Vorlesung Funktionalanalysis I, Uni Leipzig, WS 2019/20 Serie 3

Aufgabe 7 (schriflich).

- (a) Beweisen Sie den Banach'schen Fixpunktsatz: Es sei (X,d) ein vollständiger metrischer Raum und es sei $\varphi: X \to X$ eine *strikte Kontraktion*, d.h. es gibt eine reelle Zahl q < 1, so dass $d(\varphi(x), \varphi(y)) \leq q \cdot d(x, y)$ für alle $x, y \in X$. Dann existiert ein $x_0 \in X$, so dass $\varphi(x_0) = x_0$.
- (b) Illustrieren Sie an einem Beispiel, dass die Vollständigkeit von X notwendig ist für die Gültigkeit des Fixpunktsatzes.
- (c) Illustrieren Sie an einem Beispiel, dass die Bedingung

$$d(\varphi(x), \varphi(y)) < d(x, y)$$
 für alle $x, y \in X$ mit $x \neq y$

nicht ausreichend ist für die Existenz eines Fixpunktes.

Aufgabe 8 (schriftlich).

Auf einem K-Vektorraum V sei eine Halbnorm $\|\cdot\|_V$ gegeben.

Zeigen Sie die Äquivalenz der folgenden Aussagen:

- (i) V ist $\|\cdot\|_V$ -vollständig.
- (ii) Für jede Folge (v_n) in V mit $\sum_n ||v_n||_V < \infty$ gibt es ein $v \in V$, so dass $\lim_{N \to \infty} ||v \sum_{n=1}^N v_n||_V = 0$.

Aufgabe 9 (mündlich).

- (a) Erklären Sie Ihren Kommilitonen an der Tafel den Satz von der dominierten Konvergenz aus der Maßtheorie und illustrieren Sie Ihre Ausführungen an einem selbst gewählten Beispiel.
- (b) Es sei $(\Omega, \mathcal{F}, \mu)$ ein σ -endlicher Maßraum und es sei durch $f_n : \Omega \to \mathbb{K}$, $n \in \mathbb{N}$, eine Folge von \mathcal{F} - $\mathcal{B}(\mathbb{K})$ -messbaren Funktionen gegeben, wobei $\mathcal{B}(\mathbb{K})$ die Borel σ -Algebra auf \mathbb{K} bezeichnet. Finden Sie eine hinreichende Bedingung an die Folge (f_n) , so dass

$$\sum_{n=1}^{\infty} \int_{\Omega} f_n(x) d\mu(x) = \int_{\Omega} \left(\sum_{n=1}^{\infty} f_n(x) \right) d\mu(x)$$

gilt.

Abgabe der schriftlich zu bearbeitenden Aufgaben in der Vorlesung am Montag, den 4.11.2019.