataniotis/Venetsanopoulos

00 ] , pp. 25 ff. Since we need only two coordinates for the visualization of the deformation field Ẑ, the saturation has

been left constant.
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Image pair 2: MR tomography of the human brain, cut-out.

Figs. 7− 12. Top left: template J . Top center: overlay of I and J in alternating stripes. Top right: reference image

I. Bottom left: edge sketch SJ . Bottom center: overlay of SI and SJ in alternating stripes. Bottom right: edge

sketch SI .

The first pair (Figs. 1 and 3), generated as subsequent frames by MR tomography with a single device and

the same protocol, shows a coronal section through the left kidney and, in the left half of the images, a part

of the spine. The difference in the modality is caused by application of a contrast agent in the meantime. 18)

The second pair (Figs. 7 and 9) is generated by MR tomography with different imaging protocols (Flair,

T2) and shows an axial section through the human brain. 19) In both pairs, the original data have been

presmoothed by (3 × 3)-averaging. The edge sketches (Figs. 4, 6, 10 and 12) have been generated by (2.5)

and (2.6) from solutions of (E)1 and (E)2 with λ = 0.05, δ = 0.01, R = 0.2 and n = 4. The sizes of the pairs

amount to 128 × 128 pixels with a frame of 4 pixels width dyed in black.

c) Results of the separated access.

We document first a selection of results of the separated strategy. In the tables, the experiments have

been sorted by decreasing regularization parameter µ. The star (∗) indicates that the results are imaged in

Subsection 5.e) below.

18) Images courtesy of Prof. R. Stollberger (TU Graz, Institute of Medical Engineering) and Dr. M. Aschauer

(Medical University of Graz, Division of Vascular and Interventional Radiology). From a contrast-modulated sequence

comprising 135 frames in total, cutouts of the frames #03 and #54 have been selected.
19) Images courtesy of Dr. B. H. Menze (ETH Zürich, Computer Vision Laboratory), frames #flair 2008 07 18 138

and #t2 2008 07 18 144, cutouts.
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Table 1. Linear-elastic registration of image pair 1 by subsequent solution of (E)1, (E)2 and (R)lin. The

parameters λ = 0.05, δ = 0.01, R = 0.1, ε = 10−6 and ηmax = 0.001 have been used.

Exper. No. µ T Q0 Q1 Q2 Q3

01 0.060 8.0 0.0070 17.10 0.47 10.91
02 0.060 0.8 0.0069 14.19 0.28 10.64
03 0.060 0.2 0.0039 11.07 −0.04 7.81
04 (∗) 0.020 8.0 0.0585 18.85 0.73 20.78

Table 2. Linear-elastic registration of image pair 2 by subsequent solution of (E)1, (E)2 and (R)lin. The

parameters λ = 0.05, δ = 0.01, R = 0.1, ε = 10−6 and ηmax = 0.001 have been used.

Exper. No. µ T Q0 Q1 Q2 Q3

05 0.060 8.0 0.0029 4.41 6.38 14.21
06 0.060 0.8 0.0034 3.31 5.46 12.52
07 0.060 0.2 0.0025 3.69 5.31 10.03
08 0.020 8.0 0.0086 2.68 6.68 20.49
09 (∗) 0.008 8.0 0.0161 1.38 6.61 28.51
10 0.002 8.0 0.1606 0.19 7.13 43.90

Table 3. Hyperelastic registration of image pair 1 by subsequent solution of (E)1, (E)2 and (R)hyp. The

parameters λ = 0.05, δ = 0.01, R = 0.2, γ1 = 0.05, γ2 = 0.25, p = 2 and ηmax = 0.001 have been used.

Exper. No. µ T Q0 Q1 Q2 Q3

11 0.800 8.0 0.0021 7.42 0.07 4.62
12 0.500 8.0 0.0036 9.56 0.24 6.26
13 (∗) 0.200 8.0 0.0081 13.48 0.55 10.82
14 0.020 8.0 0.2732 15.15 1.51 32.62

Table 4. Hyperelastic registration of image pair 2 by subsequent solution of (E)1, (E)2 and (R)hyp. The

parameters λ = 0.05, δ = 0.01, R = 0.2, γ1 = 0.05, γ2 = 0.25, p = 2 and ηmax = 0.001 have been used.

Exper. No. µ T Q0 Q1 Q2 Q3

15 0.800 8.0 0.0022 4.59 5.81 11.61
16 0.200 8.0 0.0074 3.25 6.79 17.91
17 0.070 8.0 0.0183 1.96 6.53 24.98
18 (∗) 0.020 8.0 0.0664 1.47 7.37 34.55
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d) Results of the joint access.

Here we document numerical solutions of the joint problems (R)joint,lin and (R)joint,hyp. The experiments

have been sorted by decreasing regularization parameter µ again.

Table 5. Linear-elastic registration of image pair 1 by solution of (R)joint,lin. The parameters α = 6000,

β = 1, δ = 0.01, ε = 10−6 and ηmax = 0.001 have been used. In Experiments 20− 22, the edge sketches have

been generated with n = 2 instead of n = 4.

Exp. No. λ R µ T Q0 Q1 Q2 Q3

19 (∗) 0.05 0.10 0.06 8.0 0.0125 10.90 0.07 9.13
20 0.05 0.30 0.04 8.0 0.0091 9.73 −0.44 6.36
21 0.05 0.20 0.04 8.0 0.0096 10.30 −0.26 9.00
22 (∗) 0.05 0.10 0.04 8.0 0.0303 12.57 −0.25 13.81

Table 6. Linear-elastic registration of image pair 2 by solution of (R)joint,lin. The parameters α = 6000,

β = 1, δ = 0.01, ε = 10−6 and ηmax = 0.001 have been used. In Experiment 25, the edge sketches have been

generated with n = 2 instead of n = 4.

Exp. No. λ R µ T Q0 Q1 Q2 Q3

23 0.05 0.20 0.060 8.0 0.0001 4.97 3.70 14.97
24 0.05 0.20 0.040 8.0 0.0078 4.46 4.33 17.51
25 (∗) 0.05 0.20 0.040 8.0 0.0115 4.20 4.06 20.93
26 0.05 0.20 0.020 8.0 0.0123 4.03 4.47 22.17
27 0.05 0.20 0.008 8.0 0.0308 3.78 4.98 30.10

Table 7. Hyperelastic registration of image pair 2 by solution of (R)joint,hyp. The parameters α = 6000,

β = 1, δ = 0.01, ε = 10−6, γ1 = 0.05, γ2 = 0.25, p = 2 and ηmax = 0.001 have been used.

Exp. No. λ R µ T Q0 Q1 Q2 Q3

28 0.05 0.20 0.800 8.0 0.0000 6.24 3.05 7.94
29 0.05 0.20 0.500 8.0 0.0017 5.77 3.47 8.95
30 0.05 0.20 0.200 8.0 0.0008 5.80 3.05 10.15
31 (∗) 0.05 0.20 0.002 8.0 0.0635 3.57 5.23 39.18

e) Visualization of selected results.

In Figs. 13− 36, we show the results of Experiments 04, 13, 19 and 22 with image pair 1. In Figs. 37− 60,

the results of Experiments 09, 18, 25 and 31 with image pair 2 are documented.
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Figs. 13− 18. Results of Experiment No. 04 (image pair 1, linear-elastic registration, separated access). Top left: edge sketch SŶ . Top

center: overlay of Jrek and I. Top right: color plot of Ẑ. Bottom left: edge sketch SJ,rek. Bottom center: overlay of SJ,rek and SX̂ .

Bottom right: edge sketch SX̂ .

Figs. 19− 24. Results of Experiment No. 13 (image pair 1, hyperelastic registration, separated access). Top left: edge sketch SŶ . Top

center: overlay of Jrek and I. Top right: color plot of Ẑ. Bottom left: edge sketch SJ,rek. Bottom center: overlay of SJ,rek and SX̂ .

Bottom right: edge sketch SX̂ .
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Figs. 25− 30. Results of Experiment No. 19 (image pair 1, linear-elastic registration, joint access). Top left: edge sketch SŶ . Top

center: overlay of Jrek and I. Top right: color plot of Ẑ. Bottom left: edge sketch SJ,rek. Bottom center: overlay of SJ,rek and SX̂ .

Bottom right: edge sketch SX̂ .

Figs. 31− 36. Results of Experiment No. 22 (image pair 1, linear-elastic registration, joint access). Top left: edge sketch SŶ . Top

center: overlay of Jrek and I. Top right: color plot of Ẑ. Bottom left: edge sketch SJ,rek. Bottom center: overlay of SJ,rek and SX̂ .

Bottom right: edge sketch SX̂ .
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Figs. 37− 42. Results of Experiment No. 09 (image pair 2, linear-elastic registration, separated access). Top left: edge sketch SŶ . Top

center: overlay of Jrek and I. Top right: color plot of Ẑ. Bottom left: edge sketch SJ,rek. Bottom center: overlay of SJ,rek and SX̂ .

Bottom right: edge sketch SX̂ .

Figs. 43− 48. Results of Experiment 18 (image pair 2, hyperelastic registration, separated access). Top left: edge sketch SŶ . Top

center: overlay of Jrek and I. Top right: color plot of Ẑ. Bottom left: edge sketch SJ,rek. Bottom center: overlay of SJ,rek and SX̂ .

Bottom right: edge sketch SX̂ .
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Figs. 49− 54. Results of Experiment No. 25 (image pair 2, linear-elastic registration, joint access). Top left: edge sketch SŶ . Top

center: overlay of Jrek and I. Top right: color plot of Ẑ. Bottom left: edge sketch SJ,rek. Bottom center: overlay of SJ,rek and SX̂ .

Bottom right: edge sketch SX̂ .

Figs. 55− 60. Results of Experiment No. 31 (image pair 2, hyperelastic registration, joint access). Top left: edge sketch SŶ . Top center:

overlay of Jrek and I. Top right: color plot of Ẑ. Bottom left: edge sketch SJ,rek. Bottom center: overlay of SJ,rek and SX̂ . Bottom

right: edge sketch SX̂ .
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f) Reference solutions from the variational method FAIR.

For purpose of comparison, the pairs have been fed into the toolbox FAIR distributed with [Modersitzki

09 ] , which accounts for a variational access to image registration and its numerical solution. The variational

problem solved there reads as follows:

(V) Fvar(Z) =

∫
Ω

(
1−

(
gσ
(
I(s)

)T
gσ
(
J(Z(s))

) )2

ds (5.9)

+
ν1

2

∫
Ω

(
ν2

(
∇Z1(s)2 +∇Z2(s)2

)
+ (ν2 + ν3)

(
divZ(s)

)2 )
ds −→ inf ! ;

Z ∈W 1,p
0 (Ω,R2) (5.10)

with a regularization parameter ν1 > 0 and weights ν2, ν3 > 0. 20) The best results obtained this way will

be documented in the following table.

Table 8. Linear-elastic registration of image pairs 1 and 2 by solving (V) with FAIR. The parameters ν2 = 1

and ν3 = 0 have been used.

Exp. No. Image pair Preregistration ν1 Q1 Q2 Q3

32 (∗) 1 no 0.005 4.68 −0.00 n/a
33 1 yes 0.010 3.43 0.12 n/a
34 2 no 0.005 7.28 4.83 n/a
35 (∗) 2 no 0.010 6.52 5.02 n/a

On the level of the visual comparison of the reconstructed images, the differences between the results of the

optimal control access and the variational method FAIR as reference method are subtle. In order to make

them visible, we document the results of Experiments 32 and 35 by overlay of alternating diagonal stripes

(Figs. 61 and 64, which may be compared e. g. with Figs. 14 and 44). In Figs. 62− 63 and 65− 66, we

depict the grey value difference 21) between the reconstructed templates J(Z(s)) generated by FAIR and Jrek

generated in Experiments 04, 22, 18 and 31 with the optimal control problems, respectively.

Figs. 61− 63. Left: result of Experiment No. 32 (image pair 1, linear-elastic registration with FAIR). Center:

comparison of the results of Experiments Nos. 32 and 04 (image pair 1, linear-elastic registration with FAIR / linear-

elastic registration, separated control access). Right: comparison of the results of Experiments Nos. 32 and 22 (image

pair 1, linear-elastic registration with FAIR / linear-elastic registration, joint control access).

20) Unfortunately, FAIR does not contain an implementation of a hyperelastic regularizer. The paper [ Burger/Moder-

sitzki/Ruthotto 13 ] , which is concerned with a related hyperelastic method, came not to the attention of the

authors until the present investigation has been finished.
21) The differences have been magnified by factor 2.
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Figs. 64− 66. Left: result of Experiment No. 35 (image pair 2, linear-elastic registration with FAIR). Center: com-

parison of the results of Experiments Nos. 35 and 18 (image pair 2, linear-elastic registration with FAIR / hyperelastic

registration, separated control access). Right: comparison of the results of Experiments Nos. 35 and 31 (image pair

2, linear-elastic registration with FAIR / hyperelastic registration, joint control access).

g) Discussion of the results.

In general, a visual inspection of the results shows a quite satisfactory alignment of features in the separated

as well as in the joint access for both image pairs (Figs. 14, 20, 26, 32, 38, 44, 50 and 56). In comparison

with the output of FAIR, subtle differences are present but hardly visible at the first glance.

The behaviour of the indicators reflects the principal difficulty of adequate quantitative evaluation of the

results of multimodal matching. For image pair 1, we get Q1 ∈ [ 11.07 , 18.85 ] , Q1 ∈ [ 7.42 , 15.15 ] and

Q1 ∈ [ 9.73 , 12.57 ] for the optimal control approach with (R)lin, (R)hyp and (R)joint,lin, respectively. For

image pair 2, within the problems (R)lin, (R)hyp, (R)joint,lin and (R)joint,hyp, we obtain Q1 ∈ [ 0.19 , 4.41 ] ,

Q1 ∈ [ 1.47 , 4.59 ] , Q1 ∈ [ 4.03 , 4.97 ] , and Q1 ∈ [ 3.57 , 6.24 ] . On the other hand, the improvement of

the AAE between the normalized gradient fields for image pair 1 is quite small (if any), as documented by

Q2 ∈ [−0.04 , 0.73 ] , Q2 ∈ [ 0.07 , 1.51 ] and Q2 ∈ [−0.44 , 0.07 ] while the experiments for image pair 2 give

moderate improvements of Q2 ∈ [ 5.31 , 7.13 ] , Q2 ∈ [ 5.81 , 7.37 ] , Q2 ∈ [ 3.70 , 4.98 ] and Q2 ∈ [ 3.05 , 5.23 ] .

A comparison with the output of the variational method FAIR shows that these values compete well, given

Q1 ∈ [ 3.43 , 4.68 ] , Q2 ∈ [−0.00 , 0.12 ] for image pair 1 and Q1 ∈ [ 6.52 , 7.28 ] , Q2 ∈ [ 4.83 , 5.02 ] for image

pair 2 produced by this method. The fact that the control access gives in many cases slightly better indicator

values than FAIR may be attributed to the fact that the use of weighted edge sketches instead of normalized

gradient fields leads to a potential suppression of “unnecessary” details, thus granting more freedom in the

search of a matching deformation. On the other hand, in some cases the deformation fields obtained are

quite fragmented (compare e. g. Fig. 57 with Fig. 39). The alignment of the edge sketches, as to be expected,

is not as precise as in comparable experiments of unimodal matching but reaches in the best cases about

40% (Experiments 10 and 31). Typical values of Q3 lie around 15− 20%.

The expectation that the joint access leads to a refinement of the results of the separated access is only partly

confirmed. For image pair 1, the joint access gives inferior results with respect to Q1 and Q2 and roughly the

same values of Q3; for image pair 2, the joint access ameliorates Q1 but loses quality in Q2. Concerning Q3,

the better values will be produced in the linear-elastic case by the separated access and in the hyperelastic

case by the joint access. It seems that the advantage of the joint access is often counterweighted by a loss of

numerical stability.

Concerning the runtime behaviour, the AMPL/IPOPT configuration is surely not an optimal one. A con-

siderable speedup may be expected if the problems will be treated with e.g. semismooth Newton methods,
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cf. e. g. [Clason/Jin/Kunisch 10 ] (this will be done in the future). As to be expected, the separated

access runs remarkably faster than the joint access due to the very fast convergence of approximate solutions

to the optimal edge sketch in (E)N1 and (E)N2 , which allows for stopping after 5− 10 iteration steps of IPOPT.

The selection of the regularization parameters λ, µ and the control parameters R, T (which, in fact, act

as additional regularization parameters) has been made by experiment but could be done automatically as

well. 22)

h) Conclusion and outlook.

We may summarize that the presented optimal control approach, exploiting the image geometry by use

of weighted edge sketches instead of normalized gradient fields, provides a reliable method of multimodal

image registration. The results compete well with output of existing variational methods like FAIR, leading

in some cases even to slight improvements. In the best cases, the correlation between the images and the

average angular error have been improved by about 19% and 7%, respectively, while the alignment of the

edge sketches may be improved by up to 40%. A joint access to edge detection and elastic matching was

expected to produce finer results but experiments confirmed this only partly.

The presented approach may surely be improved under different viewpoints. This concerns the specification

of the underlying elasticity models as well as the choice of the fidelity term, the discretization strategy and

the implementation of the solver for the system of the first-order conditions. In particular, a replacement of

the interior-point solver by a semismooth Newton solver seems to be advisable in the future.
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