WWW. Poenite-net. de/Mathematik/5. Analysis/ 5.7. A. Folgen. pdf

5.7. Aufgaben zu Folgen und Reihen

Aufgabe 1: Lineares und beschränktes Wachstum

Aus einem Quadrat mit der Seitenlänge 1 dm gehen auf die rechts angedeutete Weise neue

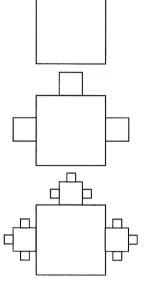
Figuren hervor. Die im n-ten Schritt angefügten Quadrate sind jeweils nur $\frac{1}{3}$ so breit wie

die im (n – 1)-ten Schritt angefügten Quadrate.

- a) Berechne den Umfang U_n nach n = 0, 1, 2, 3 und 4 Schritten.
- b) Wie groß ist der Zuwachs $U_{n+1} U_n$ des Umfangs im n+1-ten Schritt?
- c) Stelle eine Formel auf, mit der sich U_{n+1} aus U_n berechnen lässt.
- d) Stelle eine Formel auf, mit der sich Un direkt aus n berechnen lässt.
- e) Berechne den Flächeninhalt A_n der Figur nach n = 1, 2, 3 und 4 Schritten
- f) Wie groß ist der Zuwachs $A_{n+1} A_n$ der Fläche im n+1-ten Schritt?
- g) Stelle eine Formel auf, mit der sich A_{n+1} aus A_n berechnen lässt.
- h) Stelle eine Formel auf, mit der sich An direkt aus n berechnen lässt.

Hinweis:
$$1 + x + x^2 + x^3 + ... + x^n = \frac{1 - x^{n+1}}{1 - x}$$
.

- i) Berechne A_{100} und U_{100} und vergleiche. Welche Aussage lässt sich aus diesem Beispiel über den Umfang und die Fläche natürlicher Gebilde wie z. B. des Landes Baden-Württemberg ableiten?
- j) Berechne den Grenzwert $\lim_{n\to\infty} A_n$.



Aufgabe 2: Berechnung von Folgengliedern aus gegebenen expliziten und rekursiven Formeln Berechne die ersten 5 Folgenglieder a₀, ..., a₄:

a)
$$a_n = 100 \cdot 2^{-n}$$

e)
$$a_{n+1} = a_n + \frac{1}{2}$$
 mit $a_0 = 3$

b)
$$a_n = 100 - 50.2^{-n}$$

f)
$$a_{n+1} = a_n + \frac{1}{2} a_n \text{ mit } a_0 = 3$$

c)
$$a_n = \frac{1}{n+1}$$

g)
$$a_{n+1} = a_n + \frac{1}{2} (5 - a_n) \text{ mit } a_0 = 3$$

d)
$$a_n = (n+1)(n+2)$$

h)
$$a_{n+1} = a_n + \frac{1}{20} a_n \cdot (5 - a_n)$$
 mit $a_0 = 3$

Aufgabe 3: Bestimmung von expliziten und rekursiven Formeln aus gegebenen Folgengliedern Stelle die explizite und die rekursive Formel für die gegebenen Folgenglieder auf:

a)
$$a_0 = 1$$
; $a_1 = 3$; $a_2 = 5$; $a_3 = 7$; $a_4 = 9$

e)
$$a_0 = 0$$
; $a_1 = \frac{1}{2}$; $a_2 = \frac{2}{3}$; $a_3 = \frac{3}{4}$; $a_4 = \frac{4}{5}$

b)
$$a_0 = 3$$
; $a_1 = 6$; $a_2 = 12$; $a_3 = 24$; $a_4 = 48$

f)
$$a_0 = 1$$
; $a_1 = \frac{2}{3}$; $a_2 = \frac{4}{9}$; $a_3 = \frac{8}{27}$; $a_4 = \frac{16}{81}$

c)
$$a_0 = 2$$
; $a_1 = 6$; $a_2 = 18$; $a_3 = 54$; $a_4 = 162$

g)
$$a_0 = -1$$
; $a_1 = 1$; $a_2 = \frac{7}{5}$; $a_3 = \frac{11}{7}$; $a_4 = \frac{5}{3}$

d)
$$a_0 = 2$$
; $a_1 = 5$; $a_2 = 10$; $a_3 = 17$; $a_4 = 26$

h)
$$a_0 = 0$$
; $a_1 = \frac{1}{3}$; $a_2 = \frac{4}{9}$; $a_3 = \frac{1}{3}$; $a_4 = \frac{16}{81}$

Aufgabe 4: Bestimmung von rekursiven Darstellungen aus expliziten Formeln

Gib eine rekursive Beschreibung für die folgenden Folgen an:

a)
$$a_n = 3n + 2$$

b)
$$a_n = n^2 - 2n$$

c)
$$a_n = 3^{-n}$$

d)
$$a_n = \frac{n}{n+1}$$

Aufgabe 5: Bestimmung von expliziten Formeln aus rekursiven Darstellungen

Gib eine explizite Beschreibung für die folgenden Folgen an:

a)
$$a_{n+1} = a_n - 3$$
 mit $a_0 = 2$

c)
$$a_{n+1} = a_n + 2n + 2 \text{ mit } a_0 = 0$$

b)
$$a_{n+1} = 0.8 \cdot a_n \text{ mit } a_0 = 20$$

d)
$$a_{n+1} = a_n + 2n + 1$$
 mit $a_0 = 0$

Aufgabe 6: Monotonie einer Folge

Untersuche die folgenden Folgen auf Monotonie und begründe anhand der Definition.

$$a) \quad a_n = \frac{n-1}{n+1}$$

b)
$$a_n = \sqrt{n^2 - n}$$

c)
$$a_n = n^3 - 3n^2$$

d)
$$a_n = n^2 \cdot 2^{-n}$$

Aufgabe 7: Beschränktheit einer Folge

Untersuche die folgenden Folgen auf Beschränktheit und begründe anhand der Definition.

$$a) \quad a_n = \frac{n}{n+1}$$

b)
$$a_n = \sqrt{n^2 + n}$$
 c) $a_n = n^2 - n^3$ d) $a_n = n^2 \cdot 3^{-n}$

c)
$$a_n = n^2 - n$$

d)
$$a_n = n^2 \cdot 3^{-1}$$

Aufgabe 8: Grenzwert einer Folge

Gib den Grenzwert $\lim_{n\to\infty} a_n = a$ an und begründe anhand der Definition.

$$a) \quad a_n = \frac{n+2}{n+1}$$

c)
$$a_n = \frac{1}{n} \sin(n)$$

d)
$$a_n = n^3 \cdot 2^{-n}$$

Aufgabe 9: Konvergenz einer Folge

Untersuche die Folge (a_n) für $n \ge 1$ mit Hilfe von Beschränktheit und Monotonie auf Konvergenz

a)
$$a_n = \frac{1-4n}{1+2n}$$

b)
$$a_n = \frac{n-1}{2n}$$

e)
$$a_n = \frac{2^n + 3^n}{2^n + 3^n}$$

c)
$$a_n = \frac{2^n + 3^n}{2^n - 3^n}$$
 d) $a_n = \frac{n\sqrt{n} + 10}{n^2}$

2

Aufgabe 10: Reihen und Summenschreibweise

Ergänze die Tabelle:

erzeugende Folge a _n	Reihe $\sum_{k=0}^{n} a_k$	entsprechende Funktion f(x)	Integral $\int_{1}^{n+1} f(x) dx$
1/n			
	$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$		
	$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$		
		$\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$	

Aufgabe 11: Arithmetische Reihe

a) Bestimme
$$\sum_{k=0}^{20} a_k$$
 und $\sum_{k=0}^{100} a_k$ für die Folge $a_n = 2 + \frac{n}{10}$.

b) Bestimme
$$\sum_{k=0}^{16} a_k$$
 und $\sum_{k=40}^{80} a_k$ für die Folge a_n mit $a_0=3$ und $a_{n+1}=a_n+\frac{1}{2}$

c) Bestimme Startwert
$$a_0$$
 und Zuwachs d für die arithmetische Folge a_n mit $\sum_{k=0}^{10} a_k = 22$ und $\sum_{k=0}^{6} a_k = 7$.

d) Bestimme den Zuwachs d für die arithmetische Folge
$$a_n$$
 mit $\sum_{k=10}^{90} a_k = 31$ und Startwert $a_0 = 1$.

Aufgabe 12: Geometrische Reihe

a) Bestimme
$$\sum_{k=0}^{20} a_k$$
 und $\sum_{k=70}^{1000} a_k$ für die Folge $a_n = 100 \cdot 0.9^n$.

b) Bestimme
$$\sum_{k=0}^{10} a_k$$
 und $\sum_{k=40}^{50} a_k$ für die Folge a_n mit $a_0 = 3$ und $a_{n+1} = 1, 2 \cdot a_n$.

c) Bestimme Startwert
$$a_0$$
 und Wachstumsfaktor q für die geometrische Folge a_n mit $\sum_{k=0}^{7} a_k = 641$ und $\sum_{k=0}^{3} a_k = 625$.

d) Bestimme Startwert
$$a_0$$
 und Faktor q für die geometrische Folge a_n mit $\sum_{k=0}^4 a_k = 336,16$ und Grenzwert $\sum_{k=0}^\infty a_k = 500$

Aufgabe 13: Grenzwert einer Reihe

Untersuche die Reihe $\sum a_k$ mit Hilfe von Beschränktheit und Monotonie auf Konvergenz

a)
$$\sum_{k=1}^{n} \frac{1}{k^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

c)
$$\sum_{k=1}^{n} \frac{1}{3^k} = \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^n}$$

b)
$$\sum_{k=0}^{n} \frac{1}{(2k+1)^2} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{(2n+1)^2}$$
 d) $\sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$

d)
$$\sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$$

3

Aufgabe 14: Vollständige Induktion

Beweise mit Hilfe der vollständigen Induktion:

a)
$$2+4+6+...+2n = n(n+1)$$
 für $n \ge 1$

b)
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{1}{6} n(n+1)(2n+1)$$
 für $n \ge 1$

c)
$$6 + 24 + 60 + 120 + ... + n(n+1)(n+2) = \frac{1}{4}n(n+1)(n+2)(n+3)$$

d)
$$x^0 + x^1 + x^2 + x^3 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$
 für $n \ge 0$.

e)
$$1 + 2x + 3x^2 + 4x^3 + ... + nx^{n-1} = \frac{1 - (n+1)x^n + nx^{n+1}}{(1-x)^2}$$
 für $n \ge 1$

f) Die Folge
$$(a_n)$$
 mit $a_1 = 2$ und $a_{n+1} = a_n + (n+1)(n+2)$ hat die explizite Formel $a_n = \frac{1}{3} n(n+1)(n+2)$.

g) Die Folge
$$(a_n)$$
 mit $a_1 = \frac{3}{4}$ und $a_{n+1} = a_n - \frac{a_n}{(3n+4)(2n+1)}$ hat die explizite Formel $a_n = \frac{2n+1}{3n+1}$.

h) 7 teilt
$$8^n - 1$$
 für $n \ge 1$

h) 7 teilt
$$8^n - 1$$
 für $n \ge 1$
i) 6 teilt $n^3 - n$ für $n \ge 2$

j)
$$(1 + x)^n > 1 + nx$$
 für $n \ge 2$, $x > -1$ und $x \ne 0$ (Bernoulli-Ungleichung)

Aufgabe 15: Monotonie und Beschränktheit

a) Zeige durch vollständige Induktion, dass die Folge (a_n) mit $a_0 = 3$ und $a_{n+1} = \frac{1}{2} \left(a_n + \frac{3}{a} \right)$ für alle $n \in \mathbb{N}$ positiv ist

b) Zeige durch Lösen der Ungleichung $\frac{1}{2}\left(x+\frac{3}{x}\right) > \sqrt{3}$, dass die Folge aus a) sogar durch $\sqrt{3}$ nach unten beschränkt ist.

c) Zeige, dass die Folge aus a) außerdem monoton fällt.

d) Bestimme den Grenzwert $a = \lim_{n \to \infty} a_n \operatorname{der} Folge \operatorname{aus} a$)

Hinweis: Für $n \to \infty$ gilt $a_n = a_{n+1} = \lim_{n \to \infty} a_n = a$. Man kann daher in der Rekursionsformel $a_n = a_{n+1} = a$ setzen und nach a auflösen.