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Chapter 1

Real and Complex Numbers

Basics
Notations
R Real numbers
C Complex numbers
Q Rational numbers
N ={1,2,...} positive integers (natural numbers)
7 Integers

We know thatN C 7Z C Q@ € R C C. We writeR,, Q, andZ, for the non-negative
real, rational, and integer numbers> 0, respectively. The notiond ¢ B andA C B are
equivalent. If we want to point out that is strictly bigger thard we write A C B.

We use the following symbols

= defining equation

~, = implication, “if ..., then...”
< ‘“ifand only if", equivalence

v for all

= there exists

Leta < b fixed real numbers. We denote timervalsas follows

[a,b] :={r € R|a <2z <b} closedinterval

b) :={r € R|a<x<b} openinterval

b) :={reR|a<xz<b} half-openinterval
(a,b) :={r e R|a <z <b} half-open interval
l[a,00) . ={z € R|a <z} closed half-line
a,0):={re€R|a <z} open half-line
b :={reR|z<b} closed half-line
,b) :={x € R|z <b} open half-line

11



12 1 Real and Complex Numbers

(a) Sums and Products

Let us recall the meaning of the sum siyn and the product sigh]. Supposen < n are
integers, and,,, k = m, ..., n are real numbers. Then we set

n n
Zakzzam+am+1+---+an, Hakizamam+1"'an-
k=m k=m
In casem = n the sum and the product consist of one summand and one fadiorespec-
tively. In casen < m itis customary to set

n

> ay, == 0, (empty sum) [] @ :=1 (empty product)

k=m k=m

The following rules are obvious: th < n < p andd € Z are integers then

n D P n n+d
dart Y a=) a > = > apq (index shift)
k=m k=n+1 k=m k=m k=m-+d

We have fora € R, » " a = (n—m+ 1)a.

k=m

(b) Mathematical Induction

Mathematical induction is a powerful method to prove thew@bout natural numbers.

Theorem 1.1 (Principle of Mathematical Induction) Letn, € Z be an integer. To prove a
statementA(n) for all integersn > ny it is sufficient to show:

() A(nyp) is true.
(I) For anyn > ng: If A(n) is true, so isA(n + 1) (Induction step).

It is easy to see how the principle works: Firdtn,) is true. Apply (ll) ton = n, we obtain
that A(ng + 1) is true. Successive application of (ll) yieldsn, + 2), A(no + 3) are true and
So on.

Example 1.1 (a) For all nonnegative integenswe have) "(2k — 1) = n”.

Proof. We use induction ovet. In casen = 0 we have alfﬂlampty sum on the left hand side (Ihs)
and0? = 0 on the right hand side (rhs). Hence, the statement is true foi.

Suppose it is true for some fixed We shall prove it fom + 1. By the definition of the sum
and by induction hypothesi§,;_, (2k — 1) = n?, we have

n+1 n
2% — 1) = 2%k —1)+2n+1)—-1 = n>+2n+1=(n+1)>=~%
;< ) ;< JH2An+1) -1, = (n+1)

This proves the claim fon + 1. [
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(b) For all positive integera > 8 we have2” > 3n?.
Proof. In casen = 8 we have

2" =28 =256 >192=23-64 =38 = 3n?;

and the statement is true in this case.

Suppose it is true for some fixed> 8, i.e. 2" > 3n? (induction hypothesis). We will show
that the statement is true for+ 1, i.e. 2" ™! > 3(n + 1)? (induction assertion). Note that> 8
implies

n—1>7>2 — (n—-12%>4>2 —n?-2n—-1>0
— 3(n*—-2n—1)>0 = 3n°—6n—3>0 | +3n° +6n+ 3
— 6n’ >3’ +6n+3 = 2-3n>>3(n*+2n+1)
= 2-3n% > 3(n+ 1)~ (1.1)

By induction assumption2”*! = 2 .27 > 2. 3n2 This together with [[T]1) yields
2"t > 3(n 4 1)2. Thus, we have shown the induction assertion. Hence thenseatt is true
for all positive integers > 8. [

For a positive integern € N we set

nl =]k read: % factorial,” 0! = 1! = 1.

(c) Binomial Coefficients

For non-negative integers k € 7Z, we define

n\ F n—i+1 nn—-1)---(n—k+1)
(k)_H i k(k—1)---2.1

i=1

The numbers{’;) (read: n choosek”) are calledbinomial coefficientsince they appear in the
binomial theorem, see Propositionl1.4 below. It just fokdwom the definition that

<Z> =0 fork >n,

n n! n
- = <k <n.
(k:) K(n — )] (n—k) for0sks<n

Lemma 1.2 For 0 < k < n we have:

<ZE> - (Z) ' <kil)
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Proof. Fork = n the formula is obvious. Fdr < k < n — 1 we have

(Z) * (kil) - m(nni IR 1)!(:;!_ PR
_(k+nl+(m—kn! (st (nﬂ).

k+D!n—k)!  (k+1)(n—k) k+1

We say thatX is ann-set if X has exactly, elements. We writeCard X = n (from “cardinal-
ity”) to denote the number of elements.ia.

Lemma 1.3 The number of-subsets of an-set is(7).

The Lemma in particular shows tht) is always an integer (which is not obvious by its defi-
nition).

Proof. We denote the number éfsubsets of am setX,, by C}. Itis clear thatCj = C]! =
sinced is the only0-subset ofX,, and.X,, itself is the onlyn-subset ofX,,. We use induction
overn. The case: = 1 is obvious sinc&} = C] = (é) = (}) = 1. Suppose that the claim is
true for some fixedi. We will show the statement for tHe + 1)-setX = {1,...,n+ 1} and
all £ with 1 < k < n. The family of(k + 1)-subsets ofX splits into two disjoint classes. In the
first classA; every subset contains+ 1; in the second clasé,, not. To form a subset i,
one has to choose anotheelements out of 1, ..., n}. By induction assumption the number
is CardA; = C} = (Z) To form a subset id, one has to chooske + 1 elements out of
{1,...,n}. By induction assumption this number@urd A, = C},, = (,,). By LemmdZLP
we obtain

n n n n+1
C’kjfll = Card A; + Card Ay = (k) + (k+ 1) = (k—l— 1)

which proves the induction assertion. [ ]

Proposition 1.4 (Binomial Theorem) Letz,y € R andn € N. Then we have

(z+y)" = i (Z) A TA

k=0

Proof. We give a direct proof. Using the distributive law we findtteach of the™ summands

of product(z + y)" has the formz™~* y* for somek = 0,...,n. We number the: factors
as(z+y)" = fi-for--fu, i = fo = -+ = f, = x+y. Let us count how often the
summand:"~* 3/* appears. We have to choosdactorsy out of then factorsf, ..., f,. The

remainingn — k factors must bec. This gives al-1-correspondence between thesubsets
of {fi,..., f.} and the different summands of the forfi-* 3y*. Hence, by Lemmall3 their
number isC}* = (}}). This proves the proposition. m
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1.1 Real Numbers

In this lecture course wassume the system of real numbers to be givBecall that the set of
integers isZ = {0, %1, £2,...} while the fractions of integer® = {* | m,n € Z, n # 0}
form the set of rational numbers.

A satisfactory discussion of the main concepts of analysih ®s convergence, continuity,
differentiation and integration must be based on an acalyadefined number concept.

An existence proof for the real numbers is giver in [Rlid7@ehglix to Chapter 1]. The author
explicitly constructs the real numbels starting from the rational number®.

The aim of the following two sections is to formulate the mdgavhich are sufficient to derive
all properties and theorems of the real number system.

The rational numbers are inadequate for many purposes, &®thfield and an ordered set. For
instance, there is no rationalwith 2> = 2. This leads to the introduction of irrational numbers
which are often written as infinite decimal expansions amdcansidered to be “approximated”
by the corresponding finite decimals. Thus the sequence

1, 1.4, 1.41, 1.414, 1.4142, . ..

“tends to/2.” But unless the irrational numbey/2 has been clearly defined, the question must
arise: What is it that this sequence “tends to”?

This sort of question can be answered as soon as the so-Cadl@dnumber system” is con-
structed.

Example 1.2 As shown in the exercise class, there is no rational numbvéth 2> = 2. Set
A={reQ|2°<2} and B={reQ, |2*>2}.

ThenAU B = Q, and AN B = @. One can show that in the rational number system,
has no largest element aihas no smallest element, for details see Appendix A or Redin’
book [Rud76, Example 1.1, page 2]. This example shows tleasystem of rational numbers
has certain gaps in spite of the fact that between any twonails there is another: i < s
thenr < (r + s)/2 < s. The real number system fills these gaps. This is the priho#gaon
for the fundamental role which it plays in analysis.

We start with the brief discussion of the general conceptsaéred seandfield.

1.1.1 Ordered Sets

Definition 1.1 (a) LetS be a set. Arorder (or total order) on S'is a relation, denoted by,
with the following properties. Let,y, z € S.

(i) One and only one of the following statements is true.
r<y, x=vy, y<ax (trichotomy

(i) z <y andy < z impliesz < z  (transitivity).
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In this caseS is called arordered set

(b) SupposésS, <) is an ordered set, anfl C S. If there exists & € S such that: < [ for
all z € E, we say that is bounded aboveand call3 anupper boundf E. Lower boundsre
defined in the same way with in place of<.

If E is both bounded above and below, we say thias bounded

The statement < y may be read as:*is less than,” or “ x precedes,”. It is convenient to
write y > x instead ofzr < y. The notationr < y indicatesr < y or x = y. In other words,
x < y is the negation ot > y. For exampleR is an ordered set if < s is defined to mean
thats — r > 0 is a positive real number.

Example 1.3 (a) The intervalda, b], (a,b], [a,b), (a,b), (—o0,b), and (—oo, b] are bounded
above by and all numbers greater than

(b) E :={+ | ne N} ={1,4,3,...}isbounded above by any > 1. It is bounded below
by 0.

Definition 1.2 SupposeS is an ordered sety C S, an F is bounded above. Suppose there
exists am € S such that

(i) o is an upper bound aF.
(i) If Gis an upper bound af thena < 5.

Thena is called thesupremum of2 (or least upper boundof £. We write
a =sup E.
An equivalent formulation of (ii) is the following:

(i) If § < athenfis not an upper bound df.

Theinfimum(or greatest lower boundf a setE’ which is bounded below is defined in the same
manner: The statement
a=inf £

means thatv is a lower bound o2 and for all lower boundg of £ we haves < a.

Example 1.4 (a) If & = sup F exists, themy may or may not belong t&. For instance consider
[0,1) and][0, 1]. Then
1 = sup[0, 1) = sup|0, 1],

howeverl ¢ [0,1) but1 € [0,1]. We will show thatsup[0, 1] = 1. Obviously,1 is an upper
bound of|0, 1]. Suppose that < 1, theng is not an upper bound df, 1] sinces # 1. Hence

1 = supl0, 1].

We show will show thagup|0, 1) = 1. Obviously,1 is an upper bound of this interval. Suppose
thatg < 1. Theng < % < 1. Since% € [0,1), B is not an upper bound. Consequently,
1 = sup|0, 1).

(b) Consider the set4 and B of ExampldLP as subsets of the ordered.sefinceAUB = Q.
(there is no rational number witl? = 2) the upper bounds of are exactly the elements &*.



1.1 Real Numbers 17

Indeed, ifa € A andb € B thena? < 2 < b*. Taking the square root we hawe< b. SinceB
contains no smallest membeft,has no supremum i@, .

Similarly, B is bounded below by any element.af SinceA has no largest membes, has no
infimum in@.

Remarks 1.1 (a) It is clear from (ii) and the trichotomy of that there is at most one suah
Indeed, suppose’ also satisfies (i) and (ii), by (ii) we have < o/ ando’ < «; hencen = «'.
(b) If sup E existsand belongs ta?, we call it themaximumof E and denote it bynax F.
Hencemax F = sup £ andmax E € E. Similarly, if the infimum of £ existsand belongs to
E we call it theminimumand denote it bynin £; min £ = inf £, min £ € F.

| bounded subset @ | an upper bound sup | max |

[0,1] 2 1] 1
[0,1) 2 1| —
A 2 — | =

(c) Suppose that is an upper bound af anda € E thena = max F, that is, property (ii) in
Definition[I.2 is automatically satisfied. Similarly,dfe E is a lower bound, thefd = min E.
(d) If E is afinite set it has always a maximum and a minimum.

1.1.2 Fields

Definition 1.3 A fieldis a setF’ with two operations, calleddditionandmultiplicationwhich
satisfy the following so-called “field axioms” (A), (M), an®):

(A) Axioms for addition

(Al) If x € Fandy € F then their sumx + y isin F.

(A2) Addition is commutativex +y =y + xforall z,y € F.

(A3) Addition is associative(z +y) +z =z + (y + z) forall z,y, z € F.
(A4) F contains an elemetsuch that) + x = z forall x € F.

(A5) To everyz € F there exists an elementr € F' such thatc 4+ (—xz) = 0.

(M) Axioms for multiplication

(M1) If z € Fandy € F then their producty is in F.

(M2) Multiplication is commutativexy = yx for all x,y € F.

(M3) Multiplication is associative(zy)z = z(yz) forall z,y, z € F.

(M4) F contains an elementsuch thatlz = z forall z € F.

(M5) If x € F andz # 0 then there exists an eleméentr € I such that - (1/z) = 1.

(D) The distributive law

z(y +2) =xy + 2z

holds for allz,y, z € F.
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Remarks 1.2 (a) One usually writes

x
rT—y, — r+y+z 1Yz, 22, 23, 2, ...
Y

in place of

1
v+ (—y),z-—, (x4+y) +z (xy)z, z -2, x-x-x, 22,...
Yy

(b) The field axioms clearly hold iy if addition and multiplication have their customary mean-
ing. ThusQ is a field. The integerg form nota field since € 7 has no multiplicative inverse
(axiom (M5) is not fulfilled).

(c) The smallestfield i&5, = {0, 1} consisting of the neutral elementor addition and the neu-

+10 1
tral element for multiplication. Multiplication and addition are defidas follows 0 | 0 1
111 0

0 1
0|0 O .ltiseasy tocheck the field axioms (A), (M), and (D) directly
110 1
(d) (A1) to (A5) and (M1) to (M5) mean that botl#, +) and(F' \ {0}, -) arecommutative (or
abelian) groupsrespectively.

Proposition 1.5 The axioms of addition imply the following statements.
@) If £ +y = x + 2z theny = z (Cancellation law).

(b) If z + y = z theny = 0 (The element is unique).

(©)If x + y = 0they = —x (The inverse-x is unique).

d) —(—x) = x.

Proof. If x +y = x + z, the axioms (A) give

y = 0+y A:5(—x+x)—|—y A:3—:c+(:c—|—y) = —z+(x+2)

assump.
=(—z+2)+2=0+2 = z
A3 A5 A4
This proves (a). Take = 0 in (a) to obtain (b). Take = —z in (a) to obtain (c). Since
—x + x = 0, (c) with —z in place ofr andx in place ofy, gives (d). [ ]

Proposition 1.6 The axioms for multiplication imply the following statertgen
(@) If z #£ 0 andxy = xz theny = z (Cancellation law).

(b) If z # 0 andzy = x theny = 1 (The element is unique).

() If x #0andzy = 1theny = 1/ (The inversd /z is unique).

d)If x #0thenl/(1/z) = x.

The proof is so similar to that of Propositionll.5 that we oimit
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Proposition 1.7 The field axioms imply the following statements, for any, z € F’
(@) 0x = 0.

(b) If zy = 0thenz =0o0ry = 0.

(©) (—z)y = —(zy) = z(—y).

(d) (=z)(—y) = zy.

Proof. 0z + 0z = (0 + 0)z = 0z. HencdLb (b) implies that: = 0, and (a) holds.
Suppose to the contrary that bath# 0 andy # 0 then (a) gives

1=

SHE
SH

TY = 0=0,

<L | =
| =

a contradiction. Thus (b) holds.
The first equality in (c) comes from

(—2)y + oy = (—x+ )y =0y =0,
combined witHLb (b); the other half of (c) is proved in thengaway. Finally,

(—2)(—y) = —[z(~y)] = —[~2y] = vy

by (c) and_Lh (d). »

1.1.3 Ordered Fields

In analysis dealing with equations is as important as dgakiith inequalities. Calculations

with inequalities are based on the ordering axioms. It tawunsthat all can be reduced to the
notion of positivity.

In F there are distinguished positive elementsx 0) such that the following axioms are valid.

Definition 1.4 An ordered fieldis a field /' which is also an ordered set, such that for all
x,y,z € F

(O) Axioms for ordered fields

(O1) x> 0andy > 0impliesz +y > 0,
(02) x> 0andy > 0implieszy > 0.
If x > 0 we callx positive if x < 0, z is negative

For examplel) andR are ordered fields, if > y is defined to mean that— y is positive.

Proposition 1.8 The following statements are true in every ordered fiéld
@)If z <yanda € Fthena +z < a+y.
(b)If x <yandz’ <y thenx + 2’ <y+y'.
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Proof. (a) By assumptiola + y) — (e +z) =y —x > 0. Hencea + = < a + y.
(b) By assumption and by (a) we haver ' < y + 2/ andy + =’ < y + ¢/. Using transitivity,
see Definitiol LIl (i), we have + 2/ < y +v/'. m

Proposition 1.9 The following statements are true in every ordered field.
@If z > 0then—x < 0, and ifx < 0 then—x > 0.

(b) If x > 0 andy < z thenzy < zz.

(©)If x < 0andy < z thenzy > xz.

(d) If z # 0 thenz? > 0. In particular,1 > 0.

@enfo<z<ythend <1/y <1/x.

Proof. (@) If z > O0then0 = —z +2 > —2 + 0 = —x, so that—x < 0. If x < 0 then
0=—-x+x < —x+0= —zsothat—z > 0. This proves (a).
(b) Sincez > y, we havez — y > 0, hencer(z — y) > 0 by axiom (O2), and therefore

rz=z(z—y)+zy >__0+zy=u2ay.
Prp.

(c) By (a), (b) and Propositidn.7 (c)

—[z(z =yl = (=2)(z —y) > 0,

so thatz(z — y) < 0, hencerz < xy.

(d) If x > 0 axiom[L3 (i) givesz? > 0. If z < 0 then—z > 0, hence(—z)* > 0 But
z? = (—z)? by Propositiof I17 (d). Since = 1,1 > 0.

(e) If y > 0andv < 0thenyv < 0. Buty - (1/y) =1 > 0. Hencel /y > 0, likewisel/z > 0.
If we multiply = < y by the the positive quantityi /=)(1/y), we obtainl /y < 1/z. ]

Remarks 1.3 (a) The finite fieldF, = {0,1}, see Remari{s1.2, is not an ordered field since
1 + 1 = 0 which contradictd > 0.

(b) The field of complex numbefs (see below) is not an ordered field sirite-= —1 contradicts
Propositioi LB (a), (d).

1.1.4 Embedding of natural numbers into the real numbers

Let " be an ordered field. We want to recover the integers ingidén order to distinguislo
and1 in F from the integer$) and1 we temporarily writed and1,. For a positive integer
n € N, n > 2 we define

ng:=1lp+1p+---+1p (ntlmES)

Lemma 1.10 We havewr > 0p forall n € N.
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Proof. We use induction ovet. By Propositiol LI (d) the statement is trueior 1. Suppose
it is true for a fixedn, i.e. np > 0p. Moreoverlp > Op. Using axiom (O2) we obtain
(n+1Dlp=nrp+1p >0. n

From Lemm@&ZL70 it follows that. # n impliesny # mr. Indeed, let, be greater tham,
sayn = m + k for somek € N, thenny = mp + kp. Sincekr > 0 it follows from[L38 (a) that
ng > mg. In particularny # mp. Hence, the mapping

N — F

)

n=— ng

is a one-to-one correspondence (injective). In this waypthstive integers are embedded into
the real numbers. Addition and multiplication of naturahrhers and of its embeddings are the
same:

ng+mp = (n+m)p, ngpmpr = (nm)p.

From now on we identify a natural number with the associagatimumber. We write for np.

Definition 1.5 (The Archimedean Axiom) An ordered fieldF' is calledArchimedearif for all
x,y € F with x > 0 andy > 0 there exist®: € N such thatvz > y.

An equivalent formulation is: The subsbt C F' of positive integers is not bounded above.
Chooser = 1 in the above definition, then for anyc F there in am € N such that: > y;
henceN is not bounded above.

SupposeN is not bounded and > 0,y > 0 are given. Therny/x is not an upper bound fax,
that is there is some € N withn > y/x ornx > y.

1.1.5 The completeness dR

Using the axioms so far we are not yet able to prove the exastefirrational numbers. We
need the completeness axiom.

Definition 1.6 (Order Completeness)An ordered setS is said to beorder completef for
every non-empty bounded subget” S has a supremusup £ in S.

(C) Completeness Axiom
The real numbers are order complete, i. e. every bounde@tshtibs R has a supremum.

The set( of rational numbers is not order complete since, for examile bounded set
A = {r € Q, | 22 < 2} has no supremum M. Later we will defineyv/2 := sup A.
The existence of/2 in R is furnished by the completeness axiom (C).

Axiom (C) implies that every bounded subgetC R has an infimum. This is an easy conse-
quence of Homework 1.4 (a).

We will see that an order complete field is always Archimedean

Proposition 1.11 (a) R is Archimedean.
(b)If z,y € R, andx < y thenthereis @ € Q withx < p < y.
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Part (b) may be stated by saying tliais dense ifR.

Proof. (a) Letz, y > 0 be real numbers which do not fulfill the Archimedean propeFtyat is,
if A:={nz |n € N}, theny would be an upper bound of. Then (C) furnishes that has a
supremumy = sup A. Sincex > 0, « — r < a anda — z is not an upper bound of. Hence
a—z < mx for somem € N. Butthena < (m+ 1)z, which is impossible, since is an upper
bound ofA.

(b) See[[Rud76, Theorem 29]. m

Remarks 1.4 (a) If z,y € Q with z < y, then there exists € R\ Q with z < z < y; chose
z=x+ (y—x)/V2.

Ex class (b) We shall show thaitaf {1 | n € N} = 0. Sincen > 0 foralln € N, 2 > 0 by
Propositiol P (e) andis a lower bound. Suppose> 0. SinceRR is Archimedean, we find
m € N such thatl < ma or, equivalentlyl /m < «. Hence,« is not a lower bound foF
which proves the claim.

(c) Axiom (C) is equivalent to the Archimedean property tibge with thetopologicalcom-
pleteness (“Every Cauchy sequencékiiis convergent,” see Propositibn2.18).

(d) Axiom (C) is equivalent to thexiom of nested intervalsee Propositidn 2.1 below:

Let7, := [a,, b,] @ sequence of closed nested intervals, tha{i(l, O I3 D ---)
such that for alk > 0 there exists,, such that) < b,, — a,, < ¢ forall n > n,.
Then there exists a unique real numher R which is a member of all intervals,

ie. {a} =, ox Ln-

1.1.6 The Absolute Value

Forz € R one defines

T, if z>0,
|z ] = .
—x, If x<0O.

Lemma 1.12 For a, z,y € R we have

(@ ]x|>0and|z|=0ifandonly ifz = 0. Further| —z | = | z|.

(b) £z < |z|, |z | = max{z,—z},and|z| <a <= (r <a and —z<a).
© eyl =l [yland|z| =l if y £ 0.

d)|z+y| <|xz|+|y]| (triangle inequality).

@z =]yl <[z+yl

Proof. (a) By PropositioR 119 (a); < 0 implies|z| = —z > 0. Also,z > 0 implies| x| > 0.
Putting both together we obtaim, # 0 implies|z| > 0 and thus|z| = 0 impliesz = 0.
Moreover| 0| = 0. This shows the first part.

The statemeritz | = | —z | follows from (b) and—(—x) = .

(b) Suppose first that > 0. Thenz > 0 > —z and we havenax{z, —z} =z = |z|. If . <0
then—z > 0 > z and
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max{—z,x} = —x = |z|. This provesmax{z, —z} = |z|. Since the maximum is an
upper bound|z | > x and|z| > —z. Suppose now is an upper bound ofz, —z}. Then

| 2| = max{z, —z} < a. Onthe other handnax{z, —z} < a implies thatz is an upper bound
of {x, —x} sincemax is.

One proves the first part of (c) by verifying the four cases:(i) > 0, (i) z > 0, y < 0, (iii)

x <0,y > 0,and (iv)z,y < 0 separately. (i) is clear. In case (ii) we have by Proposifi@(a)
and (b) thatry < 0, and Proposition 117 (c)

|z |]y|=2(-y) = —(2y) = |2y |.

The cases (iii) and (iv) are similar. To the second part.
Sincez = 7 -y we have by the first part of )| =

=1 [y |- The claim follows by multipli-

cation With‘—;l.
(d) By (b) we havetz < |z |and+y < |y|. It follows from Propositiof 118 (b) that

x4y <|z|+]y].

By the second part of (b) with = |z | + |y |, we obtain|z +y | < |z |+ |y]|.
(e) Insertingu := x + y andv := —yinto |u + v | < |u| + |v | one obtains

lz| <|z+y|+|-yl=]z+y|+]|yl|.

Adding — | y | on both sides one obtains | — |y| < |z + y|. Changing the role of andy
in the last inequality yields-(|z| — |y|) < |« +y|. The claim follows again by (b) with
a=|x+yl. n

1.1.7 Supremum and Infimum revisited

The following equivalent definition for the supremum of setseal numbers is often used in
the sequel. Note that

r<p VzxeM
— sup M < .

Similarly, a < z for all x € M impliesa < inf M.

Remarks 1.5 (a) Suppose that' C R. Thena is the supremum oF if and only if

(1) a is an upper bound foF,
(2) For alle > 0 there exists: € E with a — ¢ < .

Using the Archimedean axiom (2) can be replaced by

(2") For alln € N there exists: € F such thatx — % < x.
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(b) Let M c RandN C R nonempty subsets which are bounded above.
ThenM + N :={m +n|m € M,n € N} is bounded above and

sup(M + N) = sup M + sup N.

(c) LetM C R, andN C R, nonempty subsets which are bounded above.
ThenMN := {mn | m € M,n € N} is bounded above and

sup(MN) = sup M sup N.

1.1.8 Powers of real numbers

We shall prove the existence oth roots of positive reals. We already knaw, n € Z. Itis
recursively defined by := z"~! - z, 2 := 2, n € Nandz" := L forn < 0.

Proposition 1.13 (Bernoulli’'s inequality) Letz > —1 andn € N. Then we have
(I+2z)" > 1+ nz.

Equality holds if and only it = 0 orn = 1.

Proof. We use induction ovet. In the casess = 1 andx = 0 we have equality. The strict
inequality (with an> sign in place of the> sign) holds form, = 2 andx # 0 since(1 + z)* =
1+ 2x + 2% > 1 + 22. Suppose the strict inequality is true for some fixed 2 andz # 0.
Sincel + = > 0 by Propositiof 119 (b) multiplication of the induction assation by this factor
yields

(1+z)"" >0 +nx)1+z)=1+n+ 1)z +n2>>1+ (n+ 1)z

This proves the strict assertion for+ 1. We have equality only i = 1 orx = 0. n

Lemma 1.14 (a) For z,y € R withz,y > 0 andn € N we have

r<y<= 2" <y"

(b) For x,y € R, andn € N we have
mc”_l(y —xz)<y"—a" < ny”_l(y — ). (1.2)

We have equality if and onlyif =1 or z = y.

Proof. (a) Observe that
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with ¢ := "7 y" " zF~! > 0 sincez,y > 0. The claim follows.
(b) We have

n

yn — " — nxn—l(y . l’) _ <y . l’) Z (yn—k:xk—l _ xn—l)
k=1

_ (y _ ZL‘) Zxk—l (yn—k . :L,n—k) >0
k=1

since by (a)y — = andy”~* — z"~* have the same sign. The proof of the second inequality is
quite analogous. [

Proposition 1.15 For every realr > 0 and every positive integer € N there is one and only
oney > 0 such thaty” = .

This numbety is written /z or z#, and itis called “theth root of z”.
Proof. The uniqueness is clear since by Lenimall.14 (@)y; < y» implies0 < y' < 3.
Set
E={teRy|t" <z}
Observe thatl # @ since0 € E. We show that” is bounded above. By Bernoulli's inequality
and sincd) < z < nz we have

tebFet'<z<l4+nr<(l+a)
== <1+

Lemma|

Hence,l + x is an upper bound foFE. By the order completeness Bfthere existg € R such
thaty = sup £. We have to show that* = z. For, we will show that each of the inequalities
y™ >z andy™ < x leads to a contradiction.

Assumey™ < z and considefy + k)" with “small” 4 (0 < h < 1). LemmdZII¥ (b) implies

0<(y+h)"—y"<n(y+h)"(y+h—y) <hn(y+1)""
Choosingh small enough that n(y + 1)"~! < z — y™ we may continue

Consequentlyy + k)" < = and therefore + h € E. Sincey + h > y, this contradicts the fact
thaty is an upper bound af.

Assumey™ > z and considefy — h)"™ with “small” h (0 < h < 1). Again by Lemm&1.74 (b)
we have

0<y" —(y—h)"<ny"y—y+h)<hny"".
Choosingh small enough that ny"~* < y™ — x we may continue

y'—(y—h)" <y" -z
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Consequentlyy < (y — h)™ and thereforé™ < x < (y — h)" forall t in E. Hencey — h is
an upper bound fofs smaller thany. This contradicts the fact thgtis theleast upper bound.
Hencey™ = x, and the proof is complete. n

Remarks 1.6 (a) If « andb are positive real numbers andc N then(ab)'/" = a'/™ b'/,

Proof. Puta = a7 and 3 = b'/". Thenab = o"B" = (aB)", since multiplica-
tion is commutative. The uniqueness assertion of Propoglilbh shows therefore that
(ab)/™ = aff = a'/™ b1/, [

(b) Fixb > 0. If m,n,p,q € Z andn > 0, ¢ > 0, andr = m/n = p/q. Then we have
B = @) 1)

Hence it makes sense to defirie= (b™)'/".
(c) Fixb > 1. If x € R define

b =sup{t’ | pe Q, p < z}. (1.4)

For0 < b < 1 set
1

(3)"

Without proof we give the familiar laws for powers and expoties. Later we will redefine the
powerb® with real exponent. Then we are able to give easier proofs.

(d) If a,b > 0 andz,y € R, then

(i) b*tY = b"0Y, b* Y =2 (i) b = (b*)Y, (i) (ab)® = a®b".

by

bt =

1.1.9 Logarithms

Fix b > 1,y > 0. Similarly as in the preceding subsection, one can provexistence of a
unigue realr such that” = y. This numbetr: is called thdogarithm ofy to the basé, and we

write z = log, y. Knowing existence and uniqueness of the logarithm, it tdifécult to prove

the following properties.

Lemma 1.16 For anya > 0, a # 1 we have
(@)log,(bc) =log, b+ log, cif b,c > 0;
(b) log, (b°) = clog, b, if b > 0;

log, b .
() log, b = 1O§d if b,d > 0 andd # 1.
0g,4 a

Later we will give an alternative definition of the logaritfonction.
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Review of Trigonometric Functions

(a) Degrees and Radians

The following table gives some important angles in degreelsradians. The precise definition
of 7 is given below. For a moment it is just an abbreviation to measngles. Transformation

of anglesay, measured in degrees into angles measured in radians gogs; By ae, 3%

Degrees\ 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°

H s s s s 2 3 51 3
Rad|ans‘ O G 4 3 bl 3 1 & m o 2T

(b) Sine and Cosine

The sine, cosine, and tangent functions are defined in tefnasios of sides of a right triangle:

length of the side adjacent to
cosp = )
hypotenuse length of the hypotenuse
opposite sid ) length of the side opposite to
S @ = 9
length of the hypotenuse
b ) : length of the side opposite to
adjacent side tan ¥

- length of the side adjacent fo

Let ¢ be any angle betweeit and360°. Further letP be the point on the unit circle (with
center in(0, 0) and radiud) such that the ray fron® to the origin(0, 0) and the positive:--axis

make an angle. Thencos ¢ andsin ¢ are defined to be the-coordinate and thg-coordinate
of the pointP, respectively.

y

/ L hm If the angley is betweerD® and90° this new definition coincides
@)

with the definition using the right triangle since the hyputse
which is a radius of the unit circle has now length

If 90° < ¢ < 180° we find

cos p = — cos(180° — ) < 0,
sin ¢ = sin(180° — ¢) > 0.
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If 180° < ¢ < 270° we find

cosp = —cos(p — 180°%) < 0,

sin¢

sin = —sin(p — 180°) < 0.

If 270° < ¢ < 360° we find

» cos p = cos(360° — ¢) > 0,

snt sin p = —sin(360° — ¢) < 0.

For angles greater tha0° or less thar)°® define
cos p = cos(p + k-360°), sinp = sin(¢ + k-360°),

wherek € 7 is chosen such that < ¢+ k£ 360° < 360°. Thinking of ¢ to be given in radians,
cosine and sine are functions defined for all reéhking values in the closed intervat1, 1].
If o # 5 + km, k € Z thencos ¢ # 0 and we define

sin ¢

tan p = .
cos

If v # k7, k € Z thensin ¢ # 0 and we define

cos ¢

cot p == ——.
sin ¢

In this way we have defined cosine, sine, tangent, and cotafgyearbitrary angles.

(c) Special Values

xindegrees 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
zinradians|0 £ © = I & 8 oo s 2or
sin T 0 % g ? 1 g ? % 0 -1 0
cos x R e Y B B0 1
tan 0 ¥ 1 3/ 3 -1 ¥ 0 | 0

3
Recall the addition formulas for cosine and sine and themagnetric pythagoras.

cos(x + y) = cosx cosy — sin x siny, (15)

sin(z + y) = sinz cosy + cos x sin y.

2r=1. (1.6)

sin’ z + cos
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1.2 Complex numbers

Some algebraic equations do not have solutions in the reabausystem. For instance the
quadratic equation? — 4z + 8 = 0 gives ‘formally’

T, =2++—4 and Ty =2 —+/—4.

We will see that one can work with this notation.

Definition 1.7 A complex numbeis an ordered paifa, b) of real numbers. “Ordered” means
that(a,b) # (b,a) if a # b. Two complex numbers = (a,b) andy = (c,d) are said to be
equal if and only ifa = ¢ andb = d. We define

r+y:=(a+cb+d),
zy := (ac — bd, ad + bc).

Theorem 1.17 These definitions turn the set of all complex numbers intdd faéth (0, 0) and
(1,0) in the role of0 and1.

Proof. We simply verify the field axioms as listed in Definitionll Gf course, we use the field
structure ofR.

Letx = (a,b),y = (¢,d), andz = (e, f). (Al) is clear.
A2)z+y=(a+c,b+d)=(c+a,d+b)=y+uzx.

(A3) (z+y)+2z = (atc, b+d)+(e, ) = (at+cte, b+d+f) = (a,b)+(cte, d+f) = 2+ (y+2).
(Ad) x +0 = (a,b) + (0,0) = (a,b) = z.

(A5) Put—z := (—a, —b). Thenz + (—z) = (a,b) + (—a, —b) = (0,0) = 0.

(M1) is clear.

(M2) zy = (ac — bd, ad + bc) = (ca — db, da + cb) = yzx.

(M3) (zy)z = (ac — bd, ad + bc)(e, f) = (ace — bde — adf — bef, acf — bdf + ade + bee) =
(a,b)(ce — df,cf + de) = x(yz).

(M4) z-1=(a,b)(1,0) = (a,b) = .

(M5) If  # 0 then(a,b) # (0,0), which means that at least one of the real numbebsis
different from0. Hencea? + b* > 0 and we can define

l‘_ a —b
r \a24+02 a2+ )"

1 a —b
RN —(1,0)=1.
T (e, )(a2+62’a2+62) (1,0)

Then

(D)
2(y+2) =(a,b)(c+e,d+ f) = (ac+ae —bd — bf,ad + af + bc + be)
= (ac — bd, ad + bc) + (ae — bf, af + be)
=xy +yz.
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Remark 1.7 For any two real numberg and b we have(a,0) + (b,0) = (a + ,0) and
(a,0)(b,0) = (ab,0). This shows that the complex numbérs0) have the same arithmetic
properties as the corresponding real numlaerg/e can therefore identifyu, 0) with a. This
gives us the real field as a subfield of the complex field.

Note that we have defined the complex numbers without anyamde to the mysterious square
root of —1. We now show that the notatidn, b) is equivalent to the more customary: bi.

Definition 1.8 i := (0, 1).

Lemma 1.18 (a)i? = —1. (b) If a,b € R then(a,b) = a + bi.

Proof. (a)i* = (0,1)(0,1) = (—1,0) = —1.
() a+bi = (a,0) + (b,0)(0,1) = (a,0) + (0,b) = (a,b). =

Definition 1.9 If a, b are real and = a + bi, then the complex number:= « — bi is called the
conjugateof z. The numberg andb are thereal partand themaginary partof z, respectively.
We shall writea = Re z andb = Im z.

Proposition 1.19 If z andw are complex, then
@z+w=7z+w,

(b)yzw =7z - w,

(c)z+Z=2Rez, z—Z=2iImz,

(d) = Z is positive real except when= 0.

Proof. (a), (b), and (c) are quite trivial. To prove (d) write= a + bi and note that 7 = a? + b°.
]

Definition 1.10 If z is complex number, itabsolute valug z | is the (nonnegative) root afz;

thatis|z | := vz Z.

The existence (and uniqueness) off follows from Propositio 119 (d). Note that wheris
real, thenz = 7, hence z | = v/z2. Thus|z | = zif + > 0 and|z| = —z if z < 0. We have
recovered the definition of the absolute value for real nus)s®e Subsecti@n1.1L.6.

Proposition 1.20 Let z andw be complex numbers . Then
(@)]z| > 0unless: = 0,

(0) [Z] = [z],
©|zw|=|z][w],
(d)[ Rez| <|z],

@)z +w|<|z[+][w].

Proof. (a) and (b) are trivial. Put = a + bi andw = ¢ + di, with a, b, ¢, d real. Then

| zw > = (ac — bd)? + (ad + be)? = (a? + V) (E +d?) = | z|* |w|?
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or|zw|* = (| 2| |w|)2 Now (c) follows from the uniqueness assertion for roots.
To prove (d), note that> < a? + b%, hence

la|=Va2 < Va2 + 12 =|z].
To prove (e), note thatw is the conjugate of w, so that: w + Zw = 2 Re (2 w). Hence

24w =(+w)E+T) =22+ 2T+Zw+wD
=z 4+ 2Re(2W) + |w]?
<zl +2)z] |w|+|wl = (2] +|w])?

Now (e) follows by taking square roots. [

1.2.1 The Complex Plane and the Polar form

There is a bijective correspondence between complex nudoed the points of a plane.
Im A

By the Pythagorean theorem it is clear that
|z| = Va? + b? is exactly the distance of
bl ____ z=a+bi 2z from the origin0. The angley between
the positive real axis and the half-lifie is
called theargumentof > and is denoted by
¢ = argz. If z # 0, the argumentp is
uniquely determined up to integer multiples

- of 27
a Re
Elementary trigonometry gives
. b a
Slnpy = —, COSyY = —

E2 k2

This gives withr = | z |, a = r cos ¢ andb = rsin ¢. Inserting these into the rectangular form
of z yields
z = r(cos p + isin @), 1.7)

which is called thgolar formof the complex number.

Example 1.5a)z = 1 +i. Then| z | = v/2 andsin ¢ = 1/v/2 = cos . This impliesy = /4.
Hence, the polar form of is 1 + i = v/2(cos /4 + isin 7/4).

b) 2 = —i. We have|—i| = 1 andsing = —1, cos¢p = 0. Hencepy = 37/2 and—i =
1(cos3m/2 +isin37/2).

c) Computing the rectangular form effrom the polar form is easier.

2 = 32(cos T /6 + isin Trr/6) = 32(—V/3/2 — i/2) = —16v/3 — 16i.
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z+w  The addition of complex numbers corresponds
to the addition of vectors in the plane. The ge-
ometric meaning of the inequality: + w | <
| z |+ | w | is: the sum of two edges of a triangle
is bigger than the third edge.

|

Multiplying complex numbers = r(cosp +
' W isin p) andw = s(cos ) + isin) in the polar
form gives

zw = rs(cos ¢ +1isin@)(cosy + isin )
= rs(cos p cosy — sin psin )+
i(cos psin 1) + sin ¢ cos )
y zw = rs(cos(p + ¢) +1isin(p + 1)), (1.8)

y

where we made use of the addition laws dor

andcos in the last equation.

Hence, the product of complex numbers is formed by takingtbduct of their absolute values
and the sum of their arguments.

The geometric meaning of multiplication hyis a similarity transformation of®. More pre-
cisely, we have a rotation aroundy the angle) and then a dilatation with facterand center
0.

Similarly, if w # 0 we have

z T ..
= = = (cos(ip —v) +isin(p — ). (L9)
Proposition 1.21 (De Moivre’s formula) Letz = r(cos ¢ +isin ) be a complex number with

absolute value and argumenty. Then for alln € Z one has

2" = r"(cos(ny) + isin(nyp)). (1.10)

Proof. (a) First letn. > 0. We use induction ovet to prove De Moivre’s formula. For = 1
there is nothing to prove. Suppog$e1.10) is true for somel fixe We will show that the
assertion is true for + 1. Using induction hypothesis arld{lL.8) we find

n+1

2" = 2" 2 = 1"(cos(ny) +isin(np))r(cos p+isin @) = r"T(

cos(np+p) +isin(ne+p)).
This proves the induction assertion.
(b) If n < 0, thenz™ = 1/(z7"). Sincel = 1(cos0 + isin 0), (I.9) and the result of (a) gives

o Zin _ Tin (c08(0 — (—n)) + isin(0 — (—n)p)) = r"(cos(n) + isin(ngp)).

This completes the proof. n
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Example 1.6 Compute the polar form of = /3 — 3i and compute'.
We have| z | = v/3 + 9 = 2/3, cos ¢ = 1/2, andsin ¢ = —/3/2. Therefore,p = —7/3 and
z = 2y/3(cos(—n/3) + sin(—7/3)). By the De Moivre’s formula we have

2% = (2V/3) (COS (—15%) +isin (—15%)) = 21537\/3(cos(—5m) + isin(—5m))
L5 _ 91537, /3

1.2.2 Roots of Complex Numbers

Letz € C andn € N. A complex numberw is called amth root of z if w™ = 2. In contrast
to the real case, roots of complex numbars not unique We will see that there are exactly
differentnth roots ofz for everyz # 0.

Let z = r(cosp + isiny) andw = s(cosv + isine) annth root of z. De Moivre’s formula

givesw™ = s"(cosniy + isinny). If we comparew™ andz we gets™ = r ors = {/r > 0.

2k :
Moreoverny = ¢ + 2km, k € Z orvy = £+—7T,k € 7. Fork=0,1,...,n — 1 we obtain

. n n .
different values)y, ¥, . . ., 1¥,,_1 modulo2z. We summarize.

Lemma 1.22 Letn € N andz = r(cos ¢ + isiny) # 0 a complex number. Then the complex

numbers
p+2kr . p+42krm
— 4 1851n ——

n

wy = Ur (cos

are then differentnth roots ofz.

), k=0,1,...,n—1

Example 1.7 Compute thelth roots ofz = —1.

A
2] =1= |w|=v1=1,argz = p = 180°. Hence
W, W
1 b
Yo ==
47
o 1-360° ]
= - =135
- =gty ’
z=-1 ¢ 2-360°
= — - 2250
1/}2 4 + 4 )
3 - 360°
by =2 4 — 315°.
w, W 4 4
We obtain

wo = cos45° +isin45° = %ﬁﬁ%\/i
wy = cos 135° +1isin 135° = —%\/5%— i%\/ﬁ,
Wy = cos 225° + isin 225° = —%\/i — i%\/i
w3 = cos 315° +isin 315° = %\/é — i%\/é.

Geometric interpretation of theth roots. Thenth roots ofz # 0 form a regulam-gon in the
complex plane with centér. The vertices lie on a circle with centérand radiusy/| z |.
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1.3 Inequalities

1.3.1 Monotony of the Power and Exponential Functions

Lemma 1.23 (a) For a,b > 0 andr € (Q we have

a<b<d <b ifr>0,
a<b<=ada >0 ifr<0.

(b) Fora > 0 andr, s € (Q we have

r<s<=add <a ifa>1,
r<s<=a >a ifa<l.

Proof. Suppose that > 0, r = m/n with integersm,n € Z, n > 0. Using Lemm&T114 (a)
twice we get

a<b<+<=ad" <" = (am)% < (bm)%,
which proves the first claim. The second pakt 0 can be obtained by settingr in place ofr
in the first part and using Propositionll.9 (e).
(b) Suppose that > r. Putz = s — r, thenx € Q andz > 0. By (a),1 < a implies
1 =17 < a”. Hencel < a* " = a*/a" (here we used Remdik1.6 (d)), and therefdrec a°.
Changing the roles of ands shows that < r impliesa® < a” such that the converse direction
is also true.
The proof fora < 1 is similar. ]

1.3.2 The Arithmetic-Geometric mean inequality

Proposition 1.24 Letn € N andxy,...,z, beinR,. Then

Tt > o/T] T (1.11)

n
We have equality if and only ify = 25 = - - - = z,.

Proof. We use forward-backward induction overFirst we show[(1.111) is true for all which
are powers of. Then we prove that if{I.11) is true for some- 1, then it is true fom. Hence,
it is true for all positive integers.

The inequality is true for, = 1. Leta, b > 0 then(y/a — v/b)? > 0 impliesa + b > 2v/ab and
the inequality is true in case = 2. Equality holds if and only it: = b. Suppose it is true for
some fixedk € N; we will show that it is true foRk. Letxy, ..., 2k, y1,...,yx € Ry. Using
induction assumption and the inequality in case 2, we have

11 i 1 A

1=1 i=1

==
A/~
-
2
+
(-
S
~_
Vv v
/T~
=
=
=
S
-
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This completes the ‘forward’ part. Assume ndw (1.11) is fiaren + 1. We will show it forn.
Letzy,...,z, € Ry and setd := (> | x;)/n. By induction assumption we have

1
n+1

n n+1 1 n n+1 L
(w14 +a, +A) > (Exﬁl) <:>n+1(nA+A)Z (Hxl> At

=1
n %«H n %H n 1/n
A> (Hxl> Anfl:»An%lz <H$Z> <~ A > (Hxl> .
=1 =1 =1
It is trivial that in caser; = z, = -+ = x,, we have equality. Suppose that equality holds in
a case where at least two of theare different, say; < x,. Consider the inequality with the
new set of values) := 2, := (x; + x2)/2, andz, = x; fori > 3. Then

n 1/n n n n
) 5t
k=1 " k=1 " k=1 k=1

1/n

2
_|_
Ty > Ty = <x1 5 xQ) = Arimy > 27+ 20109 + 25 = 0> (11 — x9)2
This contradicts the choice, < x,. Hence,z; = z, = --- = z, is the only case where
equality holds. This completes the proof. [

1.3.3 The Cauchy—-Schwarz Inequality

Proposition 1.25 (Cauchy—Schwarz inequality)Suppose thaty, ..., z,,y,...,y, are real
numbers. Then we have

n 2 n n
(zy) S (112)
k=1 k=1 k=1

Equality holds if and only if there exists= R such thaty, =tz for k = 1,... n thatis, the
vectory = (yi, ..., y,) IS a scalar multiple of the vectar = (x4, ..., z,).

Proof. Consider the quadratic functigf{t) = at*> — 2bt + ¢ where

n n n
2 2
azzxku bzzmylﬁ C:Z?Jk-
k=1 k=1 k=1

Then

f(t)

i Tt — i 2Lyt + i i
1 k=1 k=1

k

Sl

n

(x%tQ — 2zt + y,%) = Z(wkt — )2 >0.
1 k=1

k
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Equality holds if and only if there is&c R with i, = tx; for all k. Suppose now, there is no
sucht € R. Thatis
f(t) >0, forallteR.

In other words, the polynomigl(t) = at* — 2bt + ¢ has no real zeros; , = 1 (b+ V% — ac).
That is, the discriminanb = b*> — ac is negative (only complex roots); hene< ac:

n 2 n n
k=1 k=1 k=1

this proves the claim. n

Corollary 1.26 (The Complex Cauchy—Schwarz inequality)If =1, ..., z, andy, ..., y, are
complex numbers, then

n 2 n n
Somde| <) 1wl el (1.13)
k=1 k=1 k=1

Equality holds if and only if there exists)ac C such thaty = Az, wherey = (y1,...,y,) €
C" x=(x1,...,2,) € C".

Proof. Using the generalized triangle inequaljtyy + - - -+ 2, | < |21 | + --- 4+ | 2, | and the
real Cauchy—Schwarz inequality we obtain

n 2 n 2 n 2 n n
S s<z|xkyk|) =<Z|xk||yk|> <3 lael S el
k=1 k=1 k=1 k=1 k=1

This proves the inequality.

The right “less equal” is an equality if there ig & R such thaty | = ¢ |z |. In the first “less
equal” sign we have equality if and only if al}, = z,7, have the same argument; that is
argy, = arg ry + . Putting both together yields= Az with A\ = #(cos ¢ + isin ¢). m

1.4 Appendix A

In this appendix we collect some assitional facts which wertecovered by the lecture.
We now show that the equation

=2 (1.14)

is not satisfied by any rational number
Suppose to the contrary that there were such,ane could writex = m/n with integersm
andn, n # 0 that are not both even. Thedn {11.14) implies

m? = 2n?. (1.15)
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This shows thatn? is even and hence is even. Therefore:? is divisible by4. It follows that
the right hand side of {I.15) is divisible by so thatn? is even, which implies thai is even.
But this contradicts our choice af andn. Hence[[L.I4) is impossible for rational

We shall show thatl contains no largest element aBdcontains no smallest. That is for every
p € Awe can find arational € A with p < ¢ and for everyp € B we can find arational € B
such thayy < p.

Suppose that is in A. We associate witp > 0 the rational number

2—p* 2p+2
p+2  p+2°

q=p+ (1.16)

Then

AP+ 8p+4—2pP—8p—8  2(p*—2)
B (p+2)2 o (p+2)?
If pisin Athen2 — p? > 0, (.I8) shows thai > p, and [IIV) shows that < 2. If pisin B
then2 < p?, (IIB) shows that < p, and [I.IF7) shows that > 2.

-2 (1.17)

A Non-Archimedean Ordered Field

The fields@Q andR are Archimedean, see below. But there exist ordered fieltlsowi this
property. LetF' := R(¢) the field of rational functiong'(t) = p(t)/q(t) wherep andq are
polynomials with real coefficients. Singeandg have only finitely many zeros, for large
f(t) is either positive or negative. In the first case wejfset 0. In this wayR(¢) becomes an
ordered field. But > n for all n € N since the polynomiaf(¢) = ¢t — n becomes positive for
larget (and fixedn).

Our aim is to definé” for arbitraryreal .

Lemma 1.27 Letb, p be real numbers with > 1 andp > 0. Set
M={b|reQr<p}, M={b]|secQ,p<s}

Then
sup M = inf M’.

Proof. (a) M is bounded above by arbitraby, s € @), with s > p, andM’ is bounded below by
anyb”, r € QQ, withr < p. Hencesup M andinf M’ both exist.

(b) Sincer < p < simpliesa” < b* by LemmdL2Bsup M < b*° for all b* € M’. Taking the
infimum over all suchh®, sup M < inf M’.

(c) Lets = sup M ande > 0 be given. We want to show thatf M’ < s + . Choosen € N
such that

I/n<e/(s(b—1)). (1.18)
By Propositiof III1 there exists € @Q with

1
r<p<s and s—r<—. (1.19)
n



38 1 Real and Complex Numbers

Usings — r < 1/n, Bernoulli's inequality (part 2), and{1.118), we compute
1 1
=0 =b"(0""—1)<s(bn —1)<s—(b—1) <e.
n
Hence
inf M' <0° <0 +e<supM +e.

Sinces was arbitraryinf M’ < sup M, and finally, with the result of (b)nf M’ = sup M.
|

Corollary 1.28 Suppose € Q@ andb > 1 isreal. Then
b =sup{d" | r € Q,r < p}.

Proof. For all rational numbers,p,s € Q, r < p < s impliesa” < a? < a®. Hence
sup M < a? < inf M’'. By the lemma, these three numbers coincide. n

Inequalities

Now we extend Bernoulli’s inequality to rational exponents

Proposition 1.29 (Bernoulli's inequality) Leta > —1 real andr € Q. Then
@ 1+a)>1+raifr>1,

b) (1+a) <l+4+raifo<r<I1.

Equality holds if and only its = 0 or r = 1.

Proof. (b) Letr = m/n withm < n, m,n € N. Apply L1I1) toz; :=1+a,i=1,...,mand
x;:=1fori=m+1,...,n. We obtain

1 1
- (m(l+a)+ (n—-—m)1)> ((1+a)™ 1"™)"
Dat1>1+a)%,
n
which proves (b). Equality holdsit =1orifz; =---=xz,1.e.a =0.

(@) Now lets > 1, z > —1. Settingr = 1/s anda := (1 + 2)"/" — 1 we obtainr < 1 and
a > —1. Inserting this into (b) yields

r

(1+a) < ((1+z)%> <14+r((1+2)°—-1)
z2<r((14+2)°-1)

1+ sz < (1+2)%

This completes the proof of (a). [ ]
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Corollary 1.30 (Bernoulli's inequality) Leta > —1 real andx € R. Then
@ (1+a)*>1+zaifz>1,
(b) (1+a)* <1+ zxaifx < 1. Equality holds if and only it = 0 or = = 1.

Proof. (a) First leta > 0. By Propositio .29 (a)l + a)” > 1 + raif r € Q. Hence,
(14+a)=sup{(1+a) |reQ,r<z}>sup{l+ra|reQ,r<z}=1+uza.
Now let—1 < a < 0. Thenr < z impliesra > xa, and Proposition .29 (a) implies
(14a)">1+ra>1+za. (1.20)

By definition of the power with a real exponent, seel(1.4)

1
sup{(1/(a+1))" | re Q, r <z} HW2.1

(14+a)* = inf{(1+a)" |reQ,r <z}

Taking in [I.ZD) the infimum over all € Q with » < 2 we obtain
(14+a)=inf{(1+a)" |reQ,r<z}>1+za.

(b) The proof is analogous, so we omit it. [

Proposition 1.31 (Young’s inequality) If a,b € R, andp > 1, then
1 1
ab < —af 4+ — b, (1.21)
p q

wherel/p + 1/q = 1. Equality holds if and only if? = b7.

Proof. First note thatl /¢ = 1 — 1/p. We reformulate Bernoulli’'s inequality fay € R, and
p>1

1 1 1
yp—lzp(y—l)<:>;(yp—1)+12y<:>§yp+§2y.

If b = 0 the statement is always true.blf£ 0 inserty := ab/b? into the above inequality:

L(ab)", 1 ab
p \ 01 q — bt
p
1@ l>ab |.bq

pb T

1 1

—a? + —b? > ab,

p q
sinceb’™® = P4, We have equality ify = 1 orp = 1. The later is impossible by assumption.
y = 1is equivalent td? = ab orb? ! = aq or b9~ = a? (b # 0). If b = 0 equality holds if
and only ifa = 0. [
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Proposition 1.32 (Hblder's inequality) Letp > 1,1/p+ 1/q = 1, andz,,...,z, € R, and
Y1, - - -, Yn € Ry non-negative real numbers. Then

Zxkyk < (Z xi) (Z yg) ) (1.22)
k=1 k=1 k=1

We have equality if and only if there exists R suchthatforallt = 1,...,n, 2} /y] = c (they
are proportional).

=

Proof. SetA := (377 _, xﬁ)% andB := (>, yg)%. The casesl = 0 andB = 0 are trivial. So
we assumel, B > 0. By Young’s inequality we have

Sy S

A B_pAP+qu
S S S
AB k=1 T opAr k=1 B k=1 '

1 1
fr lvp_|_ yq
inz g qzy}iz g
1

p
1
p

+-=1
q

1 1
— ) < (Zﬁ) <Zy2>q-
k=1 k=1 k=1

Equality holds if and only ife} /A? = y{/B?forall k = 1,...,n. Thereforex} /y; = const.
]

Corollary 1.33 (Complex Holder’s inequality) Letp > 1, 1/p+ 1/q = 1 and zy, y,. € C,
k=1,...,n. Then

1 1
Z\xkyk\§<2\l’k|p) <Z|Z/k|q) :
k=1 k=1 k=1

Equality holds if and only if xy |” / | yx | = const. fork =1,...,n.

Proof. Setxy := |z | andyy := | yx | in @22). This will prove the statement. n

Proposition 1.34 (Minkowski’s inequality) If z1,...,z, € R,y andyy,...,y, € R, and
p > 1then

<Z($’k + yk:)P) : < <Z xﬁ) p + (Z y}’;) p . (1.23)
k=1 k=1

k=1

Equality holds ifp = 1 or if p > 1 andzy,/yx = const.
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Proof. The case = 1 is obvious. Lefp > 1. As before let; > 0 be the unique positive number
with 1/p + 1/q = 1. We compute

n n

Z(ffk +y)f = Z(ﬂck + y)(xr + i)’ Z Tp(p + yi)? 14 Z Yz + ye)?™

k=1 k=1 k=1

@§§)<§E:1€); <2£:Qrk+_yk(p ”q> <2£:yk> (2%:;rk+ykypnq>;

k

< ()" ()" (S wr)”

. 1 1 . .
We can assume that (z;, + y,)? > 0. Usingl — — = — by taking the quotient of the last
q P

inequality by(>" (), + y«)?)"/? we obtain the claim.
Equality holds ifz}/(zy + y,)P Y9 = const. and y}/(z), + yx)P~ V9 = const.; that is
xy/yr = const. n

Corollary 1.35 (Complex Minkowski’s inequality) If z1,...,z,,41,...,y, € Candp > 1
then

(Z |2 + Y |p> < (Z E2 |p> + (Z |k |p) . (1.24)
k=1 k=1 k=1
Equality holds ifp = 1 orif p > 1 andz/yr = A > 0.

Proof. Using the triangle inequality givedx, +yi| < |zx| + |yx|; hence
S o +ue P < S0_ (Jzk| + |yk ). The real version of Minkowski's inequality

now proves the assertion. [
If x = (1,...,2,)Iis avector inR™ or C", the (non-negative) number
1
n P
!MM:=<§:M%V>
k=1

is called thep-normof the vectorr. Minkowski's inequalitie then reads as

Iz +yllp < llzlly + [yl

which is the triangle inequality for thenorm.



42

1 Real and Complex Numbers




Chapter 2

Sequences and Series

This chapter will deal with one of the main notions of calgylthelimit of a sequence Al-
though we are concerned with real sequences, almost alimrsothake sense in arbitrary metric
spaces likeR™ or C".

Givena € R ande > 0 we define the-neighborhood of, as

Uca) =(a—c,at+e)={reR|a—ec<ax<a+e}={zeR||z—a| <e}

2.1 Convergent Sequences

A sequencés a mapping:: N — R. To everyn € N we associate a real numbey. We write
this as(z,)nen OF (21,29, ...). For different sequences we use different letteréaas, (b,,),

(Yn)-

Example 2.1 (@) z, = £, (), (z,) = (1,4,5,...);

o)z, =(-1)"+1, (z,) = (0,2,0,2,...),

(€) z, = a(a € R fixed), (z,) = (a,a,...) (constant sequence),

d)z, =2n-1, (z,) =(1,3,5,7,. ) the sequence of odd positive integers.

(e)z, = a" (a € Rfixed), (z,) = (a a’,a®,...) (geometric sequence);
Definition 2.1 A sequencéz,,) is said to beconvergent ta: € R if
For everye > 0 there exists,, € N such that: > ny implies

|z, — x| <e.

x is called thdimit of (z,,) and we write

x = lim x, orsimply z=Ilimx, or =z,— .

n—oo

If there is no such: with the above property, the sequerieg) is said to belivergent

In other words:(z,,) converges ta: if any neighborhood/.(z), ¢ > 0, contains “almost all”
elements of the sequenc¢e, ). “Almost all” means “all but finitely many.” Sometimes we say
“for sufficiently largen” which means the same.

43
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This is an equivalent formulation sineg € U.(z) meansc—¢ < z, < z+¢, hencdxz — z,, | <
e. Theng in question need not to be the smallest possible.
We write

lim z, = +o00 (2.1)

n—oo

if for all £ > 0 there exists, € N such that: > ng impliesz,, > E. Similarly, we write

lim z, = —o0 (2.2)

n—~o0

if for all £ > 0 there exist3, € N such that, > ng impliesz,, < —F. In these cases we say
that+oo and—oo areimproper limitsof (x,,). Note that in both cas€s,) is divergent.

Example 2.2 This is Exampl€Z]1 continued.

() lim,, . £ = 0. Indeed, let > 0 be fixed. We are looking for some, with |2 — 0| < ¢
for all n > ng. This is equivalent td /e < n. Choosen, > 1/¢ (which is possible by the
Archimedean property). Then for all > ny we have

1 1
n>ny>- = —<e¢= |z, —0|<e.
£ n

Thereforez,,) tends ta) asn — oc.

(b) z,, = (—1)" + 1 is divergent. Suppose to the contrary thas the limit. Toe = 1 there is
no such that fom > ny, we have| z,, — x| < 1. For evem > n, this implies|2 — 2| < 1 for
oddn > ng, |0 — x| = |z | < 1. The triangle inequality gives

2=|2—-a2)+z|<|2—z|+|z|<1+1=2

This is a contradiction. Hencey,, ) is divergent.
(€)z, =a.limz, =asince|z, —a|=|a—a|=0<cforalle > 0andalln € N.
(d) lim(2n — 1) = +oo0. Indeed, suppose that > 0 is given. Choose, > £ + 1. Then

E
nZno:>n>§+1:2n—2>E:xn:2n—1>2n—2>E.

This proves the claim. Similarly, one can show that —n® = —oco. But both((—n)") and
(1,2,1,3,1,4,1,5,...) have no improper limit. Indeed, the first one becomes arilitiarge
for evenn and arbitrarily small for odch. The second one becomes large for ewebut is
constant for odah.
(e)z, =ad", (a>0).
‘ {1, if a=1,

lim a" =

n—00 0, if 0<a<l.
(a™) is divergent fora > 1. Moreover,lima™ = +o00. To prove this letZ > 0 be given. By

the Archimedean property @ and sincex — 1 > 0 we findm € N such thatn(a — 1) > E.
Bernoulli's inequality gives

a>m(a—1)+1>m(a—1)> E.
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By LemmdI.ZB (b)p. > m implies
a®>a" > FE.

This proves the claim.
Clearly (a™) is convergent in cases= 0 anda = 1 since it is constant then. Lét< a < 1
and puth = 1 — 1; thenb > 0. Bernoulli’'s inequality gives

a

1 "
_:(_) =0b+1)">14+nb>nb

a” a
1
— 0<ad" < —. (2.3)
nb
1 1 . .
Lete > 0. Chooseyy > —. Thens > — andn > ng implies
eb TLQb
"= 0] =|a"| = a" 5 — < — <
a — =\|a =a — — e.
&3 nb — ngb

Hencea" — 0.
Proposition 2.1 The limit of a convergent sequence is uniquely determined.
Proof. Suppose that = lim x,, andy = lim x,, andx # y. Pute := |z —y| /2 > 0. Then

g e NVn>ny:|z—x,| <e,
g e NVn >ng |y —z,| <e.

Choosen > max{nj,ny}. Then|z — x,, | <eand|y — x,, | < . Hence,
|z =yl <[z —am|+]y—zm| <2 =|z—-y].

This contradiction establishes the statement. m

Propositiod 21l holds in arbitrary metric spaces.

Definition 2.2 A sequencéz,,) is said to béboundedf the set of its elements is a bounded set;
I.e. there is & > 0 such that

|z,| < C foralln e N.

Similarly, (z,,) is said to bebounded abover bounded belovif there exists' € R such that
x, < Corz, > C, respectively, foralh € N

Proposition 2.2 If (z,,) is convergent, thefr,,) is bounded.
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Proof. Letz = limz,,. Toe = 1 there exists); € N such that x — z,,| < 1 for all n > n,.

Then|z, |= |z, —z+ 2| <|z,—2x|+]|x| <|x|+ 1foralln > n,. Put
C:=max{|z1|,...,|Tn-1|,|z|+1}.
Then|z, | < Cforalln € N. ]

The reversal statement is not true; there are bounded seegi@iinich are not convergent, see
ExampldZ1L (b).

Ex Class: If (z,,) has an improper limit, thefx,,) is divergent.

Proof. Suppose to the contrary that,) is convergent; then it is bounded, day, | < C for all

n. This contradicts:, > E as well asr,, < —F for E = C and sufficiently large:. Hence,
(x,,) has no improper limits, a contradiction. [

2.1.1 Algebraic operations with sequences

The sum, difference, product, quotient and absolute valseguencesz,,) and(y,,) are de-
fined as follows

) (yn)’(yn*m [ @)= (2 ).

Proposition 2.3 If (z,,) and (y,,) are convergent sequences and R, then their sum, differ-
ence, product, quotient (provided # 0 andlimy, # 0), and their absolute values are also
convergent:

(@) lim(x, +y,) = limz, £ limy,;

(b) lim(cx,) = clim x,, lim(x,, 4+ ¢) = limz,, + c.

(¢)lim(z, y,) = limx,, - limy,,;

(d) lim $= = iluf?l—xy: if y,, # 0 for all n andlimy, # 0;

(e)lim|z,|=|limz,|.

Proof. Letz,, — x andy,, — .

(a) Givene > 0 then there exist integers andn, such that

n > ny implies|z,, — x| < /2 andn > ny implies|y, —y| < ¢/2.
If np := max{ny, no}, thenn > n, implies
| (n+un) — (e +y) | <o 2]+ |y -yl <e
The proof for the difference is quite similar.
(b) follows from| cx,, — cx| = |c¢||x, — x| and| (x, +¢) — (x +¢) | = |z, — x|.
(c) We use the identity
Tnyn — Y = (Tn = 2)(Yn — Y) + (Y — y) + y(2n — 2). (2.4)

Givene > 0 there are integers;, andn, such that
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n > ny implies|z, — x| < /e andn > ny implies| y,, — y | < +/e.
If we takeny = max{ny,na}, n > ng implies
| (zn —2)(n —y) | <&,
so that

lim (z, — z)(y, —y) = 0.

Now we apply (a) and (b) td_(2.4) and conclude that
lim (z,y, — zy) = 0.

n—oo

(d) Choosingy; such thaty,, —y| < |y|/2if n > ny, we see that
Yl <ly—ynl+lyl <lyl/2+yn| = yn|>1y]/2.
Givene > 0, there is an integet, > n; such that, > n, implies
[y —y| <lyle/2

Hence, forn > ns,

1 1 Yn — Y 2
___’: ’< sl —yl <e
Yn Y YnlY ly |
1 .
and we getim(yi) =1 . The general case can be reduced to the above case usingl(c) an
n 1M Yy,

(Tn/Yn) = (@n - 1/yn).

(e) By Lemm&LT2 (e) we haveéz, | — |z]|| < |z, —x|. Givene > 0, there isn, such that
n > ng implies|z, — x| < . By the above inequality, alsdz,, | — |z || < ¢ and we are
done. ]

Example 2.3 (a) z,, := "T“ Setz,, = 1 andy,, = 1/n. Thenz, = z, + y, and we already
know thatlim z,, = 1 andlimy,, = 0. Hencelim 2 =lim1 +1lim+ =140 =1.
(b) a, = ¥ We can write this as

3+
1-2°

n

Ay =

Sincelim 1/n = 0, by PropositiofiZ]3, we obtailim 1/n* = 0 andlim13/n = 0. Hence
lim2/n? = 0 andlim (3 + 13/n) = 3. Finally,

n—oo n?—2  lim,e (1-2) 1

(c) We introduce the notion of a polynomial and and a ratidmattion.
Givenag, ay, . . .,a, € R, a, # 0. The functionp: R — R givenbyp(t) := a,t" +a, 1t" "+
-+ 4 ait + ag is called apolynomial The positive integern is thedegreeof the polynomial
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p(t), anday, .. .a, are called theoefficientof p(t). The set of all real polynomials forms a
real vector space denoted Byz].

Given two polynomialg andg; putD := {t € R | ¢(¢) # 0}. Thenr = £ is a called aational
functionwherer: D — R is defined by

Polynomials are special rational functions witft) = 1. the set of rational functions with real
coefficients form both a real vector space and a field. It iotethbyR ().

Lemma 2.4 (a) Leta,, — 0 be a sequence tending to zero with=~ 0 for everyn. Then

lim — =
n—o0 an

1 400, if a,, > 0 for almost alln;
—00, if a,, < 0 for almost alln.

(b) Lety,, — a be a sequence convergingd@nda > 0. Theny, > 0 for almost alln € N.

Proof. (a) We will prove the case withoo. Lete > 0. By assumption there is a positive integer
ng such thatr > ng implies—e < a,, < 0. Tis impliesO0 < —a,, < ¢ and furtherﬁ < —é < 0.
Supposer > 0 is given; choose = 1/FE andn, as above. Then by the previous argument,
n > ng implies

1 1

— <-—-=-E.

an, €
This showdim,, . i = —00.
(b) Toe = a there existsy, such that, > ng implies|y,, —a| < a. Thatis—a < y, —a < a
or 0 < y, < 2a which proves the claim. n

Lemma 2.5 Suppose that(t) = >, _, axt* andq(t) = >";_, bxt" are real polynomials with
a, # 0 andb; # 0. Then

0, r<s,
lim p(n) = b ree
n—o0 q(n) +o0, r>s and >0,
—00, r>s and 3 < 0.
Proof. Note first that
pn)  n" (a4 a1t + -+ ap>) 1t +ar gt 4 tapt 1

q(n) o (by+bs1t 4+ bk)  neT b+ bo1:+ - by 0T o
Suppose that = s. By PropositiofiZB;z — 0 for all & € N. By the same proposition, the
limits of each summand in the numerator and denominatoekcept for the first in each sum.
Hence,

lim p(n) _ lim,, o0 (ar + ar,li +--+ aO#) _
im0 q(n)  limpog (bs + 0y2 4+ bok) by
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Supose now that < s. As in the previous case, the sequeli¢g tends toa, /b, but the first
factornj,r tends ta). Hence, the product sequence tend8.to

Suppose that > s and$* > 0. The sequenceér,) has a positive limit. By Lemn{a2.4 (b)
almost allc,, > 0. Hence,

_gqn) 11

mn T

p(n)  nrc,

tends to0 by the above part and, > 0 for almost alln. By LemmdZ¥ (a), the sequence
(é) = (%) tends to+oo asn — oo, which proves the claim in the first case. The case
a,/bs < 0 can be obtained by multiplying with 1 and noting thatim,, ., x,, = +oc implies

lim,, oo (—2,) = —o0. n

In the German literature the next proposition is known asTheorem of the two policemen’.

Proposition 2.6 (Sandwich Theorem)Leta,,, b, andz,, be real sequences with, < z,, < b,
for all but finitely manyn € N. Further letlim,, .., a, = lim, .., b, = z. Thenx, is also
convergent tor.

Proof. Lete > 0. There existi;, ny, andns € N suchn > n; impliesa,, € U.(x), n > ny
impliesb,, € U.(x), andn > ns impliesa,, < z, < b,. Choosingny = max{n;,ns,ns},
n > ng impliesz,, € U.(x). Hencex, — . m

Remark. (a) If two sequencesa,,) and (b,,) differ only in finitely many elements, then both
sequences converge to the same limit or both diverge.

(b) Define the “shifted sequencé;, := a, .1, n € N, wherek is a fixed positv integer. Then
both sequences converge to the same limit or both diverge.

2.1.2 Some special sequences

. 1
Proposition 2.7 @Ifp>0,thenlim — = 0.
n—oo N,
(b) If p > 0, then lim /p = 1.
(€) lim /n = 1.
(d)If a > 1 anda € R, then lim — = 0.

n—oo Q"

Proof. (a) Lets > 0. Taken, > (1/¢)"/? (Note that the Archimedean Property of the real
numbers is used here). Then> n, implies1/n? < e.

(b) If p > 1, putz, = /p—1. Then,z,, > 0 and by Bernoulli’s inequality (that is by homework
4.1) we haveyr = (1+p—1)= <1+ 2 thatis

1
0<z,<—(p—1)
n

By PropositiofiZbz, — 0. If p = 1, (b) is trivial, and if0 < p < 1 the result is obtained by
taking reciprocals.
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(c) Putz,, = /n — 1. Thenzx,, > 0, and, by the binomial theorem,

n(n —1) 2
2 n

0<z, <4/ 2 (n>2)
STy S n_1 n=24).

By (a), ﬁ — 0. Applying the sandwich theorem agairn, — 0 and so{/n — 1.

n—1

(d) Putp = a — 1, thenp > 0. Letk be an integer such that> «, k£ > 0. Forn > 2k,

" n\ ., nn—-1)--(n—k+1) , nFp"
(1+p) >(k)p - "l P o

n=14z,)">

Hence

Hence,

Sincea — k < 0, n** — 0 by (a). m

Q 1. Let (z,) be a convergent sequencg, — z. Then the sequence of arithmetic means

Sy =1 Z x;, also converges to.
k=1
Q 2. Let (z,) > 0 a convergent sequence of positive numbers withland:, = x > 0. Then

Y/x12s - - - o, — x. Hint: Considery,, = log ,,.

2.1.3 Monotonic Sequences
Definition 2.3 A real sequencéz,,) is said to be

(a) monotonically increasing x,, < x4 for all n;

(b) monotonically decreasind =, > x, 1 for all n.

The class ofmonotonic sequencesnsists of the increasing and decreasing sequences.

A sequence is said to Istrictly monotonically increasing or decreasiifgr,, < x,1 Or x,, >
x,41 for all n, respectively. We write,, ~ andzx,, \..

Proposition 2.8 A monotonic and bounded sequence is convergent. More plgdils(z,,) is
increasing and bounded above, thém z,, = sup{z,}. If (x,) is decreasing and bounded
below, thenim z,, = inf{z, }.

Proof. Suppose:,, < z,; for all n (the proof is analogous in the other case). Eet= {z,, |
n € N} andz = sup E. Thenz,, <z, n € N. For every: > 0 there is an integet, € N such
that

T—e <@y, <,

for otherwiser — ¢ would be an upper bound @&f. Sincez,, increasesy > no implies

r—e<x, <,



2.1 Convergent Sequences 51

which shows thatz,,) converges ta. ]

'

Example 2.4 Letz, = c—' with some fixed: > 0. We will show thatz,, — 0 asn — oo.
n.
Writing (z,,) recursively,
C

— 2.5
— ., (2.5)

Tpy1 =

C
) n—+1 <
z,. On the other handg, > 0 for all n such that(x,,) is bounded below by. By Proposi-
tion[Z8, (z,,) converges to some € R. Taking the limitn — oo in Z3), we have

we observe thatr,,) is strictly decreasing for > c. Indeedn > cimpliesz, ., = z,

r = lim x,.; = lim < lim 2z, =0-2=0.
n—oo

n—oo 1, + n—00

Hence, the sequence tend9)to

2.1.4 Subsequences

Definition 2.4 Let (x,,) be a sequence ar{ad;).cn & strictly increasing sequence of positive
integersn;, € N. We call(z,, )ren asubsequencef (z,),en. If (z,,) converges, its limit is
called asubsequential limiof (z,,).

Example 2.5 (@) z,, = 1/n, ny = 2*. then(x,,, ) = (1/2,1/4,1/8,...).
() (z,) = (1,-1,1,—1,...). (x9r) = (=1, —1,...) has the subsequential limitl; (zox+1) =
(1,1,1,...) has the subsequential linit

Proposition 2.9 Subsequences of convergent sequences are convergertieviizne limit.

Proof. Letlimz,, = x andz,, be a subsequence. Fo> 0 there existsn, € N such that
n > mg implies|z, — z| < e. Sincen,, > m for all m, m > my implies|z,, —x| < ¢;
hencélim z,,,, = =. ]

Definition 2.5 Let (z,,) be a sequence. We calle R alimit point of (z,,) if every neighbor-
hood ofz contains infinitely many elements ¢f,, ).

Proposition 2.10 The pointz is limit point of the sequende:,, ) if and only ifx is a subsequen-
tial limit.

Proof. If klgrolo z,, = x then every neighborhood.(z) contains all but finitely many,,, ; in
particular, it contains infinitely many elements. That is,x is a limit point of (x,, ).

Supposer is a limit point of (z,,). Toe = 1 there exists,,, € U;(x). Toe = 1/k there exists
ny, With x,,, € Uy ¢ (x) andn;, > n;,_,. We have constructed a subsequefice) of (z,,) with

1

‘x_xnk|<E§
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Hence,(z,, ) converges ta. n

Question: Which sequences do have limit points? The answv&veryboundedsequence has
limit points.

Proposition 2.11 (Principle of nested intervals)Let I, := [a,,b,] a sequence of closed
nested intervalg,,, C I, such that their lengthg, — a,, tend to0:

Givene > 0 there exists,, such that) < b,, — a,, < e forall n > n,.

For any such interval sequengé, } there exists a unique real numbek R which is a member
of allintervals, i.e.{z} = (,cn In-

Proof. Since the intervals are nestéd,) " is an increasing sequence bounded above by each
of the by, and(b,,) \, is decreasing sequence bounded below by each afi,th€onsequently,
by Propositiol ZI8 we have

dr = lim a, = sup{a,} <b,, forallm,and Jy = lim b, = inf{b,,} > .
Sincea, <x <y <b,foralln e N

@ # [x,y] C ﬂ L.

nelN

We show the converse inclusion namely that. \ [a, b,] € [z,y]. Letp € I, for all n, that
is, a, < p < b, foralln € N. Hencesup,,a, < p < inf,b,; thatisp € [z,y]. Thus,
[z,y] = N,en In- We show uniqueness, thatis= y. Givene > 0 we findn such that
y—x <b,—a, <e. Hencey —x < 0; thereforer = y. The intersection contains a unique

pointz. [ ]

Proposition 2.12 (Bolzano—Weierstral3)A bounded real sequence has a limit point.

Proof. We use the principle of nested intervals. I(e}) be bounded, sayz, | < C. Hence,
the interval|—C, C] contains infinitely many,. Consider the intervals-C, 0] and|[0, C]. At
least one of them contains infinitely manmy, sayl; := [a1,b;]. Suppose, we have already
constructedl,, = |a,,b,] of lengthb, — a, = C/2"2 which contains infinitely many,.
Consider the two intervalg,, (a, + b,)/2] and[(a, + b,)/2,b,] of lengthC/2"~1. At least
one of them still contains infinitely many,, say/,1 := [a,+1,b,41]. In this way we have
constructed a nested sequence of intervals which lengtlo §o By Propositiofi2.7l1, there
exists a unique € (), 1. We will show thatz is a subsequential limit ofz,,) (and hence a
limit point). For, chooser,, € I; this is possible sincé, contains infinitely many,,. Then,
ap < x,, < forall k € N. PropositioZl6 gives = lima, < limz,, < limb, = z; hence
limz,, = . |

Remark. The principle of nested intevals égjuivalento the order completeness laf
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Example 2.6 (@) z, = (—1)""! + I; set of limit points is{—1,1}. First note that-1 =
lim,, o 9, @nd1 = lim,_., z2,,1 are subsequential limits @f:,,). We show, for example,
that 3 is not a limit point. Indeed, fon > 4, there exists a small neighborhood oivhich has
no intersection wittl/; (1) andU: (—1). Henceg is not a limit point.

)z, =n-5 [g] , Where[z| denotes the least integer less than or equal fa] = [3] = 3,

[—2.8] = =3, [1/2] = 0). (z,) = (1,2,3,4,0,1,2,3,4,0,...); the set of limit points is
{0,1,2,3,4}

(c) One can enumerate the rational number®in) in the following way.

%, L1s

T T3, @3

i, i, %, T4y Tsy Te,

The set of limit points is the whole intervdl, 1] since in any neighborhood of any real number
there is a rational number, see Proposifionil.11 (b) 1.11 &)y rational number of0, 1)
appears infinitely often in this sequence, namelg a.-st = gf]’ =

(d) z,, = n has no limit point. Sinc¢z,,) is not bounded Bolzano- WelerstraB fails to apply.

Definition 2.6 (a) Let(z,) be a bounded sequence a#dts set of limit points. Thesup A is
called theupper limitof (x,,) andinf A is called thdower limit of (z,,). We write

lim z,, and = lim x,.

n—0oo n— o0

for the upper and lower limits afz,,), respectively.
(b) If (2,,) is not bounded above, we writen z,, = +oo. If moreover+oo is the only limit
point, lim xz,, = 400, and we can also writém x,, = +o00. If (x,) is not bounded below,

lim x,, = —o0.

Proposition 2.13 Let (x,,) be a bounded sequence aAdhe set of limit points ofz,, ).
Thenlim z,, andlim z,, are also limit points ofz,,).

Proof. LetZ = lim x,,. Lete > 0. By the definition of the supremum of there exists’ € A
with

— €< I
T— =<2 <T.
2

Since 2’ is a limit point, Us(z’) contains infinitely many elements,. By construction,
Us(2') C U.(T). Indeedx € Uz (2') implies|z — 2" | < £ and therefore
— / / _ ’ / _ 19 g
le —T|=|z—2'+2' —Z|<|z—2'|+ |2 —T| <5tg=e
Hencez is a limit point, too. The proof folim z,, is similar. [

Proposition 2.14 Letb € R be fixed. Suppose,,) is a sequence which is bounded above, then

x, < b forall but finitely manyn implies
- (2.6)
lim z, <b.

n—~o0



54 2 Sequences and Series

Similarly, if (z,,) is bounded below, then

x, > b for all but finitely manyn implies
(2.7)

lim x, > b.

n—oo

Proof. We prove only the first part fdim z,,. Proving statement fdim x,, is similar.

Lett := limx,. Suppose to the contrary that> b. Sete = (¢t — b)/2, thenU.(t) contains
infinitely manyx,, (¢ is a limit point) which areall greater thanb; this contradictse,, < b for
all but finitely manyn. Hencelim z,, < b. [ ]

Applying the first part td = sup,,{x, } and noting thainf A < sup A, we have

inf{z,} < lim z, < lim z, <sup{z,}.
n n—00 n

n—0o0

The next proposition is a converse statement to PropoBifhn

Proposition 2.15 Let (z,,) be a bounded sequence with a unique limit paint Then(z,,)
converges ta.

Proof. Suppose to the contrary that,) diverges; that is, there exists some> 0 such that
infinitely manyx,, are outside/.(z). We view these elements as a subsequeénce:= (z,, )
of (z,). Since(z,) is bounded, so i$y,). By PropositiohZ12 there exists a limit poinof
(yx) which is in turn also a limit point ofzx,,). Sincey ¢ U.(x), y # z is a second limit point;
a contradiction! We conclude that,,) converges ta:. [

Note thatt := lim x,, is uniquely characterized by the following two propertiEsr every: > 0

t—e <z, for infinitely manyn,
r, <t+e, foralmostalln.

(See also homework 6.2) Let us consider the above examples.

Example 2.7 (@) z,, = (—=1)"' + 1/n; limz, = —1, limz, = 1.
b)z,=n-5 % Jimz, = 0, limz,, = 4.

(c) (z,) is the sequence of rational numberg@f1); lim z,, = 0, lim z,, = 1.
(d) z, = n; lim z, = lim z,, = +o0.

Proposition 2.16 If s,, < t,, for all but finitely manyn, then

lim s, < lim t,, lim s, < lim ¢,.

n—0oo n—0oo n—o00 n—o00
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Proof. (a) We keep the notations$ and¢* for the upper limits of s,,) and(t,,), respectively. Set
s =lims, andt = limt,. Lete > 0. By homework 6.3 (a)

s —e <s, forall butfinitely manyn

— s—e<s,<t, forallbutfinitely manyn
by assumption

= s—¢ <limt,
by PrpZIHF

. supfs — >0} <t
by first Remark in Subsecti@n .7
s<t

(b) The proof for the lower limit follows from (a) and sup £ = inf(—FE). [

2.2 Cauchy Sequences
The aim of this section is to characterize convergent semgsawithout knowing their limits.

Definition 2.7 A sequencéz,,) is said to be &auchy sequendé

For everys > 0 there exists a positive integey such that x,, — z,,, | < ¢ for all
m,n > ng.

The definition makes sense in arbitrary metric spaces. Theititen is equivalent to
Ve>0 dnge N Vn>ny VEEN: |z, —x,| <e.

Lemma 2.17 Every convergent sequence is a Cauchy sequence.

Proof. Let z, — x. Toe > 0 there isn, € N such that, > n, impliesz,, € U./2(x). By
triangle inequalitym, n > ny implies

|Tp — x| < |z —2 |+ |2m —2| <e/24¢/2=c¢.

Hence,(z,) is a Cauchy sequence. ]

Proposition 2.18 (Cauchy convergence criterion)A real sequence is convergent if and only
if it is a Cauchy sequence.

Proof. One direction is LemniaZll7. We prove the other directiort (kz,,) be a Cauchy
sequence. First we show that,) is bounded. Ta = 1 there is a positive integet, such
thatm,n > nq implies|z,, — z,| < 1. In particular| z,, — z,,,| < 1 for all n > ng; hence
|z, | < 1+ |y, |. Setting

C=max{|z |, 22|, | Tug-1],]|Tn, | + 1},
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| z,, | < C forall n.

By Propositiofi 212 there exists a limit poinof (z,,); and by PropositionZ10 a subsequence
(xn,) converging tar. We will show thatlim,, ., =, = x. Lete > 0. Sincez,, — = we find

ko € N such thatt > k, implies|z,, — x| < ¢/2. Since(z,) is a Cauchy sequence, there
existsny € N such thatn,n > nq implies |z, — x,, | < £/2. Putn; := max{ng, ny, } and
choosek; with n,, > ny > nyg,. Thenn > ny implies

<2-¢/2=¢.

\x—xﬂﬁ’x—xnkl +’xnk1—xn

Example2.8 (@) z, = >, ;1 =1+ 3+ 3 +---+ 1. We show thatz,) is not a Cauchy
sequence. For, consider

2m 2m
1 1 1 1
T2m Z k — Z 2m m 2m 2
k=m-+1 k=m+1

Hence, there is na, such thap, n > n, implies| z, — z, | < 3.
(-1

k=1

=1-1/2+1/3—+---+ (=1)"""1/n. Consider

1 1 1 1
ik — Ty = (—=1)" — ()
Tntk =0 = (=1) [n+1 n+2+n+3 (=D n+k3]

:(_1)nKnil_ni2)+(ni3_ni4)+'”

G =) keven
L k odd

n+k’

Since all summands in parentheses are positive, we conclude

1 1
| Tk — 2| = S + Lol RS (75t — 7gs)» keven
TR \n+ 1 n42 n+t3 nid 1 odd

n+k’
1 < 11 )+~“+{n¢+k, k even
n+1 n+2 n+3 (55— 75), keven
1
$n+k—9€n|<n—+1>

since all summands in parentheses are positive. Héngé,is a Cauchy sequence and con-
verges.
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2.3 Series

Definition 2.8 Given a sequence, ), we associate witka,, ) a sequences,, ), where

Sy = E ar = a1 +as+ -+ a,.
k=1

For (s,) we also use the symbol

(e 9]

> a, (2.8)

k=1

and we call it annfinite seriesor just aseries The numbers,, are called theartial sumsof
the series. Ifs,,) converges ta, we say that the serieonvergesand write

[e.e]
E Qp = S.
k=1

The numbes is called thesumof the series.

Remarks 2.1 (a) The sum of a series should be clearly understoddeamit of the sequence
of partial sumsit is not simply obtained by addition.

(b) If (s,,) diverges, the series is said to theergent

(c) The symboly_;° | a,, means both, the sequence of partial sums as well as the lirtiiso
sequence (if it exists). Sometimes we use series of the fojin, ax, ko € N. We simply
write > ay, if there is no ambiguity about the bounds of the index

Example 2.9 (ExampldZB continued)

(1) Z is divergent. This is thbarmonic series

(2) Z ”“ |s convergent. It is an example of aflternating seriethe summands are

changlng their S|gns, and the absolute value of the sumnfantdsa decreasing t@sequence).

(3) Z ¢" is called thegeometric serieslt is convergent foif ¢ | < 1 with >~ " ¢" = . This
n=0

. - 1 — gt . .

is seen fromy ~¢* = — . see proof of LemmaL14, first formula with= 1, = = ¢.

k=0
The series diverges for | > 1. The general formula in case | < 1is

(e 9]

1—¢q
n=ng

no

(2.9)

2.3.1 Properties of Convergent Series

Lemma 2.19 (1) If >~ | a, is convergent, theh ", ay is convergent for anyn € N.
(2) If 3" a, is convergent, then the sequenge= 3~ ., a; tends ta) asn — oo.
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(3) If (a,,) is a sequence of nonnegative real numbers, them, converges if and only if the
partial sums are bounded.

Proof. (1). Suppose that" >, a, = s; we showthal "~ a; =s— (a1 +as+ -+ am_1).
Indeed, let(s,,) and(¢,,) denote thenth partial sums of .~ , a;, and " ay, respectively.
Then forn > m one hag,, = s, — >.r—,' ax. Taking the limitn — oo proves the claim.

We prove (2). Suppose that ® a,, convergeste. By (1),r, = >~ ., a; is also a convergent
series for all.. We have

oo n oo
dow =) it )
k=1 k=1

k=n+1
— S=S, T+ T,
=71, =S5— S,

= limr,=s5—s5=0.

n—0o0

(3) Suppose,, > 0, thens,. .1 = s, + a1 > s,. Hence,(s,,) is an increasing sequence. By
PropositioZB(s,) converges.
The other direction is trivial since every convergent segeds bounded. n

Proposition 2.20 (Cauchy criterion) > a,, converges if and only if for every> 0 there is an
integerny € N such that

<e (2.10)

n
> o
k=m

if m,n > ny.

Proof. Clear from Proposition2.18. Consider the sequence ofgyatmss,, = »_,_, a; and
note that fom > m one hass,, — s;—1| = | D> r_,, |- m

Corollary 2.21 If ) a,, converges, thefu,,) converges tad.

Proof. Takem = n in (Z10); this yieldg a,, | < . Hence(a,,) tends ta0. ]

Proposition 2.22 (Comparison test)(a) If | a,, | < Cb, for someC > 0 and for almost all
n € N, and if)_ b, converges, theh  a,, converges.

(b) If a,, > Cd,, > 0 for someC' > 0 and for almost alln, and if > d,, diverges, ther_ a,
diverges.
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Proof. (a) Suppose > n, implies|a, | < Cb,. Givene > 0, there exists; > n; such that
m,n > ng implies

_ 3
b —_
Z kS C
k=m
by the Cauchy criterion. Hence
Zak S Z|ak| S ZCbk<€,
k=m k=m k=m

and (a) follows by the Cauchy criterion.
(b) follows from (a), for if>  a,, converges, so must d,,. ]

2.3.2 Operations with Convergent Series

Definition 2.9 If > a, and ) b, are series, we define sums and differences as follows

dan £> b, :=> (a, £b,)anded  a, :=> ca,, c€ R.
Letc, ==Y ;_, agb,—i+1, thend_ ¢, is called theCauchy producof )" a,, and)" b,,.

If > a, and}_ b, are convergent, it is easy to see thaf"(a,, + b,) = > " a, + >, b, and
Yolca, =c) ] ay.

Caution, the product seriés ¢, need not to be convergent. Indeeddgt= b,, := (—1)"//n.
One can show thgt_ a,, and)_ b,, are convergent (see Proposition2.29 below), howevet,,

is not convergent, whea, = ', axb,_+1. Proof: By the arithmetic-geometric mean in-

H 1 2 2 2 H )
equality,| axb, k41| = T > 2. Hence|c, | > Y1, 27 = 4. Sincec, doesn't

converge td asn — oo, y .~ ¢, diverges by CorollafzZ21

2.3.3 Series of Nonnegative Numbers

Proposition 2.23 (Compression Theorem)Suppose:; > ay > --- > 0. Then the series
> a, converges if and only if the series
n=1
> 2%ay = ay + 2a + das + 8ag + - - (2.11)
k=0
converges.

Proof. By LemmdZ.1P (3) it suffices to consider boundedness of dinggh sums. Let

Sn = a1+ -+ ag,

te = ai + 2as + - - - + 2% ag.
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Forn < 2F

Sp < a4 (ag +az) + -+ (agr + -+ + ager1_y)
Sp < ay 4+ 2a9 4 -+ 2%ag =t (2.12)

On the other hand, if > 2%,

snZa1+a2+(a3+a4)+---+(a2k_1+1+---+a2k)

1
> §a1 + as —|—2a4+-~-+2k’1a2k

Sn
1
S > St (2.13)

By (Z12) and[[Z13), the sequencgsandt;, are either both bounded or both unbounded. This
completes the proof. [ ]

=1 : : :
Example 2.10 (a) Z — converges ip > 1 and diverges ip < 1.
T

n=1
If p < 0, divergence follows from CorollafyZP1. }f > 0 PropositiofiiZ23 is applicable, and
we are led to the series

Srb -5
k=0 2k k=0 2r-t .

This is a geometric series wijt = 1" It converges if and only i?~! > 1 if and only if
p>1.
(b) If p > 1,

- 1
; nliog ) (2.14)

converges; ifv < 1, the series divergesldg n” denotes the logarithm to the base

If p <0, W > % and divergence follows by comparison with the harmoniceseriNow let
p > 0. By LemmdIL.2ZB (b)log n < log(n + 1). Hence(n(logn)?) increases antl/(n(logn))?
decreases; we can apply ProposifionP.281012.14). Thilslaa to the series

and the assertion follows from example (a).

This procedure can evidently be continued. For msteﬁ: diverges, whereas

nlognloglogn

[e.9]

1
converges.
nzzg nlogn(loglogn)? g
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2.3.4 The Numbere

Leonhard Euler (Basel 1707 — St. Petersburg 1783) was orfeeajreatest mathematicians.
He made contributions to Number Theorie, Ordinary Difféi@riEquations, Calculus of Varia-
tions, Astronomy, Mechanics. Fermat (1635) claimed tHatwahbers of the forny, = 22" +1,

n € N, are prime numbers. This is obviously true for the firslumbers3, 5, 17, 257, 65537).
Euler showed that41 | 2% + 1. In fact, it is open whether any other elemefitis a
prime number. Euler showed that the equatidnt- y*> = 2* has no solution in positive in-
tegersz,y, z. This is the special case of Fermat’s last theorem. It is kntivat the limit

1 1 . . i
v = lim (1+ 3 + 3 +---4+ — —logn | exists and gives a finite number the so called
n—0o0 n

Euler constant It is not known whethety is rational or not. FurtheiEuler numbersE, play
a role in calculating the serigs, (—1)" (2ni1)r- Soon, we will speak about the Euler formula
e = cosx + isinx. More about live and work of famous mathematicians is to lmdoin

WWW\- i st ory. nts. St - andrews. ac. uk/

We define

o= E (2.15)

where(0! = 1! = 1 by definition. Since
1 1

1
L=141 e
§ R I R R S I Sowe

T I
2 22 2n—1
the series converges (by the comparing it with the geoms#ries withg = %) and the defi-
nition makes sense. In fact, the series converges verylyagdl allows us to computewith
great accuracy. Itis of interest to note thaian also defined by means of another limit process.
e is called theEuler number

< 3,

Proposition 2.24

1 n
e = lim (1+—) . (2.16)
n—0o0 n
Proof. Let
"1 . 1+1 "
S — —_ f— i
n kj" n n
k=0
By the binomial theorem,
1 n(n —1 1 n(n—1)(n — 2 1 nn-—1---1 1
tn:1+n_+g._+ ( )( )_++¥_
n 21 n? 3! ns n! nn

—1+1—|—111+11112+
a 21 n 3! n n
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Hencet, < s,, so that by Propositidn Z1L6

lim ¢, < lim s, = lim s, = e. (2.17)

n—0o0 n—0o0 n—0o0

Next if n > m,

1 1 1 1 m— 1
tp,>21+14+=(1—-—— |+ +— 1 —— | ---|1— .
21 n m)! n n

Letn — oo, keepingm fixed again by Propositidn 22116 we get

) 1 1
lim ¢, >1+1+—+4+ -+ — = 5,,.
2! m!

n—oo

Lettingm — oo, we finally get

e < lim ¢,. (2.18)
The proposition follows fronl{2.17) and{2]18). n
The rapidity with which the seri€s 1/n! converges can be estimated as follows.
1 n 1 n
e— 8, = e
(n+1)!  (n+2)!
S S PRV SRR SR DU 11
(n+1)! n+1 (n+1)2 ~ (n+1)! 1—n+r1_n!n
so that
1
0<e—s, < —. (2.19)
n'n

We use the preceding inequality to compet&orn = 9 we find

1 1 1 1 1 1 1 1
=14+14+-4+-+—4+—+ - = 2.718281526...
S o1 T 120 T 720 T 5040 T 10,320 T 362,880
(2.20)
By (Z19)
- 3.1
R Tii
such that the first six digits efin (Z20) are correct.
Example 2.11
1\" —1\" 1 1 1
(a) lim (1 — —) = lim (n ) = lim ———5 = lim — =
) T T T ) (e ) ()

3 1 4n 3 1 4n 3 an
b  lim () =g (220} g (2
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Proposition 2.25 e is irrational.

Proof. Suppose is rational, say = p/q with positive integerg andq. By (Z.19)
1
0<qglle—s,) < . (2.22)

By our assumptiomnjle is an integer. Since

o — ot (121 1 1
q'sq =ql | 1+ +§+---+a

is also an integer, we see thate — s,) is an integer. Since > 1, (ZZ1) implies the existence
of an integer betweehand1 which is absurd. [

2.3.5 The Root and the Ratio Tests

Theorem 2.26 (Root Test)Giveny_ a,,, puta = lim /] a, |.
Then

(@ifa <1, > a, converges;

(b)if « > 1, > a, diverges;

(c)if a = 1, the test gives no information.

Proof. (a) If o« < 1 chooses such thatv < 5 < 1, and an integen, such that

Vlan| < 8

for n > ny (suchn, exists sincex is the supremum of the limit set ¢f{/|a, |)). That is,
n > ng implies

|an | < B"
Since0 < < 1, ) B" converges. Convergence »f a,, now follows from the comparison
test.
(b) If o > 1thereis a subsequengs,, ) such thaty/| a,, | — «. Hencel| a,, | > 1 for infinitely
manyn, so that the necessary condition for convergenges 0, fails.
To prove (c) consider the serids_ 1 and) % For each of the series = 1, but the first
diverges, the second converges. " " [

Remark. (a) > a, converges, if there exists< 1 such thaty/| a,, | < ¢ for almost alln.
(b) > a, diverges if| a, | > 1 for infinitely manyn.

Theorem 2.27 (Ratio Test) The series _ a,,

An1

(a) converges if lim <1,

G

Apt1

(b) diverges if ’ > 1 for all but finitely manyn.

n
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In place of (b) one can also use the (weaker) statement
(0) 3" a, diverges iflim o+l ’ > 1.

n—oo a’TL

Indeed, if (b’) is satisfied, almost all elements of the sazm;e% fnt1 are> 1.

Qp

Corollary 2.28 The series _ a,,

(a) converges if lim’ ot | q,
an
(b) diverges if lim ’ Intl | o g,
an

Proof of TheorenhiZ 7. If condition (a) holds, we can fiid< 1 and an integem such that
n > mimplies

An+1 <:ﬁ~
a’TL
In particular,
|amir| < Blam],
|am+2|<:ﬁ|am+1|<:ﬁ2|am|7
| @ | < 37| |-
That is,
|am| n
ay, | < 15}
| an | G
for n > m, and (a) follows from the comparison test, sirjces™ converges. If a1 | > | ay, |
for n > ny, itis seen that the conditiarn, — 0 does not hold, and (b) follows. n

Remark 2.2 Homework 7.5 shows that in (b) “all but finitely many” cannet teplaced by the
weaker assumption “infinitely many.”

Example 2.12 (a) The serie$ ">, n?/2" converges since, if > 3,

122" 1 1\*> 1 1\? 8
:03#; :5(“HQ §§@+5)25<L

(b) Consider the series

Qp+1
ap,

ST L

2 8 4 32 16 128 64
11 1 1 1 1
Tt tETETE T
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n 1 I n .
wherelim 2% — L Tm 2 — 9 butlim ¢/a, — 1. Indeed,ay, = 1/22"2 andag, 1 =
n—oo Qnp n—oo QO
1/220+1 yields
A2n+1 1 Q2n,

f— —’ p— 2.
A2p, 8 A2n—1

The root test indicates convergence; the ratio test doespudy.
1 1 : .

(c) For) ~—and) _ — both the ratio and the root test do not apply since lath /a,) and
n n

(/a,) converge tal.

The ratio test is frequently easier to apply than the rodt tdswever, the root test has wider
scope.

Remark 2.3 For any sequenceg:,,) of positive real numbers,

. ¢ . — — ¢
lim " < lim /e, < lim /e, < lim =

n—oo Cn n—oo n—o0 n—oo Cp

For the proof, se€ [RudV6, 3.37 Theorem]. In particula]ri,m'xfC”+1 exists, therim {/c, also
Cn

exists and both limits coincide.

Proposition 2.29 (Leibniz criterion) Let > b, be an alternating serie, that i$ b, =
> (—1)"*a, with a decreasing sequence of positive numbers a; > --- > 0. If lima,, = 0
then) b, converges.

Proof. The proof is quite the same as in Exaniplé 2.8 (b). We find ferprtial sumss,, of
> bn

|3n_3m|§am+l

if n > m. Since(a,) tends to0, the Cauchy criterion applies t®,). Hence,)_ b, is
convergent. -

2.3.6 Absolute Convergence

The serie _ a,, is said toconverge absoluteliy the seriesy_ | a,, | converges.

Proposition 2.30 If ) a,, converges absolutely, thén a,, converges.

Proof. The assertion follows from the inequality

n
<l
k=m

plus the Cauchy criterion. [

n

S

k=m
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Remarks 2.4 For series with positive terms, absolute convergence isdahe as convergence.
If > a, converges bud_ | a, | diverges, we say that_ a, converges nonabsolutelyFor in-
stanced_(—1)""!/n converges nonabsolutely. The comparison test as well asotteand
the ratio tests, is really a test for absolute convergendecannot give any information about
nonabsolutely convergent series.

We shall see that we may operate with absolutely convergeigssvery much as with finite
sums. We may multiply them, we may change the order in whietattditions are carried out
without effecting the sum of the series. But for nonabsdyutenvergent sequences this is no
longer true and more care has to be taken when dealing with. the

Without proof we mention the fact that one can multiply absely convergent series; for the
proof, see[[Rud46, Theorem 3.50].

Proposition 2.31 If " a,, converges absolutely witE an = A, by, convergesz b, = B,

Cp = Zakbn,k, n e Zy. Thenz ¢, = AB.
k=0

n=0

2.3.7 Decimal Expansion of Real Numbers

Proposition 2.32 (a) Let « be a real number witl) < o < 1. Then there exists a sequence
(a,), a, € {0,1,2,...,9} such that

e}

a=> a,10™" (2.22)

n=1

The sequencey,) is called adecimal expansioof «.
(b) Given a sequendeu), ar, € {0,1,...,9}, then there exists a real numbere [0, 1] such

that .
o= Z a, 107",
n=1

Proof. (b) Comparison with the geometric series yields

TR D Y ) . ——
nz;:a = nz;: 10 1-1/10

Hence the series - a, 107" converges to some € [0, 1].
(a) Givena € [0, 1) we use induction to construct a sequefcg with .22) and

n
S <a<s,+107", where s, = Zak 107%.
k=1

First, cut[0, 1] into 10 pieces/,; := [j/10,(j +1)/10),j =0,...,9, of equal length. Itx € I;,
puta, := j. Then,

aq < < i 1
S1 = — (@] S —.
LTI 10
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Suppose:, . . ., a, are already constructed and
sy < a<s,+ 107"

Consider the intervals; := [s,, + j/10""!, s, + (j +1)/10"), 5 = 0,...,9. There is exactly
onej such thatv € ;. Puta,; := j, then

Int1 (pyr + 1
10n+1 -
Spi1 < a0 < Spyq + 107"t

Sy +

The induction step is complete. By constructien— s,, | < 107", thatis,lim s,, = «. ]

Remarks 2.5 (a) The proof shows that any real numbere [0, 1) can be approximated by
rational numbers.

(b) The construction avoids decimal expansion of the farm ...a9999...,a < 9, and gives
insteady = ... (a+1)000.... It gives a bijective correspondence between the real ntgydie
the intervall0, 1) and the sequencés,,), a,, € {0, 1,...,9}, not ending with nines. However,
the sequencé,) = (0,1,9,9, - - -) corresponds to the real numliee2.

(c) It is not difficult to see thatv € [0, 1) is rational if and only if there exist positive integers
no andp such that, > n, impliesa,, = a,,+,—the decimal expansion geriodicfrom n, on.

2.3.8 Complex Sequences and Series

Almost all notions and theorems carry over from real segegrnc complex sequences. For
example

A sequencéz, ) of complex numbersonverges ta if for every (real)s > 0 there
exists a positive integer, € N such that, > n, implies

|z — 2z, | <e.

The following proposition shows that convergence of a caxpkquence can be reduced to the
convergence of two real sequences.

Proposition 2.33 The complex sequence,) converges to some complex numbérand only
if the real sequenceSRe z,,) converges toRe z and the real sequendgm z,) converges to
Im z.

Proof. Using the (complex) limit lawlim(z, + ¢) = ¢ + lim z, it is easy to see that we
can restrict ourselves to the case= 0. Suppose first,, — 0. Propositiof. 20 (d) gives
| Rez, | <|z,|. HenceRe z, tends ta) asn — oo. Similarly, | Im z, | < | z, | and therefore
Imz, — 0.

Suppose nowr,, := Rez, — 0 andy, := Imz, — 0 asn goes to infinity. Since
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|20 | = 22 + 42, | 2. |° — 0 @asn — oo; this impliesz, — 0. n

Since the complex field is not an ordered field, all notions and propositions wheestter

is involved do not make sense for complex series or they nemdifitations. The sandwich
theorem does not hold; there is no notion of monotonic setpgeupper and lower limits. But
still there are bounded sequences,( < C), limit points, subsequences, Cauchy sequences,
series, and absolute convergence. The following theoreetswge for complex sequences, too:

Proposition/Lemma/Theorem 1, 2, 3, 9, 10, 12, 15,17,18

The Bolzano-Weierstral? Theorem for bounded complex segsér,) can be proved by con-
sidering the real and the imaginary sequerndesz, ) and( Im z,) separately.
The comparison test for series now reads:

@ If |a,| < C|b,| for someC > 0 and for almost alh € N, and if > | b, |
converges, thel_ a,, converges.

(b) If |a, | > C|d, | forsomeC > 0 and for almost alh, and if ) | d,, | diverges,
then)  a, diverges.

The Cauchy criterion, the root, and the ratio tests are wuedmplex series as well. Proposi-
tions 19, 20, 26, 27, 28, 30, 31 are true for complex series.

2.3.9 Power Series

Definition 2.10 Given a sequencg;,,) of complex numbers, the series
Cn 2" (2.23)
n=0
is called gpower seriesThe numbers,, are called theoefficientof the series; is a complex
number.

In general, the series will converge or diverge, dependmg¢he choice of:. More precisely,
with every power series there is associated a circle witkec@nthecircle of convergengesuch
that [Z.ZB) converges if is in the interior of the circle and diverges:ifis in the exterior. The
radiusR of this disc of convergence is called treglius of convergence

On the disc of convergence, a power series defines a fundtioa & associates to eachwith

| z| < R a complex number, namely the sum of the numerical séries:,2". For example,
> 2" defines the functiorf(z) = - for | z| < 1. If almost all coefficients;, are0, say
¢, = 0foralln > m + 1, the power series is a finite sum and the corresponding fumctia
polynomial:y "7 e,z =3 7" jcn2™ = o+ 1z + ezt + - ™.

Theorem 2.34 Given a power series_ ¢, 2", put

— 1
a=lim {/|c,|, R=—. (2.24)
n—00 o

If « =0, R = +o0; if « = 400, R = 0. Then}_ ¢,2" converges if z| < R, and diverges if
|z| > R.
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The behavior on the circle of convergence cannot be destsbasimple.
Proof. Puta,, = ¢,,2™ and apply the root test:

m an] = 2| Tm fen] = 2
n—o00 n—o00 R

This gives convergence fit | < R and divergence ifz | > R. ]

The nonnegative numbét is called theradius of convergence

Example 2.13(a) The seriesy " ,c,2™ hasc, = 0 for almost alln. Hencea =
lim,, o /| ¢n| =lim, .o 0 =0andR = +oo.
(b) The series n"z" hasRk = 0.

(c) The series) _ z—' hasR = +oo. (In this case the ratio test is easier to apply than the root
n'!

test. Indeed,
: n! ) 1
= hm —_— = hm —_— =

Cn+1
Cn

a = lim

n—~o0

0,

and thereforé? = +o00. )
(d) The seriesy 2" hasR = 1. If |z| = 1 diverges sinceéz") does not tend t®. This
generalizes the geometric series; form{lal(2.9) still hdfdq | < 1:

n=2

(e) The seried =" /n hasRk = 1. It diverges ifz = 1. It converges for all other with | z | = 1
(without proof).

(f) The seriesy_ 2" /n? hasR = 1. It converges for alk with | z | = 1 by the comparison test,
since| 2" /n?* | = 1/n>.

2.3.10 Rearrangements

The generalized associative law for finite sums says thatnwensert brackets without effecting
the sum, for examplg(a; + as) + (as + a4)) = (a1 + (as + (az + a4))). We will see that a
similar statement holds for series:

Suppose that |, a; is a converging series and, b; is a sum obtained froy_, a;, by “inserting
brackets”, for example

by +by+ b3+ = (a1 +az) + (a3 + -+ aw) + (a11 +arg) + -+
T \ g’ J/ . b ‘,
1 2 3

Then)_, b, converges and the sum is the samef a;, diverges to+oco, the same is true
for >, b,. However, divergence of | a;, does not imply divergence of’ b, in general, since
1-1+1—-141—-1+--- diverges buf{l — 1) + (1 — 1) + --- converges. For the proof
lets, = ,_, andt,, = >_,", b. By constructiont,, = s, for a suitable subsequencte,,,)
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of the partial sums op_, a;. Convergence (proper or improper) @f,) implies convergence
(proper or improper) of any subsequence. Hedce), converges.
For finite sums, the generalized commutative law holds:

CL1+CL2—|—CL3+CL4:G2+CL4+CL1+CL3;

that is, any rearrangement of the summands does not effectutm. We will see in Exam-
ple[Z14 below that this is not true for arbitrary series lautdbsolutely converging ones, (see
Propositiof 236 below).

Definition 2.11 Leto: N — N be a bijective mapping, that is in the sequefied ), o(2), .. .)
every positive integer appears once and only once. Putting

CL;LICLJ(”), (TLILQ,...),

we say thab  a/ is arearrangemenof ) a,,.

If (s,) and(s),) are the partial sums of a,, and a rearrangemeit a/, of > a,, it is easily
seen that, in general, these two sequences consist oflgmifferent numbers. We are led to
the problem of determining under what conditions all reageaments of a convergent series
will converge and whether the sums are necessarily the same.

Example 2.14 (a) Consider the convergent series

> (—1)7 ! 1 1
Z(T)L R TR (2.25)

n=1

and one of its rearrangements

l— - +-—2— < o -t (2.26)

N 1 /1 1\ 1 /1 1 1
/_ /: —_— —_— e — —_— —_ —_—— — — .« o .
=2 < 2) 1 (3 6) g " (5 10) 2"

Sinces # 0, s # s. Hence, there exist rearrangements which converge; howeeedifferent
limit.
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(b) Consider the following rearrangement of the selfiesgp.2
1 1 1
/ — 1 - - =
24, 2 373"
Y
5 7 6

+1+1+1+1 1
9 11 13 15 8

T (L L,
1 243 ol 1) 2n 42

Since for every positive integer > 10

(S S L e 1 L1 L1
1 20 +3 2l 1) 2n+2 241 2n 427 4 2n+27 5

the rearranged series divergestco.

Without proof (see[[Rud76, 3.54 Theorem]) we remark theofeihg surprising theorem. It
shows (together with the Propositiond.36) that the abeaahvergence of a series is necessary
and sufficient for every rearrangement to be convergenhésame limit).

Proposition 2.35 Let » _ a,, be a series of real numbers which converges, but not abdplute
Suppose-occ < a < < +o0. Then there exists a rearrangemeénta,, with partial sumss/,
such that

lim s/, =a, lim s, =3.

n— oo n—~o0

Proposition 2.36 If > a,, is a series of complex numbers which converges absolutedy, t
every rearrangement of a,, converges, and they all converge to the same sum.

Proof. Let ) a/, be a rearrangement with partial sugis Givene > 0, by the Cauchy criterion
for the series _ | a,, | there exists,, € N such that, > m > ng implies

D a| <e. (2.27)
k=m

Now choose such that the integetls 2, . . ., n, are all contained in the set1), o(2), ..., o(p).

(1,2, ... 00} € {o(1),0(2),....0(p)}.

Then, ifn > p, the numbers;, ao, ..., a,, will cancel in the difference,, — s/, so that
n n n n
|80 — sl | = Zak—z%(k) < Z +a; | < Z lay| < e,
k=1 k=1 k=no+1 k=no+1

by (ZZT). Hencés!,) converges to the same sum(as).
The same argument shows thata, also absolutely converges. ]
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2.3.11 Products of Series

If we multiply two finite sumsa; + as + - - - + a,, andb; + by + - - - + b,,, by the distributive
law, we form all products:;b; put them into a sequengg, p1,--- ,ps, s = mn, and add up
po+p1+p2+---+ps. This method can be generalized to setigs a;+--- andby+b;+- - -.
Surely, we can form all productgb;, we can arrange them in a sequepgep;, p2, - -- and
form theproduct serieg, + p; + - - -. For example, consider the table

apby apby agby - Po P1 D3
arby arby aiby - P2 P4 D7

asby  agby agshby - Ps Ps P12

and the diagonal enumeration of the products. The questiamder which conditions op’ a,,
and>_ b, the product series converges and its sum does not depene anréimgement of the
productsa;by.

Proposition 2.37 If both seriesy "~ , a; and) ;- , b, converge absolutely with = >~° ax
andB =) ;7 by, then any of their product seri€s, p, converges absolutely aid,- , pr =
AB.

Proof. For thenth partial sum of any product serigs,_, | px | we have
Dol +1p1r[+-+lpnl < (laol+---+lam]) - (Jbo |+ -+ [bm]),

if m is sufficiently large. More than ever,

Pol+ ol 4+ 1Pl <D lar|- Y |b].
k=0 k=0

That is, any serie§ ;- | p | is bounded and hence convergent by Lerhma2.19 (c). By Propo-
sitionZ36all product series converge to the same sum > ;~  p,. Consider now the very
special product series -, ¢, with partial sums consisting of the sum of the elements in the
upper left square. Then

Gt @t Qe = (a0 + @+ a)(bo o+ b).

converges te = AB. [ ]

Arranging the elements;b; as above in a diagonal array and summing up the elements on the
nth diagonak,, = agb,, + a1b,_1 + - - - + a,by, We obtain theCauchy product

(e 9]

i Cp = Z(aobn + albn,l + -+ anbo).
n=0

n=0

Corollary 2.38 If both series) ;- ja; and >, b, converge absolutely with = 72 ay
andB = Y, by, their Cauchy produc} ;- , ¢, converges absolutely aid -, ¢ = AB.
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Example 2.15 We compute the Cauchy product of two geometric series:

Ltp+p’+-)A+ag+a+) =1+ @+q) + 0" +pg+q°)+
+ 0+ P+ @)+

2 2 3 3 e
p—q , P’—¢ P —q 1 o
— —+ —+ + 0= — (p —q)
pP—q¢ pP—q Pp—q p—q~=
_ 1. » a _ 1 p0=-¢g—-g=-p _ 1 1
pl<tlg<ip—ql—p 1—q p—q (1-p)(1—gq) l—p 1—g¢

Cauchy Product of Power Series

In case of power series the Cauchy product is appropriate girs again a power series (which
is not the case for other types of product series). Indeedz#uchy product of_;~ , axz* and
> e, bi2" is given by the general element

n n
E ap b, 2R =2 E apbp_,
k=0 k=0

such that .
b2t = Z(aobn + -+ ayb)2".

0 n=0

oo
E akzk .

k=0 k

oo

Corollary 2.39 Suppose thad | a,2" and ) b,2" are power series with positive radius
of convergence?; and R,, respectively. Lef? = min{R;, R;}. Then the Cauchy product
Yo g 2" €y = agb, + - - - + anby, converges absolutely for | < R and

[oe) o [oe)
E apz" - g b2 = E 2", | z| < R.
n=0 n=0 n=0

This follows from the previous corollary and the fact thattbeeries converge absolutely for
|z| < R.

Example 2.16 (a)

o0

Z(n%—l)z”:; |z| < 1.
(1—2)*
n=0
Indeed, consider the Cauchy product ®f~ 2" = =, |z| < 1 with itself. Since

an=by=1,¢,=> ) garbr => o1 -1=n+1,the claim follows.

(b)

n=0 n=0 n=1 n=2
222 2+ 22

n=2
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Chapter 3

Functions and Continuity

This chapter is devoted to another central notion in anghy$he notion of a continuous func-
tion. We will see that sums, product, quotients, and contjpos of continuous functions are
continuous. If nothing is specified otherwisewill denote a finite union of intervals.

Definition 3.1 Let D C R be a subset dR. A functionisa mapf: D — R.

(a) The setD is called thedomainof f; we write D = D(f).

b)If AC D, f(A) :={f(z) | = € A} is called themageof A underf.

The functionfTA: A — R givenbyf[A(a) = f(a), a € A, is called theestrictionof f to A.
(c)If BCc R,wecallf~}(B):={x € D| f(x) € B} thepreimageof B under.

(d) Thegraphof f is the segraph(f) := {(z, f(x)) | x € D}.

Later we will consider functions in a wider sense: From theplex numbers into complex
numbers and fron¥™ into F"* wherelF = R or IF = C.

We say that a functiorf: D — R is boundedif f(D) C R is a bounded set of real numbers,
i.e. thereis & > 0 such that f(x)| < C for all z € D. We say thatf is bounded above
(resp.bounded beloif there existsC' € R such thatf(x) < C (resp. f(x) > C) for all z in
the domain off.

Example 3.1 (a) Power series (with radius of convergern¢e> 0), polynomials and rational
functions are the most important examples of functions.
Letc € R. Thenf(z) =¢, f: R — R, is called theconstantfunction.

(b) Properties of the functions change drastically if wengeathe domain or the image set.
Let f: R — R, 9: R — Ry, k: Ry — R, h: R, — R, function given byz — z2

g IS surjective,k is injective, h is bijective, f is neither injective nor surjective. Obviously,
fIR, = kandg[R, = h.

(c) Let f(z) = Y02 ga™, f: (—1,1) — R andh(z) = =, h: R\{1} — R. Then
hl(=1,1) = f.

75
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YA

f(x)=x =]

The graphs of the constant, the identity, and absolute Yahstions.

3.1 Limits of a Function

Definition 3.2 (¢-0-definition) Let (a,b) a finite or infinite interval andr, € (a,b). Let
f:(a,b)\{zo} — R be a real-valued function. We call € R thelimit of f in =y (“The
limit of f(z)is A asxz approaches,”; “ f approaches! nearz,”") if the following is satisfied

For anye > 0 there exist® > 0 such thatr € (a,b) and0 < |z — 2| < 6 imply
| f(z) — Al <e.
We write
lim f(z) = A.
T—xT0

Roughly speaking, it is close tary, f(x) must be closed tal.

A

T e N

(x)
f(x)- € / 7777777777777777 -

Using quantifierslim f(z) = A reads as

T—x0

Ve>030>0Vere(ab): 0<|z—2]<déd= |[f(x)—A|<e.

Note that the formal negation dfm f(z) = Ais

T—To

de>0Vo>03dxe(ab): 0<|z—a|<d and |f(zx)—A|>ec.
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Proposition 3.1 (sequences definitionlet f andz, be as above. Thetim f(x) = A if and

r—x0

only if for every sequence:,,) with z,, € (a,b), x,, # z, for all n, and lim z,, = z, we have
lim f(z,) = A.

n—oo

Proof. Supposéim,_.,, f(z) = A, andz,, — x, wherez,, # z, for all n. Givene > 0 we find

0 >0suchthat f(z) — A| <eif 0 < |z — 0| < 0. Sincez,, — xo, there is a positive integer
no such thaty > nq implies| z,, — z¢ | < 0. Thereforen > n, implies| f(z,) — A| < e. That
is, limy, oo f(2,,) = A.

Suppose to the contrary that the condition of the propasitidulfilled butlim, .., f(z) # A.
Then there is some > 0 such that for alb = 1/n, n € N, there is an,, € (a,b) such that
0<|x,—x0| < 1/n,but|f(z,) —A| > . We have constructed a sequeneg), =, # o
andz, — xy asn — oo such thatlim, .., f(z,) # A which contradicts our assumption.
Hencelim f(x) = A. ]

T—To

Example. lim, ., x + 3 = 4. Indeed, giverr > 0 choose) = ¢. Then|z — 1| < § implies
[(z+3)—4|<d=e.

3.1.1 One-sided Limits, Infinite Limits, and Limits at Infini ty

Definition 3.3 (a) We are writing
lim f(z)=A

r—x0+0

if for all sequences$z,,) with z,, > x, and lim z,, = x¢, we havelim f(z,) = A. Sometimes

n—oo n—oo

we use the notatiofi(z, + 0) in place of limwf(x). We call f(zo + 0) theright-hand limit

of f atx, or we say ‘A is the limit of f asx approaches, from above (from the right).”
Similarly one defines thkeft-hand limitof f at x, lim_of(a;) = A with z,, < x4 in place of

x, > x9. Sometimes we use the notatigtw, — 0).
(b) We are writing
lim f(x)=A

T——400

if for all sequencesx,,) with lim x, = +oco we havelim f(z,) = A. Sometimes we use the

n—0o0

notationf(-+oc). In a similar way we definelim f(z) = A.
(c) Finally, the notions of (a), (b), and Déﬁr?ict?.z stilake sense in casé = +oco and
A = —o0. For example,

lim f(z) = —o0

r—x0—0

if for all sequences$z,,) with z,, < o and lim z,, = xy we havelim f(z,) = —oc.

n—~oo n—oo

Remark 3.1 All notions in the above definition can be givendr or e-D or E-§ or E-D
languages using inequalities. For examplém Of(x) = —oo if and only if

T—To—

VE>030>0VeeD(f):0<xy—z<d = f(r)<—E.
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For example, we show théin, .o - = —oc. To £ > 0 choose) = +. Then0 < —z < § =
L implies0 < E < —2 and hencef(z) < —E. This proves the claim.

Similarly, lirf f(z) = +ocoif and only if

VE>03ID>0VeeD(f):a>D = f(z) > E.

The proves of equivalence efj definitions and sequence definitions are along the lines of
Propositioi:31.

For examplelim,_, . 2> = +00. To £ > 0 chooseD = VE. Thenz > D impliesz > VE;
thusz? > F.

1 . .
Example 3.2 (a) lim — = 0. For, lete > 0; chooseD = 1/e. Thenxz > D = 1/e implies

r——+00 I
0 < 1/z < e. This proves the claim.
(b) Consider the entier functiofi(z) = [z], defined in
ExampldZb (b). Ifn € 7Z, xli»glof(x) = n — 1 whereas y
ng}rO f(z) =n. T 0=

Proof. We use the:=-§ definition of the one-sided limits
to prove the first claim. Let > 0. Choosel = i then

0 <n—a < ;impliesn — 3 < z < n and therefore . .
f(z) = n—1. In particular| f(z) —(n—1)| = 0 < «. —

Similarly one proves lmio f(x)

n. | e

Since the one-sided limits are differetiin f(x) does not exist.

Definition 3.4 Suppose we are given two functiofisandg, both defined oria, b) \ {z,}. By
f + g we mean the function which assigns to each poist z, of (a,b) the numberf(z) +
g(z). Similarly, we define the differencg — g, the productfg, and the quotienf /g, with the
understanding that the quotient is defined only at thosetgoiat whichg(x) # 0.

Proposition 3.2 Suppose thaf and g are functions defined ofw, b) \ {0}, a < zo < b, and
lim, .., f(z) = A, lim, ., g(x) = B, o, 3 € R. Then
(@) lim f(x) = A"impliesA’ = A.
(b) lim (af + Bg)(x) = A + B,
(©) lim (fg)(2) = AB;
A .
(d) lim i(aj) =5 if B # 0.

T—T0

(€ lim | f(x)] = Al

Proof. In view of Propositiof 311, all these assertions follow iediately from the analogous
properties of sequences, see Propodifidn 2.3. As an exawplghow (c). Letz,) , z, # o,
be a sequence tending 19. By assumptionlim,, ., f(z,) = A andlim,_ .., g(x,) = B.
By the PropostitioR2]3im,, . f(z,)g(z,) = AB, that is,lim, _...(fg)(x,) = AB. By
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Propositiol31lim, .., fg(z) = AB. n

Remark 3.2 The proposition remains true if we replace (at the same timadl places) — =z,
byr — 2o+0,x — g — 0,z — 400, Orx — —oo. Moreover we can replacé or B by +oo
or by —oo provided the right members of (b), (c), (d) and (e) are defined

Note that+oco 4 (—00), 0 - 00, 00 /00, andA/0 are not defined.

The extended real number syst@wonsists of the real fiel@k and two symbols}oco and —oo.
We preserve the original order it and define

—o0 < x < 400

for everyx € R.

It is the clear that+-oo is an upper bound of every subset of the extended real numbtams,
and every nonempty subset has a least upper bound. If, far@gaF is a set of real numbers
which is not bounded above IR, thensup £ = +oc in the extended real system. Exactly the
same remarks apply to lower bounds.

The extended real system does not form a field, but it is custprito make the following
conventions:

(@) If z is real then

r+o00=+400, x—00=-—00, ——=—=0~_.
+00  —00
(b) If z > 0 thenz - (+00) = +o0 andz - (—o0) = —o0.
(€) If z < 0thenzx - (+00) = —oo andz - (—o0) = +00.

When it is desired to make the distinction between the reaibers on the one hand and the
symbols+oo and—oo on the other hand quite explicit, the real numbers are céihée.
In Homework 9.2 (a) and (b) you are invited to give explicibyes in two special cases.

Example 3.3 (a) Letp(x) andq(z) be polynomials and € R. Then

lim p(x) = p(a).
This immediately follows fromim,_., = a, lim,_, ¢ = ¢ and Propositiofi:312. Indeed, by (b)
and (c), forp(z) = 32% — 42+ 7 we haveim,_,(32> — 4z +7) = 3 (limy_q )° — 4 lim,_ 2+
7 = 3a*> — 4a + 7 = p(a). This works for arbitrary polynomials . Suppose moreovext th
q(a) # 0. Then by (d),

p(z) _ pla)

w—aq(x)  qla)
Hence, the limit of a rational functiofi(z) asx approaches a point of the domain off is

f(a).
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(b) Let f(x) = % be a rational function with polynomiajs(z) = >",_, axz* andg(z) =
> i_o brz® with real coefficients:, andb,, and of degree ands, respectively. Then

0, if r<s,
e if r=s,
lim flo)=4%
z—+00 +oo, If r>s and 3 >0,

—oo, if r>s and <0
The first two statements: (> s) follow from Exampld3R (b) together with Propositionl3.2.

Namely,a,z*~" — 0 asz — +oo providedd < k < r. The statements for > s follow from
"% — 400 asz — +oo and the above remark.

Note that
lim f(x) = (=1)"** lim_f(x)
since
p(—x) B (—1)Ta,«:ﬂ +o (_1>T+SaTxT + ...
q(—z)  (=1)%bszs + ... bsts + ...

3.2 Continuous Functions
Definition 3.5 Let f be a function and, € D(f). We say thaff is continuous at if
Ve>036>0VaeeD(f): |lv—x| <d = | f(x)— f(zo)| <e. (3.1)

We say thatf is continuous irA C D(f) if f is continuous at all pointg, € A.

Propositio 3]l shows that the above definition of continuit 2, is equivalent to: For all
sequencesz,,), r, € D(f), with lim z, = zo, lim f(z,) = f(zo). In other words,f is
continuous aty if lim f(x) = f(zo).

T—xT0

Example 3.4 (a) In exampl&3]2 we have seen that every polynomial is goatis inR and
every rational functiong is continuous in their domaib( f).

f(z) = | x| is continuous inR.

(b) Continuity is alocal property: If two functionsf,g: D — R coincide in a neighborhood
U.(zo) C D of some pointry, thenf is continuous ai, if and only if g is continuous at,.

(c) f(x) = [z] is continuous iINR \ Z. If x, is not an integer, then < xy < n + 1 for some
n € N andf(x) = n coincides with a constant function in a neighborhaod U, (z,). By (b),

f is continuous aty. If 2o = n € Z, lim,_,,[x] does not exist; hencgis not continuous at.

(d) f(z) =

—1. . , .
! | if z #1andf(1) = 1. Thenf is not continuous at, = 1 since
l“ J—

x?—1

lim — lim(z+1)=2#1= f(1).

r—1 p — rz—1
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There are two reasons for a function not being continuous.aFirst, lim,_.,, f(x) does not
exist. Secondlyf has a limit atzy butlim, ., f(z) # f(x).

Proposition 3.3 Suppose, g: D — R are continuous at, € D. Thenf + g and f ¢ are also
continuous atry. If g(z¢) # 0, thenf /g is continuous at.

The proof is obvious from PropositiénB.2.
The setC(D) of continuous function o C R form a commutative algebra with

Proposition 3.4 Let f: D — R andg: F — R functions withf(D) C E. Supposef is
continuous atu € D, andg is continuous ab = f(a) € E. Then the composite function
g°f: D — R is continuous at.

Proof. Let (z,,) be a sequence with,, € D andlim, ...z, = a. Sincef is continuous
at a, lim, ., f(z,) = b. Sinceg is continuous ab, lim, .. g(f(x,)) = g¢(b); hence
gof(x,) — gof(a). This completes the proof. [

Example 3.5 f(x) = % is continuous for: # 0, g(x) = sin x is continuous (see below), hence,
(9°f)(z) = sin 1 is continuous ok \ {0}.

3.2.1 The Intermediate Value Theorem

In this paragraphz, b] C R is a closed, bounded interval,b € R.
The intermediate value theorem is the basis for severatezds theorems in analysis. It is
again equivalent to the order completenes®of

Theorem 3.5 (Intermediate Value Theorem)Let f: [a,b] — R be a continuous function and
~ a real number betweefi(a) and f(b). Then there exists € [a, b] such thatf(c) = ~.

A The statement is clear from the graphical presentation.eNev
| theless, it needs a proof since pictures do not prove argythin
The statement is wrong for rational numbers. For exampte, le
D={reQ|1<z<2}andf(x) =2*>—2. Thenf(1) = —1
andf(2) = 2 but there is n@ € D with f(p) = 0 since2 has no
rational square root.

Proof. Without loss of generality suppogéa) < f(b). Starting with[a,, b;] = [a, b], we suc-
cessively construct a nested sequence of intefual$,] such thatf(a,) < v < f(b,). Asin

the proof of PropositionZ2.12, the,,, b,,] is one of the two halfintervalg,, ;, m] and[m, b, 1]
wherem = (a,_; + b,_1)/2 is the midpoint of thén — 1)st interval. By PropositioiZ11 the
monotonic sequenceés,,) and(b,, ) both converge to a common pointSincef is continuous,
lim f(a,) = f(nhjgo an) = f(c) = f(nhjgo by) = nhjgo f(bn).

n—oo

By PropositiofiZT4/ (a,,) < v < f(b,) implies

lim f(a,) <~ < lim f(b,);
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Hencey = f(c). [

Example 3.6 (a) We again show the existence of thi& root of a positive real number> 0,
n € N. By Exampld3R, the polynomial(x) = 2" — a is continuous inR. We findp(0) =
—a < 0 and by Bernoulli’'s inequality

pl+a)=1+a)"—a>1+(n—1)a>1>0.

Theoreni:3b shows thathas a root in the intervaD, 1 + a).

(b) A polynomialp of odd degree with real coefficients has a real zero. Namgligxampld-3.B,
if the leading coefficient,, of p is positive, lim p(z) = —oo and lim p(z) = +oo. Hence
there aren andb with a < b andp(a) < 0 < p(b). Therefore, there is a € (a,b) such that
p(c) = 0.

There are polynomials of even degree having no real zerasxamplef (z) = 2% + 1.

Remark 3.3 Theoreni:3b is not true for continuous functiofisQ — R. For example,
f(x) = 2% — 2 is continuous,f(0) = —2 < 0 < 2 = f(2). However, there is ne € ©Q
with f(r) = 0.

3.2.2 Continuous Functions on Bounded and Closed IntervalsThe The-
orem about Maximum and Minimum

We say thatf: [a,b] — R is continuous, iff is continuous onja, b) and f(a + 0) = f(a) and

f(b—0) = J(b).

Theorem 3.6 (Theorem about Maximum and Minimum) Let f: [a,b] — R be continuous.
Then f is bounded and attains its maximum and its minimum, thaheyetexistg” > 0 with
| f(z)| < Cforall x € [a,b] and there exisp, ¢ € [a,b] with sup f(z) = Igaicbf(x) = f(p)

a<z<b
and inf f(z)= min f(z)=f(g).

Remarks 3.4 (a) The theorem is not true in case of open, half-open or tefintervals. For
examplef: (0,1] — R, f(x) = < is continuous but not bounded. The functipn(0,1) — R,
f(z) = =z is continuous and bounded. However, it doesn’t attain marinand minimum.
Finally, f(z) = z? on R, is continuous but not bounded.

(b) PutM = max f(z) andm := irélll(l f(x). By the Theorem about maximum and minimum

and the intermediate value theorem, foralk R with m < v < M there existg € [a, b] such
that f(c) = ; thatis, f attains all values between and M.

Proof. We give the proof in case of the maximum. Replacfiigy — f yields the proof for the
minimum. Let

A= sup f(z) € RU{+o0}.

a<z<b
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(Note thatA = +o0o is equivalent tof is not bounded above.) Then there exists a sequence
(x,) € [a,b] such thatlim,, ., f(z,) = A. Since(z,) is bounded, by the Theoremm of
Weierstraf3 there exists a convergent subsequengce with p = h,ﬁn xp, anda < p < b. Since

f is continuous,
A= lim f(z,,) = f(p)-

k—oo

In particular, A is afinite real number; that isf is bounded above byl and f attains its
maximumA at pointp € [a, b]. m

3.3 Uniform Continuity

Let D be a finite or infinite interval.

Definition 3.6 A function f: D — R is calleduniformly continuousf for every s > 0 there
exists & > 0 such thatfor alle, 2’ € D |z — 2’| < d implies| f(x) — f(2') | < e.

f is uniformly continuous ofu, b] if and only if
Ve>03>0Var,y€lab]:|lz—y|<d= |f(x)— fly)| <e. (3.2)

Remark 3.5 If f is uniformly continuous onD then f is continuous onD. However, the
converse direction is not true.

Consider, for examplef;: (0,1) — R, f(z) = % which is continuous. Suppose to the contrary
that f is uniformly continuous. Then to= 1 there exist$ > 0 with (82). By the Archimedian
property there exists € N such that- < 4. Consider,, = - andy,, = 5-. Then|z, — y,, | =

- < 6. However,

| f(zn) — f(yn) | =2n—n=n> 1.

A contradiction! Hencef is not uniformly continuous of0, 1).

Let us consider the differences between the concepts aiheotytand uniform continuity. First,
uniform continuity is a property of a function on a set, wiareontinuity can be defined in a
single point. To ask whether or not a given function is unrityrcontinuous at a certain pointis
meaningless. Secondly,ffis continuous oD, then itis possible to find, for eaehr> 0 and for
each pointty € D, a numbe = §(zg,¢) > 0 having the property specified in DefinitibnB.5.
This depends om andon . If f is, however, uniformly continuous oK, then it is possible,
for eachs > 0 to findoned = d(¢) > 0 which will do for all possible points;, of X.

That the two concepts are equivalent on bounded and closexd/ats follows from the next
proposition.

Proposition 3.7 Let f: [a,b] — R be a continuous function on a bounded and closed interval.
Thenf is uniformly continuous ofu, b|.
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Proof. Suppose to the contrary thatis not uniformly continuous. Then there exists > 0
without matching > 0; for every positive integer € N there exists a pair of points,, z/,
with |z, — 2/ | < 1/nbut| f(z,) — f(x])| > &¢. Sincela, b] is bounded and closeg,,) has
a subsequence converging to some ppiat[a, b|. Since| z,, — 2!, | < 1/n, the sequencér),)
also converges tp. Hence

lim (f(zn,) — f(2),)) = f(p) = f(p) =0

k—o0

which contradicts f(x,,) — f(x,)| > & for all k. -

There exists an example ofteundedcontinuous functiory: [0,1) — R which is not uni-
formly continuous, seé [Kon90, p. 91].

Discontinuities

If x is a point in the domain of a functiofi at which f is not continuous, we say is dis-
continuousat z or f has adiscontinuityat z. It is customary to divide discontinuities into two

types.

Definition 3.7 Let f: (a,b) — R be a function which is discontinuous at a paint If the
one-sided limitdim,. ., o f(x) andlim,_.,, o f(z) exist, thenf is said to have aimpledis-
continuity or a discontinuity of thérst kind Otherwise the discontinuity is said to be of the
second kind

Example 3.7 (a) f(x) = sign(z) is continuous ok \ {0} since it is locally constant. More-
over,f(0+0) = 1and f(0 — 0) = —1. Hencesign(z) has a simple discontinuity at = 0.
(b) Definef(z) = 0if z is rational, andf(z) = 1 if x is irrational. Thenf has a discontinuity
of the second kind at every pointsince neitherf(x + 0) nor f(x — 0) exists.

(c) Define

sind, if 2 #0;
T) = r
/@) {O, if x=0.

Consider the two sequences

1
and Yn = —,

€, =
+ nm nm

2
Then both sequences:,) and (y,,) approach0 from above butlim,, .., f(xz,) = 1 and
lim, . f(y,) = 0; hencef(0 + 0) does not exist. Thereforg has a discontinuity of the
second kind at = 0. We have not yet shown thaith = is a continuous function. This will be
done in Sectioh 3.5 2.
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3.4 Monotonic Functions

Definition 3.8 Let f be areal function on the interval, b). Thenf is said to beanonotonically
increasingon (a,b) if a < z < y < bimpliesf(z) < f(y). If the last inequality is reversed, we
obtain the definition of anonotonically decreasinfyinction. The class afonotonic functions
consists of both the increasing and the decreasing fursction

If a < x <y <bimpliesf(x) < f(y), the function is said to bstrictly increasing Similarly,
strictly decreasindunctions are defined.

Theorem 3.8 Let f be a monotonically increasing function ém b). Then the one-sided limits
f(x+0)andf(z — 0) exist at every point of (a, b). More precisely,

sup f(t) = f(z—0) < f(x) < flz +0) = inf f(1) (3.3)

te(a,x) te(z,b

Furthermore, ifa < x < y < b, then

f(z+0) < f(y—0). (3.4)
Analogous results evidently hold for monotonically desieg functions.

Proof. See Appendix B to this chapter. [

Proposition 3.9 Let f: [a,b] — R be a strictly monotonically increasing continuous funitio
andA = f(a) andB = f(b). Thenf mapsfa, b] bijectively ontd A, B] and the inverse function

A B —R
is again strictly monotonically increasing and continuous

Note that the inverse functiofi-': [A, B] — [a,b] is defined byf(yy) = zo, yo € [A, B],
wherez, is the unique element dé, b] with f(z,) = yo. However, we can think of ! as a
function intoR. A similar statement is true for strictly decreasing fuaos.

Proof. By Remarlc3 ¥ f maps|a, b] onto the whole closed intervall, B] (intermediate value
theorem). Since: < y implies f(z) < f(y), f is injective and hence bijective. Hence, the
inverse mapping~—': [A, B] — |a, b] exists and is again strictly increasing & v implies
[ Hu) =z <y= f(v) otherwise > y impliesu > v).

We show thayy = f~! is continuous. Suppode.,) is a sequence ip4, B] with u,, — u and
u, = f(z,) andu = f(x). We have to show thdt:,, ) converges ta:. Suppose to the contrary
that there exists, > 0 such that z,, — x| > ¢, for infinitely manyn. Since(z,) C [a,b] is
bounded, there exists a converging subsequeéngg, say,z,, — c ask — oo. The above
inequality is true for the limit, too, thatis ¢ — = | > (. By continuity of f, z,,, — ¢ implies
f(zn,) — f(c). Thatisu,, — f(c). Sinceu, — u = f(z) and the limit of a converging
sequence is uniqué,(c) = f(x). Sincef is bijective,z = ¢; this contradictgc — x| > «y.
Hence,g is continuous at. [
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Example 3.8 The functionf: R, — R, f(x) = 2", is continuous and strictly increasing.
Hencex = g(y) = /y is continuous, too. This gives an alternative proof of howrvb.5.

3.5 Exponential, Trigonometric, and Hyperbolic Functions
and their Inverses

3.5.1 Exponential and Logarithm Functions

In this section we are dealing with the exponential functidmch is one of the most important
in analysis. We use the exponential series to define theitmdtVe will see that this definition
is consistent with the definitioef for rationalx € Q as defined in Chapter 1.

Definition 3.9 Forz € C put

n 2 3

z z z
E(z):;H:1+z+5+E+---. (3.5)

Note that£'(0) = 1 andE(1) = e by the definition at padeb1. The radius of convergence of
the exponential serieE{8.5) i8= +o0, i. €. the series converges absolutely forat C, see
ExampldZ1B (c).

Applying Propositio 231 (Cauchy product) on multiplioat of absolutely convergent series,
we obtain

0 o 0 w™ . n Sk qgn—k
E(z)E( :gﬁ Z:()—':gkokr!(n—k:)!

I
Mg
S|

N\ kg — (z+w)"
.ko(k)zw _Z nl

which gives us the important addition formula

I
o

n

E(z+w) = E(z)E(w), zweC. (3.6)
One consequence is that
E(z)E(—2)=FE(0)=1, =zeC. (3.7)

This shows that/(z) # 0 for all z. By (33), E(z) > 0 if x > 0; hencel(3]7) showg&'(x) > 0
for all real x.
Iteration of [36) gives

E(z1+ -4 2z,) = FE(z1) - E(zn). (3.8)
Letustake:; = --- =z, = 1. SinceE(1) = e by (ZI5%), we obtain

E(n)=¢", neN. (3.9)
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If p = m/n, wherem, n are positive integers, then
E(p)" = E(pn) = E(m) = €™, (3.10)
so that
E(p)=c’, peQ,. (3.11)

It follows from (31) thatE(—p) = e ? if p is positive and rational. ThuE(3]11) holds for all
rationalp. This justifies the redefinition

e’ = FE(x), xze€C.
The notatiorexp(x) is often used in place af'.

Proposition 3.10 We can estimate the remainder terp:= ;> 2*/k! as follows

202" . n+1
(e | < 250 i 2] < (3.12)
Proof. We have
Sl BN ELS | 2] Eli El
. < Z = 1 :
\r(z)|_; k! n! +n+1 (n+1)(n+2) (n+1)---(n+k)
B L O T N 1 (N E1
— nl n+1 (n+1)2 (n+4 1)k
|z| < (n+1)/2implies,
|z " 1 1 1 221"
|7"n<2)|§ ol 1+§—|—1+ —|—?+ >~ nl
]

Example 3.9 (a) Insertingn = 1 gives
|E(z) —1[=[m(2)[ <2]z], [z]<1
In particular, £'(z) is continuous at, = 0. Indeed, to= > 0 choosel = ¢/2 then|z| < ¢

implies| E(z) — 1] <2|z| <¢; hencelin(lJ E(z) = FE(0) = 1 andE is continuous af.
(b) Insertingn = 2 gives

[ —1—z|=|n)| < |z, [2]<

This implies
e —1

z

3
-1 < < -
RS-

The sandwich theorem givéis% % =1.
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By @3), lim, .., E(x) = +oo; hence [3]7) shows thaim, . . E(z) = 0. By @3),
0 <z <y implies thatE(z) < E(y); by (31), it follows thatE'(—y) < E(—z); hence,E
is strictly increasing on the whole real axis.
The addition formula also shows that

}lLir%(E(z +h)—E(2)) = E(z) }lliné(E(h) —1)=FE(2)-0=0, (3.13)
wherelim;_,o E(h) = 1 directly follows from ExamplE3]9. Hencé;(z) is continuous for all
Z.

Proposition 3.11 Lete” be defined ofR by the power serie@.3). Then

(a)e” is continuous for allz.

(b) e” is a strictly increasing function anef > 0.
() e™ ¥ = eV,

(d) lim e =400, lim e =0.

T——400 T——00
n

(e) lim T —0for everyn € N.

r—+oo e¥

Proof. We have already proved (a) to (d)_{3.5) shows that

xn—i—l
>
C T )
for x > 0, so that
" (n+1)!
et x
and (e) follows. Part (e) shows theit tends faster teroo than any power of, asz — +oc.

Sincee”, x € R, is a strictly increasing continuous function, by Proposi3.9¢” has an strictly
increasing continuous inverse functibry y, log: (0, +00) — R. The functionlog is defined

by
o8y — gy >0, (3.14)
or, equivalently, by
log(e®) =z, x€R. (3.15)
Writing u = e* andv = ¢¥, (3.8) gives
log(uv) = log(e“e?) = log(e”tY) = x + y,
such that

log(uv) = logu +logv, wu>0,v>0. (3.16)
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This shows thatog has the familiar property which makes the logarithm useduldomputa-
tions. Another customary notation farg = is In . Propositiof:3.11 shows that

xgrfoo logz = +00, ml_l)gr}rologx = —o00.

We summarize what we have proved so far.

Proposition 3.12 Let the logarithmog: (0,4+00) — R be the inverse function to the exponen-
tial functione”. Then

(a) log is continuous orf0, +o0).

(b) log is strictly increasing.

(c) log(uv) = logu + log v for u,v > 0.

(d) lim logx =400, lim logx = —o0.
T—+00 z—0+0

It is seen from[(3114) that
T = elo8% — g — gnloe® (3.17)

if x > 0 andn is an integer. Similarly, ifn is a positive integer, we have

g = e (3.18)
Combining [31F7) and{318), we obtain
% = e 1087, (3.19)

for any rationakv. We now define:® for any reale andz > 0, by (319). In the same way, we
redefine the exponential function

a®* =¢e"%% >0, zreR.

It turns out that in case # 1, f(z) = a” is strict monotonic and continuous sineeis so.
Hence,f has a stict monotonic continuous inverse funclia) : (0, +00) — R defined by

log,(a*) =z, xz€R, a%"=2z z>0.

3.5.2 Trigonometric Functions and their Inverses

AW\ Simplmgfumﬁ - In this section we redefine the trigonometric functions gsin
/’ \ \ the exponential function®. We will see that the new defini-
\ °s1 | \\ tions coincide with the old ones.

Definition 3.10 For z € C define

21

I B ST T L

VAV /\/  suchthat

e e? =cosz+isinz (Euler formula) (3.21)
——— Cosine
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Proposition 3.13 (a) The functionsin z and cos z can be written as power series which con-
verge absolutely for alt € C:

_OO(_l)n2n_ Ly 14 1
COSZ—nZ:O (2n)] z —1—52 +Iz —az + —- -

(3.22)

1" 1 1
sirlzzzﬁzz’“rl =z— 2+ 2=

— ! ! !
(b) sin x andcos x are real valued and continuous d®, wherecos z is an even andin z is an

odd function, i. ecos(—z) = cos z, sin(—z) = — sin . We have
sin? z + cos® & = 1; (3.23)
cos(z + y) = cosx cosy — sin x sin y;

(z+y) y y (3.24)

sin(z + y) = sinz cosy + cos x sin y.

Proof. (a) Insertingz into (3.3) in place ot and usingi”) = (i, —1,—i,1,i,—1,...), we have

. & .nzn & . ) Z2k ) & . . 22k+1
*=D =2 (- 25! Fi_(=1) 2kt 1)
n=0 k=0 k=0
Inserting—iz into (23) in place ot we have
) OO N e ZQk e Z2k+1
e =) i"To =) (=1)* D T ) e —
~ nl (2k)! % (2k +1)!

Inserting this into[(3.20) proves (a).

(b) Since the exponential function is continuous@©nsin z andcos z are also continuous on
C. In particular, their restrictions t& are continuous. Now let € R, theniz = —iz. By
Homework 11.3 and{3.20) we obtain

cos T = 3 (e“” +em> = 3 <e‘x —|—e“”> = 3 (e“” +em> = Re (em)
and similarly
sinz = Im (eix) .

Hencesin z andcos x are real for reak.
Forxz € R we have

i Homework 11.3

e'*| = 1. Namely by [ZF) and

i sinx 2 iz o
=e'e =¢%e T =e =1,

e

so that forr € R

0 cos X 1

¢ =1. (3.25)

On the other hand, the Euler formula and the fact that
cos r andsin x are real give

1=|e'*| =]|cosaz +isinz| = cos®x + sin’ .
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Hence,el® = cosx + isinz is a point on the unit circle in the complex plane, andz and
sin x are its coordinates. This establishes the equivalencesieetthe old definition ofos = as
the length of the adjacent side in a rectangular triangll twpothenusé and anglecg and
the power series definition ebs . The only missing link is: the length of the arc franto e'*
is .

It follows directly from the definition thatos(—z) = cosz andsin(—z) = —sin z for all
z € C. The addition laws fosinz and cosz follow from @@8) applied toe!+¥). This
completes the proof of (b). [

Lemma 3.14 There exists a unique numbere (0,2) such thatcosT = 0. We define the
numberr by

T =2T. (3.26)

The proof is based on the following Lemma.

Lemma 3.15
3
(a) 0<z<V6 implies z— % <sinz < z. (3.27)
(b) 0<z<+2 implies 0 < cosz, (3.28)
0<sinx <z< sm:c’ (3.29)
CoS T
1
cos® T < e (3.30)

(c) cosz is strictly decreasing ofD, 7|; whereassin z is strictly increasing on—=/2, 7/2].

In particular, the sandwich theorem applied to statemént (& %2 < % <lasz —0+0
giveslim, oo %" = 1. Since™* is an even function, this implidén, ., *-* = 1.

The proof of the lemma is in the Appendix B to this chapter.

Proof of Lemmd3IW. cos0 = 1. By the Lemm&35¢0s* 1 < 1/2. By the double angle
formula for cosinegos2 = 2cos®> 1 — 1 < 0. By continuity ofcos x and Theorefi3l5;0s has

a zeror in the interval(0, 2).

By addition laws,
. (x + y> . <x - y)
cosT — cosy = —2sin 5 sin 5 )

So that by LemmB3186 < 2 < y < 2 implies0 < sin((z + y)/2) andsin((x — y)/2) < 0;
thereforecos z > cosy. Hence,cos x is strictly decreasing of0, 2). The zeror is therefore
unique. [
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By definition, cos () = 0; and [32B) showsin(7/2) = +1. By @2Z1),sinw/2 = 1. Thus
e™/2 = i, and the addition formula far gives

; (3.31)
hence,
et o* e . (3.32)

Proposition 3.16 (a) The functiore® is periodic with periodi.

We have:'” = 1,z € R, ifand only ifz = 2kr, k € Z.

(b) The functionsin z andcos z are periodic with perio@.

The real zeros of the sine and cosine functions{dgre | k € Z} and{r/2 + k7 | k € Z},
respectively.

Proof. We have already proved (a). (b) follows from (a) and(B.20). m

Tangent and Cotangent Functions

Tangent Cot t
g 0 illjg‘en

34 ‘ \ 3 \ \

N
IN
¢
|
w

45T ST 1

x

I |
Forz # 7/2 +4k7r, k € 7Z, define

MR

tanz = 22 (3.33)
cos
Forx # km, k € Z, define
cotx = C?S:E. (3.34)
sin z

Lemma 3.17 (a) tan z is continuous at € R\ {n/2+ k7 | k € Z}, andtan(z + 7) = tan z;

(b) lim tanz = 400, lim tanz = —o0;
r—35—0 r—5+0

(c) tan z is strictly increasing on—= /2, 7/2);
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Proof. (a) is clear by Propositidn3.3 sing& = andcos = are continuous. We show only (c) and
let (b) as an exercise. Lét< = < y < 7/2. Then0 < sinz < siny andcosx > cosy > 0.
Therefore

sinz  siny
<

COs ™ COosy

Hence,tan is strictly increasing on0,r/2). Sincetan(—xz) = —tan(z), tan is strictly
increasing on the whole interval-7/2, 7/2). ]

Similarly as Lemm&3.17 one proves the next lemma.

Lemma 3.18 (a) cot = is continuous at: € R\ {k7 | k € Z}, andcot(z + 7) = cot z;

(b) lim cotz = —o0, lim cotx = +oc;
z—0-0 z—0+0

(c) cot x is strictly decreasing o0, 7).

Inverse Trigonometric Functions

We have seen in Lemrha3]15 that x is strictly decreasing oft), 7] andsin z is strictly in-
creasing oni—x/2,7/2]. Obviously, the images ar@s|0, 7] = sin[—7/2,7/2] = [-1,1].
Using Propositiof3]19 we obtain that the inverse functioxiste and they are monotonic and

continuous.
Proposition 3.19 (and Definition) There exists the in-

verse function teos

Arcosine and Arcsine
34

arccos: [—1,1] — [0, 7] (3.35)

given byarccos(cos z) = z, x € [0, 7] or cos(arccosy) =
y,y € [—1,1]. The functiomrccos x is strictly decreas-
ing and continuous.

-1 08 05 04 0201 02 04 06 08 1  There exists the inverse functionsia

™ arcsin: [—1,1] — [—7/2,7/2] (3.36)
given by arcsin(sinz) = =z, = € [-7w/2,7/2] or
arcoos sin(arcsiny) = y, y € [—1,1]. The functionarcsin

is strictly increasing and continuous.
Note thatarcsin « + arccosz = 7 /2 if x € [—1, 1]. Indeed, lety = arcsin z; thenz = siny =
cos(m/2 —y). Sincey € [0,7], /2 —y € [—7n/2,7/2], and we havexrccosz = 7/2 — y.
Thereforey + arccos x = /2.
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Arctangent and

3

Arccotangent

10 -8

3.5.3

R

arctan
arccot

By Lemmd3Il tan x is strictly increasing on
(—m/2,7/2). Therefore, there exists the inverse
function on the imagean(—=/2,7/2) = R.

Proposition 3.20 (and Definition) There
exists the inverse function tan

arctan: R — (—7/2,7/2) (3.37)

given byarctan(tanx) = x, z € (—7w/2,7/2)
or tan(arctany) = y, y € R. The function
arctan x Is strictly increasing and continuous.
There exists the inverse functionde

arccot : R — (0,7) (3.38)

given byarccot (cotz) = z, x € (0,7) or
cot(arccoty) = vy, y € R. The function
arccot x is strictly decreasing and continuous.

Hyperbolic Functions and their Inverses

Hyperbolic Cosine

and Sine

cosh
sinh

The functions

e’ —e”

sinhx = — (3.39)
coshx = %, (3.40)
T __ L inh
tanhg = -~ °  — S1% (3.41)
e+ e %  coshz
X —X h
cothx = ¢ te = C?S ° (3.42)
et —e % sinh «

are calledhyperbolic sine hyperbolic cosinghyper-
bolic tangent andhyperbolic cotangentespectively.
There are many analogies between these functions and

their ordinary trigonometric counterparts.
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3.6

Appendix B

Hyperbolic Tangent Hyperboli§ Cotangent
1 |

0.5+

-1 1

The functionssinh z and tanh = are strictly increasing witRinh(R) = R andtanh(R) =
(—1,1). Hence, their inverse functions are definedidm@and on(—1, 1), respectively, and are

also strictly increasing and continuous. The function

arsinh : R — R (3.43)

is given byarsinh (sinh(x)) = x, 2 € R orsinh(arsinh (y)) =y, y € R.

The function

artanh : (—1,1) - R (3.44)

is defined byartanh (tanh(z)) = z, x € R or tanh(artanh (y)) =y, y € (—1,1).

The functioncosh is strictly increasing on the half linB ., with cosh(R.,) = [1,00). Hence,
the inverse function is defined dh, oo) taking values inR.,.. It is also strictly increasing and

continuous.
arcosh : [1,00) — Ry (3.45)

is defined viaarcosh (cosh(z)) = x, > 0 or by cosh(arcosh (y)) =y, y > 1.
The functioncoth is strictly decreasing on the < 0 and onz > 0 with coth(R\0)
R\[-1,1]. Hence, the inverse function is defined Bn [—1, 1] taking values inR\0. It is

also strictly decreasing and continuous.

arcoth : R\[-1,1] = R (3.46)

is defined viaarcoth (coth(z)) = x, x # 0 or by coth(arcoth (y)) =y, y < —1ory > 1.

3.6 Appendix B

3.6.1 Monotonic Functions have One-Sided Limits

Proof of TheorenlZ3B. By hypothesis, the eft(t) | « < t < =} is bounded above by(z),
and therefore has a least upper bound which we shall denate Bvidently A < f(z). We
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have to show thatl = f(x — 0).
Lete > 0 be given. It follows from the definition ofl as a least upper bound that there exists
0 > 0suchthat < z — § < z and

A—e< f(z—90) <A (3.47)
Sincef is monotonic, we have
flz=0)< f(t) <A, If z—-d<t<u. (3.48)
Combining [(3.4l7) and{3.48), we see that
| f(t)—A|l<e if z—-d<t<u.

Hencef(z — 0) = A.
The second half of{313) is proved in precisely the same waktNf o < x < y < b, we see
from (3.3) that

f(x+0)= inf f(t)= inf f(¢). (3.49)

r<t<b r<t<y

The last equality is obtained by applyiig {3.3)(toy) instead of(a, b). Similarly,

fly—0)= sup f(t)= sup f(?). (3.50)
a<t<y r<t<y
Comparison of thd{3.29) and(3150) givEs13.4). m

3.6.2 Proofs forsin « and cos x inequalities
Proofof Lemmd3.1b. (a) BY{(3.22)

B 1, ! 1
cosx—(l—ix)%—x (ﬁ—ax)—k

0 < x < +/2implies1 — z2/2 > 0 and, moreovet /(2n)! — z%/(2n + 2)! > 0 foralln € N;
henceC(x) > 0.

By 322),

Now,

1 1 1
1—§:p2>0<:>x<\/6, g—ﬁx2>0<:>x<\/42,....

Hence,S(z) > 0if 0 < 2 < v/6. This gives[Z27). Similarly,

1 1 1 1
: — 3 _ 2 7 _ 2
r—smr == (3! 5!95 ) +x (7! 9!3: ) + ,



3.6 Appendix B 97

and we obtaiginz < xif 0 < x < 1/20. Finally we have to check whethén x — z cos z > 0;

equivalently
A | (1 1 (11
= <§_§ “\aTe) e w) T
o, (2 L4 (6,8
V< (5‘1’5 LR CTAREETY A

Now /10 > x > 0 implies
2n 2n+2 -0
— T
(2n+ 1) (2n+ 3)!
for all n € N. This completes the proof of (a)

(b) Using [3.2B), we get

0<zcosx <sinr = 0< z?cos’z < sin’x
1

— 22cos?r +cos’r <1 = cos’z < .
1+ 22

(c) In the proof of LemmB&314 we have seen thatz is strictly decreasing iff0, 7/2). By
@23),sinz = /1 — cos? z is strictly increasing. Sincén x is an odd functionsin z is strictly
increasing on—m/2,7/2]. Sincecosx = —sin(x — 7/2), the statement focos = follows.

]

3.6.3 Estimates form

Proposition 3.21 For real = we have

n ZL‘2k
COST = Z(—l)kw + T2n+2(IL‘) (351)
k=0 '
) n . :L,2k+l
Smmx = Z<—1) m + 7’2n+3(3¢), (352)
k=0 '
where
| T |2n+2
‘ T |2n+3
Proof. Let
fL‘2n+2 ZL'2
-+ (1= £ ).
rani2 () = F 5 ) < (2n +3)(2n + 4) )
Put
ka

ST @nt3)@nt ) @n 2k 1)
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Then we have, by definition

x2n+2
T2n+2(l‘):im(l—al—l—QQ——'—...).
Since
ZL‘2
A = Qf_
T 2n 2k + 1) (20 + 2k + 2)

|z | < 2n+ 3 implies
1>a;,>a,>--->0
and finally as in the proof of the Leibniz criterion
0<l—ay4+ay—as+—---<1.

Hence,| ran4a(z) | < |27 /(2n + 2)!. The estimate for the remainder of the sine series is
similar. n

This is an application of Propositibn3121. For numericétgkations it is convenient to use the
following order of operations

oSt = ((((Wx—m“) <2n—2_>f;n—3>“) <2n—;>f;n—5>“)'“

—72
) T 1 Taale).

First we computeos 1.5 andcos 1.6. Choosing: = 7 we obtain

2 2 2 2 2 2 2
_ i 1 1) 22 1) 25 1
o <((<((182+)132+)90+)56+)30+)12+)2+

+ 1 + T16(ZL‘).

By Propositiol3.21

| r6(2) | < ‘16| <09-1071 if |xz|<1.6.

The calculations give
cos 1.5 = 0.07073720163 £ 20 - 107" > 0,cos 1.6 = —0.02919952239 +20- 10~ < 0.

By the itermediate value theoremp < /2 < 1.6.
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Now we computeos = for two values ofr which are close to
the linear interpolation
cos 1.5

= 1. 1 = 1.57078 ...
“ o+ cosl.b —cosl.6

s A |16 cos 1.5707 = 0.000096326273 + 20 - 10~ > 0,
i cos 1.5708 = —0.00000367326 = 20 - 101 < 0.

cos 1.6

Hence,1.5707 < /2 < 1.5708.
The next linear interpolation gives

cos 1.5707
b=1. . 1 = 1.570796326 . . .
5707 +- 0.0000 cos 1.707 — cos 1.708

cos 1.570796326 = 0.00000000073 + 20 - 10~ > 0,
cos 1.570796327 = —0.00000000027 + 20 - 10~ < 0.

Thereforel .570796326 < 7/2 < 1.570796327 so that

7= 3.141592653 + 107,
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Chapter 4

Differentiation

4.1 The Derivative of a Function

We define the derivative of a function and prove the main ptogselike product, quotient and
chain rule. We relate the derivative of a function with the\dsive of its inverse function. We
prove the mean value theorem and consider local extreméor&gheorem will be formulated.

Definition 4.1 Let f: (a,b) — R be a function and € (a, b). If the limit

im £ = f(x0) (4.1)
T—T0 T — Xo
exists, we callf differentiableat ;. The limit is denoted by’ (x(). We sayf is differentiable
if f is differentiable at every point € (a,b). We thus have associated to every functjoa
function /” whose domain is the set of points where the limit[4]l) existsf’ is called the
derivativeof f.

Sometimes the Leibniz notation is used to denote the derevat f

_ df(zo)

) dx

= 2 fao).

Remarks 4.1 (a) Replacinge — x, by h , we see thaf’(zy) = lim flwo+ 1) - f<370)_

h—0 h
(b) The limits

lim f(xo+h) — f(«%’o)’ lim f(@o +h) — f(xo)
h—0—0 h h—0-+0 h
are calledleft-hand and right-hand derivatives df in z(, respectively. In particular for
f: [a,b] — R, we can consider the right-hand derivative.@nd the left-hand derivative at

Example 4.1 (a) For f(z) = ¢ the constant function

f'(z0) = lim —f(x) — f(@o) — lim ——% —p.
=z T — Tg z—z0 T — T
(b) For f(z) = =,
f'(z9) = lim T g,

rT—r0 T — X

101
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(c) The slope of the tangent line. Given a functipn(a, b) — R which is differentiable at.

Thenf'(x,) is the slope of the tangent line to the graphfdhrough the pointxz, f(zo)).
The slope of the secant line throudh,, f(x¢)) and
(21, f(21)) IS

m:tanalzw.
1~ 2o

f(xq)

One can see: It; approaches, the secant line through
(zo, f(x0)) and (xy, f(x1)) approaches the tangent line
through(x, f(z0)). Hence, the slope of the tangent line
is the limit of the slopes of the secant lines iipproaches
xo:

Flan) = Tim L@ = G0)

z—z0 T — T

f(Xo)

Proposition 4.1 If f is differentiable atr, € (a, b), thenf is continuous at:.

Proof. By Propositiofii32 we have

lim (f(z) — f(x0)) = lim M(w —x0) = f'(xo) lim (z — xo) = f'(x0) - 0= 0.

T—T0 T—T0 T — X T—I0

The converse of this proposition is not true. For exan)ile) = | z | is continuous inR. but

: : : : h h ,
differentiable inR\ {0} since lim [7] = 1 whereas lim [2] = —1. Later we will become
h—0+0 h h—0-0 h

aquainted with a function which is continuous on the whaie lithout being differentiable at
any point!

Proposition 4.2 Let f: (r,s) — R be a function and € (r, s). Thenf is differentiable at if
and only if there exists a numbere R and a functiony defined in a neighborhood afsuch
that

f(z) = f(a) + (x — a)e + ¢(x), (4.2)
where
lim 28 g, (4.3)
r—a Xl —

In this casef’(a) = c.

The proposition says that a functigrdifferentiable at: can be approximated by a linear func-
tion, in our case by

y=fla)+ (z—a)f'(a).
The graph of this linear function is the tangent line to thepdrof / at the pointa, f(a)). Later
we will use this point of view to define differentiability ofifctionsf: R" — R™.
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Proof. Suppose firsf satisfies[(412) and{4.3). Then
@) = fla) (C+ olx) ) _

lim =
T —a

Tr—a Tr — Qa r—a
Hence,f is differentiable at: with f'(a) = c.
Now, let f be differentiable at with f'(a) = c. Puty(z) = f(z) — f(a) — (x —a) f'(a). Then

im 2&) o f@) = fla)

rx—a l — A r—a €rT—a

— f'(a) = 0.

Let us compute the linear function whose graph
is the tangent line throughe, f(xy)). Con-
sider the rectangular trianglB 7y(Q)y. By Ex-
ampldZ1l (c) we have

such that the tangent line has the equation

y = g(x) = f(xo) + f'(20)(x — o).

This function is called thé&nearization of f at x,. It is also the Taylor polynomial of degrée
of f atx,, see Sectidndl.5 below.

Proposition 4.3 Supposef and g are defined on(a, b) and are differentible at a point <
(a,b). Thenf + g, fg, and f /g are differentiable at- and

@) (f +9)(z) = f(z) + ¢'(x);
(b) (f9)'(2) = f'(x)g(w) + f(z)g'(2);
©) (f) (z) = [@s@-f(0) @)

In (c), we assume that(z) # 0.

Proof. (a) Since

Stg)e+h) = (S+o))  flth) —f) glzth) g

h h h ’

the claim follows from Propositidn3.2.
Let h = fg andt be variable. Then
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Noting thatf(t) — f(x) ast — =z, (b) follows.
Next leth = f/g. Then

B(t) — hx) _ 50 ~ e _ [(0g() — f@)g(t)
. =2 9(2)g()(t — )
1 f(Wy(@) — f@)ge) + f(x)g(x) — F@)g()
99 (@) {2
1 SO = 1@ gt~ g()
= 99 ( i L )
Lettingt — z, and applying Propositiofs3.2 andl4.1, we obtain (c). n

Example 4.2 (@) f(z) = z", n € Z. We will prove f’(z) = nz™~! by induction onn € N.
The cases = 0, 1 are OK by ExamplE4]1. Suppose the statement is true for sestfi We
will show that(z" ™) = (n + 1)z

By the product rule and the induction hypothesis

(") = (@" - 2) = @)z + 2" (') =na" x4+ 2" = (n+ 1)a"

This proves the claim for positive integets For negative: considerf(xz) = 1/x~™ and use
the quotient rule.

(b) (e7)' = .

(e”) = lim i = lim ——— =¢" lim =e"; (4.4)
h—0 h h—0  h h—0 7

the last equation simply follows from Examplel3.9 (b)

(€) (sinz)" =cosz, (cosz) = —sinz. Usingsin(z + y) — sin(z —y) = 2 cos (z) sin (y) we
have
3 : x+h (34 R
(sinz)’ = lim sin(z + h) —sinz _ lim 2 cos 2 sin 2
h—0 h h—0 h
h sin 2
= limcos | z + - | lim 2,
h—0 2) h—o L

. : . inh .
Sincecos x is continuous an(}]lin(l) % = 1 (by the argument after Lemrha3115), we obtain
(sinz)" = cosx. The proof forcos z is analogous.

1 . . .
(d) (tan )" = ——. Using the quotiont rule for the functiaan = = sin z/ cos = we have
COS“ X

(tanz) = (sinz)’ cosx — sin z(cos z)’ _ cos® x + sin® x _ 1
cos? cos2 cos2

The next proposition deals with composite functions andabably the most important state-
ment about derivatives.
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Proposition 4.4 (Chainrule) Let g: (o, 3) — R be differentiable atry, € («, ) and let
f: (a,b) — R be differentiable atjy = g(z9) € (a,b). Thenh = feqg is differentiable at
xo, and

h'(zo) = f'(y0)g'(xo). (4.5)

Proof. We have

flg(x)) = flg(xo))  flg(x)) — flg(wo)) g(z) — g(x0)

T — o g(z) — g(xo) T — g
— 1im LIy — (g (o).
T—T0 Y—Yo Y — Yo
Here we used that = g(x) tends toy, = g(x¢) asz — xq, Sinceg is continuous at. ]

Proposition 4.5 Let f: (a,b) — R be strictly monotonic and continuous. Suppgss differ-
entiable atr. Then the inverse function= f~': f((a,b)) — R is differentiable aty = f(x)
with
J) = =
@) flely)

Proof. Let (y,,) C f((a,b)) be a sequence with, — y andy,, # y for all n. Putz,, = g(y,).
Sinceg is continuous (by Corollafy3.9%m,, ... z,, = x. Sincey is injective,z,, # x for all n.
We have

(4.6)

9 —9ly) _ T — T . 1 1
i Yy S Flan) — flx) Jim. [za) 1) = T
Hencey'(y) = 1/f'(x) = 1/f"(9(y)). n

We give some applications of the last two propositions.

Example 4.3 (a) Let f: R — R be differentiable; definé’: R — R by F(z) := f(ax + b)
with somea, b € R. Then
F'(z) = af'(ax +b).

(b) In what follows f is the original function (with known derivative) anglis the inverse
function to f. We fix the notiory = f(x) andx = g(y).
log: R4\ {0} — R is the inverse function tg(x) = e”. By the above proposition

1 1 1

(logy) = @) o g

(C) & = ealogml Hence,(xa)’ — (ealogm)/ _ ealogmal — al‘afl.
x

(d) Suppose > 0 andg = log f. Theng’ = f’%; hencef’ = f ¢'.
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(e)arcsin: [—1,1] — R is the inverse function tg = f(x) = sinz. If x € (—1,1) then

1 1

(arcsin(y))" = (sinz)  cosz’

Sincey € [—1,1] impliesz = arcsiny € [—7/2,7/2], cosz > 0. Therefore,cosxz =

V1 —sin?z = /1 — 42 Hence

1
(arcsiny) = —, —-l<y<l1.

1— y27
Note that the derivative is not defined at the endpajnts—1 andy = 1.
(f)

1 1
(arctany) = (tan ) == cos® .
COs“ T
Sincey = tan x we have
-2 2
9 9 sin“z 1 —cos“x 1
=tan“z = = = -1
Y cos? x cos? x cos? x
1
cos’x =
1492
, 1
(arctany)’ =
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4.2 The Derivatives of Elementary Functions

function derivative
const. 0
z" (n € N) na" !
% (e R,z > 0) az® !
e” e’
a®, (a>0) a®loga
1
log x —
T
| 1
og X
8a xloga
sin x cosST
COS & —sinx
1
tan x 3
cos? x
1
cotx —
sin® x
sinh « cosh x
cosh x sinh «
1
tanh z 5
cosh” x
1
cothx 5
sinh” x
. 1
arcsin & e
V1—a2
1
arccos x _
V1—a2
1
arctan x
1+ 22
1
arccot x —
14 22
. 1
arsinh x
2+ 1
1
arcosh z
2 —1
1
artanh z
1 — 22
1
arcoth z
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4.2.1 Derivatives of Higher Order

Let f: D — R be differentiable. If the derivativg’: D — R is differentiable at: € D, then

d2f(l’) g AV
L = P = (Y (@)

is called thesecond derivativef f atx. Similarly, one defines inductively higher order deriva-
tives. Continuing in this manner, we obtain functions

f, f/) f//7 f(3)’ '“,f(k;)

each of which is the derivative of the preceding ofi&) is called thenth derivativeof f or the
derivative of ordern of f. We also use the Leibniz notation

o = 0 () g,

dz*

Definition 4.2 Let D ¢ R andk € N a positive integer. We denote 16/ (D) the set of all
functionsf: D — R such thatf®)(z) exists for alle € D andf*)(z) is continuous. Obviously
C(D) > CYD) > C*(D) > ---. Further, we set

C*(D)=(C"D)={f: D—R|fP(z) exists VkeN,zeD} (4.7)

keN

f € C¥(D) is calledk times continuously differentiabl€ (D) = C°(D) is the vector space of
continuous functions oW.

Using induction over, one proves the following proposition.

Proposition 4.6 (Leibniz formula) Let f and g ben times differentiable. Thelfig is n times
differentiable with

n

(@)™ =3 ()P o), (48)

k=0

4.3 Local Extrema and the Mean Value Theorem

Many properties of a functiori like monotony, convexity, and existence of local extrema ca
be studied using the derivatiyé. From estimates fof’ we obtain estimates for the growth of

f.

Definition 4.3 Let f: [a,b] — R be a function. We say thgthas docal maximunat the point
¢, & € (a,b), if there existey > 0 such thatf(z) < f(&) for all z € [a,b] with |z — | < 0.
Local minimaare defined likewise.

We say that is alocal extremunif it is either a local maximum or a local minimum.
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Proposition 4.7 Let f be defined offu, b]. If f has a local extremum at a poigte (a,b), and
if f/(¢€) exists, thery’(¢) = 0.

Proof. Supposef has a local maximum &t According with the definition choose> 0 such
that

a<f—0<E<SEFI <D

If & -0 <x < then

>0
r—£& -
Lettingz — &, we see thaf’(¢) > 0.
If £ <2 <&+ 9, then
f@) = £ _,
A S
Lettingx — &, we see thaf’(£) < 0. Hence,f’(¢) = 0. [

Remarks 4.2 (a) f'(x) = 0 is a necessary but not a sufficient condition for a local extne
in z. For examplef (z) = 2? hasf’(z) = 0, butz? has no local extremum.
(b) If f attains its local extrema at the boundary, likez) = = on [0, 1], we do not have

f'€) =0

Theorem 4.8 (Rolle’s Theorem)Let f: [a,b] — R be continuous wittf (a) = f(b) and let f
be differentiable ina, b). Then there exists a poigte (a,b) with f/(¢) = 0.

In particular, between two zeros of a differentiable fuoctihere is a zero of its derivative.

Proof. If f is the constant function, the theorem is trivial sintér) = 0 on (a,b). Other-
wise, there exists, € (a,b) such thatf(zg) > f(a) or f(zo) < f(a). Then f attains its
maximum or minimum, respectively, at a po§n€ (a, b). By Propositiofi 47/’ (£) = 0. n

Theorem 4.9 (Mean Value Theorem)Let f: [a,b] — R be continuous and differentiable in
(a,b). Then there exists a poigte (a, b) such that

f(b) — f(a)

()= y— (4.9)

Geometrically, the mean value theorem states that thesésexi
a tangent line through some poifdt f(£)) which is parallel
to the secant linelB, A = (a, f(a)), B = (b, f(])).
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Theorem 4.10 (Generalized Mean Value Theorem).et f and g be continuous functions on
la, b] which are differentiable ofia, b). Then there exists a poigte (a, b) such that

Proof. Put

Rolle’s theorem shows that there exists (a, b) such that

(&) = f(b) = f(a)P'(§) — (9(b) — g(a)) f'(§) = 0.

The theorem follows.
In case thay’ is nonzero orja, b) andg(b) —g(a) # 0, the generalized MVT states the existence
of some¢ € (a, b) such that

f0) = fla) _ ['(§)

g(b) —gla) — g'(&)
This is in particular true foy(x) = = andg’ = 1 which gives the assertion of the Mean Value
Theorem. [

Remark 4.3 Note that the MVT fails iff is complex-valued, continuous ¢n b], and differen-
tiable on(a, b). Indeed,f(x) = ¢ on [0, 2] is a counter examplef is continuous or0, 2],
differentiable on(0, 27) and f(0) = f(2r) = 1. However, there is ng € (0, 27) such that
0= {2010 — r1(¢) = e since the exponential function has no zero, Ee@ (877p(* = 1)

27
in Subsectioi3.511.

Corollary 4.11 Suppos¢ is differentiable or{a, b).

If f'(z) > 0forall z € (a,b), thenf in monotonically increasing.
If f'(z) =0forall z € (a,b), thenf is constant.
If f'(z) <0forall zin (a,b),thenf is monotonically decreasing.

Proof. All conclusions can be read off from the equality

fl@) = f(t) = (z =) f'(£)

which is valid for each pair, ¢, « <t < x < b and for some < (¢, z). n
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4.3.1 Local Extrema and Convexity

Proposition 4.12 Let f: (a,b) — R be differentiable and supposf'(¢) exists at a point
€€ (a,b). If
fi(€)=0 and f"(£) >0,

then f has a local minimum &f. Similarly, if
f(€)=0 and f"(¢) <0,
f has a local maximum &t

Remark 4.4 The condition of Propositidn 412 is sufficient but not neseeyg for the existence
of a local extremum. For examplé(z) = z* has a local minimum at = 0, but /”(0) = 0.

Proof. We consider the casg' (¢) > 0; the proof of the other case is analogous. Since

f//(f) — lim f/(:L‘) — f/(f)

> 0.
z—E€ :L‘—f

By Homework 10.4 there exists> 0 such that

f'(@) = 1) _ [f(€)]
xr—E& ~ 2

>0, forallzwith 0<|z—¢&]<0.

Sincef’'(£) = 0 it follows that

flx) <0 if £€-0<x<E,
fl(x) >0 if E<ax<&Ho.

Hence, by Corollariz411f is decreasing iti¢ — §, &) and increasing i€, £ + 9). Therefore,
f has a local minimum &t. [

Definition 4.4 A function f: (a,b) — R is

said to beconvexif for all =,y € (a,b) and all

A€ 0,1]

FOw + (1= Ny) < Af(@) + (1= 2 f ().
(4.10)

L x+(2- A)y)

A function f is said to beconcavef — f is con-
Vex.

A x+(1- Ay y

Proposition 4.13 (a) Convex functions are continuous.
(b) Suppos¢': (a,b) — R is twice differentiable. Theyfi is convex if and only if(z) > 0 for
all z € (a,b).

Proof. The proof is in Appendix C to this chapter. [
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4.4 1'Hospital's Rule

Theorem 4.14 (L'Hospital's Rule) Suppose’ and g are differentiable in(a, b) and g(x) # 0
forall z € (a,b), where—oo < a < b < +00. Suppose

Jlim J; ((i)) — A (4.11)
If
(a)  lim f(z)= lim g(x)=0 or (4.12)
(b)  lim f(z) = lim g(z)= +oo, (4.13)
then
im L&) 4 (4.14)
r—at0 g(2)

The analogous statements are of course also true-i b — 0, or if g(x) — —oc.

Proof. First we consider the case of finitkee R. (a) One can extend the definition gfand
g via f(a) = g(a) = 0. Thenf andg are continuous ai. By the generalized mean value
theorem, for every: € (a, b) there exists g € (a, ) such that

f@) = fla) _ flz) _ J(E)

g(z) —gla)  glz)  g(&)

If = approaches then¢ also approaches and (a) follows.
(b) Now let f(a + 0) = g(a + 0) = +o00. Givene > 0 choose) > 0 such that

’ /')
g'(t)
if t € (a,a + 0). By the generalized mean value theorem for any € (a, a + ) with x # v,

flz) = fly)
) g(x) —g(y) 4

—A

<e

< €.

We have
9(y)

fl@) _ f@) = fw) !~ @

g(@)  g(@)=gly)1 - I8

The right factor tends td asx approaches, in particular there exist§ > 0 with ; < § such
thatr € (a,a + d;) implies

‘ flz)  fl@) = fly)
g(x)  g(x) —g(y)

<

Further, the triangle inequality gives
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This proves (b).
The caser — +oo can be reduced to the limit procegs— 0 + 0 using the substitution
y=1/z. ]

L'Hospital’s rule applies also applies in the casks- +o0o andA = —cc.

sin x COS &

Example 4.4 (a) lir% = lin% 1 = 1.
1
= : 1
(b) lim i = lim 2 = lim — = 400.
=040 1 —cosx  @—0+0sinx  2—0+0 2y/rsinz

© 1

1 £

lim zlogz = lim O%x = lim %= lim —x=0.
x—0+40 x—040 P z—0+0 —3 z—0+0

. : - .0 .
Remark 4.5 Itis easy to transform other indefinite expressmng ar 2 of I'Hospital’s rule.
(0.}

0.00: f-g:

@ 1=

Q |~

i

fg
00 - f9 — e9logf

Similarly, expressions of the fori™ andoc® can be transformed.

4.5 Taylor's Theorem

The aim of this section is to show hawtimes differentiable functions can be approximated by
polynomials of degree.
First consider a polynomial(x) = a,z" + - - - + a1 + ay. We compute

’E\

S

~—
I

nap " '+ (n— Da, 12" 2+ -+ ay,
n

(n—1Daz"?+(n—1)(n—2)ap_12" 2+ -+ 2a,,

P (x) = nla,.

Insertingz = 0 givesp(0) = ag, p'(0) = ay, p”(0) = 2as,...,p"™(0) = nla,. Hence,

(0 an (n) 0
p(x):p(0)+p( ):E+p( )x2+---+p ( )x” (4.15)
1! 2! n!
Now, fix a € R and letg(x) = p(x + a). Sinceq®(0) = p*) (a), @IB) gives
- q(k)(o) k

p(x+a) = q(r) = a”,

(]

k!

k=0

n

(g
p(x+a)zzp 5 )xk

k!
k=0
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Replacing in the above equatient a by x yields

m pk)

p™(a)

p(z) = Z o (z — a). (4.16)
k=0

Theorem 4.15 (Taylor's Theorem) Suppose is a real function orjr, s], n € N, £ is con-

tinuous on[r, s], f("*Y(t) exists for allt € (r,s). Leta andx be distinct points ofr, s] and

define

n k) (g
a@:Zf(me@ (4.17)

k!
k=0

Then there exists a poiitbetween: anda such that

f(g)

CEs (z —a)"*. (4.18)

f(z) = Pu(x) +

Forn = 0, this is just the mean value theorei,(x) is called thenth Taylor polynomial off
atz = a, and the second summand 0f{4.18)

FO(E)

i, @) = (n+1)!

(x —a)"

is called theLagrangian remainder term

In general, the theorem shows ttfatan be approximated by a polynomial of degrgand that
([EI8) allows to estimate the error, if we know the bounds6f 1 (z) |.

Proof. Considerz andz to be fixed; letM be the number defined by

f(z) = Pu(z) + M(z — a)""
and put
g(t) = f(t) — Py(t) — M(t —a)"™', for r<t<s. (4.19)
We have to show that +1)!M = 1 (¢) for some¢ betweer: andx. By @17) and[Z19),
g t(t) = fOU(E) — (n41)!M, for r<t<s. (4.20)

Hence the proof will be complete if we can show thét™)(¢) = 0 for some¢ betweern: and
xZ.
SinceP" (a) = f®)(a) for k =0,1,...,n, we have

g(a) =g'(a) = --- = g"(a) = 0.

Our choice ofM shows thaty(z) = 0, so thatg’(;) = 0 for some¢; betweena andz, by
Rolle’s theorem. Since’(a) = 0 we conclude similarly thag”(¢;) = 0 for someé, between
a and¢;. After n + 1 steps we arrive at the conclusion thétt) (¢, 1) = 0 for some¢,,
betweem and¢,,, that is, between andz. [ ]



4.5 Taylor’'s Theorem 115

Definition 4.5 Suppose thaf is a real function defined o, s] such thatf(™(t) exists for all
t € (r,s)and alln € N. Letz anda points of|r, s|. Then

(x —a)k (4.21)

is called theTaylor seriesof f ata.

Remarks 4.6 (a) The radius of convergence of a Taylor series can(be
(b) If T converges, it may happen thBt(z) # f(z). If T(x) at a pointa converges tof ()
in a certain neighborhoaod, (a), r > 0, f is called to beanalyticata.

Example 4.5 We give an example for (b). Define R — R via

e~V if x#0,
€T) =
/@) {0, if z=0.

We will show thatf € C>=(R) with f*)(0) = 0. For we will prove by induction on that there
exists a polynomiap,, such that

F (@) = pn (l) eV 2 #£0

Xz

and £ (0) = 0. Forn = 0 the statement is clear taking(z) = 1. Suppose the statement is
true forn. First, letx # 0 then

o= (3 - (20 2 Q)

Choose,,11(t) = —p}, ()t* + 2pa(t)t°.
Secondly,

@(h) = /(0)
(et 1)y — 1o 4N o _ —a? _
700 = i FAO IO 2 By e =0,

where we used PropositibnP.7 in the last equality.
HenceT; = 0 at0—the Taylor series is identically—and7’;(x) does not converge tf(z) in
a neigborhood of.

4.5.1 Examples of Taylor Series

(a) Power series coincide with their Taylor series.

e :ZH, xr € R, Z:p =1 x e (—1,1).
n=0 n=0

(b) f(x) =log(1 + z), see Homework 13.4.
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©) f(z)=(1+2)* a€R,a=0. We have
fO(x) = ala=1) - (a—k+1)(1+2)*"*, inparticular f®(0) = a(a—1)---(a—k+1).
Therefore,

a(cw—l)..].{!(a—k—i—l) 4 Ry () (4.22)

(1+2)" =
k=1

The quotient test shows that the corresponding power sesiegerges fof x| < 1. Consider
the Lagrangian remainder term with< £ < x < 1andn + 1 > «. Then

S a xTL+1 S o N O
n+1 n+1

(1+@a:§ichﬂ 0<z<l. (4.23)

n=0

[ B} | = ‘ (n j— 1) (L4 &>t

asn — oo. Hence,

#23) is called thdinomial serieslts radius of convergence i3 = 1. Looking at other forms
of the remainder term gives th&i{4123) holds for < = < 1.
(d)y = f(x) = arctanz. Sincey’ = 1/(1 + 2?) andy” = —2x/(1 + 2*)* we see that

Y (1+2%) = 1.

Differentiating thisn times and using Leibniz’s formula, Proposit[onl4.6 we have

i(y’)(k)(l + 2)(=h) (Z) ~0.

k=0

= (n)y(n+1)(1+x2)+( ! )y(")2x+( ! )y("1)2=0;
n n—1 n—2

z=0: y"Y pnmn-—1)y" =0

This yields
0, if n=2k,
y™(0) = . |
(—1)*(2k)!, if n=2k+1.
Therefore,
- (_]‘)k 2k+1
arctanx = Z wri” + Ropi2(x). (4.24)

-
[e=]

One can prove that1 < = < 1 implies Ry, 2(xz) — 0 asn — oco. In particular,e = 1 gives

7T_1 1+1 n
4 3 5 '
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4.6 Appendix C

Corollary 4.16 (to the mean value theorem)Let f: R — R be a differentiable function with
f'(z) =cf(x) forall xz € R, (4.25)
wherec € R is a fixed number. Let = f(0). Then
f(z) = Ae™® forall z € R. (4.26)

Proof. ConsiderF () = f(x)e~**. Using the product rule for derivatives afid(4.25) we obtain
Fl(z) = ['(2)e™ + [(@)(=c)e™ = (f'(z) = ef (x)) ™ = 0.

By Corollanyf4.11,F (z) is constant. Sincé'(0) = f(0) = A, F(x) = Aforall z € R; the
statement follows. n

The Continuity of derivatives

We have seen that there exist derivatiyésvhich are not continuous at some point. However,
not every function is a derivative. In particular, derivas which exist at every point of an inter-
val have one important property: The intermediate valuergra holds. The precise statement
follows.

Proposition 4.17 Supposef is differentiable ora, b and suppose’(a) < A < f’(b). Then
there is a pointr € (a, b) such thatf’(z) = .

Proof. Putg(t) = f(t) — At. Theng is differentiable and/(a) < 0. Thereforeg(t;) < g(a)
for somet; € (a,b). Similarly, ¢'(b) > 0, so thatg(t2) < g(b) for somet, € (a,b). Hence,
g attains its minimum in thepeninterval (¢, b) in some point: € (a,b). By Propositiofi4]7,
¢'(z) = 0. Hence,f'(z) = A. ]

Corollary 4.18 If f is differentiable onla, b], then f cannot have discontinuities of the first
kind.

Proof of Propositiod4.T13. (a) Suppose first thdt > 0 for all z. By Corollanf411,f’ is
increasing. Lett < z < y < band\ € [0,1]. Putt = Az + (1 — \)y. Thenz < ¢t < y and by
the mean value theorem there exXist (z,t) andé; € (¢, y) such that

f) = fl=) ey JW) = Ft)
ﬁ—f(fl)ﬁf(fz)—T-
Sincet —x = (1 — \)(y — x) andy — t = A(y — x) it follows that
f) = @) _ fy) = f©)
11— = A
= f(t) < Af(2) + (1= A)f(y).
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Hence,f is convex.
(b) Let f: (a,b) — R be convex and twice differentiable. Suppose to the contféty,) < 0
for somez, € (a,b). Letc = f'(x0); put

p(e) = fz) = (z = wo)c

Theny: (a,b) — R is twice differentiable withy'(z¢) = 0 and¢”(z9) < 0. Hence, by
Propositiol 412, has a local maximum iny. By definition, there is & > 0 such that
Us(xo) C (a,b) and

p(zo — 0) < @(x0), P(x0+0) < (o).

It follows that

1

f(@o) = ¢lz0) > 5 (p(w0 = 0) + plz0 +0)) = 5 (f(wo = ) + flzo +0)).

N —

This contradicts the convexity gfif we setz = xy — 6, y = zo + J, andA = 1/2. n



Chapter 5

Integration

In the first section of this chapter derivatives will not apgeRoughly speaking, integration
generalizes “addition”. The formuldistance = velocity x time is only valid for constant
velocity. The right formula is = til v(t) dt. We need integrals to compute length of curves,
areas of surfaces, and volumes.

The study of integrals requires a long preparation, but dhiepreliminary work has been
completed, integrals will be an invaluable tool for cregtimew functions, and the derivative
will reappear more powerful than ever. The relation betwienintegral and derivatives is
given in the Fundamental Theorem of Calculus.

The integral formalizes a simple intuitive concept—that of
area. It is not a surprise that to learn the definition of an-int
itive concept can present great difficulties—"area” is @ity
What's the area ?? not an exception.

al b

5.1 The Riemann-Stieltjes Integral

In this section we will only define the area of some very spe@gions—those which are
bounded by the horizontal axis, the vertical lines throgglt) and (b, 0) and the graph of a
function f such thatf(x) > 0 for all z in [a,b]. If f is negative on a subinterval ¢f, b], the
integral will represent the difference of the areas abovetmtow ther-axis.

All intervals [a, b] are finite intervals.

Definition 5.1 Let [a,b] be an interval. By gartition of [a, b] we mean a finite set of points
Xo,X1,...,T,, Where
a=x0 <z <---<uz, =0

We write

Ar,=z;—xi_q, 1=1,...,n.

119
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Now supposef is a bounded real function defined pnb]. Corresponding to each partitidh
of [a, b] we put

M; =sup{f(z) |z € [xi_1, 2]} (5.1)
m; = 1inf{f(z) | v € [x;_1, 2]} (5.2)
Xza % X b U(P, f) = i MZAI'Z, L(P, f) = imzAxl, (53)
i=1 =1
and finally
—b
/ fdx=infU(P, f), (5.4)
/bf dz = sup L(P, f), (5.5)

where the infimum and supremum are taken over all partition$ [a, b]. The left members of
&.4) and[(Bb) are called thgpperandlower Riemann integral®f f over|a, b], respectively.
If the upper and lower integrals are equal, we say thRiemann-integrable ofx, b] and we
write f € R (that isR denotes the Riemann-integrable functions), and we dehetedmmon

value of [&4) and(Bl5) by
b b
/ fdx orby / f(x)dx. (5.6)

This is theRiemann integrabf f over|a, b].

Since f is bounded, there exist two numbersand M such thatn < f(x) < M for all
x € [a,b]. Hence for every partitio®®

so that the numbers( P, f) andU (P, f) form a bounded set. This shows that the upper and the
lower integrals are defined faverybounded functiory. The question of their equality, and
hence the question of the integrability 6f is a more delicate one. Instead of investigating it
separately for the Riemann integral, we shall immediatetysaler a more general situation.

Definition 5.2 Let o be a monotonically increasing function ¢nb| (sincea(a) anda(b) are
finite, it follows that« is bounded orja, b]). Corresponding to each partitian of [a, b], we
write

Ac; = a(x;) — alz;_q).

It is clear thatA«; > 0. For any real functiorf which is bounded oifu, b] we put

=1

L(P, f,a) = ZmiAozi, (5.8)
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where); andm; have the same meaning as in Definifiod 5.1, and we define

—b
/ fda=infU(P, f,a), (5.9)
/bf da =supU(P, f,a), (5.10)

where the infimum and the supremum are taken over all parsifio
If the left members of{5]9) an@{5110) are equal, we denat tommon value by

b b
/fda orsometimesby/f(:p)da(x). (5.11)

This is theRiemann-Stieltjes integrébr simply theStieltjes integral of f with respect tay,
over|a, b]. If (B11) exists, we say that is integrable with respect te in the Riemann sense,
and writef € R(a).

By takinga(z) = z, the Riemann integral is seen to be a special case of the RierSsieltjes
integral. Let us mention explicitely, that in the generadesa need not even be continuous.
We shall now investigate the existence of the intedral {6. Without saying so every timg,
will be assumed real and bounded, anthcreasing orja, b|.

Definition 5.3 We say that a partitio®* is arefinementof the partitionP if P* > P (that
is, every point ofP is a point of P*). Given two partitions; and P, we say thatP* is their
common refinemeift P* = P, U Ps.

Lemma 5.1 If P*is a refinement o, then
L(P, f,a) < L(P*, f,a) and U(P,f a)>U(P* f a). (5.12)

Proof. We only prove the first inequality of (5.112); the proof of thecond one is analogous.
Suppose first thaP* contains just one point more than. Let this extra point ber*, and
supposer; ; < z* < x;, wherez;_; andx; are two consecutive points éf. Put

wy = inf{f(x) |z € [z,-1,27]}, we=inf{f(x) |z € [x¥, 2]}

Clearly, w; > m; andwy > m; (sinceinf M > inf N if M c N, see homework 1.4 (b)),
where, as beforen; = inf{f(z) | x € [x;_1,2;]}. Hence

L(P*, f,a) — L(P, ) = wy(a(x) — alzi—1)) + wola(z;) — a(x®)) — m(a(z;) — a(x;_q))
= (w1 —my)(a(z”) — a(zi1)) + (wo —my)(a(r;) — a(z”)) > 0.

If P* containsk points more thanP, we repeat this reasoningtimes, and arrive a{{5.12).
|
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fruef oo

Proof. Let P* be the common refinement of two partitioRsand P». By LemmdZ&.]L

Proposition 5.2

L(Plafaa) SL(P*mfaa) SU(P*,f,OZ) SU(P%faa)'
Hence
L(P17f7a) SU(P27f’a)’ (513)

If P is fixed and the supremum is taken overl] (&13) gives

/bfda <U(Py, f,a). (5.14)

—aQ

The proposition follows by taking the infimum over & in (&13). m

Proposition 5.3 (Riemann Criterion) f € R(«) on[a, b] if and only if for every: > 0 there
exists a partitionP such that

U(P, f,a) — L(P, f,a) < e. (RC)

Proof. For everyP we have

—b
L(P, f,0) < /bfda s/ fda <U(P, f,0).

Thus [RT) implies
b

0§7afdoz—/bfdoz<€.

a

since the above inequality can be satisfied for every0, we have

/fda:/fda,
thatisf € R(«).

Conversely, supposg € R(«), and lete > 0 be given. Then there exist partitiofts and P,
such that

3

b b
U(Pg,f,a)—/ fda<%, /fda—L(Pl,f,a)<§. (5.15)

We chooseP to be the common refinement éf and P,. Then Lemm&X}]1, together with

E158), shows that

b
UP, f,a) <U(P, f,«a) </ fda+% < L(P, f,a)+e < L(P, f,a) + ¢,
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so that [RT) holds for this partitioR. n
Propositio 513 furnishes a convenient criterion for inédgjity. Before we apply it, we state
some closely related facts.

Lemma 5.4 (a) If ([BQ) holds for P and some:, then(RQ) holds with the same for every
refinement of.
(b) If (BQ)holds forP = {x,...,z,} and ifs;, t; are arbitrary points in[x;_1, z;], then

Z | f(s4) ti) | Aa; < e.
(¢)If f € R(«) and (BQ) holds as in(b), then
b
/ fda| <e.

Proof. LemmdX&.l implies (a). Under the assumptions made in (ki) p@;) and f(¢;) lie in
[mi, Mz]’ SO that| f(SZ) — f(tz) | < Mz — m;. Thus

Z\f Fls) | Ay <U(P, f,a) — L(P, f, ),

which proves (b). The obvious inequalities
L(P, f,a Zf )Aa; < U(P, f, )
and

b
L(P, f,«) §/ fda <U(P, f,«a)

prove (C). [

Theorem 5.5 If f is continuous ofja, b] thenf € R(«) on|a, b].
Proof. Lete > 0 be given. Choosg > 0 so that
(a(b) — ala))n < e.
Sincef is uniformly continuous offu, b] (Propositiof.3J7), there existsia> 0 such that
| f(x) = f()[ <n (5.16)

if z,t € [a,0] and|x —t| < 0. If P is any partition ofa, b] such thatAz; < ¢ for all 7, then

(&I8) implies that
M;—m;<n, i=1,...,n (5.17)
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and therefore

n

U(P, f.a) = L(P, f.a) = Y _(M; — mi)Aq; < Z Aoy = n(a(b) — afa)) < e.

=1
By Propositioh 5B/ € R(«). m
Example 5.1 (a) The proof of Theoren 3.5 together with Lemima 5.4 shows tha

<e€

f )Aa; — /abfda

if Az; < 9.
We computel = fab sinz dr. Lete > 0. Sincesin z is continuousf € R. There exist$ > 0
such that z — ¢t | < ¢ implies

(5.18)

sing —sint| < .
| | —

In this case[{RE) is satisfied and consequently

n

b
Z sin(t;)Ax; — / sin x dz

i=1

<é€

for every partitionP with Az; < 9,i=1,...,n

For we choose an equidistant partition[efb], z; = a + (b — a)i/n, i = 0,...,n. Then
N2

h = Az; = (b — a)/n and the conditior[{5.18) is satisfied provided- u. We have, by

£
addition the formulaos(z — y) — cos(z + y) = 2sinxsiny

;Sinxi Ax; = Zsm a+ih)h 2s1nh/2 22 sin h/2 sin(a + ih)

= Sanh/2 snl:h/z ; (cos(a + (i —1/2)h) — cos(a + (i + 1/2)h))

= 573 (€os(a-+ hf2) — cos(a+ (n+ 1/2)h)

k)2
 sinh/2

(cos(a+ h/2) — cos(b+ h/2)))

Sincelimy,_osin h/h = 1 andcos z is continuous, we find that the above expression tends to
cosa — cosb. Hencefab sin x dx = cosa — cosb.

(b) Forz € [a, b define
o) = {1’ e

0, r & Q.

We will show f ¢ R. Let P be any partition ofla, b|. Since any interval contains rational
as well as irrational pointsy,; = 0 and M; = 1 for all .. HenceL(P, f) = 0 whereas
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U(P, f)= >, Az; = b — a. We conclude that the upper and lower Riemann integralstdon’
coincide;f ¢ R. A similar reasoning showg ¢ R(«) if a(b) > a(a) sinceL(P, f,a) =0 <
U(P, f,a) = a(b) — ala).

Proposition 5.6 If f is monotonic ora, b], and« is continuous ona, b], thenf € R(«).

A

Proof. /

1

a (x)
Lete > 0 be given. For any positive

integern, choose a partition such that

: Aai:M, i=1,...,n.
| n

This is possible by the intermediate
value theorem (Theorem3.5) sinae
IS continuous.

We suppose that is monotonically increasing (the proof is analogous in ttiteeocase). Then

Mi :f(l'z), mi:f($i,1), 1= 1,...,%,

so that
(P, = 40 ) = 2S5 (a) o)
= 2O () pa <<
if 1 is taken large enough. By Propositaisf3s ®(a). .

Without proofs which can be found iR [Rud76, pp. 126 —128] wterthe following facts.

Proposition 5.7 If f is bounded ora, b], f has finitely many points of discontinuity ¢n b],
anda is continuous at every point at whighis discontinuous. Thefi € R(«).

Proof. We give an idea of the proof in case of the Riemann integrat = x) and one single
discontinuity atc, a < ¢ < b. For, lete > 0 be given andn < f(z) < M for all x € [a, b] and
putC' = M — m. First choose point’ andd’ with a < o’ < ¢ < ¥ < bandC(V —d’) < e.
Let f;, j = 1,2, denote the restriction of to the subintervald; = [a,a’] andl, = [b, V'],
respectively. Sincef; is continuous on/;, f; € R over I; and therefore, by the Riemann
criterion, there exist partitions;, j = 1,2, of I; suchthat/(P;, f;) — L(P;, f;) <&, =1,2.
Let P = P, U P, be a partition ofa, b]. Then

UP, f) = L(P, f) =U(P1, /) = L(P, f) + U(Pe, f) = L(P2, f) + (Mo — mo) (V' — o)
<e+e+COWl —d) < 3¢,
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where M, andm, are the supremum and infimum 6fz) on [¢/,&']. The Riemann criterion is
satisfied forf on[a, b], f € R. n

Proposition 5.8 If f € R(«) on [a,b], m < f(x) < M, ¢ is continuous orjm, M|, and
h(x) = ¢(f(x)) on[a,b]. Thenh € R(«) ona, b].

Remark 5.1 (a) A bounded functiory is Riemann-integrable oja, 4] if and only if f is con-
tinuous almost everywhere dn, b]. (The proof of this fact can be found ih_[Rud76, Theo-
rem 11.33]).

“Almost everywhere” means that the discontinuities forneadf (Lebesgue) measube A set

M C R has measureif for givene > 0 there existintervalg,,n € N suchthatVl C (J,, .y In
and) |1, | < e. Here,|I'| denotes the length of the interval. Examples of sets of nteasu
0 are finite sets, countable sets, and the Cantor set (whiaicsuntable).

(b) Note that such a “chaotic” function (at poiijtas

cos L, x # 0,
flx) = v
0, z =0,

is integrable on—, 7] since there is only one single discontinuityat

5.1.1 Properties of the Integral

Proposition 5.9 (a) If fi, fo € R(«) on[a,b] then f; + fo € R(a), ¢f € R(«) for every
constant and

/ab(f1+f2)da:/abf1da+/abf2da, /abcfda:c/abfda'

(D) If f1, fo € R(«v) and f1(z) < fa(x) on|a, b], then

/abfldaﬁ/abeda-

(©If f € R(a) On|a,b] and ifa < ¢ < b, thenf € R(a) on|[a, ¢] and onlc, b], and

/fda—/fda+/ fda.

@) If f € R(w) on|a,b] and| f(x) | < M on|a, b], then

/abfda

@e)If f € R(ay) and f € R(az), thenf € R(ay + a2) and

/ab Fd(ay + ap) = /ab fday + /ab Fdas;

< M(a(b) — a(a)).
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if f € R(«) andc is a positive constant, thefic R(ca) and

(/fday—c/jda

Proof. If f = f; + f, andP is any partition ofla, b], we have
L(Paflaa) +L(P,f270[) S L(P,f,OZ) S U(P,f,OZ) S U(P7f17a) +U(P7f27a) (519)

Slncemf fi+ mf fo < 1nf(f1 + f2) andsup fi+ sup fa > sup(f1 + fo).
If f1 € 3%( ) andf2 € 3%( ), lete >0 be glven There are partlton}s j = 1,2, such that

U<Pj7 fjv&) - L(Pj7 fjv&) <é
These inequalities persisti; and P, are replaced by their common refineméhtThen [5.1P)
implies
U(P,f,OZ)—L(P,f,Oz) < 2e
which proves thaf € R(«). With the same” we have

b
U(P,fj,oz)</fjdoz+€, j:1,2;

sinceL(P, f,a) < fffda < U(P, f,a); hence[[59) implies

/abfdagU(P,f,a)</abf1dcz+/abf2d&+2e.

Sinces was arbitrary, we conclude that

[ffdageébﬁda+:£55da. (5.20)

If we replacef; and f, in (&20) by— f; and— f5, respectively, the inequality is reversed, and
the equality is proved.

(b) Putf = f5— f1. It suffices to prove thafabfda > 0. For every partition” we havemn; > 0
sincef > 0. Hence

b n
/ fdazL(P,f,a):ZmiAcwiEO
a i=1

since in additioMa; = a(z;) — a(x;—1) > 0 (« is increasing).

The proofs of the other assertions are so similar that we thaitletails. In part (c) the point is
that (by passing to refinements) we may restrict ourselveatitions which contain the point
¢, in approximatingﬂfda, cf. Homework 14.5. n

Note that in (c),f € R(«) on [a,c] and on|c, b] in general does not imply that € R(«) on
[a, b]. For example consider the intenjall, 1] with

0, -1 <z <0,
1, 0<z<Ll.
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Thenfo1 fda = 0. The integral vanishes sineeis constant or0, 1]. However,f & R(«) on
[—1, 1] since for any partitiorP including the poind, we havel/ (P, f,«) = 1andL(P, f,a) =
0.

Proposition 5.10 If f, g € R(«) on|a, b], then

(@) fg € R(a); b b
[ #aa| < [ 151 da.

(b)|f] € R(a) and
Proof. If we takey(t) = t?, Propositiol 28 shows thgt € R(«) if f € R(«). The identity

Afg=(f+9)°—(f—9)

completes the proof of (a).
If we take p(t) = |¢|, Propositiol5l8 shows thatf | € R(«a). Choosec = =+1 so that

¢ [ fda > 0. Then
‘/fda :c/fda:/cfda§/|f|da,

sincetf <|f]. [

The unit step functioror Heaviside functiond (z) is defined byH(x) = 0if x < 0 and
H(z)=1ifz>0.

Example 5.2 (a) Ifa < s < b, f is bounded offu, b], f is continuous a¢, anda(z) = H(x—s),
then

/abfdozzf(s)-

For the proof, consider the partitidd with n = 3; a = 2o < 11 < s = x5 < x3 = b. Then
AC{l = AC(g = O, AC(Q = 1, and

U(P, f,a) = My, L(P, f,a) = ma.
Sincef is continuous at, we see thab/, andm, converge tof (s) asz — s.

(b) Suppose,, > Oforalln =1,..., N and(s,),n = 1,..., N, is a strictly increasing finite
sequence of distinct points {n, b). Furthera(z) = 32 ¢, H(x — s,,). Then

n=1

b N
/ f da = chf(8n>

This follows from (a) and Propositién®.9 (e).
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Proposition 5.11 Supposec,, > 0 for all positive integers
neN, Y > ¢, converges,(s,) is a strictly increasing se-
quence of distinct points ifu, b), and

1

alr) = chH(x — Sp)- (5.21) | sz

n=1 i
|

Let f be continuous ofu, b]. Then 5 s S

/bfda = icnf(sn). (5.22)

Proof. The comparison test shows that the sefles15.21) convésgeveryx. Its suma is
evidently an increasing function with(a) = 0 anda(b) = > ¢,. Lete > 0 be given, choose

N so that -
Z cn < €.

n=N-+1
Put

(e 9]

a;(x) :ZCHH(JL'—STL), ag(z) = Z cnH(x — sy).

n=N-+1

By Propositiofi5.0 and Examgleb.2

b N
/ dezl:chf(sn).
a n=1

Sinceas(b) — as(a) < e, by Propositiol 519 (d),

/abfdozz

whereM = sup | f(z) |. Sincea = a; + a» it follows that

< Mze,

b N
/ fda— chf(sn) < Me.
a n=1
If we let N — oo we obtain [2.2R). n

Proposition 5.12 Assume thatv is increasing andv’ € R on [a, b]. Let f be a bounded real
function on|a, b].
Thenf € R(«) ifand only if fo' € R. In that case

/abfda = /abf(x)a'(:p) dz. (5.23)

The statement remains truedfis continuous orja, b] and differentiable up to finitely many
pointscy, ¢y, . . ., Cp.



130 5 Integration

Proof. Lete > 0 be given and apply the Riemann criterion Propos[fioh 5.3’toThere is a
partition P = {xy, ..., x,} of [a, b] such that

U(P,o)— L(P,d/) < e. (5.24)
The mean value theorem furnishes points [z;_;, x;] such that
AC(Z‘ = Oé(.l’l) — Oé(.l’i,1) = O/(tz)(l'z — .fL'Z;l) = C(/(ti)Al'i, for = 1, o, n.

If S; € [.fL'ifl,l'i], then
D lal(si) — o (t:) | Az < & (5.25)
=1

by (523) and Lemm@ad.4 (b). Pif = sup| f(x)|. Since

n

Z f(si)Aa; = Z f(s:) (t;)Ax;

=1
it follows from (&.253) that

n

if(si)Aozi — Zf(si)a’(si)Axi < Me. (5.26)

i=1

In particular,
if(Sz‘)AOéi < U(P, fo!) + Me,
for all choices ofs; [xi_l,x;],lso that
U(P, f,a) <U(P, fo') + Me.
The same argument leads from(3.26) to
U(P, fo') <U(P, f,a) + Me.
Thus
|U(P, f,a) —U(P, fa) | < Me. (5.27)

Now (B25) remains true iP is replaced by any refinement. HenEe(5.26) also remains true

We conclude that
—b —b
’/ fda—/ f(x)d (x)dx

7Zf do = 7Zf(x)o/(w) .

for anyboundedf. The equality for the lower integrals follows frofa {5l 26)dractly the same
way. The proposition follows. n

< Me.

But ¢ is arbitrary. Hence

We now summarize the two cases.
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Proposition 5.13 Let f be continuous offu, b]. Except for finitely many pointg, ci, ..., ¢,
with ¢¢ = a and ¢, = b there existsa/(x) which is continuous and bounded on

[a,b]\{co, ... ,Cn}-
Thenf € R(«) and

/fda—/f dx+chZ (i +0) —a(e; —0))+
fla)(ala +0) = afa)) + f(b)(a(b) — a(b—0)).

Proof (Sketch of proof). (a) Note that; = a(c; + 0) — a(¢;) andA; = ale;) — ale; — 0)
exist by Theorer 318. Define

n—1 k
v) =Y AfH(w—c)+Y —A H(c—
=0 =1
(b) Thenas, = a — «; is continuous.

(c) Sincea; is piecewise constanty,(z) = 0 for = # ¢;,. Hencea)(x) = o/(z). for z # ¢;.
Applying Propositiol5.112 gives

/abfd%:/abfaédx:/abfa’dx.
/abfda:/abfd(alJrag)z/abfa’d:wr/abfdal.

By Propositiol 5111

Further,
b n n—1
[ e =3 At pe) = YA (- f(e)
a =1 i=1

Example 5.3 (a) The Fundamental Theorem of Calculus, see Thebrerh Seldsyi

2 2 o 2
/ xdxgz/ x-322dr = 35| =12.
0 0 4,

(0) f(x) =

x, 0<x<1,
7, r=1,
24+10, 1<z<2,
64, T = 2.
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/0 fda = /0 fo'de + f(1)(a(1+0) —a(l—=0)+ f(2)(a(2) — a(2 —0))

1 2
:/ x2-1dx+/ 2 2vdr + 1(11 — 1) + 4(64 — 14)
0 1

_ZL‘31+42
2

1 1 5
10 +200 = = +8 — = 4210 = 217~.
; + 10+ s H8-5+ ;

0 1

Remark 5.2 The three preceding proposition show the flexibility of theel§es process of
integration. Ifa is a pure step function, the integral reduces to an infiniteese If o has
an initegrable derivative, the integral reduces to theradi Riemann integral. This makes it
possible to study series and integral simultaneouslyerdtian separately.

5.2 Integration and Differentiation

We shall see that integration and differentiation are, ierdain sense, inverse operations.

Theorem 5.14 Let f € Ron|a,b]. Fora < z < b put

Flz) = / F()dt.

ThenF is continuous ona, b]; furthermore, iff is continuous at, € [a, b] thenF is differen-
tiable atz, and

F/<33'0) = f(l’o)
Proof. Sincef € R, f is bounded. Supposg (t) | < M onJa,b]. If a <z <y < b, then

| Fy) = F(x)| =

[ fae] <),
by Propositiofi5)9 (c) and (d). Given> 0, we see that
| Fy) — F(z)] <k,

provided that y — = | < /M. This proves continuity (and, in fact, uniform continuitf) F'.
Now suppose thaf is continuous aty. Givene > 0, choose) > 0 such that

| f(t) = flxo) | <e
if |t —x9| <0,t € [a,b]. Hence, if
To—0<s<xg<t<mzg+d, and a<s<t<b,
we have by Propositidng.9 (d) as before

F(t) — F(s)
t—s

st | = | 25 [ a2 [ s
o

= < e.
t—s

/ (f(w) - flao)) du

S
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This in particular holds fos = x,, that is

F(t) = F(xo)
t—l'o

— f(zo) | < e.

It follows that F'(z0) = f(xo). g

Definition 5.4 A function F': [a, b] — R is called arantiderivativeor aprimitive of a function
f:a,b] — Rif Fis differentiable and™” = f.

Remarks 5.3 (a) There exist functiong not having an antiderivative, for example the Heav-
iside functionH () has a simple discontinuity &; but by Corollarf4.IB derivatives cannot
have simple discontinuities.

(b) The antiderivative” of a functionf (if it exists) is unique up to an additive constant. More
precisely, if F' is a antiderivative oifu, b], thenF(z) = F(x) + cis also a antiderivative of.

If F"andG are antiderivatives of on[a, b], then there is a constanso thatF'(z) — G(z) = c.
The first part is obvious sincE/(z) = F'(z) + ¢ = f(z). Supposé’ andG are antiderivatives
of f. Putd(z) = F(z) — G(x); thenH'(x) = 0 and H (z) is constant by Corollafy4.11.

Notation for the antiderivative:

F(x):/f(x)dx:/fdx.

The functionf is called thantegrand Integration and differentiation are inverse to each other
d :
= @@=, [ reda - .
Theorem 5.15 (Fundamental Theorem of Calculus)Let f: [a,b] — R be continuous(a) If
F(z) = / f(t)de.

ThenF(z) is an antiderivative off (z) on [a, b].
(b) If G(x) is an antiderivative off (x) then

/ f(t)dt = G(b) — G(a).

Proof. (a) By Theoreri5d4'(z) = [ f(x)dz is differentiable at any point, € [a, b] with
() = [f(x).

(b) By the above remark, the antiderivative is unique up torsstant, hencé'(z) — G(z) = C.
SinceF(a) = [ f(z) dz = 0 we obtain

G(b) = Gla) = (F(b) = C) = (F(a) = C) = F(b) = F(a) = F(b) :/ f(x)d.
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Note that the FTC is also true jf € R and(G is an antiderivative of on|[a, b]. Indeed, let > 0

be given. By the Riemann criterion, Proposifiod 5.3 thelistexa partition? = {zg,...,z,}

of [a,b] such thatU(P, f) — L(P, f) < . By the mean value theorem, there exist points
t; € [x;_1,z;) such that

F(x;) — F(zi-1) = f(t) (v —x421), i=1,...,n.
Thus .
Fb) = Fla) =) _ f(t:)Aw.

It follows from LemmdX%.¥ (c) and the above equation that

Zf(ti)Axi —/ flz)dz

Sinces > 0 was arbitrary, the proof is complete.

< €.

- ’F(b)—F(a)—/abf(x)dx

5.2.1 Table of Antiderivatives
By differentiating the right hand side one gets the left hgide of the table.

function domain antiderivative
1
« e R\{-1}, >0 atl
x « {-1}, = L
1
— xr<0 or z>0 log | x |
T
e R e’
a/])
a” a>0,a#1, zeR
loga
sin x R —CcoST
COS & R sin x
1
— R\ {k7 | k € Z} —cotx
sin® x
1 T
5 R\ {—+k37r|k:€Z} tan
Ccos* & 2
1
T2 R arctan x
T
1
— R arsinh x = log(z + vVa? + 1)
+x
! l<x<l1 i
— T arcsin x
V1—2a?
1
r<—1 or z>1 log(z + Va2 — 1)



5.2 Integration and Differentiation 135

5.2.2 Integration Rules

The aim of this subsection is to calculate antiderivatife®mposed functions using antideriva-
tives of (already known) simpler functions.
Notation:

F@)2 = f(b) — f(a).

Proposition 5.16 (a) Let f and g be functions with antiderivativels and GG, respectively. Then
af(x) +bg(z), a,b € R, has the antiderivativeF'(z) + bG(x).

/(af + bg) dz = a/fdx + b/gdx (Linearity.)

(b) If f andg are differentiable, andf(x)¢'(x) has a antiderivative ther’(z)g(z) has a an-
tiderivative, too:

/f’gdx:fg—/fg’dx, (Integration by parts.) (5.28)

If f andg are continuously differentiable dn, b] then

b b
/ fgdz = f(x)g(x)[! - / fd de. (5.29)

(c)If : D — R is continuously differentiable with(D) C I,andf: I — R has a antideriva-
tive F', then

/f(go(:c))@'(a:) dr = F(p(z)), (Change of variable.) (5.30)

If ©: [a,b] — R is continuously differentiable with([a,b]) C I and f: I — R is continuous,
then

@(b)
f(x)dx.

v(a)

/ Flo(t)g () dt =

Proof. Since differentiation is linear, (a) follows.
(b) Differentiating the right hand side, we obtain

d
T [ fd a0 = 1o+ f9~ 14 = 1

which proves the statement.
(c) By the chain rule’’(¢(x)) is differentiable with

d

—Plp(n) = F(p(@)@'(x) = flp(a)¢/(@),

and (c) follows.
The statements about the Riemann integrals follow from taements about antiderivatives



136 5 Integration

using the fundamental theorem of calculus. For example,hee/she second part of (c). By
the above partf’(¢(t)) is an antiderivative of (¢(t))¢’(t). By the FTC we have

/ Fle®)' (1) dt = F(p(t))]; = F(p(b) = F(p(a))-

On the other hand, again by the FTC,

©(b)
/( : f(z)dz = F(x) ig?) = F(p(b)) — F(p(a)).

This completes the proof of (c). [ ]

Corollary 5.17 Supposé is the antiderivative of .

/f(ax +b)de = 2F(aw +b), a#0; (5.31)
/ ggg)) do =log|g(x)|, (g differentiable andy(x) # 0). (5.32)

Example 5.4 (a) The antiderivative of a polymnomial.jfz) = >~,_, axz*, then [ p(z) dz =
ZZ:O ka__izflxk-i—l_
(b) Putf’(z) = e” andg(x) = z, thenf(z) = ¢” andg’(x) = 1 and we obtain

/xexdx:xex—/1-exdx:e“”(x—1).

(€)1 =(0,00). [logzdz = [1-logzdzr =zlogz — [ 21 de =zlogz — x.
(d)

1
/arctanxdx = / 1-arctanxz dx = x arctanx — /:c dx
1+ 22

1 1 2y 1
::Earctan:p——/< ) dx:xarctanx—alog(l%—f).

2 1+ 22

In the last equation we made use[of{5.32).
(e) Recurrent computation of integrals.

dz
L= —"  pneN.
/(Hx?)n "

/ _/(1—1—362)—:1:2_1_ _/ x?dx
n = (1_,_332)71 - in-l (1+x2>n'
x

Putu = xZ, U/ == m ThenU’ =1 and

I, = arctan .

I4+22)" 2 1-n

vz/( rde _1(1+a%)™
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Hence,
La(l+a?)t " 1 o1
Ih=1I_1—- - 1 4
179 1 2(1—n)/( +a7) e
T +271—3
(2n —2)(1 +z?)"~t  2n—2

m + % arctanx and/; =

Proposition 5.18 (Mean Value Theorem of Integration) Let f, ¢: [a,b] — R be continuous
functions andy > 0. Then there exist§ € [a, b] such that

/ F(@)p(x) dz = f(€) / o(z) da. (5.33)

In particular, in casep = 1 we have
b
[ s =)0~ a)

Proof. Putm = inf{f(z) | = € [a,b]} andM = sup{f(z) | = € [a, b]}. Sincep > 0 we obtain
me(x) < f(z)p(z) < Mp(z). By Propositioisld (a) and (b) we have

/ dx</f dng/abcp(x)dx

Hence there is @ € [m, M] such that

/ F@)o(z) dz = /abgo(:c)d:c.

Since f is continuous orja, b] the intermediate value theorem Theofenh 3.5 ensures that the
is a& with . = f(£). The claim follows. [

I, = I, 1.

In particular,/, = T + 31,

4(1+ 2)

for somes € [a, b].

Example 5.5 The trapezoid rule. Lef: [0, 1] — R be twice continuously differentiable. Then
there existg < [0, 1] such that

[ 1 =360+ 50) - 5, (5:34)

Proof. Lety(z) = s2(1—x) such thai;p(x) > 0forz € [0,1], ¢'(z) = & —z, andy” (z) = —1.
Using integration by parts twice as well as Theofeml5.18 web fin

/ fyde=- / @) (@) dr =~ @) @)+ / @) (@) do
5O) + 50 + o) @b~ [ o)) o
10)+50) - 76) [ oty

(F(0) + £01) — 5 £(€).

[\DIH M|>—~ l\DIH
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Indeed,fol (%x — l:102) dp = 12 — 13! —

5.2.3 Integration of Rational Functions

We will give a useful method to compute antiderivatives obapitrary rational function.
Consider a rational functiop/q wherep andq are polinomials. We will assume thétg p <
deg ¢; for otherwise we can expreggq as a polynomial function plus a rational function which

is of this form, for eample
2

1
= 1 .
p— T+ +:1:—1

Polynomials

We need some preliminary facts on polynomials which areedtaere without proof. Recall
that a non-zero constant polynomial has degree zierp; = 0 if ¢ # 0. By definition, the zero
polynomial has degree oo, deg 0 = —oc.

Theorem 5.19 (Fundamental Theorem of Algebra)Every polynomialp of positive degree
with complex coefficients has a complex root, i. e. theradggsomplex number such that

p(z) = 0.

Lemma 5.20 (Long Division) Letp andq be polynomials, then there exist unique polynomials
r ands such that
p=gqs+r, degr <deggq.

Lemma 5.21 Let p be a complex polynomial of degree> 1 and leading coefficient,,. Then
there exist: uniquely determined numbers, . . ., z, (which may be equal) such that

p(2) =an(z —2z1)(z — 22) - (2 — 2zp)-
Proof. We use induction overn and the two preceding statements. In case 1 the linear

polynomialp(z) = az + b can be written in the desired form

p(z) =a (z - _—b) with the unique root z; = —9.
a a

Suppose the statement is true for all polynomials of degreel. We will show it for degree:
polynomials. For, let,, be a complex root gf which exists by Theorelm5119(z,,) = 0. Using
long division ofp by the linear polynomigj(z) = z — z, we obtain a quotient polynomiga| (z)
and a remainder polynomia(z) of degred) (a constant polynomial) such that

p(z) = (2 = zn)p1(2) + 7(2).
Insertingz = z, givesp(z,) = 0 = r(z,); hence the constantvanishes and we have

p(2) = (2 = za)p1(2)
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with a polynomialp; (z) of degree: — 1. Applying the induction hypothesis {g the statement
follows. u

A root « of p is said to be aoot of multiplicity %, £ € N, if « appears exactly times among
the zeros, 2, . . ., z,. Inthat casé> — «)* dividesp(z) but (z — a)**! not.

If pis areal polynomial, i. e. a polynomial with real coefficigréindo is a root of multiplicity

k of p thena is also a root of multiplicityt of p. Indeed, taking the complex conjugation of the
equation

we have since(z) = p(z) = p(2)
p(z) = (Z-@)"7(E) = p(z) = (z —@)'q(2).

Note that the product of the two complex linear factors o andz — @ yield a real quadratic
factor

(z—a)(z—a) =22 —(a+a)z+aa=2>—2Rea+|al’.
Using this fact, the real version of Leminag.21 is as follows.
Lemma 5.22 Let ¢ be a real polynomial of degree with leading coefficient,,. Then there
exist real numbers;, 3;, v; and multiplicitiesr;, s; € N, =1,...,k,j =1,... I such that
k l

a(2) = a, [[(x — oo ]2 — 262 +7,)".

i=1 j=1
We assume that the quadratic factors cannot be factoretid¢urthis means
B2 - <0, j=1,...L
Of coursedegq = >, 7 + Zj 2s; =n.

Example 5.6 (@) z* — 4 = (22 + 2)(2® — 2) = (z — V2)(z + V2)(z — iV2)(z +iV2) =
(z —V2)(x +V2)(2® +2)

(b) 2® + 2 — 2. One can guess the first zerp = 1. Using long division one gets

x3 +r =2 =(x-1)(*+2+2)
—(:E3 —I‘Q)
x? +xr =2
—(2? —x )
20 =2
—(2z —2)

There are no further real zeros:of + x + 2.
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5.2.4 Partial Fraction Decomposition
Proposition 5.23 Let p(z) and ¢(z) be real polynomials withleg p < degq. There exist real
numbersd,,, B;,, andC, such that

k i Sj

ple) _ A )N Byt + O,
m_2<z (x—czi)r> +;<Z (I'Q—Zﬁjx—i—*yj)S) (5.35)

i=1 r=1 =1

where thev;, 3;, v;, i, ands; have the same meaning as in Lenfmal5.22.

ZL‘4
|
nal functionp/q with deg p < degq, f(r) = x + . To obtain the partial fraction decompo-
sition (PFD), we need the factorization of the denominatypomialg(x) = z* — 1. One can
guess the first real zerg = 1 and divideg by z — 1; q(z) = (x — 1)(2* + z + 1).

The PFD then reads

Example 5.7 (a) Compute/ f(x)dx = / dx. We use long division to obtain a ratio-

r a N bx + ¢
B—-1 z—1 224z4+1
We have to determine, b, c. Multiplication by z® — 1 gives

0-2°+1-2+0=a(z®+z+1)+Obr+c)(z—1)=(a+b2’+(a—b+c)r+a—c

The two polynomials on the left and on the right must coingttat is, there coefficients must
be equal:
O=a—c¢, 1l=a—-b+c, 0=a+0b;
which givesa = —b = ¢ = ;. Hence,
11 1 z-1
-1 3x—-1 322+z+1

We can integrate the first two terms but we have to rewritedkedne

xr—1 20 +1 3 1

1
P2rr+l 2224w+l 2(p4 1748

Recall that
2z — 203 dz 1 x+b
— dx =1 2_9 — = —arct )
/x2—2ﬁx+’y v =log|a b+l /(:c+b)2+a2 PR
Therefore,

4 1 1 1 1 2 1
/%d:p:§x2+§log|x—1|—610g(x2+x+1)+%arctan x\/g
(b) If g(x) = (x—1)*(z+2)(2*+2)*(2*+ 1) andp(x) is any polynomial withleg p < deg g =
10, then the partial fraction decomposition reads as
A A A A B C B C B C
p(z) _ An 2 B, An 1T + Gy n 122 + C12 ) + Co1
g(z) x—1 (xz—1)2 (z—1)3 z+2 2+ 2 (224 2)2 2241
(5.36)
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Suppose now thai(z) = 1. One can immediately computé ; and A,;. Multiplying (&:38)
by (z — 1)? yields
1
(x 4+ 2)(x? 4+ 2)2(x2 + 1)
with a rational functionp; not having(xz — 1) in the denominator. Inserting = 1 gives

o 1 o L . .
A1z = 3555 = 7. Similarly,

= A13 + (ZL‘ — 1)])1(1‘)

1 1
Ay = (@ — 1P +222+1)|,__, - (=3)3-6-5

5.2.5 Other Classes of Elementary Integrable Functions

An elementary functioms the compositions of rational, exponential, trigononeetunctions
and their inverse functions, for example

esin(ﬁ—l)

J(w) = x+logx’

A function is calledelementary integrablé it has an elementary antiderivative. Rational func-
tions are elementary integrable. “Most” functions are netreentary integrable as

2 e 1 sin x
€ ’ ) )
x log x x
They define “new” functions
xT t2
W (x) ::/ e 2 dt, (Gaussian integral)
0
, codt . .
li(z) := — (integral logarithm)
o logt
? dx o . .
F(p, k) :== (elliptic integral of the first kind)
0 1 —k2sin?z

%)
E(p, k) = / V1 —k2sin?zdx  (elliptic integral of the second kind)
0

| R(cosz,sinz) dz

Let R(u, v) be a rational function in two variablesandv, that isR(u, v) = 4“4 with polino-

q(u,v

mialsp andgq in two variables. We substitute= tan g Then

2t 1 —¢2 d 2dt
S EE—— COSY = ——— €r = .
1+¢2’ 1+¢2’ 1+ ¢2

: 1—t* 2t 2dt
/R(Cosx,81nx)dx:/R(1+t2,1+t2) T :/Rl(t)dt

with another rational functio®; ().
There are 3 special cases where another substitution iprague

sinx =

Hence
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(@) R(—u,v) = —R(u,v), Ris odd inu. Substitute = sin .
(b) R(u,—v) = —R(u,v), Ris odd inv. Substitute = cos z.

(¢) R(—u,—v) = R(u,v). Substitute = tan x.

Example 5.8 (1) / sin® z dz. Here,R(u,v) = v* is an odd function iny, such that (b) applies;

2

=cosx, dt = —sinxdx, sin“x =1 — cos?z = 1 — t2. This yields

t3
/sin3xdx:—/sin2x-(—sinxdx) :—/(1—t2)dt:—t+§+ const.

COS3

= —COST + T -+ const. .

(2) [tanx dz. Here,R(u,v) = 2. All (a), (b), and (c) apply to this situation. For exampk, |
=sinz. Thencos?x =1 — 2, dt = cosxz dx and

/t d /sinx-cosxdx / tdt 1/d(1—t2)
anxdr = — N e S
cos? x 1—1¢2 2 1—1¢2

1
= —§log(1 —t?*) = —log|cosz|.

| R(z, ¥/ax + b) dx

The substitution

t = Vaxr+b

yieldsz = (t" — b)/a, dz = nt"~!dt/a, and therefore

/R(a:, Vax +b)dz = E/RC _b,t) "L,

a a

[ R(z, vVax? + 2bx + c) dz

Using the method of complete squares the above integraleamitien in one of the three basic
forms

/R(t, V2 4+ 1) dt, /R(t, V2 —1)dt, /R(t, V1—2)dt.

Further substitutions

t = sinh u, t2 4+ 1 = coshu, dt = cosh udu,
t = £ coshu, t2 — 1 = sinh u, dt = £ sinh udu,
t =+ cosu, 1—1t2 =sinu, dt = Fsinudu

reduce the integral to already known integrals.
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Example 5.9 Computel = / Hint: ¢t = Va2 + 6x + 5 — z.
m

Then(z+1)? = 2?42tz +> = 2® + 62+ 5 such that® + 2tz = 62+ 5 and therefore: = £

2t
and , ,
2t(6 — 2t 2(t* — 5 —2t 12t — 10
( ) +20—5) 4 + dt.

dr = (6 — 21)2 (6 — 21)?

i _ 2=5 _ —t?46t-5
Hence, using +z =t + ¢ = =5,

[_/(—2t2+12t—10)dt 1 _/2(6—2t)(—t2+6t—5) "

(6 — 2t)2 t+x ) (—t2+6t—5)(6— 2t)>
dt
=2 6o = —log|6 — 2t |+ const. =log|6 —2va? + 6x + 5+ 22 | + const.

5.3 Improper Integrals

The notion of the Riemann integral defined so far is apparéod tight for some applications:
we can integrate only over finite intervals and the functiares necessarily bounded. If the
integration interval is unbounded or the function to intggris unbounded we speak about
improperintegrals. We consider three cases: one limit of the integiafinite; the function is
not defined at one of the end point®r b of the interval; bothu andb are critical points (either
infinity or the function is not defined there).

5.3.1 Integrals on unbounded intervals

Definition 5.5 Supposef € R on|a, b] for all b > a wherea is fixed. Define

00 b
/a f(x) dx:bginoo/a f(z)dz (5.37)

if this limit exists (and is finite). In that case, we say that tntegral on the leftonvergesilf it
also converges if has been replaced by |, it is said toconverge absolutely

If an integral converges absolutely, then it converges EBs@enpld 5.1l below, where

/:Ofdx s/:o|f|dx.
b

Similarly, one defines/ f(x) dz. Moreover,

/Zfdx::/:fdx+/ooofdx

if both integrals on the right side converge.
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Example 5.10 (a) The integral/ de converges fors > 1 and diverges fop < s < 1.
TR

Indeed,
/R e 1 v |f_ 1 o
Lot l—s a5l s—1 Rs—1 )~
Since
. 1 0, if s>1,
lim — = _
R—+oo R® +00, if 0<s<l,

it follows that

(b)

Hence/ e dx =1.
0

(e 9]

Proposition 5.24 (Cauchy criterion) The improper integral/  f dz converges if and only if

for everye > 0 there exists somie> « such that for allc, d > b

/Cdfd:p

Proof. The followingCauchy criterion for limits of functionis easily proved using sequences:

< E.

The limit lim F'(x) exists if and only if

T—00

Ve>03dR>0Va,y>R:|F(x)—F(y)| <e. (5.38)

Indeed, suppose thdt,,) is any sequence converging 400 asn — oo. We will show
that (F'(x,)) converges if[(5.38) is satisfied. Let> 0. By assumption, there exisf3 > 0
with the above property. Since, — +oo there exists, € N such that, > n, implies

n—~oo

x, > R. Hence| F(x,) — F(x,,) | < easm,n > ny. Thus,(F(z,)) is a Cauchy sequence and
therefore convergent. This proves one direction of the alwoNerion. The inverse direction is
even simpler: Suppose thxdilfoo F(z) = Aexists (and is finite!). We will show that the above
criterion is satisfied.Let > 0. By definition of the limit there exist® > 0 such thatr,y > R
imply | F(z) — A| <e/2and| F(y) — A| < ¢/2. By the triangle inequality,

£

\F(x)—F(y)\IIF(Jf)—A—(F(y)—A)\S\F(ﬂf)—A\+|F(y)—AI<§+2

:5’

asz,y > R which completes the proof of this Cauchy criterion.
Applying this criterion to the functio'(t) = [ f da noting tha F(d) — F(c) | = fcd fdzx
the limitlim,_ .., F'(¢) exists. [
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Example 5.11 (a) If faoo f dx converges absolutely, thgf[l?o f dx converges. Indeed, let> 0
and [ | f | dz converges. By the Cauchy Criterion for the later integral by the triangle
inequality, Proposition5.10, there exists- 0 such that for alk, d > b

/Cdfdx

Hence, the Cauchy criterion is satisfied foif it holds for | f |. Thus,faOO f dx converges.

§/d\f\dx<5. (5.39)

(b) [* 222 dz. Partial integration withu = 1 andv’ = sin z yieldsu’ = —%, v = — cosz and
1 T T T
4gin g 1 d 4 cosx
de = ——cosz| — dz
. T x . . x?
1

4 sin x
dx
e T

d c +

<1+1+1 1 <9 1+1 _
—c d d c|— c d c

if c andd are sufficiently large. Hencd,™ #22 dz converges.
The integral does not converge absolutely. For non-negattegers: € Z, we have

(n+1)m 1 (n+1)m 2
/ dxzi/ |sinz| do = ————;

(n+1)7 2 n 1
dr > — e

Since the harmonic series diverges, so does the int¢graF™” | dz.

1
< ’——cosd—i— —cosc

sin «

X

hence
sin x

X

Proposition 5.25 Supposef € R is nonnegative,f > 0. Thenfac’o f dx converges if there
existsC' > 0 such that

b
/fd:p<0, forall b > a.

The proofis similar to the proof of LemriaZ]19 (c); we omitAnalogous propositions are true
for integrals(”_ f d.

Proposition 5.26 (Integral criterion for series) Assume thaf € R is nonnegativef > 0 and
decreasing o, +oc). Then ;™ f da converges if and only if the seris;- | f(n) converges.

Proof. Sincef(n) < f(z) < f(n—1)forn —1 < x <mn,
' d —1).
o)< [ par< s

Summation oven = 2,3, ..., N yields

SVOEY RVETED SH0!
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If f1°° [ dx converges the seriés ~ | f(n) is bounded and therefore convergent.
Conversely, ifY">, f(n) converges, the integraflRfdx < >, f(n) is bounded as
R — oo, hence convergent by Propositlon3.25. m

Example 5.12 Zn 5 W converges. The substitution

y =logx,dy = 7 gives

converges if and only |jf2

/°° dx _/OO dy
2 l'(lOg x)a log 2 ya

which converges if and only if > 1 (see ExamplER10).

)a

5.3.2 Integrals of Unbounded Functions

Definition 5.6 Supposef is a real function ora, b) and f € R on|a, t] for everyt, a <t < b.
Define

t
/fda:— hm fdx

if the limit on the right exists. Similarly, one defines

b b
[ rar= i, [ ra

if fis unbounded at and integrable oft, b] for all ¢ with a < ¢ < b.

In both cases we say thﬁf f dx converges.

Example 5.13 (a)

Yode . boda 7T
= lim = lim arcsin x\o = lim arcsint = arcsinl = —.
0 t—1-0 J, t—1-0 2

N VIi—2 it
(b)

1 1 1 l-a
%: lim @: lim {1_azc

1
0 xre t—0+0 t xre t—0+0 10g x|t , a = ]_

i, a#lz{ﬁ, a <1,

400, a>1.

Remarks 5.4 (a) The analogous statements to Proposifiad5.24 and Atiopds23 are true
for improper integralgfb fdx.

For example fo e dlverges since both |mproper mtegregﬁo?, fdx andf f dzx diverge,
b 7

=h 7
substltutlom = sin ¢ gives] = .
(b) If fis unbounded both atand ath we define the improper integral

AvmzLVM+ZUm

1

converges. Indeed, the
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if cis betweeru andb and both improper integrals on the right side exist.
(c) Also, if f is unbounded at define

lwfmﬁiAZﬂx+Amfdx

if the two improper integrals on the right side exist.
(d) If fis unbounded in the interior of the interyal b], say at, we define the improper integral

LwM:LVM+Z%M

if the two improper integrals on the right side exist. Forrayée,

[ Ll ]
:manal+mnwﬂ—4

t—0—-0

5.3.3 The Gamma function

Forz > 0 set
['(z) = / t" et dt. (5.40)
0
By Exampld SR (x) = fol t*~le~* dt converges since for every> 0

tl‘*left < 1 .
—'tl—m

By ExampldRI0l,(z) = [, t*~'e~" dt converges since for evety> t,

1
rz—1_—t
t € f; ;5.

Note thatlim; .., t*" e~ = 0 by Propositiofi:31. Henc&(z) is defined for every: > 0.
Proposition 5.27 For every positiver

2l(x) =T(x+1). (5.41)
In particular, forn € N we have’(n + 1) =

Proof. Using integration by parts,

R R R
/ tre”dt = —te 7|+ / t*le " dt.
3 3

Taking the limitss — 0 + 0 andR — +oco one had’(z + 1) = z['(z). Since by Examples10

F(l):/ e fdt =1,
0
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it follows from (541) that
I'n+1)=nl'(n)=---=nn—-1)(n—2)---I'(1) = nl

The Gamma function interpolates the factorial functidrwhich is defined only for positive
integersn. However, this property alone is not sufficient for a complgtaracterization of the
Gamma function. We need another property. This will be doneenmn detail in the appendix
to this chapter.

5.4 Integration of Vector-Valued Functions

A mappingy: [a,b] — RF,v(t) = (71(t),...,7(t)) is said to be continuous if all the mappings
vi, © = 1,...,k, are continuous. Moreover, if all the are differentiable, we write/(¢) =

(V1(8), - (1))

Definition 5.7 Let fi, ..., fi be real functions ofu, b and letf = (fi,..., fx) be the corre-
ponding mapping frona, b] into R*. If o increases offu, b], to say thatf € R(a) means that
f;i € R(a) forj =1,... k. Inthis case we define

/abfda: </abf1da,...,/abfkda).

In other words|” f da is the point inR* whosejth coordinate isf” f; da. Itis clear that parts
(@), (c), and (e) of Propositian®.9 are valid for these veetdued integrals; we simply apply
the earlier results to each coordinate. The same is truerfgaBitiof 2. 1P, Theorem5l4, and
Theoreni5.T5. To illustrate this, we state the analog of tiheldmental theorem of calculus.

Theorem 5.281If f = (f1,..., fx) € RonJa,b] and if FF = (Fy,..., Fy) is an antiderivative
of f on[a, ], then

b
/ f(z)dx = F(b) — F(a).

The analog of Propositidn 5110 (b) offers some new featwes: = (z4, ..., z;) € R* be any
vector inR*. We denote it€uclidean nornby ||z|| = /22 + - - + 22.

Proposition 5.29If f = (f1,..., fx) € R(«) on|a, b] then|| f|| € R(«) and

‘/abfda

Proof. By the definition of the norm,

b
St/)HfHda- (5.42)

1= (F2+ f2+ -+ f2)F

By Propositiofi 5710 (a) each of the functiofjsbelong toR(«); hence so does their sufid +
f3+---+ f7. Note that the square-root is a continuous function on ttsitige half line. If we
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apply Proposition 518 we seff|| € R(«).
To prove [24PR), puy = (1, ..., yx) Withy; = fab f; da. Then we have = fabfda, and

k k b b _k
ol = Y002 =Y ows [ o= [ 3" (s da
j=1 j=1 a “ =1

By the Cauchy—Schwarz inequality, Proposifionl.25,

k
Y ouiti) <Nyl If Ol ¢ € [a,b].
j=1
Inserting this into the preceding equation, the monotorthefintegral gives

b
I < Iyl / 1] do.

If y =0, (&242) is trivial. Ify # 0, division by ||y|| gives [5.24P). m

Integration of Complex Valued Functions

This is a special case of the above arguments Wwith 2. Let p: [a,b] — C be a complex-
valued function. Let,v: [a,b] — R be the real and imaginary parts of respectivelyu =
Rep andv = Im .

The functiony = u + iv is said to bentegrableif «,v € R on[a, b] and we set

b b b
/gpdx:/udx—l—i/ vdx.

The fundamental theorem of calculus holds: If the complexcfion ¢ is Riemann integrable,
© € Ron|a,b] andF(z) is an antiderivative op, then

b
/ o(z)dzr = F(b) — F(a).
Similarly, if w andv are both continuousy'(z) = [ ¢(t) dt is an antiderivative ofp(z).

Proof. Let F = U +iV be the antiderivative ap whereU’ = v andV’ = v. By the fundamental
theorem of calculus

/abwdx:/abudxj%/abvdx:U(b)_U(aM_i(V(b

~—~
|
<
—
S
N~—
N~—
I
3
—
=
N~—
|
B!
~—~
S
~—

Example:
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5.5 Inequalities

Besides the triangle inequali*yfffda’ < f: | f| da which was shown in Propositiéns]10
we can formulate Holder’s, Minkowski’s, and the CauchyBarz inequalities for Riemann—
Stieltjes integrals. For, let > 0 be a fixed positive real number andan increasing function
on|a,bl. For f € R(a) define thel.”-norm

b 7
||f||p=< / T da) | (5.43)

Proposition 5.30 Let f, g: [a,b] — C be complex valued functions arfdg € R on [a, b].

Then
b 2 b b
(/ Ifglda:) < [P [ gl an (5.44)

Proof. Letting f = | f | andg = | g/, it suffices to show( [ fgdx)* < [ f*dxz - [ g*dx. For,
putA = f;’ ¢?’dz, B = f;’ fgdz, andC = ff f?dx. Let X € C be arbitrary. By the positivity
and linearity of the integal,

Cauchy-Schwarz Inequality

b b b b
OS/(f+)\g)2dx:/ f2dx+2)\/ fgdx+/\2/ g>de = C + 2B\ + AN? =: h()\).

a

Thus,h is non-negative for all complex values

Case 1.A = 0. Inserting this, we ge2BA + C' > 0 for all A € C. This impliesB = 0 and
C' > 0; the inequality is satisfied.

Case 2.A > 0. Dividing the above inequality by, we have

2B C B\? B\® C
< N4+ = - < —) - (= —.
O_A+A)\+A_()\+A> (A)M

This is satisfied for alk if and only if

B\* C .
2) <=2 2 < .
(A) =7 and, finally B < AC

This completes the proof. [ ]

Proposition 5.31 (a) Cauchy—Schwarz inequalituppose, g € R(«a), then

/abfgda s/ablfgldaé\//ab|f|2da\//ab|g|2da or (545

b
/ [ Fgl da < 1L, gl (5.46)
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: : . 1.1
(b) Holder’s inequalityLetp andg be positive real numbers suchthat— = 1. If f, g € R(«),
q

p
b
/ fgda

(c) Minkowski’s inequality.Letp > 1 and f, g € R(«), then

L+ gll, < 1If1l, + llgll, - (5.48)

then

b
< / | Fg] da < |I£1L Il (5.47)

5.6 Appendix D

The composition of an integrable and a continuous functiond integrable

Proof of Propositioll5B. Let > 0. Sincey is uniformly continuous ofim, M|, there exists
d > 0suchthat < cand|p(s) —¢(t)| <ceif |s—t| <o and[s,t € [m, M].
Sincef € R(«), there exists a partitioR = {xg, z1, ..., x,} of [a, b] such that

U(P, f,a) — L(P, f,a) < 6. (5.49)

Let M; andm,; have the same meaning as in Definifiad 5.1, andétandm; the analogous
numbers forh. Divide the numberg, 2, ... n into two classesi € A if M; — m; < § and
i € Bif M; —m; > 9. Fori € A our choice ofs shows thatV/ — m; < . Fori € B,
M} —m! < 2K whereK = sup{|¢(t) | | m <t < M}. By (&49), we have

0> Ay < (M; —mj)Aa; < 6 (5.50)
1€EB i€EB
sothat) ., Aa; < 6. It follows that
U(P,h,a) = L(P,h,a) = > (M —m})Aa; + Y (M; —m})Aa; <
1€A i€B
e(a(b) —ala)) +2K6 < e(a(b) — ala) + 2K).

Sincee was arbitrary, Propositidn3.3 implies that R(«). n

Convex Functions are Continuous
Proposition 5.32 Every convex functiofi: (a,b) — R, —co < a < b < 400, is continuous.

Proof. There is a very nice geometric proof in Rudin’s book “Reall &@omplex Analysis”,
see[Rud66, 3.2 Theorem]. We give another proof here.

Let x € (a,b); choose a finite subintervalr, z;) with a < z; < = < zy < b. Since
fz) < Af(x1) + (1 = N)f(xg), A € [0,1], f is bounded above oy, z3]. Chosingz; with

xr1 < w3 < x the convexity off implies

flag) = flan) _ f(2) = f(z) — @) > f(x3) — f(z1)

T3 — T o T — I T3 — X1

(x — x1).
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This means thaf is bounded below offies, 23] by a linear function; hencg is bounded on
(x5, 2], s@Y| f(z) | < C on|xs, z2].
The convexity implies

2 2
— f(z) = flz—h) <

f(3<x+h>+3<x—h>) <

Iteration yields
[l = =1h) = f(z —vh) < f(x+h) = f(z) < [z +vh) = f(z+ (v =1)h).
Summing up over = 1,...,n we have
f(@) = f(x =nh) <n(f(x+h) = f(2)) < fx+nh) - f(z)
— () = e = nh) < fa+h) — f() < - (flo+nh) = ().

Lete > 0 be given; choose € N such thaC'/n < ¢ and choosé such thatr; < x — nh <
r < x + nh < zo. The above inequality then implies

Fath) - )| < 2 <

This shows continuity of atz. [ ]

If g is an increasing convex function arfdis a convex function, theg-f is convex since
fQa+py) < Af(x) + pf(y), A+ p =1, p =0, implies

g(f Oz +py)) < g\ f(x) + pg(x)) < Ag(f(2)) + ng(f(y)).

5.6.1 More onthe Gamma Function

Let I C R be an interval. A positive functio’: I — R is calledlogarithmic convexf
log F': I — R is convex, i.e. for every,y € I and every\, 0 < A < 1 we have

F(Az + (1= Ny) < F(2)* F(y)' ™

Proposition 5.33 The Gamma function is logarithmic convex.

Proof. Let z,y > 0 and0 < A < 1 be given. Sep = 1/Axandq = 1/(1 — A). Then
1/p+1/q = 1 and we apply Holder’s inequality to the functions

and obtain

[ ([ sora)’ ([ )’
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Note that
Fgt)y =tstate™  f)P =t""Te !, g(t)!=t"le ",

Taking the limtss — 0 + 0 and R — +o0 we obtain

r (% + g) < D(2)7T(y)7.

Remark 5.5 One can prove that a convex function (see Defin[fioh 4.4)mginaous, see Propo-
sitionb.32. Also, an increasing convex function of a conftection f is convex, for example
e/ is convex iff is. We conclude thdf(x) is continuous for: > 0.

Theorem 5.34 Let F': (0, +00) — (0, +00) be a function with

@ F(1) =1,
(b) F(x +1) = aF(x),
(c) F is logarithmic convex.

ThenF(z) =I'(z) for all z > 0.

Proof. SinceI'(z) has the properties (a), (b), and (c) it suffices to prove thas uniquely
determined by (a), (b), and (c). By (b),

Flx4+n)=F(z)x(x+1)---(z+n)

for every positiver and every positive integet. In particularF'(n + 1) = n! and it suffices to
show thatF'(x) is uniquely determined for everywith = € (0,1). Sincen + x = (1 — x)n +
z(n + 1) from (c) it follows

Fin+x) < Fn)" *F(n+1)"=Fn)""“Fn)"n" = (n—1)n".
Similarly, fromn + 1 = z(n + z) + (1 — z)((n + 1 + z) it follows
n=Fn+1)<Fn+z)'Fn+1+2)"""=Fnh+2z)(n+z)""
Combining both inequalities,
nl(n+z)* ' < Fn+z)<(n—1)n"

and moreover
nl(n + z)*1 (n —1)n®

W)= T D wan—D S WS Ty o @)

. bn(z) _ (ntz)n®
Slncean(m) = nlnta)

converges td asn — oo,

L (n—1)In"
by =t

HenceF' is uniquely determined. [
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Stirling’s Formula

We give an asymptotic formula for! asn — co. We call two sequenceds,,) and(b,,) to be
asymptotically equaf lim Z—” = 1, and we writea,, ~ b,,.

—
TLOOn

Proposition 5.35 (Stirling’s Formula) The asymptotical behavior of is

n! ~V2mn (ﬁ> )
e

Proof. Using the trapezoid rul€{aB4) with(z) = log z, f”(z) = —1/2* we have

k+1
/ logxdr =
k

with k£ < &, < k + 1. Summationovek =1,...,n — 1 gives

-1

1 1

/logxdx—g logk——logn —25 —
k=1

1

(logk + log(k + 1)) +

NN

12¢]

?T‘l\)

Since [ log z dz = xlogz — x (integration by parts), we have

1221

- 1
nlogn—n—Fl:Zlogk——logn — —
k=1 2 12 k=1 Sk

Zlogk— (n+ >logn—n+%,

wherey, =1 — 43777 é Exponentiating both sides of the equation we find wjth= ¢

[\

nl =n"tze e, (5.51)
Since0 < 1/&2 < 1/k?, the limit
. - 1
vy=lim~,=1-— =
n— oo = fk

exists, and so the limit = lim ¢, = ¢”.

n—0o0

Proof ofc, — v/27. Using [&.51) we have

2 (n)22n(2n)* 22 (n!)?
Con  n2H(2p) V2 Vn(2n)!

2 . -
andlim,, .., ;= = < = ¢. Using Wallis’s product formula for

"~ lim 2 5.52
L2 =1 20133520 - D(2n 1 1) (5:52)

4k? 2:2:4-4----2n-2
o 2r[ n-zZn
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we have

212[ Ak? 2_\/5 2:4---2n 1 22.4%... (2n)
1l gz = 35---(2n—1)v2n+ 1 /n+% 2:3:4---(2n — 1)(2n)

1 221 (nl)?

n—}-% (2n)! 7
such that ()2
V= lim (n)

Consequently; = /27 which completes the proof.

Proof of Holder’s Inequality

Proof of Propositiof5.31. We prove (b). The other two statemergscansequences, their
proofs are along the lines in Sectlonl1.3. The main idea ippoaximate the integral on the left
by Riemann sums and use Holder’s inequallfy {IL.22).4 et 0; without loss of generality, let
f,g > 0. By Proposition 51 g, f?, g7 € R(«) and by Propositio5l 3 there exist partitions
Py, P,, andP; of [a, b] suchthalU(fg, P, a)—L(fg, Pi,a) < &, U(fP, Po,a)—L(fP, Pp, ) <

e, andU(g¢?, P3, o) — L(¢%, P3,a0) < e. Let P = {xg, x4, ..., 2,} be the common refinement
of P;, P,, andP;. By Lemmd&.M (a) and (c)

b n

/ fgda < Z(fg)(ti)A&i + ¢, (5.53)
Z ft)P Aoy < / fPda + ¢, (5.54)
Zg )1 Aa; < / g’da + ¢, (5.55)

for anyt; € [z;,_1,x;]. Using the two preceding inequalities and Holder's indityidl.22) we
have

1
q

Zf Aa g(t Aa? < (Z f(ti)pAai) (Zg qAal)

<(/bfpdoz+6)p(/bqua+€)a.
By (.53),
b n b m b %
/fgdoz<2(fg)(ti)Aai+s<(/ fpda+e) (/ qua+6) bel
a i=1 a a

[un
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Sinces > (0 was arbitrary, the claim follows. [ ]



Chapter 6

Sequences of Functions and Basic
Topology

In the present chapter we draw our attention to complexedhfunctions (including the real-

valued), although many of the theorems and proofs whicloioéxtend to vector-valued func-

tions without difficulty and even to mappings into more gahapaces. We stay within this
simple framework in order to focus attention on the most irtgpdt aspects of the problem that
arise wherimit processes are interchanged.

6.1 Discussion of the Main Problem

Definition 6.1 Supposéf,), n € N, is a sequence of functions defined on a/setnd suppose
that the sequence of numbérs (z)) converges for every € E. We can then define a function

/by

f(z) = lim f,(x), z€E. (6.1)
Under these circumstances we say th&t) convergeson £ and f is thelimit (or thelimit
function) of (f,,). Sometimes we say thatf,,) converges pointwis® f on E” if (&) holds.
Similarly, if >~ | f.(x) converges for every € E, and if we define

f@) =) falz), z€E, (6.2)

the functionf is called thesumof the series "~ | f...

The main problem which arises is to determine whether ingmonproperties of the functions
f. are preserved under the limit operations](6.1) (6.2)irance, if the functiong, are
continuous, or differentiable, or integrable, is the sarae of the limit function? What are the
relations betweerf! and f’, say, or between the integrals 6f and that off? To say thaff is
continuous at: means

lim f(t) = f(x).

t—x

157
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Hence, to ask whether the limit of a sequence of continuoudtifons is continuous is the same
as to ask whether

%im lim f,(t) = lim lim fu(t) (6.3)
i.e. whether the order in which limit processes are carriedi®immaterial. We shall now
show by means of several examples that limit processes tammgeneral be interchanged

without affecting the result. Afterwards, we shall provatthnder certain conditions the order
in which limit operations are carried out is inessential.

Example 6.1 (a) Our first example, and the simplest one, concerns a “éadruence.” For

positive integersn,n € N let -

Smn .
m-+n

Then, for fixedn
lim s,,, =1,

m—00

sothatlim lim s,, = 1. On the other hand, for every fixed,

n—0o0 Mm—00

lim s,,, =0,

so that lim lim s,,, = 0. The two limits cannot be interchanged.

0, 0<zr<l1
(b) Let f,,(x) = 2" on [0, 1]. Thenf(x) = {1 - T
, r=1.
nous on[0, 1]; however, the limitf(x) is discontinuous at = 1; that is hrflo lim t" =0 #
1= lim lim ¢". The limits cannot be interchanged.

n—oot—1-0

After these examples, which show what can go wrong if limitgasses are interchanged care-
lessly, we now define a new notion of convergence, stronger gointwise convergence as
defined in Definitiof &]1, which will enable us to arrive at ppos results.

" All functions f,,(x) are conti-

6.2 Uniform Convergence

6.2.1 Definitions and Example

Definition 6.2 A sequence of functionéf,,) convergesuniformlyon E to a functionf if for
everye > 0 there is a positive integer, such that. > n, implies

| falz) = f(z) | < e (6.4)
forallx € E. We write f, = f onE.

As a formula,f,, = fon E if

Ve>0dnge NVn>ng Ve e E:| fu(x)— f(z)]| <e.
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- f*&  Uniform convergence of,, to f on[a, b] means

that f,, is in thee-tube of f for sufficiently large

T f(x)
| n

f(x) €

a b

It is clear that every uniformly convergent sequence is fpase convergent (to the same func-
tion). Quite explicitly, the difference between the two cepts is this: If f,,) converges point-
wise onF to a functionf, for everye > 0 and for everyz € F, there exists an integer,
depending on bothandx € E such thatl{&}4) holds it > ny. If (f,,) converges uniformly on
E itis possible, for each > 0 to find oneintegern, which will do forall z € E.

We say that the seri€s -, f.(z) convergesiniformlyon E if the sequencés,,(z)) of partial
sums defined by

sn(@) = fulx)
k=1
converges uniformly ork.

Proposition 6.1 (Cauchy criterion) (a) The sequence of functiof,) defined ornt’ converges
uniformly onE if and only if for everye > 0 there is an integer,, such that», m > nq and
x € Eimply

(b) The series of functionz gr(x) defined onE converges uniformly o if and only if for

k=1
everye > 0 there is an integet, such that,, m > ny andx € E imply

Z ()

Proof. Supposé f,,) converges uniformly o’ and letf be the limit function. Then there is an
integerny such that, > ng, z € F implies

<e.

9
[ fulw) = @) < 5,

so that
| fu(z) = fu(@) | < | ful@) = f(@) [+ | fnlz) — fz) | <€

if m,n>mng,x € k.
Conversely, suppose the Cauchy condition holds. By PropoB I8, the sequendd,,(z))
converges for every to a limit which may we callf(z). Thus the sequendg,,) converges
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pointwise onE to f. We have to prove that the convergence is uniform. d_et 0 be given,
choosen, such that[(&l5) holds. Fix and letm — oo in @3H). Sincef,,(z) — f(z) as
m — oo this gives

| ful) = flx)| < e

for everyn > ng andzx € E.
(b) immediately follows from (a) withy,,(z) = > "7 _, gx(x). [

Remark 6.1 Suppose
lim f,(z) = f(x), x€EFE.

Put
M, = sup| fu(z) — f(2)].
zel
Thenf,, = f uniformly on E if and only if M,, — 0 asn — oo. (prove!)

The following comparison test of a function series with a euical series gives a sufficient
criterion for uniform convergence.

Theorem 6.2 (Weierstral3) Supposéf,,) is a sequence of functions definedopand suppose
| falz)| < M, z€E, neN. (6.6)

Then} ">, f, converges uniformly o®' if "> | M, converges.

Proof. If > M,, converges, then, for arbitraey> 0 there exists,, such thatn,n > n, implies
Yo, M; < e. Hence,

Zfz‘(x)

Uniform convergence now follows from Proposit[@nl6.1. m

Sl g Y se va

Proposition 6.3 ( Comparison Test)If > | g,,(x) converges uniformly o&v and| f,,(z) | <
gn(z) for all sufficiently largen and allz € E then}_> | f,(x) converges uniformly of.

Proof. Apply the Cauchy criterion. Note that

<D @) £ gala) <e

m

> falw)

n==k
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Application of Weierstrald’ Theorem to Power Series and Fouier Series

Proposition 6.4 Let

Zanz”, a, € C, (6.7)

n=0
be a power series with radius of convergeri¢ce- 0.
Then(@.4) converges uniformly on the closed disc| | z | < r} for everyr with0 < r < R.

Proof. We apply WeierstralR’ theorem #Q(z) = a,,2". Note that
| fu(2) [ = Tan || 2]" < [an|r".

Sincer < R, r belongs to the disc of convergence, the se¥ies | | a,, | 7" converges by Theo-
remZ3%4. By Theorefn8.2, the serigs, , a,,2" converges uniformly ofiz | | z | < r}. n

Remark 6.2 (a) The power series
Z na,z" 1
n=0

has the same radius of convergeritas the serie$ (8.7) and hence also converges uniformly on
the closed dis€z | |z | < r}.
Indeed, this simply follows from the fact that

— _ 1
lim {/(n+1)]ap | = lim ¥Yn+1lim { |an\zﬁ.

(b) Note that the power series in general donesconverge uniformly on the whole open disc
of convergencéz | < R. As an example, consider the geometric series

fe)=—— =% |z <1

1—2
k=0
Note that the condition
deg>0VneN Iz, € E: | fulz,) — f(zn)| > €0

implies that( f,,) does notonverge uniformly tof on E. Prove!
Toe =1 and everyn € N choosez, = %5 and we obtain, using Bernoulli's inequality,

1 " 1 n
T=(1- >1—n =1-2, hence “n > 1. (6.8)
n—+1 n+1 1— 2,
so that )
— 1 > "
_ — = ko = E Fl=—"n >
|Sn l(zn) f(zn) | g Zn 1— Zn P Zn 1— Zn E_a)

The geometric series doesn’t converge uniformly on the @bpkn unit disc.



162 6 Sequences of Functions and Basic Topology

Example 6.2 (a) A series of the form
Z a, cos(nx) + Z b, sin(nx), ap, by, r € R, (6.9)
n=0 n=1

is called aFourier series(see Sectiof@l3 below). If both°  |a,|and)" " | b, | converge
then the serie$(8.9) converges uniformlylero a functionF ().

Indeed, sincéa,, cos(nx)| < |a,| and|b, sin(nz)| < |b, |, by Theoreni&l2, the serids (6.9)
converges uniformly ofR.

(b) Let f: R — R be the sum of the Fourier series

f(x)zzsinnx (6.10)

n

n=1

Note that (a) does not apply sinB€, [ b, | = >, + diverges.
If f(z) exists, so doeg(x +27) = f(x), andf(0) = 0. We will show that the series converges
uniformly on[o, 27 — §] for everyd > 0. For, put

sp(T) = isin kr = Im <i e”“”) :

k=1 k=1

If 6§ <z <27 — 6 we have

n
§ eikx
k=1

Note that] Im z | < | z| and| e | = 1. Sincesin £ > sin § for §/2 < /2 < = — §/2 we have
for0 <m <n

ei(n+1)x o eix 2 1 1
<

- ()] < - : -
| sn(z) | < = |eie/2 — g-ie/2 | sing ~ sin

2

elr — 1

n

sin kx
2

k=m

B Z sk(x) — sp_1(x)

B 1 1 Sp(x)  Spmo1(x)
B ZSk(x)(/{ k+1> JrfrH—l m

1 /1 1 1 1
< - _
_sing<zm<k: k‘+1)+n+1 +‘m’>

1 1 1 1 1 2
S . 5 - + +_ S . 5
sing \m n+ 1 n+1 m m sin g

The right side becomes arbitraryly smallias— oo. Using Propositiof&l1 (b) uniform con-
vergence ofl{&0) ofd, 27 — 4] follows.

6.2.2 Uniform Convergence and Continuity

Theorem6.5Let £ C R be asubsetand,: £ — R, n € N, be a sequence of continuous
functions on¥ uniformly converging to some functighn £ — R.
Thenf is continuous orE.
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Proof. Leta € F ande > 0 be given. Sincef,, = f there is an- € N such that
| fr(x) — f(z)| <eg/3 forall x¢€F.

Sincef, is continuous at, there exist$ > 0 such thai z — a| < ¢ implies

| fr(x) = fla)| < /3.

Hence| x — a| < ¢ implies

| F(@) = @) | < | f(2) = fol@) |+ | folz) = fol@) |+ fola) = fl@) | S =+ 2+ 5 =

This proves the assertion. [

The same is true for functions. £ — C whereE C C.

Example 6.3 (Examplé&P continued)(a) A power series defines a continuous functions on
the disc of convergence: | | z | < R}.
Indeed, let z, | < R. Then there exists € R such thaf z; | < » < R. By Propositiol.&l4,
>, axx™ converges uniformly oz | |z | < r}. By Theorenl&b, the function, defined by the
sum of the power series is continuous|em, r].
(b) The sum of the Fourier serids{6.9) is a continuous fonctin R if both 3 |a, | and
>, | bn | converge.
(c) The sum of the Fourier seriggz) = % is continuous ond, 2 — 4] for all § with
0 < § < 7 by the above theorem. Clearlf,is 27-periodic since all partial sums are.

Later (see the section on Fourier series) we will show that

f(x) _

Tz x € (0,2m),

/2

-mi2 5 " Sincef is discontinuous at, = 27n, the Fourier series
does not converge uniformly dR.

Also, Exampl€®ll (b) shows that the continuity of thgz) = 2" alone is not sufficient for
the continuity of the limit function. On the other hand, tlegsence of continuous functions
(z™) on (0, 1) converges to the continuous functionHowever, the convergence is not uniform.
Prove!

6.2.3 Uniform Convergence and Integration

Example 6.4 Let f, () = 2n2ze™™"*"; clearlylim, ., f,(z) = 0 for all z € R. Further

1 2
:(1—e*”)—>1.
0

2,.2

/1 falz)de = —e™ ™"
0
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On the other hang"o1 lim,, oo frn(x)dz = fol 0dz = 0. Thus,lim,,_.., and integration cannot
be interchanged. The reasdrf,) converges pointwise tbut not uniformly. Indeed,

1 2n? 2
/ (_) Wy 2
n

Theorem 6.6 Let a be an increasing function ofa, b]. Supposef,, € R(«) on [a, b] for all
n € N and suppos¢,, — f uniformly on[a, b]. Thenf € R(«) on|a, b] and

b b
/ fda = lim/ fnda. (6.11)
Proof. Put
en = sup | fu(x) — f(z)].
z€la,b]
Then

fn_gn S fgfn+€na
so that the upper and the lower integrals/cfatisfy

/ab(fn—an)dag/bfda§72fda§/ab(fn+€n)da. (6.12)

Hence, L
0< /f da — /f da < 2e,(a(b) — a(a)).

Sinces,, — 0 asn — oo (Remarf&l1L), the upper and the lower integralg @fre equal. Thus
f € R(a). Another application of{6.12) yields

/b(f —&p da</ fda</b(fn+5n)

/fda—/fnd@ < en((a(b) — ala)).

This implies [&111). m

Corollary 6.7 If f,, € R(«) on|a, b] and if the series

:ifn(x), a<z<b
n=1

converges uniformly of, b], then

[(Zn)ao-5 ([ ree)

n=1

In other words, the series may be integrated term by term.
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Corollary 6.8 Let f,,: [a,b] — R be a sequence of continuous functions uniformly converging
onla,b| to f. Letx, € [a b).
Then the sequendg, (x f [ (t) dt converges uniformly té'(x f f(t)

Proof. The pointwise convergence éf, follows from the above theorem wiila(¢) = ¢ anda
andb replaced byr, andz.

We show uniform convergence: Let> 0. Sincef, = f on|a, b], there exists,, € N such
thatn > ng implies| f,,(t) — f(t)| < 3% forallt € [a,b]. Forn > ng and allz € [a, b] we

thus have
9
/x( n(t) = dt’ /|fn ()] dt < 7= (b—a) ==

| Fulz) = F(2) | =
Hence,F,, = F on|a,b). ]

Example 6.5 (a) For every reat € (—1,1) we have

lo (14—15)—15—ﬁ+ﬁ —i(_l)nlt" (6.13)
. B P A '

Proof. In Homework 13.5 (a) there was computed the Taylor series

SIE

n=1

of log(1 + z) and it was shown thaf (z) = log(1 + z) if z € (0,1).

n—1

By Propositiofl& 4 the geometric serig(—l)”x” converges uniformly to the functioﬁfx

n=0

on[—r,r] forall0 < r < 1. By Corollanff&Y we have for all € [—r, r|
t
log(1+t) = log(1 b= " q
og(1+1) = log(1 + 1), /Olﬂ / .
1 t > (—1)L
Z/ e >xn+1 =Z( .
Colid —~n+ 1 i — n
]
(b) For|t| < 1 we have
t3 t2n+1
arctant =t — §+— —Z 2n+1 (6.14)

As in the previous example we use the uniform convergenckeeofieometric series da-r, r|
for every0 < r < 1 that allows to exchange integration and summation

todw ' n,.2n - n ' 2n - (_1)n 2n+1
arctant:/o 1+x2:/0 nZ:O(—l) x dx:Z(—l) /0:1: dx:nzzomt :

n=0
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Note that you are, in general, not allowed to inge#t 1 into the equationd(6.13) and{Gl14).
However, the following proposition (the proof is in the apdix to this chapter) fills this gap.

Proposition 6.9 (Abel’'s Limit Theorem) Let) > , a, a convergent series of real numbers.
Then the power series

f(z) = Z anx"
n=0

converges for: € [0, 1] and is continuous ofv, 1.

As a consequence of the above proposition we have

1 1 1 — (1!
log2=1-—-+4-——+..-=
o8 27371 % n
LIRS SN S _i(—l)”
4 3 5 71 o+l

1 2

Example 6.6 We havef,(z) = —¢ » = f(z) = 00n|0, +00). Indeed) f,(z) — 0| < L <e
n

if n» > 1 and forallz € R... However,

/000 fa(t)dt = —en . lim (1 —e*%> =1.

0 t—4o00

Hence

[e 9]

lim fat)dt =1#0= /OO f(t)dt.
0

n—oo 0

That is, Theorerfi&l6 fails in case of improper integrals.

6.2.4 Uniform Convergence and Differentiation
Example 6.7 Let

sin(nx)
\/ﬁ Y
f(z) = lim f,(x) =0.Thenf'(z) =0, and

n—oo

folz) = reR,neN, (6.15)

falx) = v/ncos(nx),

so that(f/) does not converge tf. For instancef/ (0) = \/n — +oo asn — oo, whereas

1'(0) = 0. Note that f,,) converges uniformly t6 onR since| sin(nz)/y/n| < 1/y/n becomes
small, independently om € R.

Consequently, uniform convergence (¢f,) implies nothing about the sequengg). Thus,
stronger hypothesis are required for the assertionfthat f implies f, — f’
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Theorem 6.10 Suppose f,,) is a sequence of continuously differentiable functiongwon|
pointwise converging to some functign Suppose further thatf,) converges uniformly on
la, b].

Thenf,, converges uniformly tg on|[a, b], f is continuously differentiable and da, b], and

f'(x) = Tim fi(x), a<z<b (6.16)

n—oo

Proof. Putg(z) = lim, ., f/(z), theng is continuous by Theorein®.5. By the Fundamental
Theorem of Calculus, Theordm5l 14,

ful@) = fula) + / " p )i

By assumption orfif ) and by Corollarf8I8 the sequence

([ o) N

converges uniformly ofu, b] tof g(t) dt. Taking the limitn — oo in the above equation, we
thus obtain

Since g is continuous, the right hand side defines a differentiablection, namely the
antiderivative ofy(z), by the FTC. Hencef’(z) = g(z); sinceg is continuous the proof is now
complete. [

For a more general result (without the additional assumptfocontinuity of f/) see [Rud76,
7.17 Theorem].

Corollary 6.11 Let f(z) = >, a,z" be a power series with radius of convergerte
(a) Thenf is differentiable o—R, R) and we have

=> nana"!, e (-RR). (6.17)
n=1

(b) The functionf is infinitely often differentiable of-- R, R) and we have

f®(x Zn n—1)--(n—k+1a,a"", (6.18)
L)
an = (0), n € No. (6.19)

In particular, f coincides with its Taylor series.

Proof. (a) By RemarkEl2 (a), the power serjes, ( ) has the same radius of convergence
and converges uniformly on every closed sublntefval, r] of (—R, R). By Theoreni&.]0,
f(x) is differentiable and differentiation and summation canrberchanged.
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(b) Iterated application of (a) yields thgt"—") is differentiable on(—R, R) with @I8). In
particular, inserting: = 0 into (&1I8) we find

A

f(k)(O) = k!ak, — ar = il

These are exactly the Taylor coefficients fohata = 0. Hence,f coincides with its Taylor
series. [

Example 6.8 Forz € (—1,1) we have

N na" = *
E = —
— (1—2)

Since the geometric seriggz) = >~ z" equalsl/(1 — z) on(—1, 1) by Corollanf&.Ill we

have
1 d 1 d [v—,) v~ d, 0 = .
iu_x)r@(—l_x)—a(Zf)—Z:a@)—;” '

n=0

Multiplying the preceding equation hygives the result.

6.3 Fourier Series

In this section we consider basic notions and results ofteery of Fourier series. The question
is to write a periodic function as a series@k kx andsin kx, £k € N. In contrast to Taylor
expansions the periodic function need not to be infinitebgmfdifferentiable. Two Fourier
series may have the same behavior in one interval, but magvbeah different ways in some
other interval. We have here a very striking contrast betwemirier series and power series.
In this section geriodicfunction is meant to be 2r-periodic complex valued function dR,
thatisf: R — C satisfiesf(x + 27) = f(z) for all z € R. Special periodic functions are the
trigonometric polynomials.

Definition 6.3 A function f: R — R is calledtrigonometric polynomiaif there are real num-
berSak, b, k = 0,....n with

Q _ .
flx) = EO + ; ay, cos kx + by sin kx. (6.20)
The coefficients,, andb, are uniquely determined bfsince

1 2w
ak:—/ f(z)coskxdx, k=0,1,...,n,
mJo (6.21)

1 2
bk:—/ f(x)sinkzdz, k=1,...,n.
T™Jo
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This is immediate from

2w
cos kx sinmx dx = 0,

S

2m
cos kx cosmx dr = mopy,, k,m €N, (6.22)

S~

2w
/ sin kz sinmx dx = wp,,
0

whered,,, = 1if K = m andd,,, = 0if & # m is the so calleKronecker symbgolsee
Homework 19.2. For example,qif. > 1 we have

1 27 1 2 n
_/ f(a:)cosmxdx:—/ @—FZakcoskx—i-bksinkx cosmax dx
™ 0 m 0 2 P}
1 n 2
= Z / (ay cos kx cosmx + by sin kx cosmax) dx
m 0
k=1

1 n
= — ( E akﬂ'ékm) = Uy,
™
k=1

Sometimes it is useful to consider complex trigonometritypomials. Using the formulas
expressingos = andsin z in terms ofe!* ande~* we can write the above polynomi&l{6120) as

n

fl@) =Y e, (6.23)
k=—n

WherECo = a0/2 and

1 1
Ckzi(ak_ibk)7 c_kzi(a,k—f-ibk), ku]_

To obtain the coefficients, using integration we need the notion of an integral of a cexpl
valued function, see Section 5.5.1f # 0 we have

b 1
elmﬂ? dl‘ — — elma}
a m

If « = 0andb = 27 andm € Z we obtain

o 0 e 7\ {0},
/ emdx:{ o m {0} (6.24)
0 .

2T, m=

b

a

We conclude,

1 21 .
cﬁ—/ flz)e ™ de, k=0,%1,... n.
2m J,
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Definition 6.4 Let f: R — C be a periodic function witlf € R on |0, 2x]. We call

1 2T )
Cp = — / f(x)e ™ de, keZ (6.25)
2m J,

the Fourier coefficient®f f, and the series

o0

Z et (6.26)

the Fourier seriesof f.

The Fourier series can also be written as
% + ; ay cos kx + by sin kz. (6.27)

wherea, andb, are given by[[821). One can ask whether the Fourier seriesfofction
converges to the function itself. It is easy to see: If thecfiom f is theuniformlimit of a series
of trigonometric polynomials

fla) =Y net (6.28)

thenf coincides with its Fourier series. Indeed, since the sd@&8) converges uniformly, by
Propositiol 66 we can change the order of summation angratten and obtain

1 21 00 ) .
_ - imx —ikz g
Cr 7 i ( E Yim€ )e T

m=—00

1 = o i(m—k)x
~or Z / Y€ "I A = .
0

m=—00

In general, the Fourier series ffneither converges uniformly nor pointwise fo For Fourier
series convergence with respect to titenorm

1 2w 3
1= (5 [ 15 ac) 6.29)

is the appropriate notion.
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6.3.1 An Inner Product on the Periodic Functions

Let V be the linear space of periodic functiofisR — C, f € R on [0, 27]. We introduce an
inner product or” by

fg——/ f(x)g(z)dz, fgeV.
One easily checks the following properties oy, h € V, A\, u € C.
fHg-h=Ffh+g-h,
fr9+h=Ffg9+]h,
Afeng=AEf-g.
fra=g-f

For everyf € V we havef-f = 1/(2n) 02” | f|> dz > 0. However,f- f = 0 does not imply
f = 0 (you can chang¢g at finitely many points without any impact ofr f). If f € V' is
continuous, therf- f = 0 implies f = 0, see Homework 14.3. PUtf |, = v/ f.

Note that in the physical literature the inner product#(X) is oftenlinearin the second com-
ponent and antilinear in the first component. Definéfar Z the periodic functior;: R — C
by e.(z) = el**, the Fourier coefficients of € V take the form

e, = feer, ke

From [&2%) it follows that the functions, & € 7Z, satisfy
CrC = 5l<:l~ (630)

Any such subsefe, | £ € N} of an inner product spacg satisfying [&3D) is called an
orthonormal system (ONSYsinge,(z) = cos kx + isin kx the real orthogonality relations
©22) immediately follow from[{6.30).

The next lemma shows that the Fourier serieg @ the best.?-approximation of a periodic
function f € V by trigonometric polynomials.

Lemma 6.12 (Least Square Approximation) Supposef € V' has the Fourier coefficients,,
k € 7 and lety, € C be arbitrary. Then

||f Z crex f- Z eex| (6.31)
k=—n k=—n
and equality holds if and only i, = ~, for all k. Further,
||f Z crer|| = IFI5 =D Ten . (6.32)
k=—n k=—n
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Proof. Let > always denotez . Putg,, = > viex. Then
k=—n

Fegn =1 mex =Y Tuf-en =D Tk
andg,-e, = 7, such that
gn'gn:Z‘Vk‘2'
Noting that|a — b|> = (a — b)(@ —b) = | a|* + | b|* — @b — ab, it follows that
If=gulls=F—gnf—gn="FF = F-Gn— Guf + Gnn
=[IfIl5 = S @ — X o + 2 | w |
= 1715 = Tewl + 2 1w — e (6.33)

which is evidently minimized if and only ;. = ¢,. Inserting this into[(6.33), equation{6]32)
follows. [

Corollary 6.13 (Bessel’s Inequality) Under the assumptions of the above lemma we have

> lal < Ifls- (6.34)
k=—0c0
Proof. By equation[[6.32), for every € N we have
ol < IIfIl-
k=—n

Taking the limitn. — oo or sup,,.c Shows the assertion. ]

An ONS{e; | k € Z} is said to becompletef instead of Bessel's inequality, equality holds for
all f e V.

Definition 6.5 Let f,,, f € V, we say thaf f,,) converges tgf in L? (denoted byf,, — f) if

Ill2
lim £, — £, = 0.

Explicitly

n—~o0

/O | fule) — f@) P dz — 0.
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Remarks 6.3 (a) Note that the.-limit in V' is not unique; changing(z) at finitely many
points of|0, 27] does not change the integrﬁTT | f— fu | da.
(b) If f,= fonR thenf, W f. Indeed, let > 0. Then there exists, € N such that

n > ng impliessup,cy | fo(z) — f(z)| < e. Hence

27 27
/ |fn_f|2 dHCS/ e2dx = 27e’.
0 0

This showsf,, — f W 0.

(c) The above Lemma, in particul&r{6l32), shows that theiEogeries converges ir¥ to f if
and only if

1A= > lex . (6.35)

k=—o0
This is calledParseval’'s Completeness Relatioile will see that it holds for alf € V.

Let use write

to express the fact thét;,) are the (complex) Fourier coefficients ff Further

n

sn(f) = su(fiz) = D cxe™ (6.36)

denotes thexth partial sum.

Theorem 6.14 (Parseval’'s Completeness Theorenllhe ONS{e, | k£ € Z} is complete.
More precisely, iff, g € V with

e Dol g~ > ek,

k=—o00 k=—o00
then
‘ ‘ 1 27 )
(i) lim - | f—sn(f)|" dz =0, (6.37)
n—oo 0
1 2 o0
(i) g/ fgde= > a7k (6.38)
0 k=—o00
U S L - o a3 I, 0 ;
(i) o : fPde= > |a :Z+§Z(ak+bk) Parseval’s formula
k=—00 k=1

(6.39)

The proof is in Rudin’s book[TRud?6, 8.16, p.191]. It usesr®tWeierstral’ theorem about
the uniform approximation of a continuoous function by pagnials. An elementary proof is
in Forster's bookl[Ford1§23].
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Example 6.9 (a) Consider the periodic functiohe V' given by

1, 0<z<m

f(x):{—l, T <x <27

Sincef is an odd function the coefficients vanish. We compute the Fourier coefficietits

2 [T 2 ) 0, if k& is even,
by = —/ sinkrdr = —— —coskz| =— ((-1)*"' +1) = o
T Jo km o km A if kisodd.
The Fourier series of reads
4 Ksin(2n + 1)
fNE;% m+1
Noting that
S lel = B4 35w+ )
g 142 nt
kEZ neN
Parseval’'s formula gives
L A R D SUTE Dt e R U
221 Jo 25 tom e (2n+1)2 w ! TR

Now we can compute = » >° # Since this series converges absolutely we are allowed to
rearrange the elements in such a way that we first add all thésoohs, which gives; and then
all the even terms which gives. Usings; = 72/8 we find

1 1 1
S:S1+80281+§+E+@+‘”
1 /1 1 5
82504—? ﬁ‘l—?—f‘"' :Sl+1
4 2
S = =851 = —(—.
3 6
(b) Fix a € [0,27] and considey € V' with
1, 0<z<a,
fz) =
0, a<x<2m
. - 1 [
The Fourier coefficients of arecy = —/ dr = — and
2m J, 2m
ck:f-ek:i/aeikxdx:L(eik“—l) k#0
27 /o 2k ’ '

If k 0,

e |? = 1 (1= €M) (1— e ko) = 1 —coska

T 4m2k2 om2k2
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hence Parseval’s formula gives

> 5  a’ = 1— cosak

Z ol =71 +Z 27.2
47 ~ 7 k

k=—o00

wheres = >~ 1/k?. On the other hand

9 1 /a a
”fH2 1T 0 Z o'

Hence, [837) reads

a? n 1 = coska a
- N S — —_
dw? 2 — k? 27

k=1
“coska a* ar 7w (a—m)? w2
= - — 4 = 7 A4
k2 4 2 + 6 4 12 (6.40)
k=1
Since the series
> cos kx
2 (6.41)
k=1

converges uniformly ofR (use Theorem®l2 any, 1/k? is an upper bound{641) is the

Fourier series of the function
_\2 2
% - % z €0, 2r]

and the Fourier series converges uniformlyldmo the above function. Since the term by term
differentiated series converges uniformly [6r2r — 4], see Example®l 2, we obtain

_isinkx_i cos kx ,_ (HC_W)Q_W_Q '_x—w
[ k2 - 4 12) 2

which is true forz € (0, 27).
We can also integrate the Fourier series and obtain by Goy@[T

* . cos kt 1 [" 1
——dt = — ktdt = — sin kt
[ fta Sk [Cosar=3 L

xT

0
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On the other hand,

/w (t=m)® ™\ g 7(x_7r)3—7r—2x+7r—3.
. A 12 12 27 12

By homework 19.5

“sinkr (v —7) w2 73

f(x):kl B 12 12t

defines a continuously differentiable periodic functionlidn

Theorem 6.15Let f: R — R be a continu-
ous periodic function which is piecewise con-
m an s ‘" tinuously differentiable, i. e. there exists a par-
tition {to, ..., .} of [0, 27| such thatf|[t;_1, t;]

is continuously differentiable.

Then the Fourier series of converges uni-
formly to f.

s 2n 3mn 4n

Proof. Let ¢;: [t;_1,t;] — R denote the continuous derivative ffit;_1,t;] andp: R — R
the periodic function that coincides with; on [t;_,¢;]. By Bessel's inequality, the Fourier
coefficientsy; of p satisfy

2 2
Do Il < el < oo

k=—0c0
If & = 0 the Fourier coefficients, of f can be found using integration by parts from the Fourier
coefficients ofy,.

t; : 17
/ f(x)e ™ do = % (f(a:)eikx ::71 - / o(x)e ke dx) :
ti—1 ti—1

7

Hence summation oveér= 1 ,ryields,
T ti )
/ f —lkza: dr Z/ f(l,)e—lka: dz
2 £ ti—1
—ikx _ryk
dx =
= 27rk ‘p(x> T

Note that the term

ti—1

vanishes sincg is continuous and(27) = f(0). Since fora, 5 € C we have|af| <

M a*+|8]%), we obtain
| |<1(1 +| |)
Gl=>5\ 72 T )
2\ [k
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: — 1 -
Since both) - and > |7 |* converge,
k=1

k=—o0

oo

Z |cr | < oo.

k=—o00

Thus, the Fourier series converges uniformly to a contisuonctiong (see Theorein@.5).
Since the Fourier series converges botlf #nd tog in theL? norm, || f — g||, = 0. Since both
f andg are continuous, they coincide. This completes the proof. [

Note that for anyf € V, the series),_,|c|* converges while the seri€s., , | c |
converges only if the Fourier series converges uniformly.to

6.4 Basic Topology

In the study of functions of several variables we need sompeltgical notions like neighbor-
hood, open set, closed set, and compactness.

6.4.1 Finite, Countable, and Uncountable Sets

Definition 6.6 If there exists al-1 mapping of the setl onto the theB (a bijection), we say
that A and B have the sameardinality or that A and B areequivalentwe write A ~ B.

Definition 6.7 For any nonnegative integerc N, let N,, be the se{1,2,...,n}. For any set
A we say that:

(@) A isfinite if A ~ N, for somen. The empty set is also considered to be
finite.

(b) A isinfiniteif A is not finite.

(c) Ais countablaf A ~ N.

(d) Aisuncountablef A is neither finite nor countable.

(e) A is at most countabld A is finite or countable.

For finite setsA and B we evidently havel ~ B if A andB have the same number of elements.
For infinite sets, however, the idea of “having the same nurobelements” becomes quite
vague, whereas the notion bfl correspondence retains its clarity.

Example 6.10 (a) Z is countable. Indeed, the arrangement
0,1,—1,2,—-2.3,-3,...

gives a bijection betweell andZ. An infinite setZ can be equivalent to one of its proper
subsetsV.
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(b) Countable sets represent the “smallest” infinite cadyt No uncountable set can be a
subset of a countable set. Any countable set can be arrangesequence. In particulds is
contable, see Exampgle®.6 (c).

(c) The countable union of countable sets is a countabletlsistjs Cantor’s First Diagonal
Process:

T — T2 T3 — T4

/ / / /
T21 T2 Ta3 T4
I / /
T31 T32 T33 L34

/ / /
T4 Tq2 T43 T g4
L/
Ts51

(d) LetA = {(z,) | =, € {0,1} Vn € N} be the set of all sequences whose element$ are
and1. This setA is uncountable. In particulaR is uncountable.

Proof. Suppose to the contrary thdtis countable and arrange the elementslah a sequence
(sn)nen Of distinct elements ofl. We construct a sequenges follows. If thenth element in
s, 1S 1 we let thenth digit of s be 0, and vice versa. Then the sequenraddiffers from every
membersy, so, ... at least in one place; henee¢ A—a contradiction since is indeed an
element ofA. This provesA is uncountable. [ ]

6.4.2 Metric Spaces and Normed Spaces

Definition 6.8 A set X is said to be anetric spacef for any two pointsz,y € X there is
associated a real numbdé(r, y), called thedistanceof x andy such that

(@) d(z,x) = 0andd(z,y) > 0forall z,y € X with z # y (positive definiteness);

(b) d(z,y) = d(y, z) (symmetry);
(©) d(x,y) < d(z,z)+d(z,y) foranyz € X (triangle inequality).

Any functiond: X x X — R with these three properties is callediatance functiomr metric
onX.

Example 6.11 (a) C, R, 3, andZ are metric spaces wiilz,y) := |y — x |.
Any subsets of a metric space is again a metric space.
(b) Thereal planeR? is a metric space with respect to

da((71, 22), (Y1, 42)) = \/(5171 —22)% + (41 — ¥2)?,
di((r1,2), (Y1, 92)) = [ 21 — 22 [ + |1 — 2 |-

ds is called thesuclidean metric
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(c) Let X be a set. Define

L, if x#y,
d($7y)::{0 if z=y

Then(X, d) becomes a metric space. It is called thiscrete metric space

Definition 6.9 Let F be a vector space ovét (or R). Suppose or’ there is given a function
-]l - £ — R which associates to eache E a real numbefjz|| such that the following three
conditions are satisfied:

(i) [|z]| > O for everyx € E, and||z|| = 0 if and only if z = 0,
(i) [Az|| = | A|]||z] forall A € C (in R, resp.)
(i) flz +yl <[l +lyll, foral w.yec E.

ThenF is called anormed (vector) spacand||z|| is thenormof z.

||z|| generalizes the “length” of vectar € E. Every normed vector spade is a metric space
if we putd(z,y) = ||z — y||. Prove!
However, there are metric spaces that are not normed sp@acesxample(N,d(m,n) =
|n—m]).

Example 6.12 (@) F = R* or E = C*. Letz = (21, -+ , ) € £ and define

Il =

Then||-|| is a norm onE. Itis called theEuclidean norm
There are other possibilities to define a normianFor example,

oo = ma | ;1.

k
lzlly = 1l
i=1
]l = lllly +31llly, (el = max({lzfl, [[«]l,)-
(b) E = C([a, b]). Letp > 1. Then

[ flle = sup | f(2)],

z€la,b

]
b ;
T ( 0P dt) |

define norms orkr. Note that|| ||, < Vb —a [/ f]| .-
(c) Hilbert's sequence spack.= o = {(z,) | 3.2, |z, |” < oo}. Then

o0 3
2
]l = <Z\xn\ )
n=1
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defines a norm ob,.
(d) The bounded sequencéds = (., = {(z,,) | Sup,en | zn | < 00}. Then

2] oo = sup |2y |
neN

defines a norm oi.
(e) E = C([a,b]). Then

b
T :/ ()] de

defines a norm oiy.

6.4.3 Open and Closed Sets

Definition 6.10 Let X be a metric space with metrit All points and subsets mentioned below
are understood to be elements and subselS, an particular, letE C X be a subset ok .

(@ The setU.(z) = {y | d(z,y) < e} with somee > 0 is called the
e-neighborhoodor e-ball with centerr) of x. The numbet is called the radius of
the neighborhood’. (z).

(b) A point p is aninterior or inner point of E if there is a neighborhood’ (p)
completely contained i. £ is openif every point of E' is an interior point.

(c) A pointp is called araccumulatioror limit point of £ if every neighborhood of
p has a point # p such thay € E.

(d) E is said to beclosedif every accumulation point of is a point ofE. Theclo-
sureof E (denoted byF) is E together with all accumulation points &f. In other
wordsp € E, if and only if every neighborhood af has a non-empty intersection
with E.

(e) Thecomplemenbf E (denoted byE°©) is the set of all pointp € X such that
p & E.

(f) E is boundedf there exists a real numbér > 0 such thati(x,y) < C for all
x,y € B.

(9) Eisdensan X if £ = X.

Example 6.13 (a) X = R with the standard metrié(z,y) = |z —y|. £ = (a,b) C R is
an open set. Indeed, for everyc (a,b) we haveU.(z) C (a,b) if € is small enough, say
e <min{|z —a|,|z —b|}. Hencex is an inner point ofa, b). Sincex was arbitrary(a, b)
is open.

F = [a,b) is not open since is not an inner point ofa, b). Indeed,U.(a) C [a,b) for every
e > 0.

We have

E = F = set of accumulation points [a, b].
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Indeed,a is an accumulation point of botta, b) anda, b). This is true since every neighbor-
hoodU.(a), e < b—a, hasa + ¢/2 € (a,b) (resp. inja, b)) which is different froma. For any
pointz ¢ [a, b] we find a neighborhood () with U, (x) N [a, b) = &; hencer ¢ E.

The set of rational numberg is dense inR. Indeed, every neighborhodd (r) of every real
numberr contains a rational number, see Proposiiionl1.11 (b).

For the real line one can prove: Every open set is the at masttable union of disjoint open
(finite or infinite) intervals. A similar description for cded subsets dR is false. There is no
similar description of open subsetsif, k& > 2.

(b) For every metric spack, both the whole spac& and the empty set are open as well as
closed.

(c) Let B = {x € R* | ||z||, < 1} be theopen unit ballin R*. B is open (see Lemniatl16
below); B is not closed. For example, = (1,0,...,0) is an accumulation point a8 since
z, = (1—1/n,0,...,0) is a sequence of elements Bfconverging tar,, however,x, ¢ B.
The accumulation points db are B = {x € R* | ||z||, < 1}. This is also the closure d§ in

RE.

Lemma 6.16 Every neighborhood,.(p), » > 0, of a pointp is an open set.

Proof. Letq € U,.(p). Then there exists > 0 such thatl(q,p) =
r —e. We will show thatl/.(¢) C U,(p). For, letz € U.(¢). Then
by the triangle inequality we have

(d) ConsiderE = C([a,b]) with the supremum norm.
Theng € F is in thes-neighborhood of a functiofi € £
if and only if

A | f(t)—g(t)| <e, forall z € la,bl.

d(z,p) < d(z,q) +d(q,p) <e+(r—g)=r

Hencex € U,(p) andgq is an interior point ofU,.(p). Sinceq was
arbitrary,U,.(p) is open. ]

Remarks 6.4 (a) If p is an accumulation point of a set then every neighborhood picontains
infinitely many points of~.
(b) A finite set has no accumulation points; hence any finitéssgosed.

Example 6.14 (a) The open complex unitdis¢; € C | |z | < 1}.
(b) The closed unitdisd,z € C | | 2| < 1}.

(c) Afinite set.

(d) The set of all integers.

e){1/n|n e N}.

(f) The setC of all complex numbers.

(9) The interval(a, b).
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Here (d), (e), and (g) are regarded as subsels.dbome properties of these sets are tabulated
below:

Closed Open Bounded
(@) | No Yes Yes

(b) | Yes No Yes

(c) | Yes No Yes

(d) | Yes No No

(e) | No No Yes

(M | Yes Yes No

(9) | No Yes Yes

Proposition 6.17 A subsett’ C X of a metric spaceX is open if and only if its complement
E¢ is closed.

Proof. First, supposé.c is closed. Choose € E. Thenz ¢ E€, andz is not an accumulation
point of £°. Hence there exists a neighborhoddof = such thatU N E° is empty, that is

U C E. Thusz is an interior point of£’ and E is open.

Next, suppose that is open. Letr be an accumulation point @<. Then every neighborhood
of = contains a point of¢, so thatz is not an interior point of?. SinceFE is open, this means
thatz € E°. It follows that E° is closed. n

6.4.4 Limits and Continuity

In this section we generalize the notions of convergenteecgs and continuous functions to
arbitrary metric spaces.

Definition 6.11 Let X be a metric space and,,) a sequence of elements &f. We say that
(x,) converges ta € X if lim d(z,,z) = 0. We write lim z, =z orz, — .

n—~o0 n—~o0

In other wordslim,, ., x,, = x if for every neighborhood’., ¢ > 0, of x there existsan, € N
such that, > ng impliesz,, € U..

Note that a subsek’ of a metric spaceX is closed if and only ifF’ contains all limits of
convergent sequences, ), «,, € F.

Two metricsd; andd; on a spaceX are said to beéopologically equivalenif lim,, ..z, = =
w.r.t. d; if and only if lim,,_.. , = = W.I.t. do. In particular, two normg-||, and||-||, on the
same linear spack are said to bequivalenif the metric spaces are topologically equivalent.

Proposition 6.18 Let £, = (E, ||-||,) and £, = (E, ||-||,) be normed vector spaces such that
there exist positive numbers, c; > 0 with

allzll, < Jlzlly < e ||zf|,, forall z e E. (6.42)

Then|-||, and|-||, are equivalent.
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Proof. Condition [&.4P) is obviously symmetric with respectHp and £, since||z||, /ca <
|lz||, < ||z]|, /c1. Therefore, it is sufficient to show the following: 4f, — z w.r.t. ||-||, then

r, — x W.L.t. ||-|[,. Indeed, by Definitionlim,,_. ||z, — z|, = 0. By assumption,

a |l —zfl; < |l —2ll, < eollwn —2fl,, neN.

Since the first and the last expressions tend &3n — oo, the sandwich theorem shows that
lim,, o ||z, — 2|, = 0, too. This proves;,, — x W.r.t. ||-|],. ]

Example 6.15 Let E = R* or E = C* withthe norml[z]|, = {/] 21 [" + - [z [, p € [1, 0]
All these norms are equivalent. Indeed,

k k
%, < @ P <Y Nzl = k2, .
=1 =1
= |2l < llzll, < VE [z - (6.43)

The following Proposition is quite analogous to Proposifd33 withk = 2. Recall that a
complex sequencg,,) converges if and only if botfRe z,, and Im z,, converge.

Proposition 6.19 Let (z,,) be a sequence of vectors of the euclidean sp&ée||-||,),

Tp = (:L‘nlu s 7xnk)~
Then(z,) converges ta = (a4, ..., a;) € R¥ if and only if
lim x,;, =a;, 1=1,... k.

n—0o0

Proof. Suppose thatim z,, = a. Givene > 0 there is am, € N such thain > n, implies
|z, —all, <e. Thus, fori =1,..., k we have

| i — ai| < ||, — all, <&

hencelim z,; = q,.
Conversely, suppose thditm z,; = a; for: = 1,..., k. Givene > 0 there areng; € N such
thatn > ng, implies

15
‘l’m—ai‘<—.

Vk
Forn > max{ng1, ..., no} we have (sed(6.13))

I —ally < VE llz — all, <<

hencelim z,, = a. [

n—~o0
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Corollary 6.20 Let B C R* be a bounded subset aid,) a sequence of elements®f
Then(zx,,) has a converging subsequence.

Proof. SinceB is bounded all coordinates &f are bounded; hence there is a subsequerfﬂ:)e
of (x,,) such that the first coordinate converges. Further, thersdnbaequencevﬁf)) of (xﬁ}’)
such that the second coordinate converges. Finally thmesimsequencecff)) of (a:ﬁf’l))
such that all coordinates converge. By the above propoditie subsequen((erff)) converges

in R”. m

The same statement is true for subgdets CF.

Definition 6.12 A mappingf: X — Y from the metric spac& into the metric spac&” is
said to becontinuousata € X if one of the following equivalent conditons is satisfied.
(a) For every > 0 there exist® > 0 such that for every € X

d(xz,a) <o implies d(f(x), f(a)) <e. (6.44)

(b) For any sequendg:,,), =, € X with lim xz, = a it follows that lim f(z,) = f(a).

n—0o0

The mappingf is said to becontinuouson X if f is continuous at every poiatof X .

Proposition 6.21 The composition of two continuous mappings is continuous.

The proof is completely the same as in the real case (see $ttiopf8.4) and we omit it.
We give the topological description of continuous funcsion

Proposition 6.22 Let X andY be metric spaces. A mappirfg X — Y is continuous if and
only if the preimage of any open set¥nis open inX.

Proof. Suppose thaf is continuous ands C Y is open. If f~!(G) = &, there is nothing to
prove; the empty set is open. Otherwise there exigts f~!(G), and thereforef (z) € G.
SinceG is open, there is > 0 such thatU.(f(z¢)) C G. Sincef is continuous at,, there
existsd > 0 such thatr € U;(xo) implies f(z) € U.(f(xo)) C G. Thatis,Us(x¢) C f1(G),
andz, is an inner point off ~!(G); hencef~'(G) is open.

Suppose now that the condition of the proposition is fulfill&ve will show thatf is continu-
ous. Fixzy € X ande > 0. SinceG = U.(f(x)) is open by LemmaG1§,~'(G) is open by
assumption. In particulag;, € f~!(G) is an inner point. Hence, there exigts> 0 such that
Us(zo) C f7H(G). It follows that f(Us(xo)) C U.(xo); this means thaf is continuous at:.
Sincex, was arbitrary,f is continuous onx. n

Remark 6.5 Since the complement of an open set is a closed set, it is edtat the proposi-
tion holds if we replace “open set” by “closed set.”

In general, the image of an open set under a continuous @émoéed not to be open; consider
for examplef(z) = sinz andG = (0, 27) which is open; howeverf((0,27)) = [—1, 1] is not
open.
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6.4.5 Comleteness and Compactness
(a) Completeness

Definition 6.13 Let (X, d) be a metric space. A sequer(ag ) of elements ofX is said to be a
Cauchy sequendéfor everye > 0 there exists a positive integeg € N such that

d(xy, zy) <e  forall m,n > ng.

A metric space is said to lmmpletaf every Cauchy sequence converges.
A complete normed vector space is calleBanachspace.

Remark The euclideark-spaceR* andC* is complete.
The function spac€([a, b)), ||-||.) is complete, see homework 21.2. The Hilbert sp&cis
complete

(b) Compactness

The notion of compactness is of great importance in analgsigecially in connection with
continuity.

By anopen covenof a setE in a metric spac& we mean a collectiokG,, | a € I} of open
subsets o\ such that C | J, G,. Here! is any index set and

JGa={zeX| 3pel:zeCyl
acl

Definition 6.14 (Covering definition) A subset/ of a metric spac« is said to becompacif
every open cover ok contains a finite subcover. More explicitly,{it7, } is an open cover of
K, then there are finitely many indices, . . ., «,, such that

K CGa U+ UG,

Note that the definition does not state that a set is comptetié exists a finite open cover—the
whole spaceX is open and a cover consisting of only one member. Insagtyopen cover
has a finite subcover.

Example 6.16 (a) It is clear that every finite set is compact.
(b) Let (z,) be a converging ta sequence in a metric spade Then

A={z,|neN}u{z}

IS compact.

Proof. Let {G,} be any open cover ol. In particular, the limit point: is covered by, say.
Then there is amy € N such thatr,, € G, for everyn > ny. Finally, x; is covered by some
Gr, k=1,...,n9 — 1. Hence the collection

{Ge | k=0,1,...,ng— 1}

is a finite subcover ofi; thereforeA is compact. [
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Proposition 6.23 (Sequence Definition)A subsetK” of a metric spaceX is compact if and
only if every sequence iR contains a convergent subsequence with limikin

Proof. (a) Let K be compact and suppose to the contrary thaj is a sequence iK” without
any convergent to some point &f subsequence. Then everye K has a neighborhood,
containing only finitely many elements of the sequeficg). (Otherwiser would be a limit
point of (z,,) and there were a convergingtcsubsequence.) By construction,

Kc|]JU.

SinceK is compact, there are finitely many points.. . . , v, € K with
KcU,u---uu,,.

Since everyU,, contains only finitely many elements ¢f,,), there are only finitely many
elements ofz,,) in K—a contradiction.
(b) The proof is an the appendix to this chapter. [ ]

Remark 6.6 Further properties. (a) A compact subset of a metric spadesed and bounded.
(b) A closed subsets of a compact set is compact.

(c) A subsetk of R* or C* is compact if and only if< is bounded and closed.

Proof. SupposéX is closed and bounded. Let,, ) be a sequence iR'. By Corollanf€.20(z,,)
has a convergent subsequence. SiRces closed, the limit is in/K. By the above proposition
K is compact. The other directions follows from (a) n

(c) Compactness and Continuity

As in the real case (see Theorenl 3.6) we have the analogautsries metric spaces.

Proposition 6.24 Let X be a compact metric space.
(@)Let f: X — Y be a continuous mapping into the metric spaceThenf(X) is compact.
(b) Let f: X — R a continuous mapping. Thehis bounded and attains its maximum and
minimum, that is there are pointsandq in X such that

f(p) =sup f(z), flg) = inf f(z).

reX zeX

Proof. (a) Let{G,} be an open covering of(X). By Propositiol 622 ~!(G,,) is open for
everya. Hence,{f"!(G,)} is an open cover of. Since X is compact there is an open
subcover ofX, say{f ' (Ga,), .-, [ HGa,)}. Then{G,,,...,G,,} is a finite subcover of
{G,} coveringf(X). Hence,f(X) is compact. We skip (b). n

Similarly as for real function we have the following proptosn about uniform continuity. The
proof is in the appendix.
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Proposition 6.25 Let f: K — R be a continuous function on a compact et R. Thenf
is uniformly continuous OIx'.

6.4.6 Continuous Functions inRk

Proposition 6.26 (a) The projection mapping,;: R* — R, i = 1,...,k, given by
pi(z1,...,z,) = x; IS continuous.

(b) LetU C R* be open andf, g: U — R be continuous o/. Thenf + g, fg, | f|, and,f/g
(g # 0) are continuous functions ai.

(c) Let X be a metric space. A mapping

f: (fh"')fk): X_)Rk
is continuous if and only if all components X — R,i =1, ..., k, are continuous.

Proof. (a) Let(x,) be a sequence convergingdo= (ay,...,a;) € R*. Then the sequence
(pi(z,)) converges ta; = p;(a) by Propositiol6.119. This shows continuity@fata.
(b) The proofs are quite similar to the proofs in the real case Propositidn2.3. As a sample
we carry out the proof in casgy. Leta € U and putM = max{| f(a)|,| f(b) |}. Lete > 0,
e < 3M?, be given. Sincg andg are continuous at, there exist$ > 0 such that

le—al <& implies | f(z)~ f(a)] < 5.

3M
! (6.45)

|z —al <6 implies |g(z)—g(a)| < YR

Note that

fo(x) = fg(a) = (f(z) = f(a))(g(z) = g(a)) + f(a)(g(z) = g(a)) + g(a)(f(z) = f(a)).

Taking the absolute value of the above identity, using ttamtjle inequality as well a§ (645)
we have thafjz — a|| < ¢ implies

| fg(x)=fg(a)| < | f(x)=f(a)||g(z)—g(a) |+ fla)|[g(x) —g(a) | +]g(a) || f(x) — f(a)]
g2 € €
Sop T Mgyt Mg sty

This proves continuity of ¢ ata.

(c) Suppose first that is continuous at € X. Sincef; = p;of, f; is continuous by the result
of (a) and PropositiodnG.P1.

Suppose now that all thg, i = 1,. .., k, are continuous at. Let(x,), x, # a, be a sequence
in X with lim, ..z, = ain X. Sincef; is continuous, the sequences(zx,)) of numbers
converge taf;(a). By Propositiof .19, the sequence of vectffs, ) converges tg (a); hence
f is continuous at. [
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Example 6.17 Let f: R* — IR? be given by

sin ——£2tet
f(xv Y, Z) = Ty :

log|a? +y* + 22 + 1]

Then f is continuous or/. Indeed, since product, sum, and composition of continfions-
tions are continuous,/z2 + y2 + 22 + 1 is a continuous function o>. We also made use
of Propositiol 8,26 (a); the coordinate functiangy, andz are continuous. Since the denomi-
nator is nonzerof, (z, y, z) = sin ——2£<__ s continuous. Sincez? +y>+ 22+ 1| > 0,

/z2+y2+z2+1

fo(z,y, z) = log | 2% + y? + 2% + 1| is continuous. By Propositidn 626 (£)is continuous.

6.5 Appendix E

(a) A compact subset is closed

Proof. Let K be a compact subset of a metric spaceWe shall prove that the complement of
K is an open subset of .

Suppose thap € X, p ¢ K. If ¢ € K, let V? andU(q) be neighborhoods gf and g,
respectively, of radius less thaifp, ¢) /2. SinceK is compact, there are finitely many points
q1, - - -, ¢, IN K such that

KcUy,U---UU,, =U.

If V =Van...NnVe, thenV is a neighborhood op which does not intersedf. Hence
U C K¢, so thatp is an interior point of ¢, and K is closed. We show thak is bounded.
Lete > 0 be given. Sincéy is compact the open covél/.(z) | x € K} of K has a finite
subcover, sayU.(z1), ..., Us(z,)}. LetU = |J;_, U-(x;), then the maximal distance of two
pointsx andy in U is bounded by

2e + Z d(z;, ;).

1<i<j<n

A closed subset of a compact set is compact

Proof. Supposd” C K C X, F'is closed inX, andK is compact. Le{U*} be an open cover
of F.. SinceF* is open,{U?%, F°} is an open covef? of K. SinceK is compact, there is a
finite subcover of (2, which coverss. If F©is a member o, we may remove it fron® and
still retain an open cover af. Thus we have shown that a finite subcollectio{ &f*} covers
F. ]
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Equivalence of Compactness and Sequential Compactness

Proof of Propositiofil&. 23 (b). This direction is hard to proof. tie$ not work in arbitrary
topological spaces and essentially uses that a metric space. The prove is roughly along the
lines of Exercises 22 to 26 in[Rud76]. We give the proof ofdne (seel[Bre97, 9.4 Theorem])
Suppose that every sequencdircontains a converging ikl subsequence.

1) K contains a countable dense set. For, we show that for every), K can be covered by
a finite number ot-balls € is fixed). Suppose, this is not true, i.E. can’t be covered by any
finite number ofs-balls. Then we construct a sequerieg) as follows. Take an arbitrary,.
Supposery, ..., z, are already found; sinck is not covered by a finite number efballs, we
find z,,, which distance to every preceding element of the sequenge&er than or equal
to . Consider a limit point: of this sequence and ar2-neighborhood’/ of z. Almost all
elements of a suitable subsequencégf) belong toU, sayz, andz, with s > r. Since both
are inU their distance is less than But this contradicts the construction of the sequence.
Now take the union of all those finite sets corresponding+ol/n,n € N. Thisis a countable
dense set oK.

2) Any open covef U, } of K has a countable subcover. et K be given. Sincd U, }.c; iS
an open cover of{ we find € I andn € N such thail,,,(z) C U,. Further, sincgz; };en

is dense i, we findi,n € N such that/(z, ;) < 1/n. By the triangle inequality

WS Ul/n(l‘z) C Ug/n(l‘) C U@.

To each of the countably marty, ,,(z;) choose oné/s O Uy, (z;). This is a countable sub-
cover of{U,}.
3) Rename the countable open subcovef By}, and consider the decreasing sequefige
of closed sets .

Co=K\|[JV&, C1DCyD---.

k=1

If Cr, = @ we have found a finite subcover, namély V5, ..., V,. Suppose that all th€',, are
nonempty, say,, € C,. Further, letr be the limit of the subsequenc¢e,,). Sincez,, € C,,
for all n; > m andC,, is closed;x € C,, for all m. Hencer € N C,,. However,

(N Cu=K\|JVu=2

meN meN

meN

This contradiction completes the proof. [

Proof of Propositiofi6.25. Let > 0 be given. Since is continuous, we can associate to each
pointp € K a positive numbef(p) such thaly € K N Us,)(p) implies| f(q) — f(p) | < €/2.

Let J(p) ={q € K |[p—q|<d(p)/2}.

Sincep € J(p), the collection{ J(p) | p € K} is an open cover of’; and since is compact,
there is a finite set of points, . . ., p, in K such that

K cCJp)U---UJ(pn). (6.46)
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We puté := s min{d(p1),...,d(p,)}. Thend > 0. Now letp andg be points of K" with
|z —y| < ¢. By (&48), there is an integet, 1 < m < n, such thap € J(p,,); hence
1
[P =P | < 50(pm),
and we also have
1
[ =pm| <|p—=al+[p=pm| <o+ 55(pn) < 6(pm).
Finally, continuity atp,,, gives

[ f) = f@) | <1 f(p) = fom) |+ flom) — fl@)] <e.

Proposition 6.27 There exists a real continuous function on the real line Wh& nowhere
differentiable.

Proof. Define
p(x)=|z|, =el[-1,1]

and extend the definition af to all realz by requiring periodicity
p(r+2) = o).
Then foralls,t € R,
[o(s) —p(t) | < |s—t]. (6.47)

In particular,yp is continuous oriR. Define

[ee] 3 n
= — 4"7). A4
=3 (4) o(4"2) (6.48)
Since0 < ¢ < 1, Theorenhl &R shows that the series{H.48) converges urifamRR. By
Theorenfil& b is continuous orR.
Now fix a real number: and a positive integen € N. Put
+1

=g
where the sign is chosen that no integer lies betw#enand4™(z + §,,). This can be done
sinced™ | 4, | = 1. It follows that| o (4™z) — p(4™x 4 4™6,,) | = 1. Define

(A" (2 + 0m)) — p(4"x)
5 :

Tn =
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Whenn > m, thend™),, is an even integer, so that = 0 by peridicity ofp. When0 < n < m,
@41) implies v, | < 4™. Since|~,, | = 4™, we conclude that

flz+0,) — f(x) L3\ 1
_ > qm n__ — (qm
5 nZ:O ) m| =3 nZ:O 3 (3™ +1)
Asm — oo, d,, — 0. It follows that f is not differentiable at. n

Proof of Abel’s Limit Theorem, Propositidn@.9. By Propositlodifthe series converges on
(—1,1) and the limit function is continuous there since the radiusomvergence is at least
by assumption. Hence it suffices to proof continuityat 1, i.e. thatlim, ., o f(z) = f(1).
Putr, = > ;- a thenrg = f(1) andr,, — r, = —¢, for all nonnegative integens € 7.
andlim,,_...r, = 0. Hence there is a constafitwith | r,, | < C and the serie3" >~ ;12"
converges fof = | < 1 by the comparison test. We have

[oe) o o
n __ n n+1
(1—2) E Tpp1 " = E Tp1'" + E Try1®
n=0 n=0 n=0

= Zrn+1:p” —Zrn:ﬂn-f-ro = —Zan:pn—}—f(l),
n=0 n=0 n=0

hence, .
F) = fl@) = (1=2) Y e

Lete > 0 be given. Choosé&’ € N such that: > N implies|r, | < . Putd = ¢/(CN); then
z € (1—0,1)implies

O =@ <A=D) 3 [ |24 (1= 2) 3 [ ] 2"

<(1—-z)CN +(1 —x)z—:Zx” = 2¢;
n=0

hencef tends tof (1) asz — 1 — 0. ]

Definition 6.15 If X is a metric spac€(.X) will denote the set of all continuous, bounded
functions with domainX. We associate with eache C(X) its supremum norm

171l = 171 = sup | £(2) . (6:49)

Sincef is assumed to be bounde[;|| < co. Note that boundedness &f is redundant ifX is
acompactmetric space (Propositi@n]24). ThisX ) contains of all continuous functions in
that case.

It is clear thatC(.X) is a vector space since the sum of bounded functions is adgainirrded
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function (see the triangle inequality below) and the sumositimuous functions is a continuous
function (see Propositidn&.R6). We show thét|__ is indeed a norm of(.X).

(i) Obviously, || f|l., > 0 since the absolute valuef(x) | is nonnegative. Furthgjo|| = 0.
Suppose nowjl f|| = 0. This implies| f(z) | = 0 for all z; hencef = 0.

(ii) Clearly, for every (real or complex) numbarwe have

IAfIl = sup [ Af(z) | = | Al sup | f(z) [ = | AT
reX zeX
(iii) If h = f + g then
[he) [ < [f@) [+ 1g@) [ < IfI+lgll, = eX;

hence
1f+gll < [I£]I + llgll-

We have thus mad@(.X) into a normed vector space. Rem@arl 6.1 can be rephrased as

A sequencéf,) converges tof with respect to the norm i€ (X) if and only if
fn — f uniformly onX.

Accordingly, closed subsets 6f(X) are sometimes callegniformly closedthe closure of a
setA C C(X) is called theuniform closureand so on.

Theorem 6.28 The above norm maké€y X) into a Banach space (a complete normed space).

Proof. Let (f,,) be a Cauchy sequence ©f X'). This means to every > 0 corresponds an
no € N such thatn, m > ng implies||f,, — f|| < e. It follows by Propositioi&]1 that there
is a function f with domain X to which (f,,) converges uniformly. By Theordm®.5, is
continuous. Moreovelrf is bounded, since there is ansuch that f(x) — f,.(z) | < 1 for all

x € X, andf, is bounded.

Thusf € C(X), and sincef,, — f uniformly on X, we have|f — f,|| — 0 asn — oc. n



Chapter 7

Calculus of Functions of Several Variables

In this chapter we consider functiois U — R or f: U — R™ whereU C R" is an open set.
In SubsectioR6.416 we collected the main propertiesasitinuousunctions f. Now we will
study differentiation and integration of such functionsriare detail

The Norm of a linear Mapping

Proposition 7.1 LetT € L(R™, R™) be a linear mapping of the euclidean spaé&&sinto R™.
(a) Then there exists sondé > 0 such that

\T(z)||l, < C |z||,, forallzeR". (7.1)
(b) T" is uniformly continuous ofR".

Proof. (a) Using the standard basesRf andR™ we identify 7" with its matrixT = (a;;),
Tej = Z:il a;je;. Fore = (z4,...,z,) we have

J
n n
= E alj:cj, Ce E amj:cj )
j=1 j=1

hence by the Cauchy-Schwarz inequality we have

IT(z)||2 = ZZ%% <Z<Z|aw%|>

i=1 | j=1

<3Sl Sl = (T Xl e e,
2y} J=

i=1 j=1

whereC' = />, . a7;. Consequently,

[Tz|| < Ol

(b) Lete > 0. Puty = ¢/C with the above”. Then|lz — y|| < ¢ implies
1Tz =Tyl = IT(z =yl < Clle =yl <e,

which proves (b). [

193
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Definition 7.1 LetV andW normed vector spaces ande L(V, ). The smallest number
with (Z1J) is called thenormof the linear map4 and is denoted bijA||.

|A|l = inf{C | ||Az|| < C'|jz|| forallz e V}. (7.2)
By definition,
[ Az < [[A]l |- (7.3)
LetT € L(R", R™) be a linear mapping. One can show that

Tx
|T|| = sup —”” ” = sup ||Tz|| = sup ||Tz] .
w20 7l =1 Jel<1

7.1 Partial Derivatives

We consider functiong: U — R whereU C R" is an open set. We want to find derivatives
“one variable at a time.”

Definition 7.2 Let U C R™ be open and : U — R a real function. Thery is calledpartial
differentiableata = (a4, . .., a,) € U with respect to théth coordinate if the limit

flay,...;a;+h,... a,) — fla, ..., ay)

exists whereh is real and sufficiently small (such that, ..., a; + h, ..., a,) € U).
D, f(z) is called theith partial derivative off ata. We also use the notations
_of . 0f(a) _
sz(a) - c%l (CL) - c%l - f$7,(a')

It is important thatD; f (a) is the ordinary derivative of a certain function; in factgifr) =
flay,...,z,...,a,), thenD; f(a) = ¢'(a;). Thatis,D;f(a) is the slope of the tangent line at
(a, f(a)) to the curve obtained by intersecting the graply ofith the planer; = a;, j # 4. It
also means that computation bf f(a) is a problem we can already solve.

Example 7.1 (@) f(z,y) = sin(xy?). Then D, f(z,y) = y?cos(xzy?) and Dyf(z,y) =
2y cos(zy?).
(b) Consider the radius function R" — R

r(z) = llelly = /ol + -+ a3,

x = (x1,...,x,) € R". Thenr is partial differentiable ofR™\ 0 with

g; (z) = TZ), x40, (7.5)

Indeed, the function




7.1 Partial Derivatives 195

is differentiable, where, ... x; 1, %1, ..., x, are considered to be constant. Using the chain
rule one obtains (witl§ = z;)
or 1 2¢ x;

o IO = e e e

(c) Let f: (0,+00) — R be differentiable. The composition — f(r(z)) (with the above
radius functionr) is denoted byf(r), it is partial differentiable ok \ 0. The chain rule gives

0 or
Sl 0) = 1 )5 = 1)

(d) Partial differentiability does not imply continuity.dfine
ﬂ%w:{wﬁﬁz%,@wnumw
0, (z,y) = (0,0).

Obviously, f is partial differentiable ofik? \ 0. Indeed, by definition of the partial derivative

af(o 0) = lim S0 o =0,
a h—0 h—0

Since f is symmetric inz andy, %(0, 0) = 0, too. However,f is not continuous ab since
f(g,€) = 1/(4¢*) becomes large astends ta0.

Remark 7.1 In the next section we will become acquainted with strongeion of differen-
tiability which implies continuity. In particular, eontinuouslypartial differentiable function is
continuous.

Definition 7.3 LetU C R™ be open and': U — R partial differentiable. The vector

grad f(z) = <§i( ), ,gl{l(x)) (7.6)

is called thegradientof f atx € U.

Example 7.2 (a) For the radius function(x) defined in ExampleZl1 (b) we have
gradr(z) = z

Note thatz/r is a unit vector (of the euclidean norhhin the directionz. With the notations of
ExampldZ1L (c),

T

grad f(r) = f'(r)~.
(b) Let f,g: U — R be partial differentiable functions. Then we have the fwollgy product
rule

grad (fg) = g grad f + f gradg. (7.7)
This is immediate from the product rule for functions of oreiable

0 ) f
. (fg) = .

() f(z,y) = 2¥. Thengrad f(z,y) = (yz¥~!, 2¥ log x)
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Notation. Instead ofgrad f one also writes/ f (“Nabla f”). V is a vector-valued differential

operator:
0 0
V— (8—1.17,8—%) .

Definition 7.4 LetU C R". A vector fieldon U is a mapping
v=(v1,...,0,): U—R" (7.8)

To every pointr € U there is associated a vectgtr) € R”.
If the vector fieldv is partial differentiable (i.e. all componentsare partial differentiable)
then

= a’UZ‘
dive = 7.9
v ; 7o, (7.9)

is called thedivergenceof the vector fieldy.

Formally the divergence af can be written as a inner productgfandv

: "0
dive =V.v = ; a—xlvz
The product rule gives the following rule for the divergentet f: U — R a partial differen-
tiable function and
v=(v1,...,0,): U—=R

a partial differentiable vector field, then

3} of ov;
a—xi(fvz‘) s v+ f- oz,
Summation over gives
div (fv) = grad f-v + fdivo. (7.10)

Using the nabla operator this can be rewritten as
V-fo=Vfw+ fV-0.

Example 7.3 Let F': R"\0 — RR" be the vector field’(z) = %, r = ||z||. Since

n

) ox;

dive = g aZ:n and z-z =r?
i—1 9T

ExampldZP gives with = x andf(r) = 1/r

1 1 —1
div = = grad—-x+—divx:—%-x+ﬁ _n
r r r r r r
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7.1.1 Higher Partial Derivatives

LetU C R™ be openand: U — R a partial differentiable function. If all partial derivaés
D;f: U — R are again partial differentiablé¢, is calledtwice partial differentiable We can
form the partial derivative®); D, f of the second order.

More generalf: U — R is said to bek + 1)-times partial differentiabléf it is k-times partial
differentiable and all partial derivatives of order

Th—1

are partial differentiable.

A function f: U — R is said to bek-times continuously partial differentiabléit is £-times
partial differentiable and all partial derivatives of ordess than or equal tb are continuous.
The set of all such functions dr is denoted byC*(U).

We also use the notation

o f ’f o/
DiDif = gy = friay DiDif = 5550 DiyeDinf = 5=

Example. Let f(z,y) = sin(zy?). One easily sees that
Jye = foy =2y cos(zy?) — y* sin(xy?)2zy.

Proposition 7.2 (Schwarz’s Lemma)LetU C R"™ be open andf: U — R be twice continu-
ously patrtial differentiable.
Then for every,: € U and alli, j = 1,...,n we have

D;D;f(a) = D;D;f(a). (7.11)

Proof. Without loss of generality we assume= 2, = 1, j = 2, anda = 0; we write(x, y) in
place of(z1, z5). Sincel is open, there is a small square of lengih> 0 completely contained
inU:
{(z.y) e R?*|[z]| < 4,|y| <o} CU.
For fixedy € Us(0) define the functiorf’: (—¢,0) — R via
By the mean value theorem (Theorem 4.9) theredsdth | | < |z | such that
F(z) — F(0) = xF'(£).

But F'(&) = f.(&,y) — f.(£,0). Applying the mean value theorem to the functibfy) =
f=(&,y), thereisam with || < |y | and

0
fo(§y) = f(6,0) = M (y)y = a—yfm(ﬁ,n) y= fuy(&m) Y.
Altogether we have

F(x) = F(0) = fz,y) — f(2,0) = f(0,9) + f(0,0) = foy (&, n)wy. (7.12)
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The same arguments but starting with the functiin) = f(x,y) — f(0,y) show the existence
of ¢ andy/ with [ ¢'| < |, 7| < |y | and

fla,y) = f(2,0) = £(0,y) + £(0,0) = fo, (&', 1) wy. (7.13)
From [ZI2) and{Z13) fary # 0 it follows that

fzy(ga 77) - fmy(fla 77/)'

If (x,y) approaches0,0) so do(¢,n) and(¢',n'). Sincef,, and f,, are both continuous it
follows from the above equation

D2D1f(07 O) = DlDQf(Ov O)~

Corollary 7.3 LetU C R" be open and: U — R" bek-times continuously partial differen-
tiable. Then
D;, -

k

for every permutatiomr of 1, ... k.

Dllf = Diﬁ(k) “'Diw(l)f

Proof. The proof is by induction ot using the fact that any permutation can be written as a
product of transpositiong « j + 1). [ ]

Example 7.4 Let U C R?® be open and let: U — R? be a partial differentiable vector field.
One defines a new vector fietdirl v: U — R3, thecurl of v by

curl v — 81)3 B c%g (%1 B (%3 (%2 - 81)1
N 81‘2 8x3’ 8x3 alj’ c%l 81‘2 '

Formally one can think oturl v as being the vector product & andv

(7.14)

€1 Co €3
o0 90 9
Or1 Ox2  Oxs |’
v U2 U3

curlv =V x v =

whereey, e,, andes are the unit vectors iiR3. If f: U — R has continuous second partial
derivatives then, by Propositibn¥ .2,

curl grad f = 0. (7.15)

Indeed, the first coordinate efurl grad f is by definition
0?f B >*Pr

8.1'28.%'3 81’381’2 N

The other two components are obtained by cyclic permutatidine indices.

We have found:curlv = 0 is a necessary condition for a continuously partial diffeiale
vector fieldv: U — R? to be the gradient of a functioh: U — RR.

0.
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7.1.2 The Laplacian
LetU C R™ be open and € C(U). Put

: *f *f
Af:dlvgradfza—x%jt'ujtaxi, (7.16)
and call o2 o2
A= — 4+ ...
o3 e ox?

the Laplacianor Laplace operatar The equatiom\ f = 0 is called theLaplace equationits
solution are thdaarmonicfunctions. If f depends on an additional time variablg': U x [ —
R, (z,t) — f(x,t) one considers the so calledve equation

fuo—a?Af =0, (7.17)
and the so calletieat equation
ft —kEAf =0. (7.18)

Example 7.5 Let f: (0, +00) — R be twice continuously differentiable. We want to compute

the LaplaciamA f(r), r = ||z||, z € R™\0. By ExampléZP we have
, T
grad f(r) = f'(r)=,

r

and by the product rule and Examplel7.3 we obtain

n—1

Af(r) = div grad f(r) = grad f'(r)-= + f/(r) div = = f/(r) == + f'(r)

thus

n—1

Af(r)=f"(r)+ f'(r).

In particular,A—L; = 0if n > 3andAlogr = 0if n = 2. Prove!

pn—2

7.2 Total Differentiation

In this section we define (total) differentiability of a furan f from R™ to R™. Roughly
speaking,f is differentiable (at some point) if it can be approximatgdadinear mapping. In
contrast to partial differentiability we need not to referdingle coordinates. Differentiable
functions are continuous. In this sectibhalways denotes an open subsefdf. The vector
space of linear mappings of a vector spacé’ into a vector spacél’ will be denoted by
L(V,W).

Motivation: If f: R — R is differentiable at: € R and f'(z) = a, then

i &R — f@) —ah

h—0 h 0

Note that the mappingy — ah is linear fromR — R and any linear mapping is of that form.
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Definition 7.5 The mappingf: U — R™ is said to bealifferentiable at a pointz € U if there
exist a linear mapl: R — R™ such that

G B) — [() — A
D 2]

The linear mapd € L(R", R™) is called thederivativeof f atx and will be denoted by f ().

= 0. (7.19)

In casen = m = 1 this notion coincides with the ordinary differentiabiliby a function.

Remark 7.2 We reformulate the definition of differentiability gfata € U: Define a function
. U-(0) C R™ — R™ (depending on both andh) by

fla+h)= fla)+ A(h) + pa(h). (7.20)

Then is differentiable at if and only if limy, . W — 0. Replacing the r.h.s. of{Z20) by

f(a) + A(h) (forgetting aboutp,,) and insertinge in place ofa + h and D f(a) in place ofA,
we obtain thdinearizationZ: R™ — R™ of f ata:
L(z) = f(a)+ Df(a)(x — a). (7.21)
Lemma 7.4 If f is differentiable atr € U the linear mapping is uniquely determined.
Proof. Throughout we refer to the euclidean norms BA and R™. Suppose thatd’ €
L(R™, R™) is another linear mapping satisfyifg (7.19). Then/for R", h # 0,
[A(h) = A'(R)|| = |If (x + k) = f(z) = A(h) = (f(z + h) = f(z) = A'(h))]]
< f(z+h) = flz) = AR+ 1f(z + h) = f(z) = A'(h)]]

lAR) = AW _ [lf (@ + k) = flz) = AR [1f @+ h) = flz) = AR
172l - 7] 7]

Since the limith — 0 on the right exists and equdlsthe I.h.s also tends tbash — 0, that is
A(h) — A
o AR — A@)|
h—0 17|
Now fix hy € R™, hy # 0, and puth = thg,t € R ,t — 0. Thenh — 0 and hence,
0 — pigy JACh0) = A'(tho)|| _ ][ A() = A'(ho)|| _ [[A(Re) — A'(ho) |
t=0 [£holl t=0 [ 2] {[hol] 1o
Hence,||A(ho) — A'(ho)|| = 0 which impliesA(hg) = A’(hy) such thatd = A'. [

0.

Definition 7.6 The matrix(a;;) € R™*" to the linear magD f(x) with respect to the standard
bases inRk™ andR™ is called theJacobi matrixof f atx. It is denoted byf'(x), that is
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Example Let f: R" — R™ be linear,f(z) = B(z) with B € L(R", R™). ThenD f(x) =
is the constant linear mapping. Indeed,

f(x+h)— f(x) — B(h) = B(x+h) — B(x) — B(h) =0

sinceRB is linear. Hence}llin(l) | f(x+h) — f(z) — B(h)]|| ||| = 0 which proves the claim.

Remark 7.3 (a) Using a column vectdr = (hy, ..., h,)" the mapD f(z)(h) is then given by
matrix multiplication

ay ... QA1p hl Z?:l alj hj
Df(x)(h) = f'(x)-h =1 : : L= :
Am1 -+ Qmp hn Z?:l A hj
Once chosen the standard basi&if, we can writef () = (fi(x), ..., fm(z)) as vector ofn

scalar functiong;: R™ — RR. By Propositiol.6.7]9 the limit of the vector function

exists and is equal toif and only if the limit exists for every coordinate= 1, ..., m and isO

lim 7 ] (fl-(:p +h) — fi(x) — ;aijhj) =0, i=1,...,m. (7.22)
We see,f is differentiable at: if and only if all f;, 7 = 1,...,m, are. In this case the Jacobi
matrix f'(z) is just the collection of the row vectoyd(z),i = 1,...,m:
fix)
floy=1 &+ |,
()
Wherefi/(l') = (ail, Ao, . . ., am).

(b) Casen = 1 (f = f1), f'(a) € R is a linear functional (a row vector). Proposit[on]7.6
below will show thatf’(a) = grad f(a). The linearization.(x) of f ata is given by the linear
functional D f(a) from R" — R. The graph off. is ann-dimensional hyper plane iR"**
touching the graph of at the point(a, f(a)). In coordinates, the linearization (hyper plane
equation) is

T = L(z) = f(a) + f'(a)-(x — a).
Here f'(a) is the row vector corresponding to the linear functiobgl(a): R™ — R w.r.t. the
standard basis.

Example 7.6 Let C = (¢;;) € R™" be a symmetriax x n matrix, that isc;; = c;; for all
i,j=1,...,nanddefinef: R" — R by

flz) =2-C(z) = Z cijrixy, == (x1,...,%,) €R"

ij=1
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If a,h € R™ we have
fla+h)=a+h-Cla+h) =a-C(a)+ h-C(a) + a-C(h) + h-C(h)
=a-Ca+2C(a)-h+ h-C(h)
= f(a) + v+ (h),
wherev = 2C(a) andp(h) = h-C(h). Since, by the Cauchy—Schwarz inequality,
[o(h) | = h-C(R) | < R ICE)] < [RIICH IR < O IR]

limy,_o 5 = 0. This provesf to be differentiable at € R" with derivativeD f(x)(z) =

2C(a)-x. The Jacobi matrix is a row vectgf(a) = 2C(a) .
7.2.1 Basic Theorems
Lemma 7.5 Let f: U — R™ differentiable atr, thenf is continuous at.

Proof. Definey, (h) as in RemarksZ12 with f (z) = A, then
lim [[p. (h)]| = 0

since f is differentiable ate. Since A is continuous by Profp4.1im;_.o A(h) = A(0) = 0.
This gives
lim f(z+ h) = f() + lim A(h) + lim ¢, () = f(2).

This shows continuity of at . n

Proposition 7.6 Let f: U — R, f(x) = (fi(x), ..., fi(x)) be differentiable at: € U. Then
all partial derivatives%x(f), i=1,...m,j = 1,...,n exist and the Jacobi matrif'(z) €
R™*" has the form '

of of
oz oz
, 1 n af;(l‘)
() = F'@) = | 3 = (%), @29
J D Ot agjj z_l,...,m
. g j=1,...,n

Notation. (a) For the Jacobi matrix we also use the notation

) = (Gt ).

(x1,...,2p)

(b) In casen = m the determinantlet(f’(x)) of the Jacobi matrix is called th&acobianor
functional determinandf f atz. It is denoted by

_ a(f177fn)

det(f(x)) o1, ..., )
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Proof. Insertingh = te; = (0,...,t,...,0) into (Z22) (see Remalk].3) we have, sifjéd =
|t| andhy, = to; foralli =1,...,m

— im | fi(x +tey) — filw) — >0 aihyl]

0=

t—0 [2e; ]l
I | filze, ..z +t, .. 2) — fiw) — tag; |

= lim
t—0 |t|

— lim fz(xla Ce ,.CL'J' + t, .. ,.fll'n) — fz<l') - a,ij
t—0 t

&cj K
df;
Henceaq,; = g(x). ]
Tj

Hyper Planes

A plane inR? is the setH = {(z1, 72, z3) € R? | a1x9 + asxs + azxrs = au} Where,a; € R,

i = 1,...,4. The vectora = (ay,as,a3) is thenormal vectorto H; a is orthogonal to any
vectorr — 2/, z, 2’ € H. Indeeda-(x — 2') = a-x — a-2’ = a4y — ay = 0.

The planeH is 2-dimensional sincé{ can be written with two parameters, > € R as
(29, 29, 29)+ay vi+agvs, Where(z?, 29, 23) is some pointin andv,, v, € R? are independent
vectors spanning/.

This concept is can be generalizedR8. A hyper planan R" is the set of points

H={(x1,...,2,) € R" | 121 + asxs + - - - + @y, = apy1},

whereay, ..., a,41 € R. The vectof(a,, ..., a,) € R" is called thenormal vectoito the hyper
planeH . Note that: is unique only up to scalar multiples. A hyper planéRifiis of dimension
n — 1 since there are — 1 linear independent vectots, ...,v, ; € R™ and a pointh € H
such that

H={h+ayvy+ -+ oy, |ag,...,a, € R}.

Example 7.7 (a) Special casen = 1; let f: U — R be differentiable. Then

fl(x) = (g—i(m’), . 88;; (:1:)) = grad f(x).

It is a row vector and gives a linear functional &% which linearly associates to each vector

y=(y1,...,yn)" € R™areal number

n n
Df(z) | + | = grad f(z)-y = Z fa; (7)Y,
Yn =t
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In particular by Remaik?l 3 (b), the equation of the lineatian of f at a (the touching hyper
plane) is

tas = L) = f(a) + grad f(@)-(z — a)
Tp1 = f(a) + (fml(a)> .- 7on(a)) '(xl — Ay, Ty — an)

Tni1 = f(a) + Z fe;(@)(z) — ay)

j=1
0= f-(7 — a),
wherez = (z1,++ ,Tp, Tny1), @ = (a1, - ay, f(a)) andn = (—grad f(a),1) € R"™! is the

normal vector to the hyper planeat

(b) Special case = 1; let f: (a,b) — R™, f = (f1,..., fm) be differentiable. Therf is a
curvein R™ with initial point f(a) and end pointf (b). f'(t) = (fi(t),..., f,.(t)) € R™*1is
the Jacobi matrix of atx (column vector). It is théangent vectoto the curvef att € (a,b).
(c) Let f: R?® — R? be given by

8 — Bay? +
f(ZL‘,y,Z) = (flan) - (x Sin(xx?;gz2) Z)
Then
, _(Of ) [ 32— 3y —bry !
fm%d_(%ﬂﬁﬂ_(w%ww%)m%ﬂw%)%WmW¢@)

The linearization off at(a, b, ¢) is
L(ZL‘,y,Z) - f(av b,C) +f'(a,b,c)-(x —a,y — b,Z - C)'

Remark 7.4 Note that the existence of all partial derivatives does nyily the existence of
f'(a). Recall Example7]1(d). There was given a function havingigdaderivatives at the
origin not being continuous &0, 0), and hence not being differentiable(at0). However, the

next proposition shows that the converse is true provideabatial derivatives are continuous.

Proposition 7.7 Let f: U — R™ be continuously partial differentiable at a poimtc U.
Thenf is differentiable at: and f": U — L(R™, R™) is continuous at:.

The proof in case. = 2, m = 1 is in the appendix to this chapter.

Theorem 7.8 (Chain Rule) If f: R™ — R'™ is differentiable at a point andg: R™ — RP? is
differentiable ah = f(a), then the compositioh = g-f : R™ — RP? is differentiable at: and

Dk(a) = Dg(b)°Df(a). (7.24)
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Using Jacobi matrices, this can be written as

K(a)=g'(b)- f(a). (7.25)
Proof. Let A = Df(a), B = Dg(b), andy = f(z). Defining functionsp, v, andp by
p(z) = f(x) = fla) — Alz —a), (7.26)
U(y) = g(y) — g(b) — By — b), (7.27)
p(x) = g°f () — g°f(a) — B-A(z — a) (7.28)
then
@)l el
Al —al =" o (729
and we have to show that
p lo@l
eaflr=a] ~
Inserting (Z2b) and{Z.27) we find
px) = g(f(x)) = g(f(a)) = BA(z —a) = g(f(x)) — g(f(a)) — B(f(z) — f(a) — ¢(x))
p(x) = [g(f(x)) — g(f(a)) = B(f(z) — f(a))] + Bep(z)
p(x) = (f(x)) + Ble(x)).
Using||T(x)|| < ||T|| ||x| (see Propositidn4.1) this shows
Hp(_x)H Hw(_( x))|| HBosi@)H < Hzﬂ@l! . Hf(af):f(a)ll L8| |!<p(_x>H_
|z —all = |z —a le—all ~ lly=0l [z —al |z — al
Inserting [Z.2ZB) again into the above equation we continue
_ @Il o) + Al —a)f] ()|
“l—ol Ja—al Pl —al
[l (Ne@I 4 ()]
<ty (s 1) + 181 225
All terms on the right side tend tbasx approaches. This completes the proof. [

Remarks 7.5 (a) The chain rule in coordinates. #f = f'(a), B = ¢'(f(a)), andC = k'(a),
thenA € R™*", B € R?*™, andC € R”*" and

Aki, oo k) (g9 \ (O fon)
<m>_(3(yl,...,ym)) (3(961,---,33”)) (7.30)
3gr 8fl B o

al'] Zayz ax] ) r_]‘7””p7.]_17"'7n- (7.31)

(b) In particular, in case = 1, k(x) = g(f(z)) we have,

ok dg 6’f1+” L 99 99 Ofm
ox; " oy Oz, O O
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Example 7.8 (a) Let f(u,v) = uwv, u = g(z,y) = 2* + y*, v = h(z,y) = xy, andz =
flg(z,y), hz,y)) = (2% + y*)zy = 2%y + 2%y,

0= 9f dg _of oh

. — . L — 2 2 2
or ou o T op U Twy=2yryl 4y
833'_ l‘y y-

F’(t) gf /()+a_f ()_qu711+uvlogu1

=t-t"' 4 t'logt = t'(logt + 1).

7.3 Taylor's Formula

The gradient off gives an approximation of a scalar functigiy a linear functional. Taylor’s
formula generalizes this concept of approximation to higivder. We consider quadratic ap-
proximation of f to determine local extrema. Througout this section we reféhe euclidean
norm||z| = ||z|, = &+ - + 22.

7.3.1 Directional Derivatives

Definition 7.7 Let f: U — R be a functiong € U, ande € R™ a unit vector)||e|]| = 1. The
directional derivativeof f ata in the direction of the unit vectaris the limit

(Def)(a) =t 0T 1O) = J(0)

t—0 t

(7.32)

Note that fore = e¢; we haveD. f = D; f = 5=

Proposition 7.9 Let f: U — R be continuously differentiable. Then for everg U and every
unit vectore € R", |le|| = 1, we have

D.f(a) = e-grad f(a) (7.33)

Proof. Defineg: R — R" by ¢g(t) = a + te = (a1 + teq, ..., a, + te,). For sufficiently small
t € R, say|t| < e, the compositiork = fog

R%SR*L R, k(t) = f(g(t)) = flay +ter, ..., an+ tey)

is defined. We computé/(¢) using the chain rule:

'(t) = Z %(a +te) g (t).
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Sinceg;(t) = (a; + te;)’ = e; andg(0) = a, it follows

K (t) = Z o

(a+te) ey, (7.34)

= Z fry(@)e; = grad f(a)-e

On the other hand, by definition of the directional derivativ

K(0) = lim M =M _yp, et 1O = J@) _ gy i),
t—0 t t—0 t
This completes the proof. [

Remark 7.6 (Geometric meaning of grad f) Suppose thatrad f(a) # 0 and lete be a
normed vector|le|| = 1. Varyinge, D.f(z) = e- grad f(x) becomes maximal if and only if
e andV f(a) have the same directions. Hence the vegtord f(a) points in the direction of
maximal slope off ata. Similarly, — grad f(a) is the direction of maximal decline.

For example f(x,y) V1 —22—19% has

grad f(z,y) = <\/1_x2_y2,\/1_x2_y2). The

maximal slope off at (z,y) is in direction
- e = (—x,—y)//2*+ y%. In this case,the tan-

w gent line to the graph points to theaxis and

has maximal slope.

Corollary 7.10 Let f: U — R bek-times continuously differentiable,c U andxz € R" such
that the whole segment+ ¢z, ¢ € [0, 1] is contained inJ.
Then the function: [0,1] — R, h(t) = f(a+tx) is k-times continuously differentiable, where

Z D;, - (a+tx)x, - -z, (7.35)
In particular

Proof. The proof is by induction o. Fork = 1 it is exactly the statement of the Proposition.
We demonstrate the step from= 1 to k& = 2. By (Z33)

=54 (Ulattn) S~ Of -
RiE) = “21 dt < Oz, )x“ a Z Z 0z, 0y, (@ )i,z

i1=112=1

In the second equality we applied the chain ruléto = fa; (@ +tx). m



208 7 Calculus of Functions of Several Variables

For brevity we use the following notation for the term on thght of (Z.36):

( Z Liy 0= Ty, Dllf(a“)

In particular, (zV)f(a) = xlfml(a) + Tofu(a) + - + 2 fe,(a) and (Vz)?f(a) =
D i1 i aia};]

7.3.2 Taylor's Formula

Theorem 7.11Let f € C*(U), a € U, andz € R™ such thata + tx € U for all t € [0, 1].
Then there exist$ € [0, 1] such that

- 1 m 1 1
fla+2) mzog (z V)™ f(a (kH)!(va fla+ 0x) (7.37)
fla+a) = fla) + infm + % > ity fu 1)+

k: T Z i, - 'xik+lf$i1"'$ik+1 (a+ 0x).

01y b1

The expressiof1(a, v) = Gig5i( V) k1 f(a+ 0x) is called theLagrange remainder term

(k:+1
Proof. Consider the functiok: [0,1] — R, h(t) = f(a + tx). By Corollany(ZID,h is a
(k + 1)-times continuously differentiable. By Taylor’s theoreor functions in one variable
(Theorenii 415 with: = 1 anda = 0 therein), we have

fla+z)=h(1) = ; Q) ’2:1)1(?3
By Corollany{ZID form = 1, ..., k we have
PO L9y,
and h1(9) ,
G = @V e b,
the assertion follows. m

It is often convenient to substitute:= = + a. Then the Taylor expansion reads

CRY () V)" (a) + m((z — a) V) f(a 4 0o — a)
f(z) :f(a)—FZ(xi — ;) fr; (@ 2‘ Z —aj)fxixj(a)+...+
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We write the Taylor formula for the case= 2, k = 3:

fla+zb+y) = fla,b) + (fola,b)z + fy(a,b)y) +
+ % (foxl(a,b)z® + 2fuy(a,b) xy + fyy(a,b)y?) +
+ % (fa:a:m(a’7 b)l‘g + 3fa:a:y(a, b)$2y + 3fmyy(a, b)l‘y2 —+ fyyy(aa b)yg)) + R4(a,7 I‘)

If f e, C*U)={f: feCFU) VEk € N} andklim Ri(a,z) = 0forallz € U, then

@) =3 (@ — a) V)" f(a).

The r.h.s. is called th@aylor serieof f ata.

Example 7.9 (a) We compute the Taylor expansionfdfc, y) = cos z siny at(0, 0) to the third
order. We have

fe = —sinzxsiny, fy = cosx cosy,
f:r(OvO) =0, fy<070> =1,
for = —coszxsiny, fyy = —cosxsiny, fzy = —sinxzcosy
f:)::v(oao) = 07 fyy(oa()) = 07 f:):y<070> = 0
fazy = —COST COSY, fyyy = — cOS T COS Y,
fzzy(oao) = _1a fyyy(oao) - _17 fxyy(oao) = fmmm(oao) = 0.

Inserting this gives
1
f@,y) = y+ 5 (=32%y —y*) + Ru(z,4;0).
The same result can be obtained by multiplying the Taylaesdor cos x andsin y:

ZL‘2 1'4 y3 1 y3
1— 4+ ... L 4=y = 2Py — ...
< ST )(y 3] ) yotY T T

(b) The Taylor series of (z, y) = ¢*¥" at(0,0) is
© 2\n 1
Z(xy) :1+xy2+—:c2y4+~';
n! 2

n=0

it converges all oveR? to f(z, y).

Corollary 7.12 (Mean Value Theorem) Let f: U — R be continuously differentiable,c U,
xz € R" such thatu + tz € U for all t € [0, 1]. Then there exist$ € [0, 1] such that

flata) = fla) =V [la+0z)z, fy) - flz) =V ((1-0)x+0y)-(y—z). (7.38)

This is the special case of Taylor’s formula with= 0.
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Corollary 7.13 Let f: U — R bek times continuously differentiable,c U, x € R" such
thata + tx € U forall t € [0, 1]. Then there exists: U — R such that

k
flata) =3 @ V)" fla) + pla), (7.39)
m=0 ’
where
0 o]

Proof. By Taylor's theorem forf € C*(U), there exist® € [0, 1] such that

N

—1

1 - 1 e 1 o
flz+a)= O%CCV) fla) + k'(v fla+0x) zmzo%xv fla) + ().

3
I

This implies X
p(r) = 7 (@ V) fla+b2) = (x V)" f(a))

Since|x;, - x| < ||zf ... ||z|| = | z]|* for 2 #£ 0,

\ﬁﬁz\ < 2| V¥ S0+ 02) ~ ¥ f(a) |

Since allkth partial derivatives of are continuous,

Di1i2"'ik (f<a’ + (9.%’) - f(a>> — 0.

z—0

This proves the claim. [ ]

Remarks 7.7 (a) With the above notations let

((z —a) V)™

m)

Po(r) = f(a).

ThenP,, is a polynomial of degres: in the set of variables = (x4, ..., z,) and we have

k
=Zam+m»@ﬂ“%

Let us consider in more detail the cases= 0, 1, 2.
Casem = 0.
D°f(a)

Py(x) = Txo = f(a).

P, is the constant polynomial with valy&a).
Casem = 1. We have

}:ﬁb ~a;) = grad f(a)-(a — )
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Using Corollanf 7.1 the first order approximation of a contiusly differentiable function is

f(z) = f(a) + grad f(a)-(x —a) + p(z), lm o(2) 0. (7.40)

v—allz —al|
The linearization off ata is L(x) = Py(z) + Pi(x).
Casem = 2.
1 n
Py(z) = 5 D oy (@) (@i — ai)(x; — ay).
ij=1
Hence, P»(z) is quadratic with the corresponding mat(% /,,.,(a)). As a special case of
CorollanfZIB {n = 2) we have forf € C*(U)

fla+zx) = f(a) + grad f(a)-x + %xT- Hess f(a)-x + ¢(z), lir% T‘Jﬁiz =0, (7.41)
2=0 ||z

where

(Hess f)(a) = (fau;(a)); (7.42)

i,j=1
is called theHessian matrixof f ata € U. The Hessian matrix is symmetric by Schwarz’
lemma.

7.4 Extrema of Functions of Several Variables

Definition 7.8 Let f: U — R be a function. The point € U is calledlocal maximum
(minimum)of f if there exists a neighborhodd () C U of x such that

fx) = fly) (flz) < fy)) forally e U(x).

A local extremunis either a local maximum or a local minimum.

Proposition 7.14 Let f: U — R be partial differentiable. Iff has a local extremum at € U
then grad f(z) = 0.

Proof. Fori =1, ..., n consider the function
gi(t) = f(z +te;).

This is a differentiable function of one variable, definedeocertain interval—e, ¢). If f has
an extremum at, theng; has an extremum at= 0. By Propositiofi.4]7

g:(0) = 0.
i 0) — 1; flatte)—f(z) ; i i
Sinceg;(0) = lim;_,o . = f.,(z) and: was arbitrary, it follows that

grad f(z) = (D;f(x),...,Dpf(z)) =0.
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Example 7.10 Let f(x,y) = /1 — 2% — y? be defined on the open unit dist = {(x,y) €
R? | 22 + y* < 1}. Thengrad f(z,y) = (—z/r,—y/r) = 0ifand only if x = y = 0. If f has
an extremum irV then at the origin. Obviously;(z,y) = /1 — 22 — y?> < 1 = f(0,0) for all
points inU such thatf attains its global (and local) maximum@t 0).

To obtain a sufficient criterion for the existence of locarerma we have to consider the Hessian
matrix. Before, we need some facts from Linear Algebra.

Definition 7.9 Let A € R™*" be a real, symmetria x n-matrix, that isa;; = a;; for all
1,7 =1,...,n. The associated quadratic form

n

Qx) = Z agriv; = - A-x

ij=1

is called
positive definite if Q(x) > 0forallz # 0,
negative definite if Q(x) < 0forallz#0,
indefinite if Q(z) > 0,Q(y) <0 for somez,y,
positive semidefinite if Q(z) > 0 for all z and( is not positive definite,

negative semidefiniteif Q(z) < 0 for all z and( is not negative definite.
Also, we say that the corresponding matsixs positive defininitef Q(x) is.
Example 7.11Letn = 2, Q(z) = Q(xy,13). ThenQ,(z) = 3% + T3 is positive definite,
Qy(x) = —2? — 222 is negative definiteQ;(x) = 2?2 — 223 is indefinite,Q, (z) = 27 is positive
semidefinite, and)s(z) = —x3 is negative semidefinite.

Proposition 7.15 (Sylvester)Let A be a real symmetria x n-matrix and@(z) = z- Az the

corresponding quadratic form. Fgr=1,--- ,n let
an A1k
k1 Qg

Let)A,..., A\, be the eigenvalues of. Then

(a) Q is positive definite if and only X; > 0, A\, > 0,...,\, > 0. Thisis the case
ifand only if D; > 0, Dy > 0,...,D, > 0.

(b) Q(z) is negative definite if and only i} < 0, A2 < 0,... A, < 0. This is the
caseifand onlyif—1)*D, > Oforall k =1,... n.

(c) Q(z) is indefinite if and only ifA has both positive and negative eigenvalues.

Example 7.12 Casen = 2. Let A € R*?, A = (b
&

b . :
. ) be a symmetric matrix. By
Sylvester’s criteriord is

(a) positive definite if and only iflet A > 0 anda > 0,
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(b) negative definite if and only itet A > 0 anda < 0,
(c) indefinite if and only ifdet A < 0,
(d) semidefinite if and only iflet A = 0.

Proposition 7.16 Let f: U — R be twice continuously differentiable and letad f(a) = 0 at
some point, € U.

(a) If Hess f(a) is positive definite, theji has a local minimum at.
(b) If Hess f(a) is negative definite, thefihas a local maximum at.
(c) If Hess f(a) is indefinite, thery has not a local extremum at

Note that in general there is no information®@if Hess f(a) is semidefinit.
Proof. By (Z41) and sincegrad f(a) = 0,

fla+z) = f(a) + %xA(x) + o(z), gl;_}r% ]T(TTZ =0, (7.43)

whereA = Hess f(a).

(a) Let A be positive definite. Since the unitsph&re- {z € R" | ||z|| = 1} is compact (closed
and bounded) and the mgliz) = =- A(x) is continuous, the function attains its minimum, say
m, onS, see Propositidn6.P4,

m = min{z-A(z) | x € S}.

SinceQ(z) is positive definite and ¢ S, m > 0. If x is nonzeroy = z/ ||z|| € S and therefore

m <y Ady) = — x-A(,x ): v A@) L AW,

[ ) Nl el o)

This impliesQ(z) = z-A(z) > m|jz|* forall z € U.
Sincep(z)/ ||z||* — 0 asz — 0, there exist$ > 0 such that|z|| < § implies

— llel* < e(@) < T Jlalf”.
From [Z43) it follows

flato) = Fla) + 5 Q) +olw) > f(a) + gmllal® = % o) > f(a) + 2 o,

hence
fla+z) > f(a), if 0<|z] <9,

and f has a strict (isolated) local minimumat

(b) If A = Hess f(a) is negative definite, considerf in place off and apply (a).

(c) Let A = Hess f(a) indefinite. We have to show that in every neighborhood tifere exist
x’ andz” such thatf (z") < f(a) < f(2'). SinceA is indefinite, there is a vectar € R\ 0
such thate- A(z) = m > 0. Then for smalt we have

flatta) = fla) + gtaAlte) + plt) = [(a) + 38 + (i),
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If ¢ is small enough-2¢* < p(txr) < 2t*, hence
fla+tx) > fla), f 0<|t|<d.

Similarly, if y € R™\ 0 satisfieg;- A(y) < 0, for sufficiently smalk we havef(a + ty) < f(a).
|

Example 7.13 (@) f(z,y) = 2* + y>. HereV [ = (2x,2y) Z oifand onlyifz = y = 0.

Furthermore,
F(y) 20
Hess f(z,y) =
Y 0 2

is positive definite f has a (strict) local minimum &0, 0)
(b)Find the local extrema of = f(z,y) = 42 — y* on R?. (the graph is a hyperbolic
paraboloid). We find that the necesary conditiofi = 0 implies f, = 8z =0, f, = —2y = 0;

thusx = y = 0. Further,
Hess f(z,y) = = .
fz,y) (fyx I 0 —9

The Hessian matrix g0, 0) is indefinite; the function has not an extremum at the origii).
©) f(z,y) = 2* + y>. Vf(z,y) = (22, 3y?) vanishes if and only it = y = 0. Furthermore,

Hess f(0,0) = ((2J 8)

is positive semidefinit. However, there is no local extrematrthe origin sincef (e,0) = &2 >
0= f(0,0) > —* = (0, —e).

(d) f(x,y) = 2% + y*. Again the Hessian matrix &b, 0) is positive semidefinite. However,
(0,0) is a strict local minimum.

Local and Global Extrema

To compute thelobal extrema of a functiorf: U — R whereU C R" is open andU is the
closure ofU we have go along the following lines:

(a) Compute the local extrema éNn
(b) Compute the global extrema on the bound2l’y= U N U<;

(c) If U is unbounded without boundary (&s= R), consider the limits at infinity.

Note that

sup f(z) = max{maximum of all local maxima i/, sup f(x)}.
zeU xeoU

To compute the global extremum ¢fon the boundary one has to find the local extrema on
the interior point of the boundary and to compare them withwhlues on the boundary of the
boundary.
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Example 7.14 Find the global extrema of(z,y) = 2’y onU = {(z,y) € R? | 2% +3? < 1}
(whereU is the open unit disc.)
Since grad f = (f., f,) = (2zy,2?) local extrema can appear only on thexisz = 0, y is

arbitrary. I'he Hessian matrix &, y) is
R 2¢ 0 R 0 0

_ [ Jax fmy)

Hess 1(0,) (f:vy Sy
This matrix is positive semidefinite in cage> 0, negative semidefinite in cage< 0 and0 at
(0,0). Hence, the above criterion givas answer We have to apply the definition directly. In
casey > 0 we havef(x,y) = z?y > 0 for all z. In particularf(z,y) > f(0,y) = 0. Hence
(0,y) is a local minimum. Similarly, in casg < 0, f(z,y) < f(0,y) = 0 for all z. Hence,f
has a local maximum 40, y), y < 0. Howeverf takes both positive and negative values in a
neighborhood of0, 0), for examplef (e, ¢) = ¢* and f (¢, —¢) = —&3. Thus(0, 0) is not a local
extremum.
We have to consider the boundary/+ y? = 1. Insertingz? = 1 — y? we obtain

9W) = f@)lepems = Y|y e = A= y=y—9°, [yl

We compute the local extrema of the boundety-3?> = 1 (note, that the circle has no boundary,
such that the local extrema are actually the global extrema)

1
7
Sinceg”(1/v3) < 0 andg”(—1/v/3) > 0, g attains its maximum’- aty = 1/v/3. Since this
is greater than the local maximum pft (0, y), y > 0, f attains its global maximum at the two

points
_ i\ﬁ €
2 — 37 \/g )

where f(M; 5) = 2%y = f g attains its mlnlmurrkgf aty = —1/\f Since this is less
than the local minimum of at (0, y), y < 0, f attains its global minimum at the two points
wheref(m, ) = 2%y = —==

i\/§ 1

m = =
1,2 37 \/g )
3\/

The arithmetic-geometric mean inequality shows the saswdtrfor z, y > 0:

|
Jdy)=1-3y>=0, |y|l=

1 224y Z42 4 y2 22 x? ,\3 2

> _ 2 2 Lo — < _

3= 3 3 e 7y < 33
(b) Among all boxes with volume find the one where the sum of the length of il2eedges is
minimal.

Letz, y andz denote the length of the three perpendicular edges of onexvddy assumption
ryz = 1; andg(z, y, 2) = 4(z + y + 2) is the function to minimize.
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Local Extremalnserting the constraint = 1/(zy) we have to minimize

f(x,y):ll(x—i-y—l—x—ly) on U= {(x,y)| x>0,y >0}

The necessary condition is

Further,

such that
8 4

4 8

hencef has an extremum &t, 1). Sincef,.(1,1) =8 > 0, f has a local minimum &tl, 1).
Global Extrema. We show that(1, 1) is even the global minimum on the first quadrdnt
ConsiderN = {(z,y) | 5z < z,y <5}. If (z,y) € N,

flz,y) = 4(5+0+0) = 20,

Sincef(x,y) > 12 = f(1,1), the global minimum off on the right-upper quadrant is attained
on the compact rectangl€é. Inserting the four boundaries= 5,y = 5,z = 1/5, andy = 1/5,
in all casesf(x,y) > 20 such that the local minimurti, 1) is also the global minimum.

det Hessf(l,l):’ ’:64—16>0;

7.5 The Inverse Mapping Theorem

Suppose thaf': R — R is differentiable on an open sét C R, containinga € U, and
f'(a) # 0. 1If f'(a) > 0, then there is an open intervidl C U containinga such thatf’(x) >

0 forall z € V. Thusf is strictly increasing orl/ and therefore injective with an inverse
functiong defined on some open interval containingf(a). Moreoveryg is differentiable (see
Propositioi4b) and’'(y) = 1/ f'(z) if f(xz) = y. An analogous result in higher dimensions is
more involved but the result is very important.
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Theorem 7.17 (Inverse Mapping Theorem)Suppose thaf: R" — R" is continuously dif-
ferentiable on an open sét containinga, anddet f’(a) # 0. Then there is an open setC U
containinga and an open sét’” containingf(a) such thatf: V' — W has a continuous inverse
g: W — V which is differentiable and for aly € W. Fory = f(x) we have

g(y)=(f'(x))"", Dgly)=(Df(x))". (7.44)
For the proof se€ [Rud?6, 9.24 Theorem][or [Spi65, 2-11].

Corollary 7.18 Let U C R™ be open, f: U — R"™ continuously differentiable and
det f'(z) # 0 forall x € U. Thenf(U) is open inR™.

Remarks 7.8 (a) One main part is to show that there is an open/set U which is mapped
onto anopensetiV. In general, this is not true farontinuousmappings. For examplén x
maps the open intervél, 27) onto the closed sét-1, 1]. Note thatsin = does not satisfy the
assumptions of the corollary sinse’(7/2) = cos(m/2) = 0.

(b) Note that continuity of’(x) in a neighborhood ai, continuity of the determinant mapping
det: R™" — R, anddet f'(a) # 0 implies thatdet f’(z) # 0 in a neighborhood’; of a, see
homework 10.4. This implies that the linear mapping(x) is invertible forx € V;. Thus,
Df(z)~tand(f'(z))"! exist forz € V; — the linear mappind f () is regular.

(c) Let us reformulate the statement of the theorem. Suppose

Yy = fl(l'l, e 7:13'”)7
Yo = fZ(xla .. '73771)7

Yn = Ju(21, .. 2n)

IS a system of, equations im variablesr,, ..., z,; y1,. . ., y, are given in a neighborhodd
of f(a). Under the assumptions of the theorem, there exists a usimuéonz = ¢(y) of this
system of equations

Ty = gl(y17 s 7yn)7
Ty = g2(y17 cee 73/71),

Tp = gn(ylu < 7yn)

in a certain neighborhoo@:1, ..., z,) € V of a. Note that the theorem states the existence of
such a solution. It doesn’t provide an explicit formula.

(d) Note that the inverse functianmay exist even iflet f'(z) = 0. For examplef: R — R,
defined byf(z) = 3 hasf’(0) = 0; howeverg(y) = /z is inverse tof(z). One thing is
certain ifdet f'(a) = 0 theng cannot be differentiable #i(a). If g were differentiable af(a),

the chain rule applied tg(f(z)) = = would give

g'(f(a))- f'(a) =id
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and consequently
det ¢'(f(a)) det f'(a) = detid =1

contradictinglet f'(a) = 0.

(e) Note that the theorem states that under the given asgumaytis locally invertible. There
is no information about the existence of an inverse functida f on a fixed open set. See
ExampldZTb (a) below.

Example 7.15(a) Letz = rcosp andy = rsinp be the polar coordinates iR?. More
precisely, let

f(re) = (x) = (TCOW), f:R* = R%.

Y 7 sin ¢

The Jacobian is
d(z,y)

Ty Ty
ar,e)  |Yyr Yy

Let f(ro,v0) = (z0,%0) # (0,0), thenry, # 0 and the Jacobian of at (1, ¢o) iS hon-zero.
Since all partial derivatives gf with respect ta- andy exist and they are continuous &%, the
assumptions of the theorem are satisfied. Hence, in a naigbbadl of (x, yo) there exists a
continuously differentiable inverse functien= r(x, y), ¢ = ¢(z,y). In this case, the function
can be given explicitlyy = /22 + 42, ¢ = arg(z,y). We want to compute the Jacobi matrix
of the inverse function. Since the inverse matrix

siny  rcose

cos —rsingp' _,

cosp —rsine - N cos sin ¢
siny  7Cos N —% sin @ %Coscp
we obtain by the theorem

oo (00 _(cosp  sing\ (T Ve
o= (Gnt) = (0, ol) - (2 2r)

x
2 +y2 2 +y2

in particular, the second row gives the partial derivativethe argument function with respect

to z andy
darg(z,y) —y darg(z,y) x

ox 2+ y?’ oy 2 +y?
Note that we have not determined the explicit form of the argnt function which is not unique
sincef (r, p+2km) = f(r,¢), forall k € Z. However, the gradient takes always the above form.
Note thatdet f'(r, ) # 0 for all » # 0 is not sufficient forf to be injective oriR?\ {(0,0)}.
(b) Let f: R? — R? be given by(u,v) = f(z,y) where

u(x,y) =sinx — cosy, v(x,y)= —cosx + siny.
Since
0 " i
(v, v) - 09sx Sy = cosxcosy — sinxsiny = cos(z + y)
Nz, y) |ve vy sinzr  cosy
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[ is locally invertible at(xo, o) = (5, —7%) since the Jacobian &k, ) is cos0 = 1 # 0.

Sincef(Z,—Z) = (0, —/2), the inverse function(u, v) = (z,y) is defined in a neighborhood

of (0, —v/2) and the Jacobi matrix of at (0, —/2) is

Note that at point7, 7) the Jacobian of vanishes. There is indeed no neighborhooof})

wheref is injective since for alt € R

/Gori 91D - 00

7.6 The Implicit Function Theorem

Motivation: Hyper Surfaces

Suppose that': U — R is a continuously differentiable function angad F'(x) # 0 for all
x € U. Then
S={(x1,...,z,) | F(z1,...,2,) =0}

is called ahyper surfacan R". A hyper surface inR" has dimensiom — 1. Examples are
hyper planes,,z; + - -+ + a,z, + ¢ = 0 ((ay, . .., a,) # 0), spheres? + - -- + 22 = r%. The
graph of differentiable functiong: U — R is also a hyper surface iR"**

Iy ={(a, f(x)) e R™' |z € U}.

Question: Is any hyper surface locally the graph of a diffeedle function? More precisely,
we may ask the following question: Suppose thiatR” x R — R is differentiable and
f(ai,...,a,,0) = 0. Can we find for eacliz,,...,x,) near(a,...,a,) a uniquey nearb
such thatf(xy,...,z,,y) = 0? The answer to this question is provided by the Implicit Func
tion Theorem (IFT).

Consider the functiorf: R? — R defined byf(z,y) = z? + y*> — 1. If we choos€ga, b) with
a,b > 0, there are open interval$ and B containiga andb with the following property: if

x € A, there is aunique € B with f(z,y) = 0. We can therefore define a functign A — B

by the conditiony(x) € B and f(z, g(z)) = 0. If b > 0theng(x) = /1 — 22, if b < 0 then
g(z) = —/1 — 22. Both functionsy are differentiable. These functions are said to be defined
implicitly by the equatiorf (x,y) = 0.

On the other hand, there exists no neighborhood gf) such thatf(z,y) = 0 can locally be
solved fory. Note thatf,(1,0) = 0. However it can be solved far = h(y) = /1 — 3%

Theorem 7.19 Suppose that: R* x R™ — R™, f = f(z,y), is continuously differentiable
in an open set containin@:, b)) € R"*"™ and f(a,b) = 0. Let D f,(x, y) be the linear mapping
fromR™ into R™ given by

Dyf(z,y) = (Dusif'(2,y)) = (H(wy)) = (%;y)) , GLj=1m.
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If det D, f(a,b) # 0 there is an open set C R™ containinga and an open seB C R™
containingb with the following properties: There exists a unique comtinsly differentiable
functiong: A — B such that

@ g(a) =0,
(b) f(x,g(x))=0forall x € A.

For the derivativeDg(z) € L(R", R™) we have
Dg(x) = —(Dfy(z,9(x)))""*Dfu(x, g(x)),

(@) = =(fylz,g9(2)) " i (. g(x)).
The Jacobi matrix’(x) is given by

<H(w)) = —fy(z,9(z))""- <H(w(w))) (7.46)
a%kigf)) == (fla.g@) - W, k=1,...,m j=1..n.

=1
Idea of Proof Define F': R™ x R™ — R"™ x R™ by F(z,y) = (z, f(z,y)). LetM = f,(a,b).

Then
]]-n On,m

F'(a,b) = (Om,n s ) = det F'(a,b) = det M # 0.
By the inverse mapping theorem Theofem.17 there existpan setil’ € R" x R™ con-
taining F'(a,b) = (a,0) and an open sét C R"™ x R™ containing(a, b) which may be of the
form A x B suchthatt': A x B — W has a differentiable inverse W — A x B.
Sincey is differentiable, it is easy to find the Jacobi matrix. Intfagince f;(z, g(x)) = 0,
1=1,...n, taking the partial derivativgxij on both sides gives by the chain rule

_ Ofila.gla)) | 0fioo(w))  dunla)

0
Ox; Oy Ox;

k=1

Ofi(x,9(x)) o Ogk (2) Ofi(z,9(x))
0= G e amo - (5,2) |-

6 i\, €T ) 6 N
_ (NT?(») = fi(z,g(x)) - <96k7$(j)) .
Sincedet f!(a,b) # 0, det f/(z,y) # 0in a small neighborhood afz, b). Hencef!(z, g(x))

is invertible and we can multiply the preceding equatiomfibie left by(f, (x, g(x)))~" which
gives [Z.25b).

Remarks 7.9 (a) The theorem gives a sufficient condition for “locally’\dag the system of
equations

O:fl(xl,---yxn7y17---ym)7

O:fm(l‘lw"axnaylw"aym)
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with givenzq, ..., z, foryy, ..., ym,.

(b) We rewrite the statement in case= m = 1: If f(z,y) is continously differentiable on an
open setz C R? which containga, b) andf(a,b) = 0. If f,(a,b) # 0 then there exisi, > 0
such that the following holds: for everyc Us(a) there exists a uniqug= g(x) € U.(b) with
f(z,y) = 0. We havey(a) = b; the functiony = g(x) is continuously differentiable with

L heg@)
90) == @ 9(@))

Be careful, notef, (z, g(z)) # L (f(z, g(x))).
Example 7.16 (a) Let f(x,y) = sin(x + y) + e — 1. Note thatf(0,0) = 0. Since
f4(0,0) = cos(z +y) + x| =cos0+0=17#0
f(z,y) = 0 can uniquely be solved far = g(x) in a neighborhood of = 0,y = 0. Further
f2(0,0) = cos(z +y) +ye™|;q = 1.
By RemarkZD (b)

fx(l} y) B COS(QJ —+ g(x)) + g(x) er9()
fy(l’, Y) y=g(x) N cos(z + g(z)) + T erg(z)

g'(r) = -

In particularg’(0) = —1.
Remark. Differentiating the equatigf) + f,¢' = 0 we obtain

0= fa:a: + fmygl + (fya: + fyyg/)g/ + fyg”

1
g” = _f_ (fxx + 2fxygl + fyy(g/)Q)
Yy
"o _fxxf;+2f$yfxfy_fyyf§
Jy T 13 '
g9 fy y

Since

f22(0,0) = —sin(z +y) + yZemy!(Oﬁo) =0,
f3(0,0) = —sin(z +y) +2%e™| =0,
f2y(0,0) = —sin(z +y) + ™ (1 +zy)| 0 = 1,

we obtaing”(0) = 2. Therefore the Taylor expansion @fz) around0 reads

g(z) =z + 2> + r3(z).

(b) Let~(t) = (z(t),y(t)) be a differentiable curve € C%([0, 1]) in R?. Suppose in a neigh-
borhood oft = 0 the curve describes a functign= ¢(x). Find the Taylor polynomial of degree
2 of g atzy = z(0).
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Inserting the curve into the equatign= g(x) we havey(t) = g(z(t)). Differentiation gives

"2

y=g, j=g"i" +4'i
Thus
/ _g " _y_g/:i'_y:t_i@

Now we have the Taylor ploynomial gfat z,

g/l (33'0)

Ty(g)(x) = w0 + g'(x0)(x — x0) + (x — 20)”.

(c) The tangent hyper plane to a hyper surface.

Anyone who understands geometry can understand everyiththgs world
(Galileo Galilei, 1564 — 1642)

Suppose that’: U — R is continuously differentiable; € U, F'(a) = 0, and grad F'(a) # 0.
Then

VF(a)-(x —a) = Z Fy. (a)(z; —a;) =0

is the equation of the tangent hyper plane to the surfgeg = 0 at pointa.

Proof. Indeed, since the gradienta@ats nonzero we may assume without loss of generality that
F,, (a) # 0. By the IFT,F(z1,...,2,_1,2,) = 0is locally solvable forz,, = g(z1,...,2,_1)

in a neighborhood ot = (ay,...,a,) with g(a) = a,, wherea = (ay,...,a,—1) and

Z = (z1,...,7,-1). Define the tangent hyperplane to be the graph of the liret#oiz of ¢
at(ay,...,a,-1,a,). By Example[ZJ/ (a) the hyperplane to the graply aeta is given by

x, = g(a)+ gradg(a)-z. (7.47)
SinceF(a, g(a)) = 0, by the implicit function theorem

39(&)_ Fw.f(a) .
or, = o (a)’ j=1,...,n—1.

Inserting this into[(Z.47) we have

Multiplication by — F,, (a) gives

n—1

—F, (a)(zy — ay) =Y F, (a)(z; — a;) = 0 = grad F(a)-(z — a).

J=1
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Let f: U — R be differentiable. For € R
define thelevel setU. = {z € U | f(z) =
c}. The setU. may be empty, may consist of
a single point (in case of local extrema) or, in
the “generic” case, that is ifrad F'(a) # 0 and
U. is non-empty/[/. itis a (n — 1)-dimensional
hyper surface{U. | ¢ € R} is family of non-
intersecting subsets of which coverU.

7.7 Lagrange Multiplier Rule

This is a method to find local extrema of a function under ¢ertanstraints.
Consider the following problem: Find local extremma of adtion f(x,y) of two variables
wherez andy are not independent from each other but satisfy the constrai

o(r,y) = 0.

Suppose further that and ¢ are continuously differentiable. Note that the level déts—=
{(x,y) € R?| f(x,y) = c} form a family of non-intersecting curves in the plane.

We have to find the curvé(x,y) = c intersecting
the constraint curve(z,y) = 0 wherec is as large

f=c or as small as possible. Usualfy = c¢ intersects
¢ = 0 if ¢ monotonically changes. Howeverdfis
maximal, the curvef = ¢ touchesthe graphy =
0. In other words, the tangent lines coincide. This
means that the defining normal vectors to the tangent
lines are scalar multiples of each other.

)

6=0

Theorem 7.20 (Lagrange Multiplier Rule) Let f,o: U — R, U C R" is open, be continu-
ously differentiable and has a local extrema at € U under the constrainp(x) = 0. Suppose
that grad ¢(a) # 0.

Then there exists a real numbgsuch that

grad f(a) = Agrad p(a).

This numbern\ is calledLagrange multiplier

Proof. The idea is to solve the constraiptz) = 0 for one variable and to consider the “free”
extremum problem with one variable less. Suppose withag &f generality thap,. (a) #

0. By the implicit function theorm we can solvg(z) = 0 for z,, = g(z1,...,2,-1) In @
neighborhood of: = a. Differentiatingy(z, g()) = 0 and inserting: = (a, a,,) as before we
have

@z, (a) + ou,(a)gs, (@) =0, j=1,...,n—1 (7.48)
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Sinceh(z) = f(z, g(7)) has a local extremum atall partial derivatives of. vanish ata:
Jo (@) + [ (@)ge, (@) =0, j=1,....n—1. (7.49)
Setting\ = £,, (a)/¢., (a) and comparing{Z.38) anB{7149) we find
fo;(@) = Mgy, (a), j=1,...,n—1

Since by definition,f,, (a) = Ay, (a) we finally obtain grad f(a) = Agrad¢(a) which
completes the proof. n

Example 7.17 (a) LetA = (a,;) be a real symmetrig x n-matrix, and defingf(z) = z- Az =
> aijrix;. We aks for the local extrema gfon the unit spherg™ ! = {z € R" | ||| = 1}.
This constraint can be written agz) = ||z||> — 1 = >, 2? — 1 = 0. Suppose thaf attains
alocal minimum at: € S*t. By ExampléZb (b)

grad f(a) = 2A(a).

On the other hand
gradp(a) = (2zq,...,2x,)|, _ = 2a.

r=a

By Theoreni Z.20 there exists a real numbesuch that
grad f(a) = 2A(a) = A\ grad p(a) = 2a,

HenceA(a) = \ia; that is, ) is an eigenvalue ofl anda the corresponding eigenvector. In
particular,A has a real eigenvalue. Sin&~! has no boundary, the global minimum is also a
local one. We find: iff(a) = a-A(a) = a-Aa = X is the global minimumJ is the smallest
eigenvalue.

(b) Leta be the point of a hypersurfadd = {x | ¢(x) = 0} with minimal distance to a given
pointb ¢ M. Then the line through andb is orthogonal tal/.

Indeed, the functiorf (z) = || — b||* attains its minimum under the conditigriz) = 0 ata.

By the Theorem, there is a real numbesuch that

grad f(a) = 2(a — b) = Agrad p(a).

The assertion follows since by Example1.16 (g)ad ¢(a) is orthogonal taV/ ata andb — a
is a multiple of the normal vectoV ¢ (a).

Theorem 7.21 (Lagrange Multiplier Rule — extended version)Let f,p;: U — R, i =
1,...,m, m < n, be continuously differentiable functions. Ut = {z € U | p1(z) = --- =
om(xz) = 0} and suppose thaf(z) has a local extrema at under the constraints € M.
Suppose further that the Jacobi matpi(a) € R™*"™ has maximal rank..

Then there exist real numbeks, . .., \,, such that

grad f(a) = grad (Aip1 + -+ Anom)(a) = 0.

Note that the rank condition ensures that there is a choieevsriables out ofcy, . . ., x,, such
that the Jacobian a@f, . . ., ,, with respect to this set of variable is nonzeraat
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7.8 Integrals depending on Parameters

Problem: Defind (y) = f;’ f(z,y) dz; what are the relations between propertieg @f, y) and
of I(y) for example with respect to continuity and differentiatili

7.8.1 Continuity of I(y)

Proposition 7.22 Let f(z, y) be continuous on the rectangle= [a, b] x [c, d].
Then!(y) = fabf(x, y) dz is continuous ofic, d].

Proof. Lete > 0. Sincef is continuous on the compact get f is uniformly continuous orR
(see Propositidn&.25). Hence, there i & 0 suchthafz — 2’| < d and|y —¢'| < ¢ and

(z,y), (¢/,y') € Rimply
| flz,y) — f(2',y) ] <e.

Therefore|y — yo | < 6 andy, yo € [c, d] imply

b
I(y) — I(yo) | = /(ﬂ%y%aﬂ%%D®7§€@—®-

This shows continuity of (y) at . ]

For example/ (y) = [; arctan £ dx is continuous foy > 0.

Remark 7.10 (a) Note that continuity af, means that we can interchange the limit and the

b b b
integral, lim / flz,y)dz = / lim f(z,y)dz = / f(z,yo) de.
y=%0 J, o Yo a
(b) A similar statement holds for — oco: Suppose thaf(z, y) is continuous offu, b] x [¢, +00)
andlim, .., f(z,y) = p(x) existsuniformlyfor all z € [a, b] that is

Ve>03dR>0Vae€ab,y>R:|flx,y)—¢x)| <e.

b
Thenf;’ (z) dz exists andlim [(y) = / o(z)dz.

Yy—oo

7.8.2 Differentiation of Integrals

Proposition 7.23 Let f(z, y) be defined ol = [a, b] X [, d] and continuous as a function of
for every fixed). Suppose thaf, (z, y) exists for all(z, y) € R and is continuous as a function
of the two variables andy.

ThenI(y) is differentiable and

b b
szé/ﬂwmw/@mww
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Proof. Lete > 0. Sincef,(z,y) is continuous, it is uniformly continuous ai. Hence there
existsé > 0 such that 2’ — 2" | < 6 and|y' —y"| < 6 imply | f, (2, y) — f, (2", y") | < e.
We have for h | < 0

I(yo+h) = I(yo) / fy(x, o) da

; o| [ (et s

b
< | fy(x,y0 +6h) — fy(x,y0) | dz < e(b—a)

Mean value theoreny ,

- fy(ﬂfayo)) dz

for somed € (0,1). Since this inequality holds for all smal| it holds for the limit ash — 0,
too. Thus,

I,(yo)—/ fy(,90) dz

Sinces was arbitrary, the claim follows. n

<e(b—a).

In case of variable integration limits we have the followthgorem.

Proposition 7.24 Let f(z,y) be as in PropositionZ23. Let(y) and 3(y) be differentiable on
[, d], and suppose that([c, d]) and 3([c, d]) are contained ira, b].

Letl(y) = ff((yy)) f(z,y)dx. Thenl(y) is differentiable and

B(y)
I'(y) = / @+ S0 W ew)) (7.50)

Proof Let F(y,u,v) = [, f(x,y)dx;thenI(y) = F(y, a(y), 3(y)). The fundamental theorem
of calculus yields

0 a [
Seun =5 [ ey de= 1),
OF P P (7.51)
%(3%“71}):% (_/U f(l',y)dl‘) :_f<u7y>
By the chain rule, the previous proposition ahd (¥.51) weshav
oF OF oF
I'(y) = o o a/(y) + 5~ 0'(y)
oF oF oF
= a—y(y, a(y), By)) + 5 -(y: aly). By)) o' (y) + 5y, aly), B(y)) F'(y)

B(y)
- / ) e 0l ) () ) + B, )
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Example 7.18 (a) I(y) = [, “nffy dx is differentiable by PropositidnZP3 singe(z,y) =
@ x = cos(zy) is contlnuous Hence

4 : 4 . )
4 3
I'(y) Z/ cos(zy) dz = sin(zy) _ simay s y'
’ Yy 3 Y Y

(b) I(y) = [*"Ye** du is differentiable with

O

siny 1
I'(y) = / T ex Ydx + cos yeybm Yy _ (108;31)2_
logy y

7.8.3 Improper Integrals with Parameters
Suppose that the improper integﬁf> f(z,y) dz exists fory € [c, d].

Definition 7.10 We say that the improper integrﬁj>O f(z,y) dz converges uniformlwith re-
spect toy on|c, d] if for everye > 0 there is and, > 0 such thatd > A, implies

’T(y)—/:f(x,y)dx =| [" s

Note that the Cauchy and Weierstral criteria (see Propofifll and Theorefi8.2) for uniform
convergence of series of functions also hold for impropeapetric integrals. For example the
theorem of Weierstral3 now reads as follows.

forally € [c,d].

Proposition 7.25 Suppose tha]fAf (x,y) dx exists for allA > aandy € [c,d]. Suppose
further that| f(z,y) | < ¢(z) forall 2 > a and [ ¢(x) dz converges.
ThenfaOo f(x,y) dz converges uniformly with respect@og e, d].

Example 7.19 I (y f e~ ®x¥y? dx converges uniformly of2, 4] since
| fx,y) | = e ™avy? | < e *a'd® = p().
and [~ e72*2%4? dz < oo converges.

If we add the assumption ainiform convergencthen the preceding theorems remain true for
improper integrals.

Proposition 7. 26 Let f(z,y) be continuous o{(z,y) € R? | a < z < o0, ¢ < y < d}.
Suppose thak(y f f(z,y) dz converges uniformly with respectgoc [c, d].
ThenI(y) is contlnuous ofie, dJ.

Proof. This proof was not carried out in the lecture. ltet- 0. Since the improper integral
converges uniformly, there exists > 0 such that for alld > A, we have

’/:Of(x,y)dx
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forally € [c,d]. Let A > A, be fixed. On{(z,y) € R* |a <z < A, ¢ <y < d} f(z,y)
is uniformly continuous; hence there issa> 0 such thatj 2/ — 2" | < dand|y —y"| < §
implies

| f(xla 3/) - f(x",y") | <

A _
Therefore,

A
£
[ 1@ = ) | de < T (A=) ==, for |y— <5

Finally,

If(y)—f(yo)lz(/GA+/:O)If(%y)—f(x,yo)IS?é for |y | <o

We skip the proof of the following proposition.

Proposition 7.27 Let f,(z,y) be continuous of(z,y) | a < z < 00, ¢ <y < d}, f(z,y)
continuous with respect tofor all fixedy € [c, d]

Suppose that for all € [c,d] the integral I(y) = [~ f(z,y)dx exists and the integral
[ f,(x,y) dz converges unlformly with respectgoe e, d].

ThenI(y) is differentiable and’(y) = [ f,(z,y) d=.

Combinig the results of the last Proposition and Propadifi@® we get the following corollary.

Corollary 7.28 Let f,(z,y) be continuous oq(z,y) | a < z < o0, ¢ < y < d}, f(z,y)
continuous with respect tofor all fixedy € [c, d].

Suppose that
(a)forall y € [c,d] theintegrall(y) = [ f(x,y) dz exists,
(b) | fy(:p y)| < p(z)forall z > aandally
(©) [ ¢(x) dz exists.
Then!(y) is differentiable and’(y) = [ f,(z,y)d
Example 7.20 (a) I(y) = fo e cos(2yx)dz.  flz,y) = e cos(2yz), fy(z,y) =

—2zsin(2yz) e = converges uniformly with respect gosince
[ fyla,y) | < 2007 < Ke™™/2,

Hence, -
I'(y) = —/ 22 sin(2yx) e da.
0

Integration by parts with, = sin(2yx), v’ = —e™*" 2z givesu’ = 2y cos(2yz), v = e~ and

A A
/ —e~"" 2z sin(2yz) dz = sin(2yA) e — / 2y cos(2yz) e da.
0 0
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As A — oo the first summand on the right tenditdhus!(y) satisfies the ordinary differential
equation

I'(y) = —2yI(y).
ODE:y' = —2zy; dy = —2xydx; dy/y = —2xdz. Integration yielddogy = —2? + ¢;
y=—ce —?
The general solution i$(y) = Ce . We determine the constaft Inserty = 0. Since

= [ e dz = /7/2, we find

Gamma Function

(b) The Gamma functiof(z) = [~ t* e " dt

: is in C*(R,). Letz > 0, sayz €

2 [c,d]. Recall from Subsectidns.3.3 the defini-
tion and the proof of the convergence of the im-
proper integrald’;, = fo z,t)dt andTy =
[7° f(z,t)dt, wheref(z,t) = t"'e*. Note
thatF (x ) is an improper integral @t = 0 + 0.

By L'Hospital’s rule 11rr+1 t*logt = 0 for all

. a > 0. In particular,|logt | < t~</2if 0 < t <
PP AR to < 1.

=

=

e

e

Sincee! < 1 and moreovet® ! < t*~! fort < t, by LemmdL.2B3 (b) we conclude that

0
%f(l‘,t)

for0 < t < t. Sincecp( ) = tllp is integrable ovef0, 1], I';(x) is differentiable by the

= [t" logte | < [logt|t !t <t =

_<»
1 2

Corrollary with T (x fo t*~1 logte~t dt. Similarly, I'y(z) is an improper integral over an
unbounded mterve{ll +00), for sufficiently larget > ¢, > 1, we havelogt < t andt® < 4,
such that

0
o) = t*ogte ™t < t*et < tlet < tle 2?2 < Me 2,
xr

Sincet?e~'/? tends td) ast — oo, it is bounded by some constaht ande*/? is integrable on
[1,4+00) such thafy(x) is differentiable with

F'z(x):/ t" logte " dt.
1

Consequenthyi’(x) is differentiable for all: > 0 with

I(x) :/ t" 1t logte " dt.
0

Similarly one can show thdt € C*(R~() with

™ (g) = / !t (logt)* et dt.
0
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7.9 Appendix

Proofof PropositiofiLZI7. Letl = (4;;) = (gfl
Tj

ered as a linear map frofR” to R™. Our aim is to show that

[f(a+h)—fla) = Ahl

) be the matrix of partial derivatives consid-

lim = 0.
h—0 172
For, it suffices to prove the convergence(tdor each coordinaté = 1,...,m by Proposi-
tion626
a+h Ajjh;
lim il )= file) = 25 Aahy = 0. (7.52)

h—0 17l

Without loss of generality we assume= 1 andf = f;. For simplicity, leth = 2, f = f(z,y),
a = (a,b), andh = (h, k). Note first that by the mean value theorem we have

fla+h,b+k)— f(a,b) = fla+h,b+k)— fla,b+k)+ f(a,b+ k) — f(a,b)

af(f b+ k)h + %(a n)k,

where¢ € (a,a + h) andn € (b,b + k). Using this, the expression [n(7152) reads
fla+h.b+k) = fa,0) — gh(a,b)h — Gh(a,0) k
N
(8¢ b+k) = 2(a.0)) h+ (L(an) — L(ab) b
N |

Since bothg—i andg—i are continuous afa, b), givene > 0 we findé > 0 such that(z,y) €
Us((a,b)) implies

P P P P
%mw—é@ﬂ<a é(@—éwm%a
This shows
(8¢ b+k) = 2(a.0)) h+ (L(an) - Liab)) k elhleelb]

N STV

hencef is differentiable ata, b) with Jacobi matrixA = (5£(a,b) % (a,b)).
Since both components of—the partial derivatives—are contmuous functiong.ofy), the
assignment: — f'(x) is continuous by Propositi@n6126. m



Chapter 8

Curves and Line Integrals

8.1 Rectifiable Curves

8.1.1 Curves inRF

We consider curves iiR*. We define the tangent vector, regular points, angle ofseteion.

Definition 8.1 A curvein R is a continuous mapping: I — R*, wherel C R is a closed
interval consisting of more than one point.

The interval can bd = [a,b], I = [a,+00), or [ = R. In the first casey(a) and~(b) are
called thenitial andend pointof 7. These two points derfine a natucalentationof the curve
“from ~(a) toy(b)". Replacingy(t) by v(a + b —t) we obtain the curve from(b) to y(a) with
opposite orientation.

If v(a) = ~v(b), v is said to be &losed curveThe curvey is given by ak-tupely = (v, ..., )
of continuous real-valued functions.-fis differentiable, the curve is said to dédferentiable
Note that we have defined the curve todomapping not a set of points ifR*. Of course, with
each curvey in R* there is associated a subseff, namely the image of,

C=9(I)={y(t) e R* |t € I}.

but different curves may have the same imagé= ~(/). The curve is said to bempleif ~
Is injective on the inner points® of 7. A simple curve has no self-intersection.

Example 8.1 (a) A circle in R? of radiusr > 0 with center(0, 0) is described by the curve
v:[0,27] — R?,  ~(t) = (rcost,rsint).

Note thaty: [0, 47] — R? with 5(¢) = ~(¢) has the same image but is different framy is a
simple curve;y is not.
(b) Letp, ¢ € R* be fixed pointsp # ¢q. Then

()= (1—t)p+tqg, tel0,1],
Y(t)=(1—-t)p+tg, teR,

231
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are thesegmenpg from p to ¢ and theline pq throughp and ¢, respectively. Ifv € R¥ is a
vector, thenys(t) = p + tv, t € R, is the line through with directionv.
(c) If f: [a,b] — R is a continuous function, the graph pfs a curve inR?:

v la, b = R () = (¢, f(1)).

(d) Implicit Curves. Let F: U € R* — R be continuously differentiable; (a,b) = 0, and
VF(a,b) # 0 for some pointa,b) € U. By the Implicit function theoremf'(z,y) = 0 can
locally be solved fory = g(z) orz = f(y). In both cases/(t) = (¢, g(t)) and~(t) = (f(t),1)
is a curve througfia, b). For example,

F(z,y)=y*—2°—2>=0
is locally solvable except fofa, b)) = (0,0). The corresponding curve dewton’s knot

Definition 8.2 (a) A simple curvey: I — R is said to beregular at ¢, if v is continuously
differentiable on/ and+’(t) # 0. ~y is regularif it is regular at every point, € I.

(b) The vectory'(t,) is called thetangent vectara(t) = ~(to) + t7'(to), t € R, is called the
tangent lineto the curvey at point~y(t).

Remark 8.1 The moving partice. Let ¢ the time variable and(¢) the coordinates of a point
moving in[R*. Then the tangent vectert) = s'(t) is thevelocity vectornf the moving point.
Theinstantaneous velocitg the euclidean norm af(¢) ||v(t)[| = \/s}(t)2 + - - - + s, (t)%. The
acceleration vectois the second derivative oft), a(t) = v/'(t) = s"(t).

Lety;: I; — RF, i = 1,2, be two regular curves with a common pointt;) = 7»(t2). The
angle of intersectiorp between the two curveg att; is defined to be the angle between the
two tangent linesy; (¢;) and~j(t,). Hence,

Y1 (t1)-75(t2)
v @) v (e

cos p = ¢ € [0,7].

Newt ons Knot

Example 8.2 (a) Newton’s knot. The curve
v: R — R?given byy(t) = (£* — 1,1 — t)

is not injective since/(—1) = v(1) = (0,0) =
xg. The pointz, is adouble pointof the curve.
In generaly has two different tangent lines at
: a double point. Since’(t) = (2t,3t* — 1) we

E havey'(—1) = (—2,2) andy/(1) = (2,2). The
. curve is regular since’(t) # 0 for all ¢.

Let us compute the angle of self-intersection. Sin¢e-1) = ~(1) = (0,0), the self-
intersection angle satisfies

=0,
8

cos p =
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hencep = 90°, the intersection is orthogonal.
(b) Neil's parabola. Let: R — R? be given byy(t) = (¢*,¢%). Sincey/(t) = (2t, 3t*), the
origin is the only singular point.

8.1.2 Redctifiable Curves

The goal of this subsection is to define fleagth of a curve For differentiable curves, there
is a formula using the tangent vector. However, the “lendla curve” makes sense for some
non-differentiable, continuous curves.

Letv: [a,b] — R* be a curve. We associate to each partition= {t,,...,t,} of [a,b] the

pointsz; = v(t;),i =0, ...,n, and the number
UPA) = lvt) =)l - (8.1)
i=1

Theith term in this sum is the euclidean distance of the paipats = (t;,_1) andx; = y(t;).

Hence/(P,~) is the length of the polygonal
path with verticeszg, ..., z,. AS our parti-
tion becomes finer and finer, this polygon ap-
proaches the image efmore and more closely.

Definition 8.3 A curve~: [a,b] — RF is said to beectifiableif the set of non-negative real
numbers{/(P,~) | P is a partition of{a, b]} is bounded. In this case

() = sup £(P, ),
where the supremum is taken over all partitidghsf [a, 0], is called thdengthof .

In certain cases{(~y) is given by a Riemann integral. We shall prove this éontinuously
differentiablecurves, i. e. for curves whose derivative’ is continuous.

Proposition 8.1 If 4/ is continuous ora, b], then~ is rectifiable, and

()= [ I

Proof If a < t;_y < t; < b, by Theoreni52A8y(t;) — v(ti-1) = [ 7/(t)dt. Applying

Propositiofl5.29 we have
ti t;
[ dtH <[ ol
ti1 ti—1

(k) = At | = \

Hence

(P) < / I (0] dt
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for every partitionP of [a, b]. Consequently,

() < / I/(0)] dt.

To prove the opposite inequality, let> 0 be given. Since/ is uniformly continuous offu, b],
there exist$ > 0 such that

17/ (s) =7 <e if |s—t]<0.
Let P be a partition withAt; < o for all 7. If t,_; <t < ¢; it follows that
YOI < IV @)l +e.
Hence

ti
[ IOl d <) at+ e,
t

i—1

S ’

/tfil(”'(” =) =) ] + <

t;
/ ’y/(t) dtH + ’
ti—1

/ ti(v’(tz-) —y(1)) dtH LAt

< |V () = (tiea) || + 2eAt.

If we add these inequalities, we obtain
b
[ Il dt < P) + 2600 - @) < 02) + 2506 - )

Sincees was arbitrary,

/ I/ (6) )] < €.

This completes the proof. [ ]

Special Casek = 2
k=2~v(t) = (z(t),y(t)),t € [a,b]. Then

() = / NSO

In particular, lety(t) = (¢, f(¢)) be the graph of a continuously differentiable function
f:la,b] — R. Thent(y) = [7\/T+ (F/(1))2 dt.

Example 8.3 Catenary Curve.Let f(t) = acosh £, ¢ € [0,b], b > 0. Thenf'(t) = sinh
and moreover

b t\* bt ak b
U(ry) = / 1+ (sinh —) dt = / cosh —dt = asinh —| = asinh —.
0 a 0 a bl, a
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cycloid and Circle

(b) The position of a bulge in a bicycle
tire as it rolls down the street can be
parametrized by an angteas shown
in the figure.

Let the radius of the tire be. It can be verified by plane trigonometry that

(a0 —sin0)
1) = <a(1 — 0059)) '
This curve is called aycloid
Find the distance travelled by the bulge fox 0 < 2.
Using1 — cos @ = 2sin? g we have
7' (6) = a(l — cos b, sin6)
17 (0)]| = a\/(l —cos0)? +sin®f = av/2 — 2cos 0
= av/2V1 —cosf = 2asing.

Therefore,

2
() = Qa/ sin 4 df = —4a (COS Q)
. 2 2

(c) The arc elementds. Formally the arc element of
a plane differentiable curve can be computed using the
pythagorean theorem

(ds)? = (dz)* + (dy)? = ds = v/ da2 + dy?

/ dy?
ds=4d 1+ —=
dx S x + 1.2

ds =1+ (f'(2))? dz.

(d) Arc of an Ellipse. The ellipse with equation? /a* +4?/b*> = 1,0 < b < q, is parametrized
by v(t) = (acost,bsint), t € [0, 1], such thaty/(t) = (—asint, bcost). Hence,

2

= 4a(—cos + cos0) = 8a.
0

d
] dy

to to
6(7):/ \/a281n2t+bQCOS2tdt:/ Va2 — (a% — %) cos? tdt
o 0
:a/ VI = oL dt,
0

wheree = —V“Z"ﬂ This integral can be transformed into the function

E(r,¢e) = / V1 —eZsin®tdt
0
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is the elliptic integral of the second kind as defined in Chit
(e) A non-rectifiable curve. Consider the graph(t) = (¢, f(t)), t € [0, 1], of the functionf,

ft) =

t cos 3, 0<t<1,
0, t=0.

Sincetgggof(t) = f(0) = 0, fis continuous ang(¢) is a curve. However, this curve is not rec-
tifiable. Indeed, choose the partitidh = {t, = 0,1/(4k),1/(4k —2),...,1/4,1/2,top 41 =

1} consisting of2k + 1 points, t; = m i = 1,...,2k. Note thatt, = 0 and
top1 = 1 play a special role and will be omitted in the calculationkbive Then (cos 2%) =
(1,-1,1,—1,...,—1,1),i=1,...,2k. Thus

U(Pr,7) > Z V(t = ti)? + (f(t:) = f(tic1))? > Z | f(t:) — f(tioa) |

SN QUL B (R S R
= \4k -2 " 4k Ak —4 " 4k —2 2 4

1 1 1 1
=42+ + +—

2 4 4k — 2 4k

which is unbounded fok — oo since the harmonic series is unbounded. Henas not
rectifiable.

8.2 Line Integrals

A lot of physical applications are to be found [n [MW85, Chepl8]. Integration of vector
fields along curves is of fundamental importance in both eratitics and physics. We use the
concept ofworkto motivate the material in this section.

The motion of an object is described by a parametric carve 7(t) = (x(t),y(t), 2(t)). By
differentiating this function, we obtain the velocityt) = #’(¢) and the acceleratiod(t) =
#(t). We use the physicist notatiafit) andZ(t) to denote derivatives with respect to the time
t.

According to Newton’s law, the total forc€ acting on an object of mass is

F = ma
Since the kinetic energl( is defined byK" = $mu? = $mv - ¢ we have
Lo S oo m o
K(t) zﬁm(v U+7-U)=ma-v=F- 0

The total change of the kinetic energy from timeo ¢,, denoted//, is called thevork done by
the forceF’ along the pathe(t):

to . to 5 to _ .
W:/ K(t)dt:/ F~Udt:/ F(t) - Z(t) dt.
t ty t1

1
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Let us now suppose that the foréeat time¢ depends only on the positiaf(t). That is, we
assume that there is a vector fi¢l@z) such that'(t) = F(Z(t)) (gravitational and electrostatic
attraction are position-dependent while magnetic forcevalocity-dependent). Then we may

rewrite the above integral as
to X
W= / Fa() - #(t) dt.
t1

In the one-dimensional case, by a change of variables, @inive simplified to

b
W:/dex

wherea andb are the starting and ending positions.

Definition 8.4 Let I' = {Z(t) | t € [r,s]}, be a continuously differentiable curvét) <
C'([r, s]) in R* andf: I" — R" a continuous vector field of. The integral

[ f@-az= [ fawy-doa

is called thdine integralof the vector fieldfalong the curvd'.

Remark 8.2 (a) The definition of the line integral does not depend on dr@imetrization of
I.

(b) If we take different curves between the same endpoimsljie integral may be different.
(c) If the vector fieldfis orthogonal to the tangent vector, thﬁnf- dz = 0.

(d) Other notations. If: (P, Q) is a vector field inR?,

/f- df:/de+Qdy,
r r

where the right side is either a symbol firP dz = [.(P,0) - d.
Example 8.4 (a) Find the line integrafpi ydr + (z —y)dy,i =

1,2, where (.1)
-
I={z¢t) =t |te[0,1]} and Iy =TI3UIy, r 4

with T = {(£,0) | t € [0, 1]}, I = {(1,1) | t € [0, 1]}.

: 00 T, (10
In the first case’(t) = (1, 2t); hence 0o T3 (Y

/Fyder(x—y)dy:/Ol(t?-1+(t—t2)2t)dt:/01(3t2—2t3)dt:

Inthe second cas§, fdi = [}, fdZ+ [, fdZ. For the first parf dz, dy) = (dt,0), for the
second partdz, dy) = (0, dt) such that
L ! 1,01
fda = / yde+(z—y)dy = / Odt+(t—0)-0+/ t0+(1—t)dt =t — =t?| ==.
r r 0 0 2 0
(b) Find the work done by the force fielﬁ(x,y,z) = (y,—z, 1) as a particle moves from
(1,0,0) to (1,0, 1) along the following paths = +1:
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Z(t)e = (cost,esint, &), ¢ € [0, 27],

We find
2
/ F.dz = / (esint, —cost, 1) - (—sint,ecost, 1/(2m))dt
I 0
21 1
:/ (—esinzt ecos’t + ) dt
0 2m
= 2me + 1.
In cases = 1, the motion is “with the force”, so the work is positive; fdret pathe = —1, the

motion is against the force and the work is negative.
We can also define scalar line integralin the following way. Lety: [a,b] — R™ be a contin-
uously differentiable curve, = ~([a, b]), andf: I" — R a continuous function. The integral

[ swas= [ s o a

is called thescalar line integralof f along/".

Properties of Line Integrals

Remark 8.3 (a) Linearity.

/(f+§)df:/fdf+/gdf, /Afdf:A/fdf.
r r r r r

(b) Change of orientation. I(t), t € [r, s| defines a curvé” which goes fromu = #(r) to
b=Z(s), theny(t) = Z(r + s — t), t € [r, s], defines the curve-I" which goes in the opposite
direction fromb to a. It is easy to see that

/Ffdf:—/Ffda‘:’.
/fdx

€ [to, t1] be a parametrization df, then

), t
/ Fag| - al = [ )

t " IO dt = sup | @) | )

zel’

(c) Triangle inequality.

< I supr H

xzel’
Proof. Let (¢

| ) ae

< sup Hf(f)

(d) Splitting. If I'7 and I, are two curves such that the ending point/gfequals the starting
point of I'; then

/ fdi= [ faz+ | faz
Iuls I I
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8.2.1 Path Independence
Problem: For which vector field§ the line integral fromu to b does not depend upon the path
(see Example8l4 (a) Example 8.2)?

Definition 8.5 A vector field f: G — R", G C R", is calledconservativef for any pointsa
andb in G and any curveg’ and/5 from a to b we have

/fdf:/fdf.
Iy I

In this case we say that the line integy’qlfdf is path independerdnd we use the notation
[P fai.

Definition 8.6 A vector field f: G — R™ is calledpotential fieldor gradient vector fieldf

—

there exists a continuously differentiable functidon G — R such thatf(z) = grad U(z) for
x € G. We callU thepotential or antiderivativeof f.

Example 8.5 The gravitational force is given by

Fla) = —a—,
|z

wherea = ymM. It is a potential field with potential

1
Uz) = m

This follows from ExamplBZ]2 (a)grad f(||z||) = f’(||x]|)ﬁ with f(y) = 1/y and f'(y) =
—1/y%.

Remark 8.4 (a) A vector fieldf is conservative if and only if the line integral over acigsed
curve inG is 0. Indeed, suppose thf(is conservative and’ = [ U [ is a closed curve,
wherel is a curve fronn to b and 5 is a curve fromb to a. By Remark8B (b), changing the
orientation ofl5, the sign of the line integral changes and; is again a curve from to b:

frao- ([ [y ruo= (][, =

The proof of the other direction is similar.

. / (b) Uniqueness of a potentiaAn open subset
G C R" is said to beconnectedif any two
pointsz,y € G can be connected by a polygo-
nal path frome to y insideG. If it exists, U (x)

is uniquely determined up to a constant.
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Indeed, ifgrad U, (z) = grad Us(z) = f putlU = U, — U, then we hav&/U = VU, — VU, =
f — f = 0. Now suppose that, y € GG can be connected by a segmeptC G insideG. By
the MVT (Corollany[ZTP)

Uly) = Ulx) = VU((1 =)z +1y) (y — ) = 0,

sinceVU = 0 on the segmenity. This shows that/ = U; — U, = const. on any polygonal
path insidez. SinceG is connected]/; — U, is constant ort.

Theorem 8.2 LetG C R be a domain.
() If U: G — R is continuously differentiable anﬂ: grad U. Thenfis conservative, and
for every (piecewise continuously differentiable) cufvéoma to b, a, b € GG, we have

/ fdz=U(b) — U(a).

r

(i) Let f: G — R be a continuous, conservative vector field and G. Put
U(z) = / fdg, ze€G.

ThenU(z) is a potential forf, that is grad U = f.
(iif) A continuous vector field is conservative ird7 if and only if it is a potential field.

Proof. (i) Let I" = {Z(¢) | t € [r, s]}, be a continuously differentiable curve fram= #(r) to
b= 7(s). We definep(t) = U(Z(¢)) and compute the derivative using the chain rule

—

() = grad U(&(t)) - #(t) = f(Z(1)) - 2(1).
By definition of the line integral we have
/F fdz = / 8 F(E®) Z(t) dt.
Inserting the above expression and applying the fundarhiretarem of calculus, we find
[ Faa= [ ett)dt = o) — o) = U(ats) - U(atr) = V) - U'a)

(i) Chooseh € R™ small such that + th € G for all t € |0, 1]. By the path independence of
the line integral

Us+h) - U() =/:+hf- d?J—/:f- dy*=/:+hf*- aj

Consider the curvé(t) = z+th, t € [0, 1] from z to z + h. Thenz(t) = h. By the mean value
theorem of integration (Theordm®b]18 with= 1, « = 0 andb = 1) we have

z+h T o
/ f.dy":/ F(E(t) - hdt = flz + 6h) - b,
v 0
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—

whered € [0, 1]. We checkgrad U(z) = f(x) using the definition of the derivative:

lﬂx+h%—U@%—Y@-M__M7x+ww—f@»-ﬂ{<Hﬂx+ww—f@wHw
@ - 17l & 17l
= | Fa+om) - Flw)|| — 0.

sincef is continuous at. This shows that’U = f.
(iit) follows immediately from (i) and (ii). [

Remark 8.5 (a) In casen = 2, a simple path to compute the line integral (and so the piaient
U) in (i) consists of2 segments: fron0, 0) via (x, 0) to (x, y). The line integral of® dz+Q dy
then reads as ordinary Riemann integrals

Ulx,y) = /:P(t, 0) dt+/0yQ(x,t) dt.

(b) Casen = 3. You can also use just one single segment from the origin écetidpoint
(z,y, z). This path is parametrized by the curve

T(t) = (tx, ty,t2), te€[0,1], Z(1) = (z,y,2).

We obtain

(z,y,2)
U@w¢)=/‘ fdet fody+ fydz (8.2)
(0,0,0)

1 1 1
= x/ fi(tx, ty, tz) dt + y/ foltx, ty, tz) dt + z/ fs(tx, ty,tz)dt.  (8.3)
0 0 0

(c) Although Theoremi8l2 gives a necessary and sufficiendliion for a vector field to be
conservative, we are missing an easy criterion.

Recall from ExamplEZl4, that a necessary conditionff@f (f1,..., fn) tobe apotential vector
field is o of
L= 1<i<j<n
Ox;  Ox;’ =t=j=n

which is a simple consequence from Schwarz’s lemma sine=U,., then

“ 81‘]‘ 81‘]‘ 8ZL‘Z 8ZL‘Z I

of;

Ox;’

necessary condition foff to be conservative. However, it is not sufficient.

The condition% = 1 < i < j < n.is calledintegrability conditionfor f Itis a
J

Remark 8.6 Counter example.LetG = R*\{(0,0)} and

ﬁwawz('ﬁ - )-

x2+y2’x2_|_y2
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The vector field satisfies the integrability conditiéh = (). However, it is not conservative.
For, consider the unit circlg(t) = (cost,sint), t € [0,2n]. Theny'(t) = (—sint,cost) and

/fdf:/ —Q?de2+ ;Edy2 :/27r5i117fsir1td75_i_costcostdt:/2’r & = 9.
o7 'yx +y x +y 0 1 1 0

This contradicts/,. f d = 0 for conservative vector fields. Hencgjs not conservative.
f fails to be conservative sineg = R?\ {(0,0)} has an hole.
For more details, see homework 30.1.

The next proposition shows that under one additional assamihis criterion is also sufficient.
A connected open subs@t(a region) ofR™ is calledsimply connecteif every closed polygonal
path insidez can be shrunk insidé€' to a single point.

Roughly speaking, simply connected sets do not have holes.

convex subset dR™ simply connected
1-torusS' = {z € C | |z| =1} not simply connected
annulus{(z,y) € R? | r* < 2 + y* < R?*},0 < r < R < oo | not simply connected
R2\{(0,0)} not simlpy connected
R3\{(0,0,0)} simply connected

The precise mathematical term for a curyeto be “shrinkable to a point” is to be null-
homotopic.

Definition 8.7 (a) A closed curves: [a,b] — G, G C R™ open, is said to baull-homotopidf
there exists a continuous mappihg|a, b] x [0, 1] — G and a pointzy € G such that

(@) h(t,0) =~(¢) forall ¢,

(b) A(t, 1) = z, for all ¢,

(c) h(a, s) = h(b,s) = xy forall s € [0, 1].

(b) G is simply connected any curve inG is null homotopic.

Proposition 8.3 Letf: (f1, f2, f3) a continuously differentiable vector field on a regiGnC
R3.
(a)If fis conservative thenurlf: 0,l.e.

Ofs _0f _ Oh _0fs_, O0f_ Oh

dry Oxs  Oxrs Ory  Oxrp Oy
(b) I curl f = 0 andG is simply connected, thehis conservative.
Proof. (a) Let f be conservative; by TheordmB.2 there exists a potefhtiagrad U = f.
However, curl grad U = 0 since
dfs  0fs 0*U 0*U

81’2 8953 - 81’281’3 B 81’361'2 -

0

by Schwarz’s Lemma.
(b) This will be an application of Stokes’ theorem, see below [ ]
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Example 8.6 Let onR?, f = (P, Q, R) = (6zy? + %, 622y, 1). Then
Curlf: (R, — Q., P, — R;,Q, — P,) = (0,0, 122y — 122y) = 0;

hencefis conservative with the potentiél(x, y, 2).
First method to compute the potentialU: ODE ansatz.
The ansatZ/, = 6zy? + ¢ will be integrated with respect ta:

Ulx,y,z) = /Um dz +C(y, 2) = /(6xy2 +e")dr + C(y, 2) = 32%y* + e + Oy, 2).

Hence,
U, =622y + Cy(y, 2) = 62y, U.=C.=1.

This impliesC, = 0 andC, = 1. The solution here i€'(y,z) = z + ¢; such thatU =
322y? + ¥ + 2 + cy.
Second method: Line Integrals.See Remark38l5 (b))

1 1 1
Ulz,y,z) = x/ filtz, ty, tz) dt + y/ faltx, ty, tz) dt + Z/ fs(tx, ty, tz) dt
0 0 0

1 1 1
= x/ (6t°zy* 4 ') dt + y/ 6t°z2y dt + Z/ dt
0 0 0

= 3%y + e + 2.



244 8 Curves and Line Integrals




Chapter 9

Integration of Functions of Several
Variables

References to this chapter are [O'N75, Section 4] which iteqelemantary and good accessi-
ble. Another elementary approachlis [MW85, Chapter 17]t(igr A more advanced but still
good accessible treatmentfis [Spi65, Chapter 3]. This wilbbr main reference here. Rudin’s
book [Rud76] is not recommendable for an introduction tegnation.

9.1 Basic Definition

The definition of the Riemann integral of a functign A — R, whereA C R" is a closed
rectangle, is so similar to that of the ordinary integral thaapid treatment will be given, see
Sectiol&ll.

If nothing is specified otherwise} denotes a rectangle. ®ctangleA is the cartesian product
of n intervals,

A= g, 0] X+ X [an, bo] = {(@1, ., 20) € R” | @ <ax < b, k=1,...,n}.

Recall that gpartition of a closed intervala, b] is a sequence,, ..., ¢, wherea = tq < t; <
.-+ < tp = b. The partition divides the intervéd, b] in to k subintervalgt; 1, ¢;]. A partition
of a rectangl€ay,b;] x -+ X [a,,b,] IS @ collectionP = (P,..., P,) where eachp; is a
partition of the intervala;, b;]. Suppose for example th&, = (¢o,...,%) is a partition of
l[a1,b1] and P, = (so,...,s;) is a partition of[as, bs]. Then the partition? = (P, P,) of
la1, b1] X [ag, by] divides the closed rectangle;, b1] x [as, bo] into kI subrectangles, a typical
one beingt;_1,t;] x [s;_1, s;]. In general, ifP; divides|a;, b;] into N; subintervals, the® =
(Py,..., P, divides|a;, b] x - -+ X [a,, b,] INto Ny - - - N,, subrectangles. These subrectangles
will be calledsubrectangles of the partitioR.

Suppose now is a rectanglef: A — R is a bounded function, anél is a partition ofA. For
each subrectangl€ of the partition let

mg = inf{f(x) | x € S}, Mg =sup{f(z) |z € S},

245
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and let v(S) be the volume of the rectangl§. Note thatvolume of the rectangle
A =lay,by] X+ X [ay,b,] s

U(A) = (bl — al)(bg — CLQ) tee (bn — an).

Thelower and theupper sum®f f for P are defined by
P, f)=> msv(S) and U(P,f)= ZMSU
S

where the sum is taken over all subrectangles the partitionP. Clearly, if f is bounded with
m < f(x) < M onthe rectangle € R,

mu(R) < L(P, f) < U(P, f) < Mu(R),

so that the numbers( P, f) andU (P, f) form bounded sets. Lemrhab.1 remains true; the proof
is completely the same.

Lemma 9.1 (a) Suppose the partitioR* is a refinement oP (that is, each subrectangle éf*
is contained in a subrectangle &f). Then

L(P.f) < L(P".f) and U(P*,f)<U(P,J).

(b) If P and P’ are any two partitions, thed (P, f) < U(FP', f).

It follows from the above corollary that all lower sums araihded above by any upper sum
and vice versa.

Definition 9.1 Let f: A — R be a bounded function. The functighis calledRiemann inte-
grableon the rectanglel if

[ ras=swp(pe ) =mt ey = [ fan
A P A

where the supremum and the infimum are taken over all par$itid of A. This common
number is thRiemann integrabf f on A and is denoted by

/fdx or /f:pl,..., Ydxy -« - da,.

f fdx andef dx are called théower and theupperintegral of f on A, respectively. They
always exist. The set of integrable function dns denoted byR(A).

As in the one dimensional case we have the following criterio

Proposition 9.2 (Riemann Criterion) A bounded functiori: A — R is integrable if and only
if for everye > 0 there exists a partitio® of A such that/(P, f) — L(P, f) < e.
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Example 9.1 (a) Letf: A — R be a constant functiofi(z) = c¢. Then for any PartitiorP and
any subrectanglé we havemg = Mg = ¢, so that

L(P,f)=U(P, f) =) cv(S)=c> v(S) = cv(A),

S S
Hence, [, cdz = cv(A).
(b) Letf: [0,1] x [0,1] — R be defined by

0, if z is rational
f(x,y) = e
1, if x is irrational.

If P is a partition, then every subrectanglevill contain points(x, y) with x rational, and also
points(x, y) with x irrational. Henceng = 0 andMg = 1, so

L(P, f)=> 0v(S) =0,
S

and

U(P, f) =) 10(S) = v(A) = v([0,1] x [0,1]) = 1.

S
ThereforeIAf de=1#0= fAf dz and f is not integrable.

9.1.1 Properties of the Riemann Integral
We briefly writeR for R(A).

Remark 9.1 (a) Ris alinear space anfl, (-) dz is alinear functional, i. ef, g € R imply
A+ pg e Rforall A\, n € R and

/A(/\f—k,ug)dx:/\/Afdx—k,u/Agdx.

(b) R is alattice, i.e., f € R implies|f| € R. If f,g € R, thenmax{f,¢g} € R and
min{ f, g} € R.

(c) Risanalgebra,i.ef, g € Rimply fg € R.

/Afdx g/A|f\dx.
(e) C(A) C R(A).

(f) f € R(A)andf(A) C [a,b], g € Cla,b]. Thengef € R(A).

(d) The triangle inequality holds:

(9) If f € Randf = g except at finitely many points, thene Rand [, fdz = [, g dz.

(h) Let f: A — R and letP be a partition ofA. Thenf € R(A) if and only if f[S is
integrable for each subrectangleIn this case

/Afdx:;/sfrs*dx.
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9.2 Integrable Functions

We are going to characterize integrable functions. For, aedrthe notion of a set ofieasure
zera

Definition 9.2 Let A be a subset dR”. A has (-dimensionalmeasure zerd for everys > 0
there exists a sequen(, );c of closed rectangles; which coverd suchthad "> v(U;) < e.

Open rectangles can also be used in the definition.

Remark 9.2 (a) Any finite set{a,...,a,} C R" is of measurd). Indeed, let > 0 and
choosel; be a rectangle with midpoint; and volumes/m. Then{U; | i = 1,...,m} covers
Aand), v(U;) <e.

(b) Any contable set is of measube

(c) Any countable set has meastre

(d) If each(A;);en has measuréthenA = A; U A, U - - - has measure.

Proof. Lete > 0. SinceA; has measuré there exist closed rectanglés,, i € N, k € N,
such that for fixedi, the family {Uy, | £ € N} coversA;, i.e. U,nUs 2 A; and
> wen V(Ui) < €/2'71, 4 € N. In this way we have constructed an infinite arfdy;;, } which
coversA. Arranging those sets in a sequence (cf. Cantor’s first dialgorocess), we obtain a
sequence of rectangles which covdrand

e} oo

£
>l <3 g =2
ik=1 i=1
Hence) ., v(Ui) < 2c andA has measure. m
(e) LetA = [ay, by x- - - X[a,, b,] be a non-singular rectangle, thatijs< b; foralli = 1,... n.

Then A is not of measuré. Indeed, we use the following two facts about the volume ofefin
unions of rectangles:

(a)v(U1 U---u Un) < Z?:l U(UZ‘),
(b) U C Vimpliesv(U) < v(V).

Now lete = v(A)/2 = (by — aq) - - - (b, — a,)/2 and suppose that the open rectanglés;-x
cover the compact set. Then there exists a finite subcovéru - -- U U,, O A. This and (a),
(b) imply

oo

e <v(A) <w (O Ui> < iv(Ui) <> ().

= =1

This contradicts . v(U;) < ¢; thus,A has not measure

Theorem 9.3 Let A be a closed rectangle ang: A — R a bounded function. Let
B ={x € A| fisdiscontinuous at:}.
Thenf is integrable if and only ifB is a set of measure

For the proof se€ [Spi65, 3-8 Theorem] br [Rud76, Theorer@3)1.
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9.2.1 Integration over More General Sets

We have so far dealt only with integrals of functions ovetaagles. Integrals over other sets
are easily reduced to this type.
If C' C R", thecharacteristic function¢ of C'is defined by

() 1, x el
€Tr) =
e 0, z€C.

Definition 9.3 Let f: C' — R be bounded and a rect-
angle,C C A. We call f Riemann integrablen C' if the
product functionf-y-: A — R is Riemann integrable
on A. In this case we define

/Cfdx:/AfXCdx.

This certainly occurs if botlf and . are integrable on
A. Note, that[, 1dz = [, xc dz =: v(C) is defined to
be thevolume or measuref C.

Problem: Under which conditions od’, the volumev(C) = [, dz exists? By Theoreind.3
Xc is integrable if and only if the s&® of discontinuities ofyc in A has measure.

The boundary of a setC

LetC' C A. For everyr € A exactly one of the
following three cases occurs:

(a) z has a neighborhood which is completely
contained inC' (z is an inner point of”),

(b) z has a neighborhood which is completely
contained inC*¢ (x is an inner point of”¢),

(c) every neighborhood of intersects both
and C*¢. In this case we say; belongs to the
boundarydC of C. By definitiondC = CNC«;
alsodC = O\ C".

By the above discussion is the disjoint union of two open and a closed set:

A=C°UdC U (Co).

Theorem 9.4 The characteristic function: A — R is integrable if and only if the boundary
of C' has measuré.

Proof. Since the boundar§C' is closed and inside the bounded s&f; is compact. Suppose
first z is an inner point of”. Then there is an open s€tC C' containingz. Thusyc(z) = 1
onz € U; clearly x¢ is continuous at (since it is locally constant). Similarly, if is an inner
point of C°, yc(x) is locally constant, namely- = 0 in a neighborhood of. Hencey. is
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continuous at:. Finally, if z is in the boundary of” for every open neighborhodd of = there
isy; € UNC andyy, € UNC°, so thatyc(y;) = 1 whereasyc(y2) = 0. Hence,x¢ is not
continuous ate. Thus, the set of discontinuity of. is exactly the boundargC. The rest
follows from Theorer 8]3. n

Definition 9.4 A bounded sef’ is calledJordan measurabler simply aJordan setf its bound-
ary has measui@ The integrab(C') = [, 1 dx is called ther-dimensionallordan measuref
C or then-dimensionalolumeof C'; sometimes we writg(C') in place ofv(C).

Naturally, the one-dimensional volume in tlength and the two-dimensional volume is the
area

Typical Examples of Jordan Measurable Sets

Hyper planes " | a;z; = ¢, and, more general, hyper surfagés, ..., z,) = ¢, f € C}(G)
are sets with measure in R". Curves inR"” have measurd). Graphs of functions
I't ={(z, f(x)) € R"™' | « € G}, f continuous, are of measupen R"'. If G is a bounded
region in R", the boundaryoG has measurd. If G C R"™ is a region, thecylinder
C=0G xR ={(x,r,41) | v € 0G} C R""! is a measure set.

Let D c R™™! be given by

D= {(l‘axn—i—l) | YIS K, 0 S Tni1 S f(l‘)}7
whereK C R™is a compact set anfl: X — R is continuous. The® is Jordan
‘ measurable. Indeed) is bounded by the graph;, the hyper plane,; = 0

and the cylinde¥D x R = {(z,z,41) | « € 0K} and all have measufein
R™ 1,

9.2.2 Fubini’'s Theorem and Iterated Integrals

Our goal is to evaluate Riemann integrals; however, so faretlvas no method to compute
multiple integrals. The following theorem fills this gap.

Theorem 9.5 (Fubini’'s Theorem) Let A C R™ and B C R™ be closed rectangles, and let
f: Ax B — R beintegrable. Forr € Aletg,: B — R be defined by, (y) = f(z,y) and let

L(z) Zlngdylef(%y)dy,

U(x) = 7ng dy = 7Bf(w> y) dy.
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ThenL(z) andU(x) are integrable on4 and

rane i ([ o)
st = [uwas= [[( [ renas) o

The integrals on the right are callaterated integrals

The proof is in the appendix to this chapter.

Remarks 9.3 (a) A similar proof shows that we can exchange the order efjiration

fouf et =, < J s dw) = [ ([ i) a.

These integrals are callé@rated integraldor f.

(b) In practice it is often the case that eagh is integrable so tha'g[Axdexdy =
Ja (fB T,y dy) dx. This certainly occurs if is continuous.

() If A=ay,by] x -+ X [a,,b,]andf: A — R is continuous, we can apply Fubini’s theorem
repeatedly to obtain

Aﬁmzli<u<:7uhuwwmou>d%.

(d) If C Cc A x B, Fubini’'s theorem can be used to compgﬁgef dx since this is by definition
foB fxcdx. Here are two examples in case= 2 andn = 3.

Leta < b andy(x) andi(z) continuous real valued functions on
[a, b] with ¢(z) < 9(z) on|a, b]. Put

W (x)
C={(z,y) eR*[a<a<b o) <y<i)})
Let f(z,y) be continuous od@'. Thenf is integrable orC' and
¢ (x)

[[ sy [ ( /j(j) foy) dy) iz,
¢ o

G={(z,y,2) eR’ [a<z<b p(x) <y < (@), alz,y) <z < Bz,y)}

where all functions are sufficiently nice. Then

b ¥(y) B(z,y)
// f(z,y, z) dedydz :/ / / f(z,y,z)dz | dy | dz.
o a o(x) a(z,y)

(e) Cavalieri’s Principle. Let A and B be Jordan sets iR® and letA. = {(z,y) | (z,y,c) €
A} be the section oft with the plane: = ¢; B, is defined similar. Suppose eadh and B, is
Jordan measurable (IR?) and they have the same argal.) = v(B.) for all ¢ € R.

ThenA and B have the same volumé A) = v(B).

Let
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y 1)
Example 9.2 (a) Let f(x,y) = xy and
C={(z,y) eR*|0<z<1,2°<y<u}
={(z,y) eR?[0<y <1,y <z <y}
Then

/ / xy dxdy

c

T
8

[ L

1,2
xydydx:/ %
0 -

1
.1’6

12},

1

24

11

S8 12

Interchanging the order of integration we obtain

1
//xydxdy :/
£ 0

C
6

VY

/Ol(y2 —y°)dy

1
2

NG 1.2
/ xydxdy:/ Ty
y 0 2

_Y
8

Y

(b) LetG = {(z,y,2) € R’ | ,y,2 > 0, s +y+2z < 1}andf(z,y,2) = 1/(z +y+z+1)°.
The set7 can be parametrized as follows

/ / fdedydz =

(2.4)

1.2)
2.2

L1

dz dy ) dz
(1+x+y+z)3 Y

o

[
A
L
2/;< )= (is2-3).

(c) Let f(x,y) = e¥/* and D the above region. Compute
the integral off on D.

D can be parametrized as follows= {(z,y) | 1 <z
2, x <y < 2z} Hence,

//fdxdy—/ dx/ emdy
/1dxxew

1 -1 ey
— dy | dz
2ﬂ+x+y+@
1 1
— — | dy | dz
21+x+y -3

z—3 1

r+1 4 2

<
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But trying to reverse the order of integration we encounter problems. First, we must break
D in several regions:

2 y 4 2
//fdxdy:/ dy/ ey/xdx—k/ dy/ ev/T dz.
s 1 1 2 y/2

This is not a serious problem. A greater problem is #hdthas no elementary antiderivative, so
[V ev/* da andf;/2 ¥/ dz are very difficult to evaluate. In this example, there is asigerable
advantage in one order of integration over the other.

The Cosmopolitan Integral

Let f > 0 be a continuous real-valued function anb|.
y There are some very special solids whose volumes can

ha be expressed by integrals. The simplest such golisia
“volume of revolution” obtained by revolving the region
under the graph of > 0 on [a, b] around the horizontal
x axis. We apply Fubini’'s theorem to the set

G={(z,y,2) eR*|a<z<b, y +2"<f(2)}

Consequently, the volume of ) is given by

v(G) = ///G dedydz = /ab dz (// dydz) , (9.1)

whereG, = {(y,2) € R? | y* + 22 < f(x)*} is the closed disc of radiug(x) around(0, 0).
For any fixedr € [a, b] its area ioo(G,) = [, dydz =7 f(z)*. Hence

b
v(G) = 7T/ f(z)?dz. (9.2)

Example 9.3 We compute the volume of the ellipsoid obtained by revoluimg graph of the
ellipse

around ther-axis. We have® = f(r)? = v? (1 — 2—2) hence

a 2 3 a 2 3 4
v(G) = sz/ (1 — %) dr = 7b* (x — %) = mb? (Qa — L) = T2,

3a? 3
9.3 Change of Variable

We want to generalize change of variables formngﬂ%’ f(x)dx = f;’ flg(y)d'(y) dy.
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If By is the ball inR? with radiusR around the origin we have in cartesian coordinates

R27332 R273327y
///fdxdydz —/ d:p/ / dzf(x,y, 2).
VRE_2 RQ,IQ,y

Usually, the complicated limits yield hard computationgrélspherical coordinates are appro-
priate.

To motivate the formula consider the area of a parallelogkam the z-y-plane spanned by the
two vectorsa = (aq, az) andb = (by, bs).

D={atub|Ape01]} = { (ﬁ;&fg)'““e [0,1]},

whereg; (A, 1) = Aa; + pby andgs (A, ) = Aas + pubs. As known from linear algebra the area
of D equals the norm of the vector product

€1 €2 €3
U(D) = ||a X b” = ||det a; asg 0 = ||(0,0,a,1b2 — a,gbl)H = |a1b2 — a,gbl | =:d
by by 0O

Introducing new variables and with
x=MXay + puby, y = Aag + pbs,

the parallelogran®D in the z-y-plane is now the unit squaré = [0, 1] x [0, 1] in the A-u-plane
andD = ¢(C'). We want to compare the ardaf D with the areal of C'. Note thatd is exactly
the absolute value of the Jacobi ( ’fj); indeed

(g1, 92) %gxl aagl ap ap
ORI 7 UL

/ d:zcd //‘ (91, 92) ‘d)\d,u.

This is true for anyR™ and any regular mag,: C' — D.

Hence,

Theorem 9.6 (Change of variable)Let C' and D be compact Jordan set iR”; let M C C' a

set of measuré. Letg: C' — D be continuously differentiable with the following propest
() g is injective onC'\ M.

(i) ¢'(x) is regular onC'\ M.

Let f: D — R be continuous.

Then
/f dy—/f ’ ii’ ’in))(x) dz. (9.3)
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Remark 9.4 Why theabsolute valuef the Jacobian? IiR' we don’t have the absolute value.
Butin contrast tdR™, » > 1, we have an orientation of the integration ;Ecépf dz = — [, fduz.

For the proof se€ [Rud¥6, 10.9 Theorem]. The main steps gfribef are: 1) In a small open
setg can be written as the compositioniofflips” and »n “primitive mappings”. A flip changes
two variablesr; andz,, wheras a primitive mapping/ is equal to the identity except for one
variable,H (z) = = + (h(z) — z)e,, whereh: U — R.

2) If the statement is true for transformatiosi@nd7’, then it is true for the compositiofi-7’
which follows fromdet(AB) = det A det B.

3) Use a partition of unity.

Example 9.4 (a) Polar coordinates. Let = {(r,») | 0 <r < R, 0 < ¢ < 27} be arectangle
in polar coordinates. The mappingr, ) = (z,y), * = rcosp, y = rsinp maps this
rectangle continuously differentiable onto the digevith radiusR. Let M = {(r, ¢) | r = 0}.
Since2Z®) — 1 the mapy is bijective and regular od \ M. The assumptions of the theorem

agr,gz?)
are satisfied and we have

é/ f(z,y) dzdy = 4/ f(rcos g, rsinp)rdrdy

R 27
= / / f(rcosp,rsinp)rdrde.
o Jo

Fubini

(b) Spherical coordinates. Recall from the exercise classpherical coordinatesc [0, co),
@ € [0,27], andy € [0, 7

x = rsind cos ,

y = rsinvsin g,

2z =rcos?.
The Jacobian reads
Ty Ty Ty sindcosy rcosvcosyp —rsindsing
ow,y,2) N . : _ 2
= |Yr Yo VY| = |sinUsing rcostdsing rsindcosy |=r-sinv
a(r, 9, ) :
2 29 Zp cos v —rsind 0
Sometimes one uses
ozy,2) = —r?sind.
A(r, 1)

Hence

1 2 0
///f(x,y,z)dxdydz:/ / / f(z,y, z)sin® 9 dr dp dd.
o Jo Jo

B1

This example was not covered in the lecture. Compute thenwelof the ellipsoide given by
u?/a?® +v?/b* + w?/c* = 1. We use scaled spherical coordinates:

u = arsin v cos o,

v = brsin ¥ sin ¢,

w = crcosv,
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wherer € [0,1],9 € [0, 7], ¢ € 0, 2x]. Since the rows of the spherical Jacobian maifh¢-=)
are simply multiplied byz, b, andc, respectively, we have

d(u, v, w)

a(r, v, ¢)

= aber? sin ¥,

Hence, ifB; is the unit ball around we have using iterated integrals

= /// dudvdw = abe /// r? sin ¥ drdddy
27
= abc/ drr? / dgp/ sin ¥dv

= gabc%r (—cos?V)|y = ?abc

. (© / / (22 + y?) dzdy whereC is bounded by the four hyperbolas

C
xy =12y =2,22—y>=1,2% —y* = 4.
We change coordinategz, y) = (u,v)

u =z, v:x2—y2.
The Jacobian is

Yy oz
2v 2y

d(u,v) _
d(z,y)

The Jacobian of the inverse transform is

= —2(2* + 7).

ou,0) 202 +y?)

In the (u,v)-plane, the region is a rectanglt = {(u,v) e R* |1 <u <2, 1 <v <4}
Hence,

//x Ty dxdy—//x )

Physical Applications

1
dudv—// vty dudvziv(D):g.

2(22 + y?)

If o(x) = p(z1,x2, x3) is @ mass density of a solid C R?, then

m = / pdx isthe mass of’ and
C

1 .
= — / z;p(x)dx, i=1,...,3 arethe coordinates of the mass centef C.
mJc
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Themoments of inertiaf C are defined as follows

I.,= ///(y2 + 2% pdadydz, I,,= ///(x2 + 2%)pdadydz,I,.= ///($2 + y?)p dadydz,
C C C

I, = /// rypdrdydz, I,. = /// rzpdrdydz, Iy, = /// yzpdedydz.
C e ¢

Herel,,, I, andl,, are the moments of inertia of the solid with respect toatkexis, y-axis,
andz-axis, respectively.

Example 9.5 Compute the mass center of a homogeneous half-plate ofr&dil = {(x, y) |
?+y? < R? y >0},

Solution. By the symmetry af’ with respect to thg-axis,z = 0. Using polar coordinates we
find

) 1 2R3
y:_ yd:cdy— rsmwd@dr— r#dr ( _COS‘P)‘O—_—
m m m

Since the mass is proportional to the area= 7r— and we find(0, ££) is the mass center of
the half-plate.

9.4 Appendix

Proof of Fubini’s Theorem. Lef’, be a partition ofA and Py a partition of B. Together they
give a partitionP of A x B for which any subrectanglg is of the formS4 x Sp, whereS, is
a subrectangle of the partitid?y, andSp is a subrectangle of the partitidf. Thus

f) = ZmSU<S) = Z mMs,xSg U(SA X SB)
S

Sa,SB
- Z (Z MS,xSp U(SB)> U(SA).
Sa Sp

Now, if = € Sy, then clearlymg, s, (f) < ms,(g.) since the reference sét x Sp on the
left is bigger than the reference det} x Sp on the right. Consequently, fore S, we have

ZmSAXSB SB ZmSB gI < / 9z dy = L(l‘)
B

ZmSAXSB U(SB) < ms, (L(.%’))

Therefore,

> <Z M5, x5p U(SB)> v(Sa) <D ms, (L()v(Sa) = L(Pa, L).
Sa

Sa SB
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We thus obtain

where the proof of the last inequality is entirely analogtughe proof of the first. Sincé is
integrablesup{L(P, f)} = inf{U(P, f)} = [,, 5 f dzdy. Hence,

sup{L(Ps,L)} = inf{U (P4, L)} = ; fdady.
xB

In other words£ () is integrable oM and [, , f dzdy = [, L(z) dz.
The assertion fotl(x) follows similarly from the inequalities

L(P, f) < L(Py, L) < L(P4,U) < U(Py, W) < U(P, §).



Chapter 10

Surface Integrals

10.1 Surfaces inR?

Recall that adomainG is an open andonnectedsubset inR"™; connected means that for any

two pointsx andy in GG, there exist points, z1, . .., x; With o = x andx, = y such that
every segment; _z;,7 = 1,..., k, is completely contained i&.

Definition 10.1 Let G C R? be a domain and’: ¢ — R? continuously differentiable. The
mappingF’ as well as the sef = F(G) = {F(s,t) | (s,t) € G} is called anopen regular
surfaceif the Jacobian matrix”(s, t) has rank for all (s,t) € G.

If

the Jacobian matrix of' is

Ts Tt
F'(s,t) = vs |-
Zs Rt

The two column vectors aof’(s, t) span the tangent plane foat (s, ¢):
ox dy 0z
DiF(s.0) = (56,0 S0, 550

DyF(s,t) = (%(3, t), %(s,t), %(3, t))

Justification: Supposeés, ty) € G wheret, is fixed. Theny(s) = F(s,t) defines a curve
in F with tangent vectory/(s) = D, F(s,t,). Similarly, for fixeds, we obtain another curve
7(t) = F(so,t) with tangent vectofy’'(t) = D, F'(sg,t). SinceF’(s,t) has rank2 at every point

of G, the vectord, F and D, I are linearly independent; hence they span a plane.

259
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Definition 10.2 Let F': G — RR? be an open regular surface, apg, to) € G. Then
= F(So,to) + OZDlF(SQ, to) + 5D2F(SO, to), a,0€R

is called thetangent planer to F' at F'(sg, to). The line through¥'(so, ty) which is orthogonal
to £ is called thenormal lineto F' at F'(so, to).

Recall that the vector produgtx ¢ of vectorsz = (1, xo, x3) andy = (y1, yo, y3) from R3 is
the vector

€1 €2 €3
TXY=1|21 T2 T3| = (3723/3 — Y23, T3Y1 — Y31, T1Y2 — yll’z)-
Y1 Y2 Y3

It is orthogonal to the plane spanned by the parallelogFamith edgesr andy. Its length is
the area of the parallelogram
A vector which points in the direction of the normal line is

€1 €2 €3
Dy F(s0,to) X DaF(s0,t0) = |25 Ys 2s (10.1)
Tt Yr 2t
D1F X DQF
n=-=+ , 10.2
[DyF x DuF| (10:2)

whereri is the unit normal vector dts, ¢y).

Example 10.1 (Graph of a function) Let F' be given by the graph of a functioh: G — R,
namelyF'(z,y) = (x,y, f(z,y)). By definition

D1F:(1707f:v>7 D2F:(0717fy>7

hence
€1 € e3
Dif x Dof = |1 0 fo| = (=fo,—fy, 1)
0 1 f,

Therefore, the tangent plane has the equation
—fue(x — 20) = fy(y — v0) + 1(2 — 20) = 0.
Further, the unit normal vector to the tangent plane is

(fa:a fyv _1)

n==+
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10.1.1 The Area of a Surface

Let /" andJ be as above. We assume that the continuous vector figlfisand D, F on G can
be extended to continuous functions on the clogiire

Definition 10.3 The number

|?|:]?]:i//HDd7x[bFHdaﬂ (10.3)
G

is called theareaof ¥ and of¥.
We call

dS = | D1 F x DyF|| dsdt

the scalar surface elemeat F'. In this notation| | = [[ dS.
G

Helix: (s*cos(t), s*cos(t), 2*t)

Example 10.2Let ¥ = {(scost,ssint,2t) | s €
[0,2],t € [0,47]} be the surfaced spanned by a helix.
We shall compute its area. The normal vector is

DyF = (cost,sint,0), DoF = (—ssint,scost,2)

such that

€1 (S5} €3
D\F x DyF = | cost  sint 0| = (2sint, —2cost, s).
—ssint scost 2

Therefore,

4 2 2
\3’”\:/ /\/4(:052154—4sin2t+32d3dt:47r/ Vi + s2ds = 87(v2 — log(v2 — 1)).
o Jo 0

Example 10.3 (Guldin’s Rule (Paul Guldin, 1577-1643, Swigdathematician)) Let f be a
continuously differentiable function da, b with f(x) > 0 for all € [a, b]. Let the graph of
f revolve around the-axis and letf be the corresponding surface. We have

F| :27T/ F)V/T + f(@) da.

Proof. Using polar coordinates in thez-plane, we obtain a parametrization®f

F={(z, f(x)cosp, f(z)sinp) | x € [a,b],p € [0,27]}.
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We have

DF = (1, f'(z) cos, f'(x)siny), DiF = (0,—fsiny, fcosp),
DiF x DoF = (ff',—fcosp, —fsingp);

so thatdS = f(x)y/1 + f'(x)? dzdy. Hence
b 21 b
1= [ [ @VTFFaPdpds =2r [ @)/ T+ PP s

10.2 Scalar Surface Integrals
Let F andJ be as above, anfl: T — R a continuous function on the compact suldBet R?.

Definition 10.4 The number

// f(&)dsS = // F(F(s,t)) [|D1F(s,t) x Dy(s,t)]| dsdt
F €
is called thescalar surface integral of onJ.

10.2.1 Other Forms for d.S

(a) Let the surfacé& be given as the graph of a functidf(x, y) = (z,y, f(x,y)), (z,y) € G.

Then, see ExampleI0.1,
dS = /1 + f2 + f2 dady.

(b) Let the surface be given implicitly &s(z, y, z) = 0. Supposé- is locally solvable forz in
a neighborhood of some poifto, yo, z0). Then the surface element (up to the sign) is given by

JEI T 21 2 dF
ds = y drdy — 1884 o,

ray
| £ | | £ |

One checks thab Fy x DF, = (F,, F,, F.)/F..
(c) If Fis given byF'(s,t) = (x(s,t),y(s,t), z(s,t)) we have

dS = VEG — H?dsdt,
where

E:x§+y§+zg7 G:ZE?—I—y?—f-Z?, H:xsxt—l_ysyt—'_zszt'
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Indeed, usinq i x EH = ||a@]| HE’
by @ andb we get

sin ¢ andsin? ¢ = 1 — cos? ¢, wherey is the angle spanned

EG — H* = | DiF|* | D:F|* — (D1 F-DyF)* = | DiF||* || D2F|* (1 — cos® )
= |D\F|* | DF|* sin* o = || D F x DoF|?
which proves the claim.

Example 10.4 (a) We give two different forms for the scalar surface elenudra sphere. By
(b), the sphere? + y? + 22 = R? has surface element

o @n2y.22)]
2z

dxdy = " dxdy.
z

r = Rcospsinty, y= Rsinpsindy, 2z = Rcosv,

we obtain
Dy = Fy = R(cos ¢ cosV, sin ¢ cos v, — sin 1),
Dy = F, = R(—sin ¢sind, cos ¢sin v, 0),
Dy x Dy = R*(cos psin® 4, sin o sin® 9, sin 9 cos ).
Hence,

dS = || Dy x Dy|| d¥dy = R*sin ¥ddde.

(b) Riemann integral in R* and surface integral over spheresLet M = {(z,y,2) € R? |
p < |(z,y,2)|| < R} whereR > p > 0. Let f: M — R be continuous. Let us denote the
sphere of radius by S, = {(z,y,2) € R? | 2> + y* + 2* = r?}. Then

// fdxdydz:/der //f(f)dS :/pRTQ //f(rf)dS(f) dr.

Indeed, by the previous example, and by our knowledge ofrggieoordinatesr, 9, ).
drdydz = r*sind dr d¥ dy = drdsS,.
On the other hand, on the unit sph&ke dS = sin ¢ di dp such that
dadydz = r*drdS

which establishes the second formula.
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10.2.2 Physical Application

(@) If p(z,y, z) is the mass density on a surfa@e [ pdS is the total mass of. The mass
F

center off has coordinatege,., y., z.) With

1
Te = xp(x,y, z)dsS,
gfp F

and similarly fory,. andz...
(b) If o(Z) is a charge density on a surfage Then

[ e®
U(y)‘/g/ PULAS@, 7¢T

is the potential generated By

10.3 Surface Integrals

10.3.1 Oirientation

We want to define the notion afrientationfor a regular surface. L&k be a regular (injective)
surface with or without boundary. Then for every paigte JF there exists the tangent plane
E,,; the normal line tdF atx, is uniquely defined.

However, a unit vector on the normal line can have two difieckrections.

Definition 10.5 (a) Let F be a surface as above. unit normal fieldto F is a continuous
functionii: ¥ — R3 with the following two properties for every, € F

(i) 7i(xo) is orthogonal to the tangent planedaat z.

(it) [[7i(zo)| = 1.
(b) A regular surfacé is calledorientable if there exists a unit normal field dh.

SupposeF is an oriented, open, regular surface with piecewise smbotindaryod. Let
F(s,t) be a parametrization ¢f. We assume that the vector functiolis DF;, and D F; can
be extended to continuous functions®nThe unit normal vector is given by

N DlF X D2F
n==¢ ,
HDlF X DQFH
wheree = +1 ore = —1 fixes theorientationof F. It turns out that for a regular surface

there either exists exactly two unit normal fields or themedsuch field. If¥ is provided with
an orientation we writ&f, for the pair(F, ). ForJF with the opposite orientation, we write
F_.
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Examples of non-orientable surfaces are Mibius bandand thereal projective plane Ana-
lytically the Mobius band is given by

(1+tcost)sins -
F(s,t) = (1 —|—tC?S gs) coss |, (s, t)€0,2m] x (_5, 5) )
t&n§

Definition 10.6 Let f: F — RR? be a continuous vector field gh The number

4/ f(@) - 7ds (10.4)

is called thesurface integral of the vector fielﬁon F.. We call
dS = 1dS = e D1 F x DyF dsdt
the surface element F.

Remark 10.1 (a) The surface integral is independent of the parameimizaf I but depends
on the orientation{ [, f-dS=—[[, f-dS.
For, let(s,t) = (s(&,m),t(&,n)) be a new parametrization with(s(&,n),t(&,n)) = G(&, 7).

Then the Jacobian is
J(s, 1)

(&)

dsdt = = (8¢t — spte) dédn.

Further
DlG == DlF S¢ -+ DQF tg, DQG == DlF Sy -+ DQFt77,
sothatusingg x ¥ =0, x y= -y x =

DlG X DQGdfdn = (DlF S¢ + Dgth) X (DlF Sn + DQFtn)dng],
= (Sgtn — Sntg)DlF X DQFdfd’/]
= DlF X DQF dsdt.

(b) The scalar surface integral is a special case of the arfmtegral, namely

[[rdS = [[ fri-indS.
(c) Special cases. Lét be the graph of a functiofi, & = {(z, vy, f(z,v)) | (z,y) € C}, then

dS = £(—fu, —f,, 1) dady.
If the surface is given implicitly by*'(x, y, z) = 0 and it is locally solvable for, then

qs— + grad F

dxdy.

z
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(d) Still another form ofd§.

é/fds:gé/f(F(Sat))-(DlFxDQF)det

fl(F(5>t)) fQ(F(Svt)) f3(F(Svt))
zs(s, 1) ys(s, t) 25(s, 1)
xy(s,t) yi(s,t) 2(s, 1)

(e) Again another notation. Computing the previous deteami or the determinanf{10.1)
explicitely we have

F(F(s,t))- (DiF x DyF) = (10.5)

—

S ZS
F(D\FxDyF) = f, "

Yt =zt

Hence,

dS = eDyF x DyF dsdt = ¢ @(y’ j) asat, 250 qgqp, O ‘?) dsdt)
dS = e (dydz, dzdz, dzdy).
Therefore we can write
//f ds = //(f1dydz+fgdzdx+f3dxdy).
TF TF
In this setting

/ fldydz://(fl,0,0). d@:i//fl(F(s,t))g(é:j; dsdt.
G

F F

Sometimes one uses
dS = (cos(, e1), cos(i, e3), cos(i, e3) ) dS,

sincecos(1i, e;) = 7i-e; = n; and dS = i dsS.

Note that we have surface integrals in the last two linespndinary double integrals since
is a surface ilR? and f; = f1(z,y, 2) can also depend on

The physical meaning oﬁf§f d? is the flow of the vector fieltfthrough the surfacg. The
flow is (locally) positive ifii and f are on the same side of the tangent plang tind negative
in the other case.

Example 10.5 (a) Compute the surface integral
/ fdzdx
T+

of f(x,y,2) = x?yz whereJ is the graph ofy(z,y) = x? + y over the unit squar& =
[0, 1] x [0, 1] with the downward directed unit normal field.
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By RemarlTION (c)

—

dS = (gu, gy, —1) dady = (22,1, —1) dady.

Hence

/fdzdx://(o,f,oyd%*
T+
19
//xyx +yd:cdy—/ dx/xy+xy dy = 90"

(b) Let G denote the upper half ball of radiusin R?:

G={(z,y,2) | 2> +y*+ 2> < R*, z>0},

y and letF be the boundary aff with the orientation of the
R outer normal. Ther¥ consists of the upper half sphere
Fi

Fi={(w,y, V2 -2 =) |+ < R}, z=g(a,y) = VR -2 — ¢,

with the upper orientation of the unit normal field and of thecd, in the z-y-plane

Fo={(z,9,0) | 2> +y* < R*}, z=g(z,y) =0,

with the downward directed normal. Lftx, y,z) = (az, by, cz). We want to compute
/ 7 ds.
T+
By RemarlITlL (c), the surface element of the half-spliglis dS = (2, y,z) dedy. Hence

1 1
I = // f- ds = // ax,by,cz) - —(z,y, z)dedy = // ~(ax® + by? + c2?) dady.
z z
z=g(z,y)
Bg g

Fiy

Using polar coordinates = rcosp, y = rsing, r € [0,R], andz = \/R?> — 22 — y? =
VvV R? — r? we get

I /27T dy /R ar? cos? p + br?sin? p + c(R? — r2)rdr.
0 0

R2 — 2

Noting fo% sin? pdp = fo% cos? pdy = 7 we continue

I /R ( ar’ + b’ + 2crv R? 7"2) dr
=T - .
1 v \WRZ—12 JRZ_2
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Usingr = Rsint, dr = Rcost dt we have

3 t 3 2
i > R3sin®tRcostd Rg/ sindtdf — §R3.
0

Hence,

27 3 f 2 2
I =—R(a+b)+mc | (R*—17)
0

[NIE
o
—
=
[\
=

3

2 2
= %Rg(a +0b) +7c [—g(RQ - 7’2)%

= 2?WR:S(CL +b+c).
In case of the dist, we have: = f(z,y) = 0, such thatf, = f, =0 and
dS = (0,0, 1) dzdy

by RemarkI0l1 (c). Hence

//f ds = // azx, by, cz) - 0—1)dxdy:—c//zdxdy fOO.
Br

g:2+

Hence,

//ax by, cz) - dS = 3R(a+b+c).

10.4 Gaul3’ Divergence Theorem

The aim is to generalize the fundamental theorem of caldoliggher dimensions:

/ F(2)dz = f(b) — f(a).

Note thatz andb form the boundary of the segmdnt b]. There are three possibilities to do this

[ffgdzdyd> =  [[ f-dS GauR’ theorem ifR?,
a

(0G) +
[ gdady — [ f-d% Green's theorem iiR?,
el - 0G4
[[g-dS — [ f-dZ Stokes’theorem .
Fy (0G) +

Let G C R? be a bounded domain (open, connected) such that its boufidary)G satisfies
the following assumptions:

1. F is a union of regular, orientable surfac&s The parametrizatiot;(s, t), (s,t) € C;,
of F; as well asD; F; and D, F; are continuous vector functions 65; C; is a domain in
R2.
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LetJ; be oriented by theuter normal (with respect ta~).

There is given a continuously differentiable vector fig‘Td@ — RR3? on G (More
premsely, there exist an open dét O G and a continuously differentiable function

f: U — R3such thatf|G = [)
Theorem 10.1 (Gaul3’ Divergence Theorem)Jnder the above assumptions we have
/// dlvfdxdydz —/ f-ds (10.6)
oG,
Sometimes the theorem is called Gaul3—Ostrogadski thearsmimply Ostrogadski theorem.

Other writings:

/// <% + ok + %) dzdydz = //(f1 dydz + fodzdz + f3 dzdy) (10.7)
oG

The theorem holds for more general regichs: R3.
We give a proof for

G={(z,y,2) | (x,9) € C, a(z,y) < 2 < B(z,9)},

— whereC C R?is adomain and, 3 € C*(C) define reg-
ular top and bottom surfacés and%, of &, respectively.
We prove only one part of{T0.7) namefy= (0,0, f3).

@ / / %dxdydz: / / fs dady. (10.8)
el e

By Fubini’'s theorem, the left side reads

///%dxdydz_ / / ( /:j %dz) dody

= // (fB(xvyvﬁ(xvy)) - fg(:zc,y,oz(x,y))) d[L‘dy, (109)
C

Proof ~ |

where the last equality is by the fundamental theorem ofubac
Now we are going to compute the surface integral. The outemabfor the top surface is

(—Be(z,y), —B,(z,y), 1) such that
I = // fadxdy = // (0,0, f3) - (—=Bu(x,y), —By(z,y), 1) dody

g:1+

:/ f3($,y,ﬁ(l‘,y))dl‘dy
C
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Since the bottom surfacs, is oriented downward, the outer normalis,(z, y), a,(z,y), —1)
such that

I, = / fadady = —/ fs(z,y, a(x,y)) dedy.

Foy

Finally, the shellF; is parametrized by an angleandz:

Fs = {(r(p) cosp, (@) sing, 2) [ a(x,y) < 2 < f(x,y), ¢ € [0, 27]}.
SinceD, F' = (0,0, 1), the normal vector is orthogonal to theaxis, 7 = (n1, ns, 0). Therefore,
L= [[ oty = [[0.0.5) n.m0)a5 =0
3:3+ 3:3+

Comparingl; + I, + I3 with (T0.9) proves the theorem in this special case. n

Remarks 10.2 (a) Gaul3’ divergence theorem can be used to compute the ealtithe domain
G C R3. Suppose the boundafiZ of G has the orientation of the outer normal. Then

://xdydz://ydzdx://zd:cdy.
le ile oG

(b) Applying the mean value theorem to the left-hand side afi@ formula we have for any
bounded regior- containingz

div f(zo + h) /// dzdydz = div f(zo + h)o( / f-ds,
G

0G,
whereh is a small vector. The integral on the left is the voluni&’). Hence

divf(xo):GliiI;OU(lc;)/ f-ds = 5%04 //f s,

8G+ S(c_‘ !L‘o

where the regiott tends toz,. In the second formula, we have chosén= B.(x,) the open
ball of radiuss with centerzy. The right hand side can be thought as to besth@ce densitpf
the field f. In particular, the right side gives a basis independentrgeson of div f.

Example 10.6 We want to compute the surface integral from Exariplel10.5.¢ng Gauly’
theorem:

//f ds = /// div f dedydz = /// (a+b+c) dxdydz—

224y2422<R?,2>0

(a+b+c).
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Gaul}’ divergence theorem which play an important role itigladifferential equations.

Recall (PropositionZ19 (Prop. 8.9)) that ttigectional derivativeof a functionv: U — R,

U C R", atz, in the direction of the unit vectot is given byDj; f (zo) = grad f(zo)-7

Notation. Let U C R? be open and, C U be an oriented, regular open surface with the unit
normal vectori(zy) atzy € F. Letg: U — R be differentiable.

Then

0 ~
() = grad g(ao)fi(ao) (10.10)
is called thenormal derivativeof g onF . atz.

Proposition 10.2 Let G be a region as in Gaul’’ theorem, the boundaéy is oriented with the
outer normaly, v are twice continuously differentiable on an openiSetith G c U. Then we
have Green'’s identities:

/// v)dzdydz = //u— ds — ///UA('U) dzdydz, (10.11)
- // (2 0) 4 1012
/// w) dadydz = / 57 45 (10.13)

Proof. Putf = «V(v). Then by nabla calculus
div f = V(uVv) = V(u) - V(v) + uV-(Vv)
= grad u- grad v + uA(v).

Applying Gaul3’ theorem, we obtain

/ / / div f drdydz = / / / (gradu- gradv) dedydz + / / / uA(v) dedydz
//ugradv ndS = //u_dg

This proves Green’s first identity. Changing the roleucdndv and taking the difference, we
obtain the second formula.

Insertingy = —1 into (I012) we get{10.13). n

Application to Laplace equation

Let u; and uy be functions onG with Au; = Auwus,, which coincide on the bounda®G,
uy(z) = ug(z) forall x € 0G. Thenu; = uy in G.
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Proof. Putu = u; — uy and apply Green’s first formul&{10]11) to= v. Note thatA(u) =
A(uy) — A(ug) = 0 (U is harmonic iniG) andu(z) = ui(z) — us(z) = 0 on the boundary
x € 0G. In other words, a harmonic function is uniquely determibgdts boundary values.

///v dxdydz—// —dS ///“éifﬁldxdydz:o'

8G0

SinceV(u)-V(u) = ||V (u)|*> > 0 and |V (u)||* is a continuous function o, by homework
14.3,||V(u)|* = 0 onG; henceV(u) = 0 onG. By the Mean Value Theorem, Corollary 7.12,
u is constant orfy. Sinceu = 0 ondG, u(z) = 0 forall » € G. m

10.5 Stokes’ Theorem

Roughly speaking, Stokes’ theorem relates a surface miteger a surfacé with a line integral
over the boundargJ. In case of a plane surfacelR?, it is called Green’s theorem.

10.5.1 Green’s Theorem

Let G be a domain iriR? with picewise smooth (differ-
entiable) boundariesy, I, ..., I;. We give an orienta-
tion to the boundary: the outer curve is oriented counter
clockwise (mathematical positive), the inner boundaries
are oriented in the opposite direction.

Theorem 10.3 (Green’s Theorem)Let (P, Q) be a continuously differentiable vector field on
G and let the boundary” = 9G be oriented as above. Then

// 0@ _Jp dxdy:/de+Qdy. (10.14)
or 0Oy r
G
Proof. (a) First, we consider a regiai of type 1 in the plane, as shown in the figure and we
will prove that
—//a—dedy = / Pdz. (10.15)
g dy r

The double integral on the left may be evaluated as an
iterated integral (Fubini’'s theorem), we have

// iy = [ ( /::’ P (20) dy) 0
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The latter equality is due to the fundamental theorem ofutatc To compute the line integral,
we parametrize the four parts 6fin a natural way:

I, #(t) = (a,0), t € [p(a),¥(a)]; dz =0, dy=dt,
I, 7o (t) = (¢, ¢(1)), t € |a,b], de = dt, dy=¢'(t)dt,
I, vs(t) = (b, 1), t € [p(b),¥(b)], de =0, dy=dt,

—1Iy, 2i(t) = (t, (1)), t € la,b), de = dt, dy='(t)dt.

Sincedr = 0 on [ and /3 we are left with the line integrals ovék andl:

/dex:/abp(t,<p(t))dt—/abp(t,w(t))dt

Let us prove the second patt, [ [ 2 dzdy = [,.Q dy. Using PropositioiZ24 we have
G

d

v@) g e
e(z) e(z)

Inserting this intof [ %< dzdy = [ (f:f(gf)) g9 dy) dz, we get
G

b ¥(x)

¥ (b) Y(a) b
= Qb y) dy — | Qla,y)dy — / Q(z,(x)) ¢ (x) dz+ (10.16)

@(b) w(a .
+/ Q(z, o(x)) @' (x) dz. (10.17)

We compute the line integrals:

W(a) w(b)
— Qdy=— Q(a,y)dy, Q dy = / Q(b,y) dy.
I3 @(b)

—I v(a)

Further,

b b
[Qay- [euerena - [ Qa--[atvmyvna

Adding up these integrals and comparing the result iihI{2)) the proof for type 1 regions is
complete.

I
Fs
X

<
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Exactly in the same way, we can prove thatifs a type 2 region theli.{I0114) holds.

(b) Breaking a regioid- up into smaller regions, each of which is both of type 1 andr2e@'s
theorem is valid forG. The line integrals along the inner boundary cancel leatiggline
integral around the boundary 6f.

(c) If the region has a hole, one can split it into two simplyneected regions, for which
Green's theorem is valid by the arguments of (b). [ ]

Application: Area of a Region

If I"is a curve which bounds a regi@® then the area off is A = [,(1 — @)z dy — aydzx
wherea € R is arbitrary, in particular,

1
A:—/xdy—ydx:/xdy:—/ydx. (10.18)
2Jr r r

Proof. Choosing? = (1 — a)z, P = —ay one has

A:é/dxdy:é/((l—a)—(—a))dxdyzé/(Qm—Py)dxdy:/Fde—FQdy
:—a/Fydx+(1—a)/dey.

Insertinga = 0, a = 1, anda = 1 yields the assertion. m

2 2
Example 10.7 Find the area bounded by the ellipse $—2 + Yo 1. we parametrizd’ by

) a b2
Z(t) = (acost,bsint), t € [0,2n], Z(t) = (—asint,bcost). Then [10.IB) gives

1 2m 1 2m
Azi/ acostbsintdt—bsint(—asint)dt:5/ abdt = mab.
0 0

10.5.2 Stokes’ Theorem

Conventions: Le¥, be aregular, oriented surface. Let= 03, be the boundary df with the
induced orientationthe orientation of the surface (normal vector) togethehiwie orientation

of the boundary form a right-oriented screw. A second waydbthe induced orientation:
sitting in the arrowhead of the unit normal vector to the acef the boundary curve has counter
clockwise orientation.

Theorem 10.4 (Stokes’ theorem)Let ¥, be a smooth regular oriented surface with a
parametrizationF € C?(G) and G is a plane region to which Green’s theorem applies. Let
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I' = 0F be the boundary with the above orientation. Further,]‘féje a continuously differen-
tiable vector field oryr.
Then we have

/ / curl f-dS = f-dz. (10.19)
) oF,

This can also be written as

// (% — 8—22) dydz+<% — %) dzdx+<% — %—J;l) daxdy = /Ffl dz+ fo dy+ f3 dz.

Proof. Main idea: Reduction to Green’s theorem. Since both sifléseoequation are additive
with respect to the vector fielf, it suffices to proof the statement for the vector fidlfis 0, 0),
(0, f2,0), and (0,0, f3). We show the theorem fof = (f,0,0), the other cases are quite

analogous:
//( ddx——fd dy) fdux.
oF

Let F'(u,v), u,v € G be the parametrization of the surfa€eThen

ox or
dx—a—du—i-a—dv

such that the line integral on the right reads withu, v) = f(z(u,v), y(u,v), z(u,v)) % (u, v)

andQ(u,v) = f 2.

P
fdx = fxudu+fxvdv—/ Pdu+ Qdv // (—8—4—@) du dv
o0F oG G Green sth. ou

:/ —(fuxu+fa;w)—|—(fuxv+fxuv)dudv:/ — fotu + futry dudy
G G

:/ _(f:vxv_'_fyyv_'_fzzv)xu_'_(fxxu+fyyu+fzzu)xvdUdU

:/ _fy TulYov — xvyu) + fZ(ZuZL'v - Zvl‘u)) dudv

//( fya +fz E U;) d“d’U:/g —fydady + f. dzdz.

This completes the proof. [

Remark 10.3 (a) Green’s theorem is a special case Wite- G x {0}, 7 = (0,0, 1) (orienta-
tion) andf = (P, Q,0).
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(b) The right side of[[I0-19) is called tioirculation of the vector fieldf over the closed curve
I'. Now letx, € F be fixed and consider smaller and smaller neighborh&gdsof ', with
boundaried;. By Stokes’ theorem and by the Mean Value Theorem of integrat

—

fdz = // curl f-7idS = curl f(zo)ii(x) area (F).
Io
Fo

Hence,

- dz
curl f(xg)-1i(zg) = 3(1)2%;0 %.

We call curl f(zo) - 7i(zo) theinfinitesimal circulatiorof the vector fieldf at z, corresponding

to the unit normal vector.

(c) Stokes’ theorem then says that the integral over theite§imal circulation of a vector field

fcorresponding to the unit normal vectérover 3 equals the circulation of the vector field

along the boundary df.

Path Independence of Line Integrals

We are going complete the proof of Proposifiod 8.3 and shaivftr a

simplyconnected regio’ ¢ R? and
a twice continuously differentiable vector fiefdwith
curl f =0forallz € G

the vector fieldf IS conservative.

Proof. Indeed, letl” be a closed, regular, piecewise differentiable curve G and let/” be the
the boundary of a smooth regular oriented surfdice I" = 03, such that/" has the induced
orientation. Insertingzurl f = 0 into Stokes’ theorem gives

//Curlf-d_S:(J:/f-df;
Fy "

the line integral is path independent and henfcis, conservative. Note that the region must be
simply connected; otherwise its in general impossible to firwith boundaryl". n

10.5.3 Vector Potential and the Inverse Problem of Vector Aalysis

Let fbe a continuously differentiable vector field on gimply connectetegionG C R3.

Definition 10.7 The vector fieldfon G is called asource-fredield (solenoidal field) if there
exists a vector field on G with f = curl g. Theng is called thevector potentiato f.

Theorem 10.5 fis source-free if and only ifliv f: 0.
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Proof. (a) If f: curl g then div f: div (curl g) = 0.
(b) To simplify notations, we skip the arrows. We explicitgnstruct a vector potentiglto f
with g = (g1, g2,0) and curl g = f. This means

_ 992
fl—_au

_691
f2_g7
=092 o9
ST 9r oy

Integrating the first two equations, we obtain
92:_/ fl(xuyat)dt+h(x7y)7

20
gl:/ f2(3773/7t)dt7
20

whereh(z, y) is the integration constant, not depending:oinserting this into the third equa-
tion, we obtain

092 oq “O0fi N %

o oy . %(xay,t)dtﬂth(l”y) —/ZO dy (z,y,t)dt
“(0fL | Of
= — L 22 ) de+h
/ZO (8:}0 * 3y) + e
_ “0fs
div_f:O /ZO a(l’, Yy, t) dt + hz
f3(x7y7 Z) = f3(x7y7 Z) - fg(l‘, Y, ZO) + hx(x7y>
This vyields, h.(z,y) = f3(z,y,20). Integration with respect tar finally gives
h(z,y) = f; f3(t,y, z0) dt; the third equation is satisfied angirl g = f. »

Remarks 10.4 (a) The proof of second direction is a constructive one; yanuuse this method
to calculate a vector potential explicitly. You can alsodanother ansatz, say= (0, go, g3) Or

g= (917 0793)'
(b) If g is a vector potential fof andU € C?(G), theng = g+ grad U is also a vector potential

for f. Indeed
curl g = curlg + curl gradU = f.
The Inverse Problem of Vector Analysis

Let h be a function and be a vector field ordx; both continuously differentiable.
Problem: Does there exist a vector figilduch that

divf=h and curlf=a.
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Proposition 10.6 The above problem has a solution if and onlylif @ = 0.

Proof The condition is necessary sincéva = div curl f = 0. We skip the vector arrows.
For the other direction we use the ansatz r + s with

curlr = 0, divr = h, (10.20)
curl s = a, divs = 0. (10.21)

Since curlr = 0, by Propositioi813 there exists a potentialwith r = gradU. Then
curlr = 0 and divr = div gradU = A(U). Hence [I0.20) is satisfied if and only if
r = gradU andA(U) = h.

Sincediva = 0 by asssumption, there exists a vector potegtglich thatcurl ¢ = a. Lety be
twice continuously differentiable o and sets = g + grad ¢. Thencurl s = curlg = a and
divs = divg+ div grad ¢ = divg+ A(y). Hence,divs = 0 if and only if A(¢) = — div g.
Both equationg\(U) = h andA(yp) = — div g are so called Poisson equations which can be
solved within the theory of partial differential equatiqitDE). [ ]

The inverse problem hasta unique solution. Choose a harmonic functiomA () = 0 and
put f; = f + grad. Then

div fy = div f + div grad ¢ = div f + A(v)) = div f = h,
curl f; = curl f + curl grady = curl f = a.



Chapter 11

Differential Forms on IR"

We show that Gaul3’, Green’s and Stokes’ theorems are thses cha “general” theorem which
Is also named after Stokes. The simple formula now rquls; = f@cw' The appearance of
the Jacobian in the change of variable theorem will becomarcMWe formulate the Poincaré
lemma.

Good references arg [Spl65], [AEO1], and [vWW/81].

11.1 The Exterior Algebra A(IR"™)

Although we are working with the ground field all constructions make sense for arbitrary
fieldsK, in particular K = C. Let{ey,...,e,} be the standard basis Bf*; for » € R™ we
write h = (h4, ..., hy,) with respect to the standard bagis= ) . hse;.

11.1.1 The Dual Vector Spacd/*

The interplay between a normed spdceand its dual spacé&’ forms the basis ofunctional
analysis We start with the definition of the (algebraic) dual.

Definition 11.1 Let V' be a linear space. Thaual vector spacé’* to V' is the set of all linear
functionalsf: V — R,

Vi ={f:V —-R| fislineat.

It turns out thatl’* is again a linear space if we introduce addition and scaldtiples in the
natural way. Forf,g € V*, o € R put

(f +9)(v) = f(v) +9(v), (af)(v) :=af(v).
Theevaluationof f € V* onv € V is sometimes denoted by

flw)y=(f,v) e K
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In this case, the brackets denote thml pairingbetweenl’* andV'. By definition, the pairing
is linear in both components. That s, foralkw € V and for all\, ; € R

M+ g, v)=X{f,v) +ulg,v),
(fs A4 pw) = X(f, v) +p(f, w).

Example 11.1 (a) LetV = R™ with the above standard basis. Fot 1, ..., n define theith
coordinate functionadz;: R™ — R by

dl’l(h) = d[L‘Z‘(hl, ey hn) = hi7 h e R".

The functionaldz; associates to each vectoe R" its ith coordinaté:;. The functionaldz; is
indeed linear since forall, w € R™ anda, § € R, dz;(av+fw) = (av+pw); = av;+ fw; =
adz;(v) + Bdx;(w).

The linear spacéR™)* has also dimension. We will show that{ dz;, dzs,..., dz,} is a
basis of(R™)*. We call it thedual basisof to {ey,...,e,}. Using the Kronecker symbol the
evaluation ofdx; one; reads as follows

dl’i(€j> = 6@']’7 ’l,j = 1, .

{dz, das, ..., dz,} generated*. Indeed, letf € V*. Thenf = >"" | f(e;) dz; since both
coincide for allh € V:

n

Z fleg) dai(h) =Y flei) by fhozmog_z f(hiei) = f <Z hiei> = f(h).

i=1

In Propostitio IT]1 below, we will see thatlzy, ..., dx,} is not only generating but linearly
independent.

(b) If V= C(]0, 1]), the continuous functions df, 1] and« is an increasing ofv, 1] function,
then the Riemann-Stieltjes integral

1
%(f):/o fda, fev

defines a linear functional, on V.
If a € [0, 1],

0u(f) = fla), feV

defines theevaluation functionabf f ata. In casen = 0 this is Dirac’sé-functional playing an
important role in the theory of distributions (generalizedctions).

(c) Leta € R™. Then(a, z) = Y, a;x;, € R" defines a linear functional oR". By (a)
this is already the most general form of a linear functiomalRd .
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Definition 11.2 Let £ € N. An alternating (or skew-symmetric) multilinear form of degre
k onR", ak-form for short, is a mapping: R" x --- x R" — R, k factorsR", which is
multilinear andskew-symmetrjg. e.

MULT (A)("'70[1)2“'_511]1‘,"‘):0{0)("‘,Ui,"')+ﬁu)("‘,wi7"'), (11.1)
SKEW w( y Uiy o 7Uj7):_w( y Ujy oo 7Ui7"')7 Z)]:]-)akal#jv (112)

for all vectorsvy, vs, ..., vi, w; € R™.

We denote the linear space of afforms onRR™ by A*(IR") with the conventiom’(R") = R.
In casek = 1 property [II.P) is an empty condition such thHa{R™) = (R")* is just the dual
space.

Let fi,...,fx € (R™)* be linear functionals onR”. Then we define the:-form
finh---Afi € AF(R™) (read: “f; wedgef; ...wedgef,”) as follows

filhe) -+ fi(he)
Sine Afelha, oo he) =] : (11.3)

fhn) - Flhe)

In particular, leti, ..., 4, € {1,...,n} be fixed and choosg§ = dx;,,j =1,...,k. Then

hlil e hkil

fin--- Afi isindeed &-form since thef; are linear, the determinant is multilinear

Aa+pa boc a b ¢ a b c
MA+pd e fl=A|d e fl+upl|d e fl,
Ag+png hoi g h i g h 1
and skew-symmetric
a b c b a c
d e fl=—le d f].
g h i h g 1
For example, let = (y1,...,yn), 2 = (21,...,2,) € R",
z
dozAdri(y, z) = v = Y321 — Y123.
Y 21

If f. = fs = f for somer # s, we havefiA---AfA---AfA---Afr = 0 since determinants
with identical rows vanish. Also, for any € A*(R"),

whi, .o by by h) =0, hi,... hy,h€R"

since the defining determinant has two identical columns.
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Proposition 11.1 For k£ < n thek-forms{dz;A---Adz;, | 1 < i3 < iy < -+ < i < n}
form a basis of the vector spacé (R"). A k-form withk > n is identically zero. We have

dim A*(R") = (Z)

Proof. Any k-formw is uniquely determined by its values on théuple of vectorse;, . . .., ¢;,)
with 1 < iy < iy < --- < 4 < n. Indeed, using skew-symmetry of we knoww on all k-
tuples of basis vectors; using linearity in each compongatgetw on all k-tuples of vectors.
This shows that thelz; A - - - Adz;, with1 < iy < iy < --- <1, < ngenerate the linear space
A¥(R™). We make this precise in cage= 2. Withy = 3~ yie;, 2 = 3, z;¢; we have by
linearity and skew-symmetry of

w(y,2) = Z yizjw(ei, e;) SKEW Z (Yizj — yj2i)w(es e5)

ij=1 1<i<j<n

- § el7ej

1<j

g :Zw(ei,ej)dxi/\dxj(y,z).

1<j

Yi =

Hence,
w= Zw(ei,ej) dz;Adz;.
1<
This shows that th¢)) 2-forms{ dz;A dz; | i < j} generatel?(R™).
We show its linear independence. Suppose ¥at; o;; dv;Adz; = 0 for somea;; € R.
Evaluating this orie,, e5), 7 < s, gives

0= Zaw dx;Adzj(er, e5) Z&U

1<j 1<J

ri
E CVZ] ri sg r 651) = Qps;

1<j

hence, the above-forms are linearly independent. The arguments for gereaake similar.
]

In general, letv € A*(R") then there exist unique numbers..;, = w(e;,,...,e;,) € R,
11 < iy < --- < 1 such that

W = Z Ay ..y, d[L‘Zl/\ SRRWAY d[L‘Zk

1< <-<ip<n

Example 11.2 Letn = 3.
k=1 {dx,, dwy, dzs} is a basis oft! (R?).
k=2 {dx Adxy, dziAdes, dzeAdas})is a basis ofi?(IR?).
k=3 {dx AdraAdas}is abasis oft?(R3).

AR(R3) = {0} for k > 4.

Definition 11.3 An algebraA overR is a linear space together with a product ni@) — ab,
A x A — A, such that the following holds for all, b, c € Aanda € R
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(i) a(bc) = (ab)c (associative),
(i) (a+b)c=ac+be, alb+c)=ab+ ac,
(i)  a(ab) = (aa)b = a(ab).

Standard examples af& X'), the continuous functions on a metric spacer R"*", the full
n x n-matrix algebra oveR or the algebra of polynomiaR[X].

Let A(R") = @D A*(IR") be the direct sum of linear spaces.

k=0

Proposition 11.2 (i) A(RR™) is anR-algebra with unityl and product\ defined by
(dey A Ada ) A (dzjy A+ Adey,) = dag A--- Ade, Adaj A - - Aday,
(ii) If wp € A¥(R") andw; € AY(R") thenwAw; € A¥(R") and
wihw; = (=D Awy..

Proof. (i) Associativity is clear since concatanation of stringsssociative. The distributive
laws are used to extend multiplication from the basis to titgespacel(R").

We show (ii) forw, = dz;,A---Adz;, andw, = dz;A---Adz;,. We already know
dz;Adz; = —dz;Adx;. There arékl transpositionslz;, < dz;, necessary to transport all
dz;, from the right to the left ofu;.. Hence the sign i§—1)*. m

In particular, dz;A dz; = 0. The formuladz;Adz; = — dz;A dz; determines the product in
A(R™) uniquely.

We call A(R™) is theexterior algebraof the vector spac®”.

The following formula will be used in the next subsectiont Lec A*(R") andn € A/(R")
thenforallvy, ..., v € R

1
(WA (01, okt) = D (17w, - Vo) N(Vorr), - - Voriny)- (11.4)

0ESkK+1

Indeed, letw = fiA---Afe, 1 = feaN- - Aferns fi € (R™)*. The above formula can be
obtained from

(N ASe) A (fer A Afig) (01,0 ) =

fi(vr) o filow)  filok) e fi(vesa)
fa(v1) - fa(vw) Jo(Vr41) o fo(Vkga)
= fk(.vl) s fk(Uk) fk(’U.kH) o fr(Vkg)

Serr(vr) o for(ow)  ferr(oegn) - fern (k)

Jreq(v1) "'fk;w(vk) Seri(esn) - fop(vrn)
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when expanding this determinant with respect to thel lest/s. This can be done using Laplace
expansion:

! @iy Qi | | Digyager "0 Qiggadeg
|A| = Z (—1)Em=r limtim) : : :
1<g1 << <
=7 Je=n Qipgr 0 Qiggy, Qigrigprr 7 Qi
where (i, ..., 1) is any fixed orderd multi-index an@.1, ..., jx+) iS the complementary

orderd multi-index tdj,, . . ., jx) such that all inegers, 2, ..., k + [ appear.

11.1.2 The Pull-Back ofk-forms

Definition 11.4 Let A € L(R", R™) a linear mapping an#l € N. Forw € A*(R™) we define
ak-form A*(w) € A*(R") by

(A*W) (B, i) = w(A(h), A(ha), ..., A(hi)), huy.o e € R
We call A*(w) thepull-backof w underA.

Note thatA* € L(A*(R™), A¥(R™)) is a linear mapping. In case = 1 we call A* the dual
mappingto A. In casek = 0, w € R we simply setd*(w) = w. We haveA*(wAn) =
A*(W)AA*(n). Indeed, letv € A¥(R"), n € A(R"), andh; € R",i = 1,...,k + [, then by
(I13)

A (wAn)(hy, .. hiyr) = (WAD)(A(R1), - .o A(hitr))

- % Z (_1)JW(A(UU(1))7 ce aA('UU(k))) n(A(UU(kJrl))a . A(Ua(k+l)))

UGSk+l

km D (C1)TA @) (Vo) - Vo) AT (Vokr1)s -+ Votrin)

UGSk+l

= (A W)AA () (7, - - Peyr)

1 0 3
210
matrix multiplication,A(v) = A-v, v € R?. Let{e, ey, e3} and{fi, f»} be the standard bases
of R? andR? resp. and le{ dx, dz,, dzs} and{ dy,, dy,} their dual bases, respectvely.
First we computed*( dy; ) and A*( dys,).

A*(dy)(ei) = dyi(Alei)) = an,  A™(dy2)(ei) = aia.

Example 11.3(a) Let A = ( ) € R**3 be a linear mapd: R?* — IR?, defined by

In particular,
A*(dyy) = 1day + 0 dag + 3das,  A*(dyz) = 2dxy + das.
ComputeA*(dys A dy;). By definition, forl < i < j <3,

Q52 Q52

A*(dyaAdyr)(ei, e5) = dyaAdyi(Ales), Ale;)) = dyaAdyi(As, Aj) =

a,jg aﬂ
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In particular
* 2 1 . 2 0
A (dyoh dy) (e, 03) = ‘3 O’ 3

Hence,
A*(dyz/\ dyl) = — dl‘l/\ dl'g + 6d$’1/\ dl‘g + 3d3§'2/\ dl’g.

On the other hand
A*(dyz)/\A*(dyl) = (2 dl'1+ dxg)/\(dxl—l—?) dl’g) = — dl‘l/\ dl'2+3 dl’l/\ dl'3+6 dl’l/\ dl‘g.

(b) Let A ¢ R, A:R* — R" andw = dxA---Adz, € A*(R"). Then
A*(w) = det(A) w.

11.1.3 Orientation of R™

If {e1,...,e,} and{f1,..., f.} are two bases dR" there exists a unique regular matrix=
(ai;) (det A # 0) such thate; = >~ a;f;. We say thatfe,,...,e,} and{fi,..., f.} are
equivalenif and only ifdet A > 0. Sincedet A # 0, there are exactly two equivalence classes.
We say thatthetwobasés; | i = 1,...,n}and{f; | i = 1,...,n} definethe same orientation

if and only if det A > 0.

Definition 11.5 An orientation of R™ is given by fixing one of the two equivalence classes.

Example 11.4 (a) In R? the baseqe,, e} and{e,, e; } have different orientations sincé =

0 1
A=—1.
<1 0) anddet

(b) In R? the basegey, e, e3}, {e3,e1,e2} and{e,, e3, e} have the same orientation whereas
{e1,e3,e2}, {ea, e1,e3}, and{es, e5, e;} have opposite orientation.
(c) The standard bas{;, .. .,e,} and{ey, e, es, ..., e, } define different orientations.

11.2 Differential Forms

11.2.1 Definition

Throughout this section Iéf C R"™ be an open and connected set.

Definition 11.6 (a) A differential k-form onU is a mappingo: U — A¥(R"), i.e. to every
pointp € U we associate a-form w(p) € A*(R"). The linear space of differenti&tforms on
U is denoted by2*(U).
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(b) Letw be a differentiak-form onU. Since{ dz; A---Adz;, |1 <iy3 <ip <--- <ix <n}
forms a basis oft*(R") there exist uniquely determined functioms..;, onU such that

w(p) = Z Ay (p) Ay A - Aday, . (11.5)

1<iy < <ip<n

If all functionsa,, .., are inC"(U), r € N U {oo} we sayw is anr times continuosly differen-
tiable differentialk-formon U. The set of those differentiatforms is denoted by2"(U)

We define20(U) = C"(U) and2(U @ QF(U7). The product i (R") defines a product
in 2(U):

(wAn)(z) = w(z)An(z), x €U,
hencef?(U) is an algebra. For example, if

wy = 22 dyndz + zyzdandy  wy = (zy® + 32%) dz

define a differentiab-form and al-form onR?, w; € 2%(R?),w, € 21(R3) thenw,Aw, =
(23y? + 3222%) dzA dyA da.

11.2.2 Differentiation

Definition 11.7 Let f € 2°(U) = C"(U) andp € U. We define

df(p) = Df(p);

thendf is a differentiall-form onU.
If w(p) = Z a;,..q, (p) dag, A - - - Adz,, is a differentialk-form, we define
1<ip < <ip<n

dw(p) = Z dai, .., (P)Adzy A~ - ANday, . (11.6)

1<iy < <ip<n

Thendw is a differential(k + 1)-form. The linear operatat: 2%(U) — Q*1(U) is called the
exterior differential

Remarks 11.1 (a) Note, that for a functiorf: U — R, Df € L(R",R) = A}(R"). By
ExampldZJ (a)

Df(x)(h) = grad f(z Z o Z () dai(h
hence
df(z)=> af' () da;. (11.7)
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Viewing z;: U — R as aC>-function, by the above formula
dz;(z) = dz;.
This justifies the notationlz;. If f € C*(R) we havedf(z) = f'(x) dz.
(b) One can show that the definition dfv does not depend on the choice of the basis
{dwxy,..., dz,} of AY(R™).

Example 11.5(@) G = R?, w = ¢ dz + zy* dy. Then

dw = d(e"™)Adx + d(xy*)A dy
= (ye™ dz + xe™ dy)Adz + (y* dz + 3zy* dy)A dy
= (—ze"™ + y*) doA dy.

(b) Let f be continuously differentiable. Then

df = fode + f,dy + f.dz = grad f-(dz, dy, dz) = grad f-.dZ.

(c) Letv = (vy,v9, v3) be aC'-vector field. Putv = vy dz + vy dy + v3 dz. Then we have

do = (292299 Gunde o (20 29 qonde s (202 290 ganay
z 0z O or Oy

= curl (v): (dyAdz, dzAdz, deAdy) = curl (v)- dS.

(d) Letv be as above. Pui = v, dyA dz + v dzA dx + v3 dzA dy. Then we have
dw = div (v) dzA dyAdz.
Proposition 11.3 The exterior differentiadl is a linear mapping which satisfies

(i) d(wAn) =dwAn + (=1)fwndn, we 2FU), ne 2,U).
(i) ddw) =0, we 2U).

Proof. (i) We first prove Leibniz’ rule for functiong, g € £2%(U). By Remark§IT]1 (a),

A1) = Y g-th) dni =3 (5L 1 5% )

N of 9g _
_;axi dxlg—l—;a—xidxzf—dfg—l—fdg.

Jg
8951-

For!l = (iy,...,%) andJ = (j1,..., ;) we abbreviatedz; = dz; A---Adzx;, anddz; =
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dz;,A---Ndxj,. Letw = Z ardx; andn = ZbJ dz ;. By definition
I J

d(wAn) = (Z arby dx A de> = Zd(albj)/\ dxAdxy
1,J

1,J
:Z daIbJ+a1de)/\dx1/\de

= Z ay/\ dZL‘]/\ bJ dIL‘J + Z ar dxl/\de/\ de(_l)k
1,J

I,J
= dwAn + (—1)*wAdy,

where in the third line we usetb ;A dz; = (—1)F deyAdby.
(i) Again by the definition of:

8@1 82611
d(dW) = Zd(da[/\ d.’L’I) = Zd (8—95] dl'j/\ de’[) = Z 8.1‘181-] dxi/\dxj/\dx[
I 1,5 1,5

82a1
Schwarz’ IemmaZ 81'] &Ez dxj/\ daiA dxf) - _d(dw)'

It follows thatd(dw) = d?w = 0. ]

11.2.3 Pull-Back

Definition 11.8 Let f: U — V be a differentiable function with open sets ¢ R"™ and
V C R™. Letw € 2%(V) be a differential-form. We define a differentiat-form f*(w) €
025(U) by

(f'w)(p) = (Df
(F*w)(p; ha, ..., hy) = w(f(p ),Df(p)(hl), ..,Df(p)(hy), p€U, hy,... hy€R"

In casek = 0 andw € 2°(V) = C>(V) we simply set
(ffw)p) =w(f(p), [w=wef.
We call f*(w) the pull-backof the differentialk-form w with respect tof.

Note that by definition the pull-back* is a linear mapping from the space of differential
forms onV’ to the space of differentidl-forms onU, f*: Q2%(V) — QF(U).
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Proposition 11.4 Let f be as above and,n € 2(V). Let{dy,..., dy,} be the dual basis
to the standard basis ifiR™)*. Then we have witli = (f1, ..., fi)

—~ 0f;

(b)  fH(dw) =d(f"w), (11.9)
© fHaw) = (af)f"(w), a€C(V), (11.10)
(d) fH(wAn) = [ (w)Af"(n). (11.11)
If n = m, then
e) ff(dyA---Ady,) = del/\---/\dxn. (11.12)

Proof. We show (a). Let. € R"; by DefinitionI1.¥ and the definition of the derivative we &av

P () (B) = DS ) (R) = <dy (Z (%) hj) >

J=1

_Z(afz ) . Z(ag;)) i (h).

J=1

ey

This shows (a). Equatiofi{11]110) is a special cas€of (1;1vid prove (d). Lep € U. Using
the pull-back formula fok forms we obtain

[ wnn)(p) = (Df(p)) (wAn(f(p)) = (Df(p))*(w(f(p)An(f(p))
= (Df(p)"(w(f () A (Df(p) (n(f(p)))
@) @) A ) (p) = (F(w) A F () (p)

To show [I1B) we start with &-form ¢ and prove thatf*(dg) = d(f*g) for functions
g: U — R. By (I1.1) and[[I110) we have

fr(dg)(p) = f* <Z 35 dy ) Z ayl "(dy;)

& 0 of;
¥ <Z gg;ip» g <p>> dz,

Jj=

—d(gf(p)— d(f*g)(p).

Now letw = >, a; dz; be an arbitrary form. Since by Leibniz rule

df*(dar) = dd(fi)A---Ad(fi,)) = 0,
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we get by Leibniz rule

(Zf a] dl‘])
= Z fo(dap) + f*ar) d(f*(dar)) = D d(f*(an)i A f*(dap).

I
On the other hand, by (d) we have

f* <dZai dx1> = (Z da; A dx1> = f(das) A f(day).
I I I
By the first part of (b), both expressions coincide. This ctatgs the proof of (b).
We finally prove (e). By (b) and (d) we have
SrdyA - Adyn) = fr(dy) A A7 (dyn)
= Oh 0fn
= Z o dz;, A A Z &Tzn

i1=1 in=1

= da; A---ANdz; .
. Z 895@-1 895@” Vi in
Since the square of &form vanishes, the only non-vanishing terms in the abowe ate the
permutationsiy, ..., i,) of (1,...,n). Using skew-symmetry to writelz; A---Adz;, as a
multiple of dx; A - - - Adx,,, we obtain the sign of the permutati(m, cey )t

fr(dyA---Ady,) = Z sign (1 )(%““'(%i dziA - Aday,
I=(i1,...,in)ESn "
o1, ..,x)

Example 11.6 (a) Let f(r,¢) = (rcos ¢, rsin @) be given onR?\ (0 x R) and let{ dr, dy}
and{ dz, dy} be the dual bases {@,, e, } and{e;, e, }. We have
f*(z) = rcose, f*(y) = rsingp,
ff(dx) = cospdr —rsinedy, f*(dy) = sinpdr + rcos pdyp,
fr(dzndy) = rdrade,
* -y x
d ——— dy ) = do.

/ ($2+y2 T y) i
(b) Letk € N,r € {1,...,k}, anda € R. Define a mapping a mapping from R¥ — RF+!
andw € QF(R*) by

I(xy, ... 2p) = (21,0, Tp1, 0, Ty o ),
k+1

WY1, - Ykt1) Zfz ) dyaA - i AN Ay,
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wheref; € C>*(R**!) for all 7; the hat means omission of the factdy,. Then
I(w)(z) = frlz1, . oy @py, @, Ty oo ) Ay A - - - Adag.
This follows from

I"(dy;)) = dxy, i=1,...,r—1,
I"(dy,) =0,
[*(dyZJrl): dl’i, i:T,...,k.

Roughly speakingf*(w) is obtained by substituting the new variables at all places.

11.2.4 Closed and Exact Forms

Motivation: Let f(x) be a continuous function oR. Thenw = f(z)dx is al-form. By the
fundamental theorem of calculus, there exists an antidéva/F'(x) to f(x) such thatl F'(z) =
flx)dr = w.

Problem: Givenw € 2%(U). Does there exis € 281(U) with dn = w?

Definition 11.9 w € 2%(U) is calledclosedif d w = 0.
w € QF(U) is calledexactif there exists; € 2*~1(U) such thatln = w.

Remarks 11.2 (a) An exact formw is closed; indeedjw = d(dn) = 0.
(b) Al-formw = ), f; dx; is closed if and only ifcurl f = 0forthe corresponding vector field

f=_(fi,..., fn). Here the generalurl can be defined as a vector wiilin — 1) /2 components
= _0fi  0f
(curl f);; = Do, Ow;’

The formw is exact if and only iffis conservative, that ig?is a gradient vector field with

—

f = grad (U). Thenw = dU.
(c) There are closed forms that are not exact; for exampdewthding form
-y

xr
w:$2+y2dx+l‘2—|—y2dy

onR*\{(0,0)} is not exact, cf. homework 30.1.
(d) If dn = w thend(n + d¢) = w, too, for all¢ € 2*2(U).

Definition 11.10 An open sel is calledstar-shapedf there ex-
ists anzy € U such that for all: € U the segment fromy, to x is
inU,i.e.(1—t)xy+tx e Uforallt e [0,1].

Convex setd/ are star-shaped (take amy € U); any star-shaped set is connected and simply
connected.
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Lemmall5let U <C R" be star-shaped with respect to the origin. Let
W = Z iy iy, dl’il/\ s /\dl’zk < Qk(U) Define
i <<

k 1
I(w)(z) = Z Z(—l)“1 (/0 t*tay, g (t) dt) xi, drg, A Adag A - Ada,

1< <ip r=1

(11.13)

where the hat means omission of the faafar, . Then we have
Idw)+d({w) = w. (11.14)
(Without proof.)

Example 11.7 (a) Letk = 1,n = 3, andw = ay dzy + as dzs + azdxs. Then

1 1 1
[(w) =T / al(tx) dt + T2 / az(tl') dt + X3 / ag(t.l’) dt.
0 0 0

Note that this is exactly the formula for the potenfi&lxy, 25, z3) from Remark85b (b). Let
(a1,as9,a3) be a vector field o/ with dw = 0. This is equivalent tocurla = 0 by Exam-
plelII® (c). The above lemma shows = w for U = I(w); this meansgrad U = (a4, az, as),
U is the potential to the vector field , as, a3).

(b) Letk = 2,n = 3, andw = a; dzoA das + as dasA day +asz doy A doy Wherea is aC!-vector
field onU. Then

[(w) = <x3 /0 1m2(m) dt — a4 /0 1m3(m) dt) doy+

1 1
+ <:1:1 / tag(tx) dt — :1:3/ tay (tz) dt) dzo+
0 0

1 1
+ <x2/ tay (tx) dt — :cl/ tas(tz) dt) dzs.
0 0

By ExampldITF (d)w is closed if and only ifdiv () = 0 onU. Letn = by dzy + by das +
bsdxz such thatdn = w. This meanscurlb = a. The Poincaré lemma shows thatvith
curl b = a exists if and only ifdiv (a) = 0. Thenb is the vector potential ta. In casedw = 0
we can choosé d7 = I(w).

Theorem 11.6 (Poincaé Lemma) Let U be star-shaped. Then every closed differential form
is exact.

Proof. Without loss of generality let/ be star-shaped with respect to the origin dnd= 0.
By LemmdITbd(/w) = w. m
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Remarks 11.3(a) Let U be star-shaped, € 2%(U). Supposeln, = w for somen €
QF1(U). Then the general solution efy = w is given byn, + d¢ with ¢ € 282(U).
Indeed, let; be a second solution @fy = w. Thend(n — ny) = 0. By the Poincaré lemma,
there existg € 2*2(U) with n — 1y = d¢, hencey = 7y + d€.

(b) Let V' be a linear space arid a linear subspace df. We define an equivalence relation
onV by v, ~ vy if v; — vy € W. The equivalence class ofis denoted by + . One easily
sees that the set of equivalence classes, denot&g By, is again a linear spacei(v + W) +
Blu+ W) :=av+ fu+ W.

Let U be an arbitrary open subsetBf'. We define

CHU) ={w € 2%(U) | dw = 0}, thecocycleson U,
BE(U) = {w e 2%(U) |w is exact, thecoboundariesn U.

Since exact forms are closell’ (U) is a linear subspace 6f*(U). The factor space
Hix(U) = C*(U)/B*(U)

is called thede Rham cohomologyf U. If U is star-shapedH?® (U) = 0 for k > 1, by
Poincaré’s lemma. The first de Rham cohomoléfjy;; of R*\ {(0,0)} is non-zero. The wind-
ing form is a non-zero element. We have

H((i)eR(U) = Rp?

if and only if U has exactlyp components which are not connectéd= U; U - - - U U, (disjoint
union). Then, the characteristic functiogs,, : = 1, ..., p, form a basis of thé-cyclesC°(U)
(B°(U) = 0).

11.3 Stokes’ Theorem

11.3.1 Singular Cubes, Singular Chains, and the Boundary Qgrator

A very nice treatment of the topics to this section[is [Shi6bapter 4]. The sel, 1]* =
[0,1] x ---x [0,1] = {x € R* | 0 < 2; < 1,5 = 1,...,k} is called thek-dimensional unit
cube LetU C R™ be open.

Definition 11.11 (a) A singular k-cubein U C R™ is a continuously differentiable mapping
cp: [0,1)F = U.
(b) A singulark-chain in U is a formal sum

Sk = MN1Ck1 + -+ + NpCpr

with singulark-cubesc, ; and integers; € Z.
A singular0-cube is a point, a singularcube is a curve,

i in general, a singulai-cubg (in Rf”)_is a sgrface with
a boundary oft pieces which are differentiable curves.

c\2~ Note that a singula2-cube can also be a single point—
that is where the name “singular” comes from.
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Let [;.: [0, 1]* — R* be the identity map, i. el (z) = z, z € [0, 1]*. Itis called thestandardk-

cube inR*. We are going to define tHeoundaryds,, of a singulark-chains;,. Fori = 1,...,k
define

I(k'i,O)(:L‘h te 7‘/L‘k—1) = (xh sy i1, O7xi7 cee 7'rk:—1)7

]871)(1'17 ce ,.Z'kfl) = (.I'l, R 7 1,1‘1‘, c 7:13']6,1).

Insert a0 and al at theith component, respectively.
The boundary of the standakécubel,, is now defined byl : [0, 1]*~! — [0, 1]*

k
Ol = (=1 (Ifio) — Iti) - (11.15)
i=1
It is the formal sum oRk singular(k — 1)-cubes, the faces of thHecube.

The boundary of an arbitrary singulrcubec,: [0, 1]* — U c R" is defined by the composi-
tion of the above mapping@ 7,.: [0, 1]*~! — [0, 1]* and thek-cubec;,:

k
Ocr = cre0ly = > (=1)' (eIl ) — crelfi ) (11.16)

i=1

and for a singulak-chains;, = nycy1 + - - - + n,cx,, We set
0s = n10ck1 + -+ + np0cy ;.

The boundary operataic, associates to each singulachain a singulatk — 1)-chain (since
both I, ;, and//; ) depend ork — 1 variables, all from the segmejtx 1]).
One can show that

for any singulark-chains;.

e

Example 11.8 (a) In case: = k = 3 have

0l = _[?1,0) + [(31,1) + [?2,0) - [?271) - [?370> + [?3,1)7

- luo where

+ |(1,1)

X2 _[?170)<x17x2) = _<07x17x2>7 +[é31,1)<x17x2) (1 x17x2>

. 10y (w1, 02) = + (21,0, 2), =Ty (21, 22) = —(21,1, ),
) ;

_—[(3,0)@17952) = —(21,22,0), +I(3,1)($17$2) (w1, 29, 1).

X

Note, if we take care of the signs in{11.15) &lunit normal vectorlel(’j, y X DQI(”)

the faces have the orientation of the outer normal with retsggethe unit3-cube|0, 1]*. The
above sund/; is aformal sum of singulag-cubes. You are not allowed to add componentwise:
—(0, 21, 2) + (1,29, 22) # (1,0,0).
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(b) In casek = 2 we have

e ey g E 01x(x) = Ity 1y — Ity + 120) — 12
?CD = (15) = (0.2) + (2.0) — (x.1).
o |len 00 I = (Bs — Ey) — (Ey — Ey)+

B e B + (By — Ey) — (B3 — Ey) = 0.

Here we havéc, = I + [, — I3 — 1.
(c) Letcy: [0,27] x [0, 7] — R3\{(0,0,0)} be the singulag-cube

c(s,t) = (cos ssint,sin ssint, cost).

By (b)

Oca () = 90015 =

= co(2m,x) — (0, 2) + c2(,0) — co(z, )

= (cos 27 sin z, sin 27 sin x, cos 27) — (cos 0 sin x, sin 0 sin x, cos z)+

+ (cosxsin 0, sin x sin 0, cos 0) — (cos x sin 7, sin x sin 7, cos )

= (sinz,0,cosx) — (sinz, 0, cosx) + (0,0,1) — (0,0, —1)

= (0,0,1) — (0,0, —1).
Hence, the boundar§c, of the singular-cubec, is a degenerate singularchain. We come
back to this example.

11.3.2 Integration

Definition 11.12 Let ¢;: [0,1]* — U € R™, ¥ = ¢(t4, ..., k), be a singulak-cube andv
ak-form onU. Then(c;)*(w) is ak-form on the unit cubeo, 1]*. Thus there exists a unique
function f(¢), ¢ € [0, 1]*, such that

(o) (W) = fO) A - - Adty.

/Ck““: /Ik(CZ) (w) = [o,l}km) dty - - diy,

is called theintegral of w over the singular cube;; on the right there is thé-dimensional
Riemann integral.

Then

If s, = anc;“ is ak-chain, set
i=1

r
[oo3n] -
Sk i=1 Ch,i

If & = 0, a0-cube is a single point,(0) = x, and a0-form is a functionv € C>*(G). We set
fCO w = cj(w)],—o = w(co(0)) = w(zy). We discuss two special cases= 1 andk = n.
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Example 11.9 (a) £k = 1. Lete: [0,1] — R™ be an oriented, smooth curvé= ¢([0, 1]). Let
w= fi(z)dz; + -+ f,(z)dz, be al-form onR", then

c*(w) = (fule@®))(t) + - + fulc(t)) e, (1)) di

is al-form on[0, 1] such that

/w—/()lcw—/fl SOt = [ Foaz

Obviously, [  w is the line integral off overT".
(b) k = n. Letec: [0,1]* — R* be continuously differentiable and let= c(t). Letw =
f(x)dxA- - Aday, be adifferentiak-form onR*. By Propositiofi I114 (e),

8(017 SRS Ck)

c*(w) = f(c(t)) A ) dti A A diy.

Therefore,
/w— /f Oersew) gy gy, (11.17)
At1, .. ty)

Let ¢ = I}, be the standaré-cube in[0, 1]*. Then

is thek-dimensional Riemann integral gfover |0, 1]*.
Let [y (21, ..., 2) = (22,21, T3, . . ., x1). ThenIy([0,1]%) = ([0, 1]¥) = [0, 1]*, however

/W— /f$2,9€1,:7€3,..., ) (=1) day- - - day,

[0,1]*

_ / f(xl’x%x&"-vxk)d%'--dxk:—/w_
[0,1]%

I,
We see thaf w is anorientedRiemann integral. Note that in the above formila{Ill.17) we d
I,
nothave the absolute value of the Jacobian.

11.3.3 Stokes’ Theorem

Theorem 11.7 LetU be an open subset &, £ > 0 a non-negative integer and let,; be a
singular(k + 1)-chain onU. Letw be a differentialk-form onU, w € £2%(U). Then we have

fun foe

Ospy1 Sk+1
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Proof. (a) Letsy 1 = I, be the standar(k + 1)-cube, in particulan = k + 1.
k+1

Letw =Y fi(w) dusA---AdayA- - -Adayr. Then
=1

k+1
Of
dw = Z(_l)H—l % d[L‘l/\ SRVAN dxk—i—l;
i=1 ¢

hence by ExampleZ1.6 (b), Fubini’s theorem and the fundéahreorem of calculus

k1 | of,
/ dw= Z(—l)”rl a; do;- - - dogg
i=1 v

Tieyr A [0,1]k+1

iy 4 1 of;

= Z(—l)ZJrl / ( a[L‘Z (Qfl, .. .,E, .. .xk+1) dt) dl‘l' N dl'z;l dl’z’+1' N d.l’]ngl
i=1 01 0 !
k+1

:Z(—l)H_l / (fi(fL'l,...,J;,...,Jfk_H) —fi($1,...,g,...,$k+1)) dl’l . dl‘k—i—l
i=1 0]k ‘ !

k+1 N y
im0 [ [ () [ ()

0,1]% [0,1]F
= / w’
Ol 41

by definition ofdl;.,. The assertion is shown in case of identity map.
(b) The general case. L€}, be the standardk + 1)-cube. Since the pull-back and the
differential commute (Propositién11.4) we have

[aw= [t @ = [dearo= [ e

Ck+1 Iy q ) Ol 11
k+1
) * *
=S v | [ o= [ e
i=1 k+1 k+1
(4,0) (4,0)
k+1
= g (—=1) / w= /w.
i=1
ck+1ol(ki:%1)—ck+1ol(kiﬁ1) k41

(c) Finally, lets,1 = >, n;ck; With n; € Z and singulagk + 1)-cubescy;. By definition and

by (b),
/ dw:Zni/ dw:Zni w:/ w.
Skt1 i Cht1 i Ock41 0841
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Remark 11.4 Stokes’ theorem is valid for arbitrary oriented compactfedldntiable k-
dimensional manifold§ and continuously differentiablg: — 1)-formsw on 7.

Example 11.10We come back to ExamdleI1.8(c). Let = (xdyndz + ydzAdz +
zdzAdy)/r® be a2-form onR?\ {(0,0,0)}. Itis easy to show that is closeddw = 0. We
compute[ w. First note that;(r®) = 1, ¢j(x) = cosssint, ¢5(y) = sinssint, ¢5(z) = cost

Cc2
such that

c5(dx) = d(cosssint) = —sin ssintds + cos s cost dt,
c5(dy) = d(sinssint) = cos ssintds + sin s cos t dt,
c3(dz) = —sintdt.

and

c3(w) = (xdyndz + ydzAde + zdzA dy)
= c3(z) c3(dy)Acs(dz) + e3(y dzA dx) + c3(2 dzn dy)

= (—cos® ssin®t — sin® ssin® ¢t — cos t(sin® s sin t cost + cos® ssin ¢ cost) dsA dt
= —sint dsAdt,
such that
2 ™
/ w= / cy(w) = / —sintdsAdt = / / (—sint)dsdt = —4r.
“ [0,27] x[0,7] [0,27] x[0,7] 00

Stokes’ theorem shows that is not exact onR?\{(0,0,0)}. Suppose to the contrary that
w = dn for somen € 21 (R3\{(0,0,0)}). Since by ExampleI1.8 (cfic, is a degenerate
1-chain (it consists of two points), the pull-bak)*(n) is 0 and so is the integral

02/11(302)*(77)21362n=/62dn=/02w=—4ﬂ,

a contradiction; hencey is not exact.

We come back to the two special cages 1,n =2 andk =1, n = 3.

11.3.4 Special Cases

k= 1,n = 3. Lete: [0,1]*> — U C R? be a singulaR-cube,F = ¢([0, 1]?) is a regular
smooth surface ifR®. ThendT is a closed path consisting ¢parts with the counter-clockwise
orientation. Letv = f, da; + f> dzo+ f3 dzs be a differentiall -form onU. By Exampld-ITIO (a)

/ w = fidey + fodas + fzdas
deo OF

On the other hand by Examlel1.5 (c)

dw = curl f - (dzeA dxsy, desAdzy, dzyAdey).
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In this case Stokes’ theorem gives

/w:/dw
dca co

/f1 dry + fodws + fzdas = / curl f - (dxeA dxs, dzsAdry, dzgAdes)
oF F

If Fisinthex,;—z, plane, we get Green’s theorem.
k =2,n = 3. Letcs be a singulaB-cube inR? andG = ¢;([0, 1]). Further let

w = vy draoAdxs + vo drsAdxy + vy do A das,

with a continuously differentiable vector field < C'(G). By ExampléIThb (d),
dw = div (v) dz; A dosAdzs. The boundary ofy consists of thes facesdcs ([0, 1]3). They
are oriented with the outer unit normal vector. Stokes’ thaothen gives

/ dw = / v1 dzo A dxs + vy drsAday + v3daeg A das,
c3 dcs

/ divv dedydz :/ 7 ds.
G oG

This is Gaul3’ divergence theorem.

11.3.5 Applications

The following two applications were not covered by the leetu
(a) Brower’s Fixed Point Theorem

Proposition 11.8 (Retraction Theorem)Let G C R™ be a compact, connected, simply con-
nected set with smooth boundai.

There exist no vector field: G — R", f; € C*(G),i = 1,...,n such thatf(G) C dG and
f(x) =z forall z € 0G.

Proof. Suppose to the contrary that sucf exists; considerw € Q" 1(U),
w=x; degAdagA---Adz,. First we show thatf*(dw) = 0. By definition, for
vy, ...,v, € R™we have

FHdw)(p)(vr, - on) = do(f(p))(Df(p)or, Df (p)va, - Df(p)vn))-

Sincedim f(G) = dimdG = n — 1, then vectorsD f(p)vy, Df(p)ve, ..., Df(p)v, can be
thought as beeing vectors in ann — 1 dimensional linear space; hence, they are linearly
dependent. Consequently, any alternatiriprm on those vectors 8. Thus f*(dw) = 0. By
Stokes’ theorem

[ rw=o0- /G £ (dw).
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On the other handf, = id ondG such that
[f(w) =w |lsge= x1dzoA - - Adzy, |ac -

Again, by Stokes’ theorem,

0:/ f*(w):/ oA Adzy = |G
oG G

a contradiction. m

Theorem 11.9 (Brower's Fixed Point Theorem)Let g: B; — B; a continuous mapping of
the closed unit balB; ¢ R™ into itself.
Thenf has a fixed poinp, f(p) = p.

Proof. (a) We first prove that the theorem holds true for a twice iomatusly differentiable
mappingg. Suppose to the contrary thahas no fixed point. For any € B; the line through

p and f(p) is then well defined. Lek(p) be those intersection point of the above line with the
the unit spher&™~! such that:(p) — p is a positive multiple off (p) — p. In particular,h is a
C?-mapping fromB; into S"~! which is the identity ors™~!. By the previous proposition, such
a mapping does not exist. Hengehas a fixed point.

(b) For a continuous mapping one needs Stone—Weierstrapim»xamate the continuous
functions by polynomials. n

In casen = 1 Brower’s theorem is just the intermediate value theorem.

(b) The Fundamental Theorem of Algebra

We give a first proof of the fundamental theorem of algebracrani5.IP:

Every polynomialf (z) = 2" +a;2" ! +- - - + a, with complex coefficients; € C
has a root inC.

We use two facts, the winding form on R*\ {(0, 0)} is closed but not exact and and f(z)
are “close together” for sufficiently larde |.

We viewC asR? with (a, b) = a + bi. Define the following singulat-cubes orR?
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crn(s) = (R" cos(2mns), R" sin(2mns)) = 2",

crf(s) = focri(s) = f(Rcos(2ms), Rsin(2ws)) = f(2),

wherez = z(s) = R(cos2ms + isin2ns), s € [0, 1].
Note that| z | = R. Further, let
f(2)
c(s,t) = (1 —t)ep,f(s) + tern
= (

1—8)f(2) +t", (s,t) €[0,1]%
b(s,t) = f((1 —t) R(cos2ms,sin27s))
1) f@+tz " _ f((l _ t)z), (3715) c [0, 1]2

be singulaR-cubes inR>.

Lemma 11.101f | z | = R is sufficiently large, then

mn

lc(s,t) ] > %, (s,t) €0, 1]

Proof. Sincef(z) — 2" is a polynomial of degree less than

FCECT
zn 2Z—00

in particular| f(z) — 2™ | < R"/2 if R is sufficiently large. Then we have

[e(s, ) [ = [ (L =) f(2) + " | = | 2" + (1 = )(f(2) — 2") |

R" R™
> | (1=t f(z) =" | 2 R = — = —

The only fact we need ig(s, t) # 0 for sufficiently largeR; hence¢ maps the unit square into
R2\{(0,0)}.

Lemmallllletw = w(z,y) = (—ydr + xdy)/(z*> + y*) be the winding form on
R?\{(0,0)}. Then we have

(@)

dc = Ccrf — Crm,

b = f(z) = f(0).

(b) For sufficiently largeR, ¢, cg,, andcg ¢ are chains inR*\ {(0,0)} and

/ w = / w = 27n.
CR,n CR,f
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Proof. (a) Note that(0) = z(1) = R. Sincedly(z) = (z,0) — (z,1) + (1,z) — (0, z) we have

Oc(s) = c(s,0) —c(s,1) +¢(1,s) — (0, )
= J(z) = 2" = (1 = 8)f(R) + sR") + ((1 = 8) f(R) + sR") = f(2) — 2".

This proves (a). Similarly, we have

Ob(s) = b(s,0) —b(s, 1) +b(1,s) —b(0,s)
= J(z) = f(0) + f((1 = s)R) = f((1 = s)R) = f(2) = f(0).
(b) By the Lemm&TI10¢ is a singular2-chain inTR?\ {(0,0,0)} for sufficiently largeR.
Hence dc is a 1-chain in R*\{(0,0)}. In particular, bothcg, and cg; take values in

R*\{(0,0)}. Hence(dc)*(w) is well-defined. We compute;, ,(w) using the pull-backs of
dx and dy

Hence

1
/ w:/ 2mnds = 27n.
CR,n 0

By Stokes’ theorem and sinceis closed,

/w:/dw:(],
dc c

such that by (a), and the above calculation
O:/w:/ w—/ w, hence / w:/ w = 27n.
Oc CR,n CR,f CR,n CR,f

We complete the proof of the fundamental theorem of al-
bst=(1-)z" gebra. Suppose to the contrary that the polynorpial
o is non-zero inC, thenb as well asdb are singular chains
in R?\ {(0,0)}.

By LemmdTT1l (b) and again by Stokes’ theorem we have

/ w:/ w:/w:/dw:O.
CR,f cr,f—1(0) ob b

But this is a contradiction to LemriaIIl11 (b). Henkés not a2-chain inR*\ {(0,0)}, that
is there exists,t € [0, 1] such thatb(s,t) = f((1 — t)z) = 0. We have found thatl —
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t)R(cos(27ms) + isin(27s)) is a zero off. Actually, we have shown a little more. There is a
zero of f inthe disc{z € C | | 2| < R} whereR > max{1,2) .| a; |}. Indeed, in this case

n—1 n—1

R

1) =2 1S Y el [ <3 o] B < =
k=1 k=1

and this condition ensurés(s, t) | # 0 as in the proof of Lemn{aZTIL0.
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Chapter 12

Measure Theory and Integration

12.1 Measure Theory

Citation from Rudins book[ [Rud66, Chapter 1]: Towards the ef the19th century it became
clear to many mathematicians that the Riemann integralldhoel replaced by some other
type of integral, more general and more flexible, betteresuior dealing with limit processes.
Among the attempts made in this direction, the most notabés avere due to Jordan, Borel,
W.H. Young, and Lebesgue. It was Lebesgue’s constructiashwturned out to be the most
successful.

In a brief outline, here is the main idea: The Riemann integfra function f over an interval
[a, b] can be approximated by sums of the form

> £t m(E)

whereFEy, ..., E, are disjoint intervals whose union [, b|, m(F;) denotes the length of;
andt; € F; fori =1,...,n. Lebesgue discovered that a completely satisfactory yhafante-
gration results if the sets; in the above sum are allowed to belong to a larger class okssibs
of the line, the so-called “measurable sets,” and if thesctddunctions under consideration is
enlarged to what we call “measurable functions.” The clusa#theoretic properties involved
are the following: The union and the intersection of any ¢able family of measurable sets are
measurable;. . . the notion of “length” (now called “measucan be extended to them in such
a way that

m(Ey UEyU---) =m(Ey) +m(Ey) + -+

for any countable collectiofE;} of pairwise disjoint measurable sets. This propertyrois
calledcountable additivity

The passage from Riemann’s theory of integration to thatefifdsgue is a process of comple-
tion. Itis of the same fundamental importance in analysth@gsonstruction of the real number
system from rationals.

305
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12.1.1 Algebrasg-algebras, and Borel Sets
(a) The Measure Problem. Definitions

Lebesgue (1904) states the following problem: We want to@ate to each bounded subset
E of the real line a positive real number(E), called measure of, such that the following
properties are satisfied:

(1) Any two congruent sets (by shift or reflexion) have the saneasure.
(2) The measure is countably additive.
(3) The measure of the unit intervill 1] is 1.

He emphasized that he was not able to solve this problemliddtail, but for a certain class of
sets which he called measurable. We will see that this o#istni to a large family of bounded
sets is unavoidable—the measure problem has no solution.

Definition 12.1 Let X be a set. A family (non-empty) familyl of subsets ofX is called an
algebraif A, B € AimpliesAc € AandAU B € A.
An algebraA is called as-algebra if for all countable familieg A,, | n € N} with A,, € A we
have

JA =4udu-u4u--- €A

neN

Remarks 12.1 (a) SinceA € A impliesAU A° € A; X € Aandg = X°© € A.

(b) If A is an algebra, thedd N B € A for all A,B € A. Indeed, by de Morgan’s rule,
(Us40) = NLAS and (N, 4.)° = U, A, we haveA N B = (A° U B°)¢, and all the

members on the right are i by the definition of an algebra.

(c) Let A be ac-algebra. Therﬂ A, e Aif A, € Aforalln € N. Again by de Morgan'’s

neN

() A= (U A;) .
nelN neN

(d) The familyP(.X) of all subsets ofX is both an algebra as well agraalgebra.

(e) Anyo-algebra is an algebra but there are algebras not begilgebras.

(f) The family of finite and cofinite subsets (these are comgets of finite sets) of an infinite
set form an algebra. Do they fornvaalgebra?

rule

(b) Elementary Sets and Borel Sets ifR"™

Let R be the extended real axis together witho, R = R U {+oc} U {—cc}. We use the old
rules as introduced in Sectibn311.1 at pRgle 79. The new rolehws used in measure theory
only is

0-4+00==+00-0=0.

The set
I={(x1,...,2p) € R" | a; < 2; <b;, 1=1,...,n}
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is called arectangleor aboxin R”, where=< either stands fox or for < wherea,,b;, € R.
For exampler; = —oo andb; = +oco yieldsI = R”, whereas:; = 2, b; = 1yields] = &.

A subset ofR" is called arelementary setif it is the union of a finite number of rectangles
in R™. Let &, denote the set of elementary subset®R6f &, = {LHLULU---UI. | r €
N, I;isaboxinR"}.

Lemma 12.1 &, is an algebra but not a-algebra.

Proof. The complement of a finite interval is the union of
two intervals, the complement of an infinite interval is an
infinite interval. Hence, the complement of a rectangle in
R™ is the finite union of rectangles.

The countable (disjoint) union/ = J, [, n + 1] is
not an elementary set. ]

Note that any elementary set is tdesjoint union of a
finite number of rectangles.

Let B be any (nonempty) family of subsets &f. Let o(B) denote the intersection of ai-
algebras containing, i.e. o(B) = ﬂAi, where{A,; | ¢« € I} is the family of allo-algebras
A; which containB, B C A, for all z’leel 1.

Note that ther-algebra®(.X) of all subsets is always a member of that fan{il;} such that
o(B) exists. We calb(B) the o-algebragenerated byB. By definition,o(B) is the smallest
c-algebra which contains the sets®f It is indeed ar-algebra. Moreoverr (o (B)) = o(B)
and ifB; C By theno(B;) C o(B,).

Definition 12.2 TheBorel algebraB,, in R" is thec-algebra generated by the elementary sets
&,. Its elements are calleBlorel sets

The Borel algebr&,, = o(&,,) is the smallest-algebra which contains all boxes Ri* We
will see that the Borel algebra is a huge family of subsetR’ofvhich contains “all sets we are
ever interested in.” Later, we will construct a non-Bordl se

Proposition 12.2 Open and closed subsetsl®f are Borel sets.

Proof. We give the proof in case d&?. Let I.(zq,y0) = (1o — &, 70 +€) X (Yo — &, %0 + €)
denote the open square of sizeby 2¢ with midpoint(x, yo). ThenI%+1 Cl: forn € N. Let
M C R? be open. To every poirttzo, yo) with rational coordinates,, v, we choose the largest
squarely /, (o, yo) € M in M and denote it by/(x, yo). We show that

M = U J (0, yo)-

(%0,90)EM, 20,y0€Q
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Since the number of rational pointsid is at least countable, the right
side isino(€y). Now let(a,b) € M arbitrary. Sincel/ is open, there
existsn € N such thatl,,(a,b) € M. Since the rational points
are dense iR?, there is rational pointz,,y,) which is contained in
I/, (a,b). Then we have

(X

0

(a,b)

=

]l(l‘07y0) g ]E(aa b) g M.

Since(a,b) € I1(xg,y0) € J(xo,y0), We have shown that/ is the union of the countable
family of sets.J. Since closed sets are the complements of open sets andesoeibk are
again in ther-algebra, the assertion follows for closed sets. n

Remarks 12.2 (a) We have proved that any open subsgtof R" is the countable union of
rectangled C M.

(b) The Borel algebr&,, is also thes-algebra generated by the family of open or closed sets
in R™, B,, = 0(9,) = o(F,). Countable unions and intersections of open or closed seis a
B,

Let us look in more detail at some of the set%ii€,). Let § andJF be the families of all open
and closed subsets &", respectively. Leg; be the collection of all intersection of sequences
of open sets (fron§), and letF, be the collection of all unions of sequences of set$.0Dne
can prove that C Gs andg C JF,. These inclusions are strict. Since countable intersectio
and unions of countable intersections and union are stilhtable operation$js, ¥, C o(&,)

For an arbitrary familys of sets letS, be the collection of all unions of sequences of set$,in
and letS; be the collection of all unions of sequences of set itWe can iterate the operations
represented by andJ, obtaining from the clas§ the classe$s, 955, 9s0s,- - - and fromd the
classesf,, F,;5,.... It turns out that we have inclusions

9C95C960C"'C0<8n)
FCTF,CFps C--- Cal(&n).

No two of these classes are equal. There are Borel sets tloagite none of them.

12.1.2 Additive Functions and Measures

Definition 12.3 (a) Let.A be an algebra ovek'. An additive functionor contenty on A is a
functionu: A — [0, +o0] such that

(i) p(@)=0,
(i) p(AUB) = u(A) + pu(B)forall A, B e Awith ANB = @.

(b) An additive functiory is calledcountably additivéor o-additivein the German literature)
on A if for any disjoint family{A,, | A,, € A, n € N}, thatisA; N A; = @ for all i # j, with
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Unhen 4An € A we have
neN neN

(c) A measuras a countably additive function oncaalgebraA.

If X is a set,A ac-algebra onX andu a measure owd, then the tripel( X, A, i) is called
ameasure spacelikewise, if X is a set andd a o-algebra onX, the pair(X,A) is called a
measurable space

Notation.
We write > ~ A, in place of | ] A, if {A,} is a disjoint family of subsets. The countable

L neN neN
additivity reads as follows

We sayy is finiteif u(X) < oo. If u(X) =1, we call(X, A, 1) aprobability space We call i
o-finiteif there exist sets,, € A, with u(A4,) < co andX = J -, A,.

Example 12.1 (a) Let X be a sety, € X andA = P(X). Then

1, xg€ A,
p(A) = ’
07 Zo ¢ A

defines a finite measure oh 1 is called thepoint mass concentrated a.
(bl) LetX be asetandl = P(X). Put

(A4) = n, if A hasn elements
S ~+00, if A has infinitely many elements.

1 is a measure oA, the so callec¢ounting measure
(b2) LetX be asetandl = P(X). Put

(4) = 0, if A has finitely many or countably many elements
S +00, if A has uncountably many elements.

i is countably additive, nat-finite.
(b3) LetX be asetandl = P(X). Put

0, if Ais finite
n(A) = e
00, if Aisinfinite.

1 is additive, no-additive.
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(c) X =R", A = €&, isthe algebra of elementary setsitf. Every A € &, is the finite disjoint
union of rectanglest = ;" | I,. We setu(A) = >"7", u(I) where

pl) = (by = a1) -~ (bn = an),

if I ={(z1,...,2,) €ER" | a; X 2b;,i=1,...,n}anda; < b; u(&) = 0. Theny is an
additive function ort,,. It is called theLebesgue contemin R". Note thatu is not a measure
(sinceA is not ac-algebra andl is not yet shown to be countably additive). However, we will
see in Propositidn12.5 below thats evencountably additiveBy definition,u(line in R?) = 0
andyu(plane inR?) = 0.

(d) LetX = R, A = &, anda an increasing function oR. Fora,bin R with a < b set

ta([a, b)) = a(b+0) — afa —0),
fa([a,8)) = b — 0) — a(a —0),
pa((a;b]) = a(b+0) — afa+0),
tao((a, b)) = alb—0) — ala+0).

Theny, is an additive function o8, if we set

fa(A) = Zua(lﬂa if A= Z[i-

i=1

We call ., theLebesgue—Stieltjes content
On the other hand, jf: &, — R is an additive function, thea,,: R — R defined by

a@»:{mmwu 20,
' ——;L((&; O])v r < 07

defines an increasing, right-continuous functigron R such thay: = p,,. Ingenerab # «,,,
since the function on the right hand side is continuous froenright whereas: is, in general,
not .

Properties of Additive Functions

Proposition 12.3 Let.A be an algebra oveX andy an additive function otd. Then

@ pu (Z Ak> = ZM(Ak) if A, € A,k =1,...,nform a disjoint family ofx
k=1 k=1

subsets.
) u(AUB) + (AN B) = u(A) + u(B), A, B € A.
(c) A C Bimpliesu(A) < u(B) ( is monotone).

d)If A C B, A,B € A, andpu(A) < +oo, thenu(B\A) = u(B) — p(A),
(1 1s subtractive).
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(e)
p <U Ak:) < ZM(Ak)>
k=1 k=1
if A, € A, k=1,...,n, (ris finitely subadditive).

(f) If {A, | k € N} is adisjoint family inA andz A, € A. Then
k=1

Y (Z Ak) > ZM(AL:)-

Proof. (a) is by induction. (d), (c), and (b) are easy (cf. Homew&4kd).
(e) We can writd_| A, as the finitedisjoint union ofn sets ofA:
k=1

UJ A= A1 U (A2V A1) U (A3\ (A1 U Ap)) U+ U (A V(A U=+ U Ayy).
k=1

Sincep is additive,

L <U Ak) = Z,U(Ak\(Al U---Apq)) < ZM(Ak)a

where we used(B\ A) < u(B) (from (d)).
(f) Sincey is additive, and monotone

> u(Ap) = p <Z Ak) < u <Z Ak) :

Taking the supremum on the left gives the assertion. [

Proposition 12.4 Letx be an additive function on the algehra Consider the following state-
ments

(@) i is countably additive.

(b) For any increasing sequencé, C A, .1, A, € A, with U A, =AecAwe
n=1

have lim p(A,) = p(A).

n—0o0

(c) For any decreasing sequengg, O A, .1, A, € A, with ﬂ A,=Aec Aand
n=1

p(A,) < oo we havelim p(A,) = u(A).
(d) Statemenfc) with A = @ only.

We havda) < (b) — (c) — (d). In caseu(X) < oo (1 is finite), all statements are equivalent.
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Proof. (a) — (b). Without loss of generalityl, = @. PutB, = A,\ A, ;forn =23,....
Then{B,} is a disjoint family with4,, = B, UB; U---U B, andA = |J,_, B,,. Hence, by
countable additivity of:,

A)=> u(Bi) = gijgoZu(Bk) = lim p (Z Bk:) = lim p(Ay).
k=2 k=2 k=2

(b) — (a). Let{A,} be a family of disjoint sets id with (JA, = A € A, put B, =
A1 U---U Ag. ThenBy is an increasing tel sequence. By (b)

n

'U<B”) - <Z k) ulsaddltlvez'u Ak 1”:0 ,u B (

k=1

||M8

Thus,i p(Ax) = p (i Ak)

k=1 k=1
(b) — (c). SinceA,, is decreasing tal, A; \ A, is increasing tad; \ A. By (b)
p(AN Ap) — p(A\A),

henceu(A;) — u(A,) — wu(Ay) — n(A) which implies the assertion.

(c) — (d) is trivial. o

Now let i be finite, in particulary(B) < oo for all B € A. We show (d)— (b). Let(A,,) be an
increasing ta4 sequence of subsets A,, € A. Then(A\ A,) is a decreasing t@ sequence.
By (d), u(A\ A,) _ 0. Sincey is subtractive (PropositidnI2.3 (d)) and all values aredini

p(An) — u(A). m

Proposition 12.5 Let o be a right-continuous increasing functienn R — R, and p, the
corresponding Lebesgue-Stieltjes conten€pnTheny,, is countably additive if.

Proof. For simplicity we writen for . Recal tha((a, b)) = a(b) — a(a). We will perform
the proof in case of

oo

(a,0] = | (ax, bi]

k=1
with a disjoint family[ay, b;,) of intervals. By PropositionI2.3 (f) we already know

> > pl(ar, bi). (12.1)

k=1

We prove the opposite direction. Let> 0. Since« is continuous from the right at, there
existsag € [a, b) such thatyv(ag) —a(a) < e and, similarly, for everyc € N there exists;, > by
such thatv(cy,) — a(by,) < £/2*. Hence,

oo oo
[ao, ] | J(a, bi] < | (ar, i)
k=1

k=1
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is an open covering of a compact set. By Heine—Borel (Definiti.I4) there exists a finite

subcover
N

N
lag, b] C U(ak,ck), hence (ag,b U A, Cr),
k=1

k=1

such that by Propositidn12.3 (e)

(a0 8]) < 3 al(an, cal):

By the choice of:y andc;,

3

1((ar, c]) = p(ar, bi]) + a(cr) — alby) < p((ax, bi]) + o

Similarly, u((a, b)) = p((a, ao]) + p((ao, b)) such that

=
=
IA
7;
5
Mz

£
< ((ak, bk]) 2k> +e
k=1

< D il(ar, by]) + 26 < Zu((ak,bk]) +2¢

Sinces was arbitrary,
<> ul(ar, b))
k=1
In view of (I2.1),1., is countably additive. [

Corollary 12.6 The correspondencg — «, from Exampl&IZ]1 (d) defines a bijection be-
tween countably additive functiopson £; and the monotonically increasing, right-continuous
functionsa on R (up to constant functions, i. e.anda + ¢ define the same additive function).

Historical Note. It was the great achievmentohile Borel (1871-1956) that he reafpyoved
the countable additivity of the Lebesgue measure. He exhlizat the countable additivity pf
is a serious mathematical problem far from being evident.

12.1.3 Extension of Countably Additive Functions

Here we must stop the rigorous treatment of measure thegoytoWow, we know only two
trivial examples of measures (Examiple 2.1 (a) and (b)). Méean outline of the steps toward
the construction of the Lebesgue measure.

e Construction of amuter measure* onP(X ) from a countably additive functiom on an
algebraA.

e Construction of ther-algebraA,, of measurable sets



314 12 Measure Theory and Integration

The extension theory is due to Carathéodory (1914). Fotaildd treatment, se& [EIS02, Sec-
tion11.4].

Theorem 12.7 (Extension and Uniquenessl.et ;. be a countably additive function on the al-
gebraA.

(a) There exists an extension @to a measure on the-algebraos(A) which coincides withs
on A. We denote the measure oA) also byu. It is defined as the restriction of the outer
measureu*: P(X) — [0, o]

(*(A) = inf {Zu(An) |Ac | A, AueAne IN}
k=n

n=1

to they-measurable sets,,.
(b) This extension is unique, (i, A, u) is o-finite.

(For a proof, sed [Bro%2, (2.6), p.68])

Remark 12.3 (a) A subsetd C X is said to be:-measurablef for all Y € X
(V) = g (ANY) + (AN Y).

The family of ,-measurable sets formoaalgebraA - .

(b) We haveA C o(A) C A~ andp*(A) = pu(A) forall A € A.

(c) (X, A,-, p*) is a measure space, in particulat,is countably additive on the measurable
setsA,- and we redenote it by.

12.1.4 The Lebesgue Measure aR™

Using the facts from the previous subsection we concludefdinany increasing, right contin-
uous function on R there exists a measufe, on theo-algebra of Borel sets. We call this
measure théebesgue—Stieltjes measureBnIn casen(z) = x we call it theLebesgue mea-
sure Extending the Lebesgue content on elementary sei$"db the Borel algebr&,,, we
obtain then-dimensional Lebesgue measureon R™.

Completeness

A measureu: A — R, on ac-algebraA is said to becompleteif A € A, u(A) = 0, and
B c AimpliesB € A. It turns out that the Lebesgue measnfeon the Borel sets oR” is
not complete. Adjoining t®,, the subsets of measure-zero-sets, we obtairthigebraA,
of Legesgue measurable sgtg .

Ay, =0 (B,U{XCR"| 3B€B,: X CE, AJ(B)=0}).

The Lebesgue measukg on A, is now complete.
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Remarks 12.4 (a) The Lebesgue measure is invariant undernta¢ion groupof R™. More
precisely, letO(n) = {T' € R | T'T = TT' = E,} be the group of real orthogonal
n X n-matrices (“motions”), then

M(T(A) = M(A), A€, Te On).

(b) A\, istranslation invarianti. e. A\, (A) = A\, (x+A) for all z € R™. Moreover, the invariance
of A\, under translations uniquely characterizes the Lebesgasume)\,: If \ is a translation
invariant measure oB,,, then\ = c\,, for somec € R,.

(c) There exist non-measurable subsefR’in We construct a subsétof R that is not Lebesgue
measurable.

We writex ~ y if x — y is rational. This is an equivalence relation since z for all x € R,

x ~ yimpliesy ~ z for all z andy, andz ~ y andy ~ z impliesxz ~ z. Let F be a subset of
(0, 1) that contains exactly one point in every equivalence cl@ss.assertion that there is such
a setk is a direct application of thaxiom of choicke We claim thatF is not measurable. Let
E+r={x+r|z € E}. We need the following two properties &f.

(@) If z € (0,1), thenx € E + r for some rationat € (—1,1).
(b) If r ands are distinct rationals, thef® +r) N (E + s) = @.

To prove (a), note that for every € (0, 1) there existy) € E with z ~ y. If r = 2z — y, then
r=y+rekE+r.

To prove (b), suppose thate (E + )N (E + s). Thenx =y +r = z + s for somey, z € E.
Sincey — z = s —r # 0, we havey ~ z, andF contains two equivalent points, in contradiction
to our choice ofF.

Now assume thak' is Lebesgue measurable wil{E) = «. DefineS = U(E + r) where
the union is over all rational € (—1,1). By (b), the setd” + r are pairwise disjoint; since
is translation invariant\(E + r) = A(E) = « for all . SinceS C (—1,2), A(S) < 3. The
countable additivity of\ now forcesa = 0 and hence\(S) = 0. But (a) implies(0,1) C S,
hencel < \(S), and we have a contradiction.

(d) Any countable set has Lebesgue measure zero. Indeey, ®ugle point is a box with
edges of length; hence\({pt}) = 0. Since) is countably additive,

Az, 20,0 T, ) = Zz\({:pn}) = 0.

In particular, the rational numbers have Lebesgue medasw@)) = 0.
(e) There are uncountable sets with measure zero. The Gatt@antor: 1845-1918, inventor
of set theory) is a prominent example:

C:{Z%

i=1

a; € {0,2} We]N};

Obviously,C c [0,1]; C' is compact and can be written as the intersection of a denggas
sequencé(C,,) of closed subsets;; = [0,1/3] U [2/3,1], A(C) = 2/3, and, recursively,
2 1

1 1 1 2 2
Crn = 20,0 (g " §c*n) > A(Cain) = SAC) + 32 (cn ' g) =25
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It turns out thatC, = {3°7°, &

ACoi1) = %)\(Cn) - (g)nx(cl) _ (%)W.

By PropositiofIZM (c)\(C) = lim A(C,,) = 0. However,C has the same cardinality as
{0,2}N = {0, 1} = R which is uncountable.

ia; € {0,2} Vi=1,...,n} Clearly,

12.2 Measurable Functions

Let A be ac-algebra overX.

Definition 12.4 A real functionf: X — R is called.A-measurabléf for all « € R the set
{r € X | f(z) > a} belongs toA.

A complex functionf: X — C is said to beA-measurablaf both Re f and Im f are A-
measurable.

Afunction f: U — R, U C R", is said to be &8orel functionif f is B,,-measurable, i.ef is
measurable with respect to the Borel algebraidn

Afunctionf: U — V,U Cc R", V C R™, is called aBorel functionif f~!(B) is a Borel set
for all Borel setsB C V. Itis part of homework 39.3 (b) to prove that in case= 1 these
definitions coincide. Alsof = (fi, ..., fm) is a Borel function if allf; are.

Note that{z € X | f(z) > a} = f~!((a,+0oc)). From Proposition 1218 below it becomes clear
that the last two notions are consistent. Note that no measufX, A) needs to be specified
to define a measurable function.

Example 12.2 (a) Any continuous functiorf: U — R, U C R", is a Borel function. Indeed,
sincef is continuous anda, +oc) is open,f~*((a, +0)) is open as well and hence a Borel set
(cf. Propositiofi . IZI2).

(b) The characteristic functiog, is A-measurable if and only il € A (see homework 35.3).
(c)Letf: U — V andg: V — W be Borel functions. Thep-f: U — W is a Borel function,
too. Indeed, for any Borel sét c W, g~ !(C) is a Borel set ifl/ sinceg is a Borel function.
Sincef is a Borel function(g-f)~!(C) = f~!(¢7'(C)) is a Borel subset df’ which shows the
assertion.

Proposition 12.8 Let f: X — R be a function. The following are equivalent

(@ {x| f(z) >a} € Aforall a € R (i.e. f is A-measurable).
(b){z | f(z) > a} € Aforall a € R.

) {z| f(z) <a} € Aforalla € R.

(d){z| f(z) <a} € Aforall a € R.

(e) f~1(B) € A for all Borel setsB € B;.

Proof. (a) — (b) follows from the identity

la, +o0] = ﬂ (a —1/n,+0o0]
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and the invariance of intersections under preimage§,A N B) = f~1(A) N f~1(B).

Sincef is A-measurable and is ac-algebra, the countable intersection on the right idin
(@) — (d) follows from{z | f(z) < a} = {z | f(x) > a}°. The remaining directions are left
to the reader (see also homework 35.5). [

Remark 12.5 (a) Let f,g: X — R beA-measurable. Thefz | f(z) > g(z)} and{z |
f(z) = g(x)} are inA. Proof. Since

{z|f@)<g@)}= ] flx) <gdnfz|q<g@)}),

€@

and all set f < ¢} and{q < ¢} the right are inA, and on the right there is a countable union,
the right hand side is irl. A similar argument works fof f > ¢g}. Note that the set§f > g}
and{f < g} are the complements ¢ff < ¢} and{f > g}, respectively; hence they belong to

Aaswell. Finally{f =g} ={f>g}n{f < g} ]

(b) Itis not difficult to see that for any sequeneg ) of real numbers

lim a, = inf supa; and lim a, = sup inf ay. (12.2)
n—oo neN p>p n—oo neN k2n

As a consequence we can construct new mesurable functiorgssup andlim,, ... Let(f,)
be a sequence of-measurable real functions ofi. Thensup f,,, inf f,, lim f,, lim f, are
S n—oo

neN n n—o00

A-measurable. In particuldim f,, is measurable if the limit exists.
Proof. Note that for alls € R we have

{sup fu < a} = () {fu < a}.

neN

Since allf,, are measurable, sosdsp f,. A similar proof works forinf f,,. By (TZ2), lim f,
andlim f,, are measurable, too. [

n—~o0

Proposition 12.9 Let f, g: X — R Borel functions onX C R". Thenaf + (g, f - g, and| f |
are Borel functions, too.

Proof. The functioni(z) = (f(z),g(x)): X — R? is a Borel function since its coordinate
functions are so. Since the suifr, y) = = + y and the producp(z,y) = xy are continuous
functions, the compositionsh and p-h are Borel functions by ExampleZI2.2 (c). Since the
constant functions: and  are Borel, so are f, 3¢, and finallya f + $g. Hence, the Borel
functions overX form a linear space, moreover a real algebra. In particdlars Borel and so

is| f| = max{f, —f}. e
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Let (X, A, ) be a measure space afid X — R ar-
bitrary. Let f* = max{f,0} and f~ = max{—f,0}
denote thepositive and negative parts gf. We have
f=ft—=f"and|f|= f"+f"; moreoverf™, f~ >0.

Corollary 12.10 Let f is a Borel function if and only if botli™ and f~ are Borel.

12.3 The Lebesgue Integral

We define the Lebesgue integral of a complex function in tsteps; first for positive simple
functions, then for positive measurable functions andlfgrfal arbitrary measurable functions.
In this section( X, A, 1) is @ measure space.

12.3.1 Simple Functions

Definition 12.5 Let M C X be a subset. The function

(2) 1, xeM,
Xu(z) =
" 0, x¢M,

is calledcharacteristic functiorof M.

An A-measurabel functiorf: X — R is calledsimple if f takes only finitely many values
a,- .., c,. We denote the set of simple functions(ox, A) by S; the set of non-negative simple
functions is denoted by, .

Clearly, ifcq, ..., ¢, are the distinct values of the simple functignthen

f = Z CiXA;»
i=1

whereA; = {z | f(z) = ¢}. Itis clear, thatf measurable if and only ifl; € A for all :.
Obviously,{A; | i = 1,...,n} is a disjoint family of subsets of.
It is easy to see that g € S impliesaf + (g € §, max{f, g} € §, min{f, g} € §,andfg € S.

Step 1: Positive Simple Functions

For f = ch-XAi € 8. define

i=1

/X Jfdu= ZCiM(Ai)- (12.3)

The convention - (+o0) is used here; it may happen that= 0 for some; andu(A4;) = +oo.
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Remarks 12.6 (a) Sincer; > 0 for all 4, the right hand side is well-defined .
(b) Given another presentation ffsay, f(z) = Z d;XB;, Z d; 11(B;) gives the same value
j=1 j=1

as [IZ3B).

The following properties are easily checked.
Lemmal2.11For f,g e S8,, A€ A, ce R, we have
(1) [y xadu = p(A).
(2) chfd,u = cfX fdu.

@) [x(f+9)du= [y fdu+ [y gdp.
(4) f < gimplies [y fdu < [, gdp.

12.3.2 Positive Measurable Functions

The idea is to approximate a positive measurable functioim an increasing sequence of posi-
tive simple ones.

Theorem 12.12Let f: X — [0, +oc] be measurable. There exist simple functisps: € N,
on X such that

@ 0<s<s<---<f,

(b) sn(z) — f(x), asn — oo, for everyr € X.

Example.X = (a,b), n =1,
1 1 <4 <2.Then

T
3/4 s 5\ By = ! ({O
1/2 ‘ 3

()]

Fy = f_l ([1,+OO]).

N~
N~
——

% E E F E, E,P x

11 12 1

Proof. Forn € N and forl < ¢ < n2%, define

Epi=f" ({2_ ! i)) and F, = f~'([n, o))

2 7 on

and put

t—1
Sp = Z XE,; T NXFE,-
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Propositiol 1218 shows th&t,; and F,, are measurable sets. It is easily seen that the functions
s, satisfy (a). Ifz is such thatf (z) < +oo, then

0< F(a) — sula) < o (12.4)

as soon as is large enough, that is, € E,,; forsomen, : € N and notr € F,,. If f(z) = +o0,
thens,, () = n; this proves (b). n

From [IZ.4) it follows, that,, = f uniformly on X if f is bounded.

Step 2: Positive Measurable Real Functions

Definition 12.6 (Lebesgue Integral)Let f: X — [0, +oc] be measurable. Lefs,) be an
increasing sequence of non-negative simple functignsonverging tof(z) for all z € X,

lim s,(x) = sup s,(x) = f(x). Define

/ fdu = lim Spdp = sup/ Spdp (12.5)
X e Jx X

neN

and call this number if0), +o00] the Lebesgue integral of () over X with respect to the mea-
surey or p-integral of f over X.

The definition of the Lebesgue integral does not depend osgdéeial choice of the increasing
functionss,, /" f. One can define

/ fdu = sup {/ sdu| s < f, andsisasimple function} )
X X

Observe, that we apparently have two definitionsfforf d. if f is a simple function. However
these assign the same value to the integral sfnisghe largest simple function greater than or
equal tof.

Proposition 12.13 The propertiegl) to (4) from Lemm&I2Z11 hold for any non-negative mea-
surable functiond, g: X — [0, +o0], ¢ € R,.

(Without proof.)

Step 3: Measurable Real Functions

Let f: X — R be measurable anfi"(z) = max(f,0), f~(z) = max(—f(x),0). Thenf*
and f~ are both positive and measurable. Define

/X fdp = /X Jrdp - /X fdy

if at least one of the integrals on the right is finite. We saat this u-integrableif both are
finite.
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Step 4: Measurable Complex Functions

Definition 12.7 (Lebesgue Integral—Continued)A  complex, measurable  function
f: X — Cis calledu-integrableif

[ 1f1dn<oe

If f=wu—+ivisp-integrable, wheree = Re f andv = Im f are the real and imaginary parts
of f, uw andv are real measurable functions &n Define theu-integral of f over X by

/fdu:/u+du—/u_du+i/v+du—i/v_du. (12.6)
X X X X X

These four functions™, u—, v, andv~ are measurable, real, and non-negative. Since we have
ut < |u| <|f]etc., each of these four integrals is finite. ThS,{[12.6)n@sfthe integral on
the left as a complex number.

We define?! (X, 1) to be the collection of all complex-integrable functiong on X.
Note that for an integrable functiorfs [, f du is a finite number.

Proposition 12.14 Let f,¢g: X — C be measurable.

(a) fis u-integrable if and only if f | is u-integrable and we have

‘/deu‘s/xumu.

(b) f is u-integrable if and only if there exists an integrable funath with | f | <
h.

(c) If f, g are integrable, so i8; f + cog where

/(01f+029)du=01/ fdu+02/gdu~
X X X

@d)If f <gonX, then[, fdu < [, gdpu.

It follows that the set?!(X, u) of u-integrable complex-valued functions ot is a linear
space. The Lebesgue integral defines a positive linearituradton .1 (X, ). Note that (b)
implies that any measurable and bounded funcfion a space& with (X)) < oo isintegrable.

Step5: [, fdu

Definition 12.8 Let A € A, f: X — Ror f: X — C measurable. The functiofis called
p-integrable overA if x 4 f is pu-integrable overX. In this case we put,

/Afduz/Xfodu-

In particular, LemmBIZ11 (1) now readls du = u(A).
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12.4 Some Theorems on Lebesgue Integrals

12.4.1 The Role Played by Measure Zero Sets

Equivalence Relations

Let X beasetandk C X x X. Fora,b € X we writea ~ bif (a,b) € R.

Definition 12.9 (a) The subsek C X x X is said to be aequivalence relatioif R isreflexive
symmetri@andtransitive that is,

N VeeX:z~ux
(S) Ve,cye Xz ~vy =y~ .
t) Ve,y,zeX:iz~yAy~z = x~ 2.

Fora € X the set@ := {z € X | = ~ a} is called theequivalence classf a. We haver = b if
and only ifa ~ b.

(b) A partition P of X is a disjoint family? = {A, | « € I} of subsetsA, C X such that
YA, = X.

acl

The set of equivalence classes is sometimes denotéd by.

Example 12.3 (a) OnZ definea ~ bif 2 | (a—0b). a andb are equivalent if both are odd or both
are even. There are two equivalence clasbes,—5 = 27 + 1 (odd numbers)) = 100 = 27Z
even numbers.

(b) LetWW C V be a subspace of the linear spaceForz,y € V definex ~ yif . —y € W.
This is an equivalence relation, indeed, the relation iexefé sincer —z = 0 € W, it

is symmetric since: — y € W impliesy —x = —(z —y) € W, and it is transitive since
x —y,y— 2z € W implies that there surfx — y) + (y — z) = x — z € W such that: ~ z. One
has) = W andz = x+ W := {z+w | w € W}. Set set of equivalence classes with respect to
this equivalence relation is called tfeetor spaceor quotient spacef V' with respect tdV and

is denoted by//W. The factor space becomes a linear space if we defing := = + y and
AT = Az, A € C. Addition is indeed well-defined since~ 2’ andy ~ i/, say,x — 2’ = wy,
y—y = wy, wy,wy € Wimpliesz +y — (2/ + ') = w, +wy, € W suchthatt +y = 2/ + ¢/’
(c) Similarly as in (a), forn € N define the equivalence relatien= b (mod m) if m | (a —b).
We say ‘e is congruenb modulom”. This defines a partition of the integers into disjoint
equivalence classés1,...,m — 1, wherer = {am +r | a € Z}.

(d) Two triangles in the plane are equivalent if

(1) there exists &ranslationsuch that the first one is mapped onto the second one.
(2) there exists #tationaround(0, 0)
(3) there exists anotion(rotation or translation or reflexion or composition)

Then (1) — (3) define different equivalence relations omtylas or more generally on subsets
of the plane.
(e) Cardinality of sets is an equivalence relation.
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Proposition 12.15 (a) Let~ be an equivalence relation oK. Then? = {7 | x € X'} defines
a partition on.X denoted byp...

(b) LetP be a partition onX. Thenz ~ y if there existsA € P with z,y € A defines an
equivalence relatior-» on X.

(€) ~p_=~and?P_, =P.

Let P be a property which a pointmay or may not have. For instand@may be the property
“f(z) > 0"if f is a given function or (f,(z)) converges” if(f,) is a given sequence of
functions.

Definition 12.10 If (X, A, 1) is @ measure space arde A, we say" P holds almost every-
where on A, abbreviated by P holds a. e. orA”, if there existsN € A such thatu(N) = 0
and P holds for every point € A\ N.

This concept of course strongly depends on the megsueand sometimes we write a.e. to
emphasize the dependence;on
(a) Main example. On the set of measurable functionXorf: X — C we define an equiva-
lence relation by

fr~g, if f=g¢g a.e. onX.

This is indeed an equivalence relation sirf¢e) = f(x) for all z € X, f(z) = g(x) implies
g(x) = f(x). Let f = ga.e.onX andg = h a.e. onX, that is, there exisd/, N € A with
u(M) = p(N) =0andf(z) = g(x) forallz € X\ M, g(z) = h(x) forall z € N. Hence,
f(z) = h(z) forallz € M UN. Since0 < u(MUN) < u(M)+ u(N) =0+0=0hy
PropositiolIZ13 (e)y(M U N) = 0 and finally f = h a.e. onX.

(b) Note thatf = g a. e. onX implies

/deMI/ngu-

Indeed, letN denote the zero-set whefe# g. Then

/deu—/xgdu'S/X|f—g|duz/NIf—gldu+/X\N|f—g|dM

< u(N)(00) + (X \VN) -0 = 0.

Here we used that for disjoint setis B € A,

/AUde“:/XXAUdeN:/XXAfde/XxdeuZ/Afdu+/deu.

Proposition 12.16 Let f: X — [0, +o0c]| be measurable. Then
Jx fdp=0ifandonlyiff =0 a.e. onX.

Proof. By the above argument in (bj,= 0 a.e. implies[, fdu = [, 0du = 0 which proves
one direction. The other direction is homework 40.4. [
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12.4.2 The spac&? (X, u)

For any measurable functight X — C and any reap, 1 < p < oo define

1711, = ( sy du);- (12.7)

This number may be finite ax. In the first case, f |” is integrable and we writg € .2 (X, p).

Proposition 12.17 Letp, ¢ > 1 be given such tha;t + % =1.
(a) Letf,g: X — C be measurable functions such thiat -#? andg € 1.
Thenfg € #* and

/ gl du<|Ifl, lgll, (Holder inequality) (12.8)
X
(b) Letf,g € Z9. Thenf + g € £? and

IF +all, < IF], + gl (Minkowski inequality) (12.9)

Idea of proof. Holder follows from Young’s inequality (Rrositior L3I, as in the calssical case
of Holder’s inequality inR"™, see Propositidn 1.B2

Minkowski’s inequality follows from Holder’s inequalitgs in Propostion .34

Note that Minkowski implies thaf, g € £ yields||f + g|| < oo such thatf 4+ g € .Z7. In
particular,.Z” is a linaer space.

Let us check the properties fff| . For all measurablg, g we have

I1f1l, = 0,
IAFI, = TAT AL
1f+gll < A1+ Tlgll -

All properties of a norm, see Definitign 6.9 at pagell179 ansfead except for the definitness:
Ifll, = Oimlies [ | f|" du = 0 implies by PropositioRT216,f |” = 0 a.e. impliesf = 0
a.e.. However, it does not imply = 0. To overcome this problem, we use the equivalece
relationf = g a. e. and consider from now on ordguivalence classes functions in.£”, that

is we identify functionsf andg which are equal a. e. .

The spaceN = {f: X — C | fismeasurableand = 0 a.e.} is a linear subspace of
ZP(X, p) forall all p, andf = g a.e. if and only iff — g € N. Then the factor spac&” /N,

see Example2.3 (b) is again a linear space.

Definition 12.11 Let (X, A, 1) be a measure spacé?(X, i) denotes the set of equivalence
classes of functions of? (X, 1) with respect to the equivalence relatifn- ¢ a. e. that is,

Lp(X’ M) = ZP(X7 M)/N

is the quotient spac¢L” (X, u), ||-||,,) is @ normed space. With this nod(.X, ;1) is complete.
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Example 12.4 (a) We haveyg = 0 in LP(RR, \) sincexqg = 0 a.e. onR with respect to the
Lebesgue measure (note tligts a set of measure zero).

(b) In case of sequence spac#®(N) with respect to the counting measur&”? = L” since
f=0a.e.impliesf = 0.

) f(z) = L, a > 0isinL2(0,1) if and only if 2a < 1. We identify functions and their

xa’

equivalence classes.

12.4.3 The Monotone Convergence Theorem

The following theorem about the monotone convergence by8évi (1875-1961) is one of
the most important in the theory of integration. The theohartds for anarbitrary increasing
sequence of measurable functions with, possiflyf,, du = +oo.

Theorem 12.18 (Monotone Convergence Theorem/Lebesguegt (f,) be a sequence of
measurable functions o and suppose that

(1) 0< fi(z) < fo(z) < -~ < +ooforall z € X,
(2) fu(x) — f(z), for everyz € X.

Thenf is measurable, and

lim fnd,u:/ fd,u:/ <lim fn> dys.
(Without proof) Note, thaif is measurable is a consequence of Remark 12.5 (b).

Corollary 12.19 (Beppo Levi) Let f,,: X — [0,+0oc| be measurable for alh € N, and
f(@) =" fulx)forz € X. Then
n=1

/Xifnduzi/xfndﬂ-

Example 12.5(a) Let X = N, A = P(N) the o-algebra of all subsets, andthe counting
measure orN. The functions orlN can be identified with the sequendes,), f(n) = .

Trivially, any function isA-measurable.

What is [ x,, du? First, letf > 0. For a simple functiom,,, given byg,, = x,,x .}, we obtain

[ gndp = z,u({n}) = z,.. Note thatf = ) " g, andg, > 0sincer, > 0. By CorollaryTZID,

n=1

/NfdMZ;/Ngndu:;xn-

Now, let f be arbitrary integrable, i.ef | f| du < oo; thus}_* |z, | < co. Therefore,
(r,) € LY (N, ) ifand only if > x,, convergesbsolutely The space of absolutely convergent
series is denoted b4 or ¢;(IN).
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(b) Letay,,, > 0foralln,m € N. Then

Proof. Consider the measure spd@é P(N), 1) from (a). Forn € N define functiong,,(m) =
Amn- By CorollanylIZIP we then have

[ sman= [ ru g3 s = 33

m=1 n=1

f(m)

- i/}(fn(m) dp = iiamn

n=1m=1

Proposition 12.20 Let f: X — [0, +oc]| be measurable. Then

sD(A)Z/Afdu, Aca

defines a measurgon A.

Proof. Sincef > 0, ¢(A) > 0 for all A € A. Let (A,)) be a countable disjoint family of
measurable setd,, € A and letA = > A,. By homework 40.1x4 = > >° x4, and
therefore

90(/1)Z/AfdMZ/XXAfdMZ/X;XAnfdM Bivi;/xmnfdﬂ
= Z fdp= Z@(An)-
n=1 An n=1

12.4.4 The Dominated Convergence Theorem

Besides the monotone convergence theorem the presentthéothe most important one. Itis
due to Henry Lebesgue. The great advantage, compared wethr@ilie.b, is that(X) = co is
allowed, that is, non-compact domaikisare included. We only need tpeintwiseconvergence
of (f,), not theuniformconvergence. The main assumtion here is the existence ofegrable
upper bound for al,,.

Theorem 12.21 (Dominated Convergence Theorem of Lebesguept f,: X — R or
g, fn: X — C be measurable functions such that
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(1) fu(x) — f(z) asn — oo a.e. onX,
2)| fulz)| < g(x) a.e.onX,

(3)/ gdp < 4o0.

Thenf is measurable and integrabl¢, | f | i < oo, and
im [ fadp= [ Fau= [ tm
lim \ fo—f|du=0. (12.10)

Note, that [TZ10) shows théf,,) converges tgf in the normed spack' (X, ).

Example 12.6 (a) Let A, € A, n € N, A, C A, C --- be an increasing sequence with
| A, = A If f € LY(A, ), thenf € £'(A,) for all n and
nelN

lim f dp = / fdpu. (12.11)

Indeed, the sequende 4, f) is pointwise converging tav4f sincexa(z) = 1iff x € A
iff « € A, forall n > ng iff lim, .. xa,(z) = 1. Moreover,|xa,f| < |xaf| which is
integrable. By Lebesgue’s theorem,

im [ fau= i [ = [ xafdu= [ fan

However, if we do not assumg € Z*(A, i), the statement is not true (see Renfarkl12.7 be-
low).

Exhausting theorem.Let (A,,) be an increasing sequencce of measurable setsdand
U2, A,. suppose thaf is measurable, anng“ fdu is a bounded sequence. Thé¢ne
ZLY(A, 1) and [IZIL) holds. |

(b) Let f.(x) = (=1)"2™ on [0,1]. The sequence is dominated by the integrable function

1> fu(x)|forall z € [0, 1]. Hencelim,, ., f fnd/\ =0= f[o 1 lim,, o frndA.

12.4.5 Application of Lebesgue’s Theorem to Parametric Irggrals

As a direct application of the dominated convergence theave now treat parameter depen-
dent integrals see Propostiéns¥.22 Bndl7.23

Proposition 12.22 (Continuity) Let U < R™ be an open connected sdf, < U, and
f:R™ x U — R be a function. Assume that

(a) for a.e.z € R™, the functiont — f(z,t) is continuous at,
(b) There exists an integrable functidh R™ — R such that for every € U,

| f(z,t)| < F(z) a.e.onR™.
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Then the function

g(t) = [ fla,t)dx

Rm

is continuous at,.
Proof. First we note that for any fixetl € U, the functionf;(z) = f(x,t) is integrable on
R™ since it is dominated by the integrable functibin We have to show that for any sequence
t; — to, t; € U, g(t;) tends tog(ty) asn — oo. We setf;(x) = f(z,t;) and fo(z) = f(z,to)
for alln € N. By (b) we have

fo(x) = lim f;(z), a.e.xzeR™.

j—00
By (a) and (c), the assumptions of the dominated convergireoeem are satisfied and thus
fim g(t) = tim [ fie)do= [ i fyde = [ o) do = glto)
J—00 J—=0 JRm Rm J 0 R™

Proposition 12.23 (Differentiation under the Integral Sign) Let/ C R be an open interval
andf: R™ x I — R be a function such that

(a) for everyt € I the functionr — f(x,t) is integrable,
(b) for almost allz € R™, the functiont — f(x,t) is finite and continuously
differentiable,
(c) There exists an integrable functiéh R™ — R such that for every € I
B

- < .. .
at(x,t) < F(z), aezxelR

Then the function(t) = [5,. f(z,t) dx is differentiable on/ with

g (t) = - aa—{(x,t) dz.

The proof uses the previous theorem about the continuitgeopaarametric integral. A detailed
proof is to be found in[Kon<0, p. 283].

Example 12.7(a) Let f e %'(R). Then the Fourier transformf: R — C,
f(t) = 7= J e * f(z) dz is continuous oIk, see homework 41.3.
R

(b) Let K C R? be a compact subset apd X — R integrable, the Newton potential (with
mass density) is given by

u(t) = /K 'O(x)t” dz, t¢ K.

|l —
Thenu(t) is a harmonic function ofik* \ K.
Similarly, if K c R? is compact ang € .Z(K), the Newton potential is given by

u(t) = /Kp(x) log|lz —t|| de, t¢& K.

Thenu(t) is a harmonic function ofR* \ K.
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12.4.6 The Riemann and the Lebesgue Integrals

Proposition 12.24 Let f be a bounded function on the finite interValb|.

(a) f is Riemann integrable ofa, b] if and only if f is continuous a. e. of, b].

(b) If f is Riemann integrable ofu, b, then f is Lebesgue integrable, too. Both integrals
coincide.

Let/ C R be an interval such that is Riemann integrable on all compact subintervalg of

(c) f is Lebesgue integrable ahif and only if| f | is improperly Riemann integrable dn(see
Section 5.4); both integrals coincide.

Remarks 12.7 (a) The characteristic functiogg on [0, 1] is Lebesgue but not Riemann inte-
grable;xq is nowhere continuous df, 1].

(b) The (improper) Riemann integral
/ sin da
1 T

converges (see Examjpled.11); however, the Lebesgue ahtdogs not exist since the integral
does not converge absolutely. Indeed, for non-negatiegers: > 1 we have with some > 0

/(n+1)7r

1 (n+1)m c
dxzi/ |sinz| de = ————;
n+ 17 Jx (n+ )7

(n+1)m c n 1

Since the harmonic series diverges, so does the int¢graF2~ | dz.

sin x

T

hence
sin x

T

12.4.7 Appendix: Fubini’'s Theorem

Theorem 12.25Let (X4, Ay, 1) and(Xs, As, p2) beo-finite measure spaces, |gbe anA; ®
As-measurable function andl = X; x X,.

(a) If f: X — [O, —|—OO], gO(l'l) :)! f(.fll'l, 1’2) d,ug, 1/1(.%’2) :)}f f(l’l,l'g) d,LLl, then

[ o) dg = [ ramew = [ cwan

X3
X1 ><X2

(0) If f € .LY(X, 111 ® p2) then

| rdmem = [ ( f(whxz)dm) dji.
X1xXo X2 X1

HereA; ® A, denotes the smallestalgebra overX', which contains all setd x B, A € A,
andB € A,. Defineu(A x B) = u1(A)us(B) and extend: to a measur@; ® s oNA; @ A,.

Remark 12.8 In (a), as in Levi’s theorem, we don’t need any assumptiorf éo change the
order of integration sincg¢ > 0. In (b) f is an arbitrary measurable function 6h x X,
however, the integraf, | f | du needs to be finite.
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Chapter 13

Hilbert Space

Functional analysis is a fruitful interplay between linedgebra and analysis. One defines
function spaces with certain properties and certain tagekand considers linear operators
between such spaces. The friendliest example of such speeeésBlbert spaces.

This chapter is divided into two parts—one describes thergty of a Hilbert space, the
second is concerned with linear operators on the Hilbextespa

13.1 The Geometry of the Hilbert Space

13.1.1 Unitary Spaces

Let £ be a linear space ovéf = R or overK = C.

Definition 13.1 An inner producton E is a function(- , -) : £ x £ — K with

(@) (M1 +Xawa, y) = M (21, y) + A (22, y)  (Linearity)

(b) (z,y)=(y,x). (Hermitian property)

() (z,z)>0forallz € F,and(z, z) = 0 impliesz = 0 (Positive definite-
ness)

A unitary spacas a linear space together with an inner product.

Let us list some immediate consequences from these axiomst @) and (b) it follows that

() (y, Mz + Aoxa) = Ay (y, 21) + Ao (y, 22) .

A form on £ x E satisfying (a) and (d) is called sesquilinear form (a) implies(0, y) = 0
forally € E. The mapping: — (z, y) is a linear mapping intd& (a linear functional) for all
y € E.

By (c), we may defingz||, thenorm of the vectorr € E to be the square root @f:, z); thus

|| = (z, ). (13.1)

331
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Proposition 13.1 (Cauchy—Schwarz Inequality)Let (E, (-, -)) be a unitary space. For
x,y € E we have

[z ) [ < =]l Iyl
Equality holds if and only it = 5y for somegs € K.

Proof. Choosex € C, |a| = 1 such thatv (y, z) = | (z, y) |. ForA € R we then have (since
alr,y)=aly,z) =[x,y
<IL'—O[)\y,ZE—Osz>:<ZL',$>—Oé/\<y,l'>—a)\<l‘,y>+)\2<y,y>
=(z,2) = 2X\ [(z, y) [+ N (y, y) > 0.

This is a quadratic polynomial\? + b\ + ¢ in A with real coefficients. Since this polynomial
takes only non-negative values, its discrimin&nt- 4ac must be non-positive:

2 2 2
Al (e, y) 7 =4l llyl” < 0.

This implies| (z, y) | < |[z[ [[y]l. m

Corollary 13.2 ||-|| defines a norm ot

Proof. It is clear that||z|| > 0. From (c) it follows that||z|| = 0 impliesz = 0. Further,

M| = /O, Ax) = /| A|* (&, ) = |\]]|z]|. We prove the triangle inequality. Since
2Re(z) = z + Z we have by Propositidn I.P0 and the Cauchy-Schwarz ingguali

lz+yll* =(@+y, z+y) = (z, 2) +{x, y) + (¥, 2) + (y, y)
= [lz|* + |lylI* + 2Re (z, )
<l + llyl* + 2] (x, y) |
< 2l + [lyl* + 21| lyll = (]l + llyl);

hencel|z + y|| < |[z[| + [lyll- m

By the corollary, any unitary space is a normed space witmt ||z|| = /(x, z).

Recall that any normed vector space is a metric space withétecd(x, y) = ||z — y||. Hence,

the notions of open and closed sets, neighborhoods, cangesgquences, Cauchy sequences,
continuous mappings, and so on make sense in a unitary spag®rticular hi“ T, = T
means that the sequen¢ir, — x||) of non-negative real numbers tends(to Recall from
Definition 6.8 that a metric space is said to be complete ifle@auchy sequence converges.

Definition 13.2 A complete unitary space is calledbert space

Example 13.1Let K = C.

@E=C"z=(1,...,2,) €EC"y=(y1,....yn) € C". Then(z, y) = > 27 defines
k=1

. (€, (-, -)) is a Hilbert space.

NI

an inner product, with the euclidean nofim|| = (>, _, | zx |)
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(b) E = L*(X, pu) is a Hilbert space with the inner produgt, ¢) = [, fgdu.
By Propositiod 1277 withh = ¢ = 2 we obtain the Cauchy-Schwarz inequality

ol (e ) ()

Using CSI one can prove Minkowski's inequality, that f5g € L*(X, u) implies f + g €
L2(X, ). Also, (f, g) is a finite complex number, singgj € L' (X, p).

Note that the inner product is positive definite sinjj,ge| f |2 dp = 0 implies (by Proposi-
tion[IZI6)| /| = 0 a.e.and thereforef = 0 in L?(X, ). To prove thecompleteness of
L%(X, 1) is more complicated, we skip the proof.

(C)E =/ls,i.e.

ly={(zn) |2, €C,nEN, Y |z, [* < 00}

n=1

Note that Cauchy—Schwarz’s inequalitylk¥ (Corollary[TZ6) implies

k 2 k k 00 00
D B N o N 7S e N e N F7SN o
n=1 n=1 n=1 n=1 n=1

Taking the supremum over alle N on the left, we have

o0 2 o0 o0
S| <31l S lunl?;
n=1 n=1 n=1

hence .
n=1
is an absolutely converging series such that the inner ptaduvell-defined orts.

Lemma 13.3 Let £ be a unitary space. For any fixede E the mappingd,g: £ — C given
by
f(x)=(z,y), and g(z)=(y,z)

are continuous functions oA.

Proof. First proof. Let (z,) be a sequence irE , converging tox € F, that is,
lim, e ||z, — || = 0. Then

@ y) = (s ) | =an —2, 9| < llon — 2] iyl =0

asn — oo. This proves continuity of . The same proof works fay.
Second proofThe Cauchy—Schwarz inequality implies thatiqrz, € £

|1, y) = (@2, ) | = [ (o — 22, y) [ <oy — 2| lyl],

which proves that the map — (x, y) is in fact uniformly continuous (Givea > 0 choose
6 = ¢/ |lyll. Then|jz; — 2| < ¢ implies|(z;, y) — (z2, y)| < €). The same is true for
r— (Y, x). n
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Definition 13.3 Let H be a unitary space. We callandy orthogonalto each other, and write
x Ly, if (z,y) =0. Two subsets\/, N C H are calledorthogonalto each other if: L y for
allx € M andy € N.

For a subsed/ C H define theorthogonal complement/+ of M to be the set

M*={xc H|{(x,m)=0, foralme M}.

For exampleF = R™ with the standard inner product and= (vy, ...,v,) € R", v # 0yields

{o}' ={z € R"| D zpvp =0},
k=1
This is a hyperplane iiR"™ which is orthogonal ta.

Lemma 13.4 Let H be a unitary space and/ C H be an arbitrary subset. Thed/" is a
closed linear subspace éf.

Proof. (a) Suppose that,y € M*. Then form € M we have
(Mx 4+ Ny, m) = A\ (z, m) + Ay (y, m) = 0;

hence\,z + Aoy € M*. This shows thafi/+ is a linear subspace.
(b) We show that any converging sequencg) of elements ofi/* has its limitin}/+. Suppose
lim z, =z, 1, € M+, € H. Then for allm € M, (z,, m) = 0. Since the inner product is

n—oo

continuous in the first argument (see Lenimall 3.3) we obtain
0= lim (z,, m) = (z,m).

n—oo

This showsr € M*: henceM* is closed. n

13.1.2 Norm and Inner product

Problem.Given a normed linear spac¢é’, ||-||). Does there exist an inner prodyet -) on £
such that|z|| = /(x, x) for all z € E? In this case we call-|| aninner product norm

Proposition 13.5 (a) A norm||-|| on a linear spacer over K = C or K = R is an inner
product norm if and only if thearallelogram law

|z +yl* + llz = yl* = 2(ll«[* + ly]*), @yeE (13.2)

is satisfied.
(b) If (L32)is satisfied, the inner product, -) is given by[L3.3)in the real casé = R and
by (3:3)in the complex cask = C.

1 :

(woy) =7 (le+yl* = llz—yl?), if K=R. (13.3)
1 : : : : ,

(@, y) =7 (le+ol* = lle =yl +ille+iy* —illo —iyl), i K=C. (13.4)

These equations are callgublarization identities
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Proof. We check the parallelogram and the polarization identithe real case = R.

lz+yl*+llz—yl’=@+y, z+y)+@—y, z—y)
=z, 2) +(y, ) +(x,y)+(y,y) +{(z,2) —(y,2) —(z,9) + (¥, y))
=2||z)|* + 2 ly|*.
Further,

o+ ylI” = [l =yl = (&, 2) + (v, 2) + (@, ) + (v, ¥))—
—(z,2) =y, ) —(z,y) +(y,y) =4(x, y).

The proof that the parallelogram identity is sufficient #Brbeing a unitary space is in the
appendix to this section.

Example 13.2 We show thafl.'([0, 2]) with || f||, = f02 | f| dz is not an inner product norm.
Indeed, letf = (1 andg = xp,1)- Thenf+g = | f —g|=1and| [, = [|g]|, = fol dr =1
such that

I +gllf + 11 = glly = 2° + 2% =8 £ 4 =2(| FII} + llgIIy).
The parallelogram identity is not satisfied fot], such thatl.! ([0, 2]) is not an inner product
space.

13.1.3 Two Theorems of F. Riesz

(born: January 22, 1880 in Austria-Hungary, died: Febri8y1956, founder of functional
analysis)

Definition 13.4 Let (Hy, (-, -),) and(Ha, (-, -),) be Hilbert spaces. Letl = {(z1,z2) | 21 €
Hy, o € Hy} be the direct sum of the Hilbert spacEs and H,. Then

(1, 22), (Y1,92)) = (21, Y1), + (T2, Y2)y

defines an inner product oA. With this inner product? becomes a Hilbert spaceld =
H, & H, is called the (directprthogonal sumof H; and Hs.

Definition 13.5 Two Hilbert spacegi; and H, are calledsomorphicif there exists a bijective
linear mappingy: H; — H, such that

<§0(l‘), @(y)>2: <ZL‘, y)lv fE,yGHl.

 is calledisometric isomorphisrar aunitary map

Back to the orthogonal suf = H, & H,. Let H, = {(x1,0) | 21 € H,} andH, = {(0, z5) |
e € Hy}. Thenzy — (z1,0) andxs — (0, x2) are isometric isomorphisms frofd; — H,,
i =1,2. We haveH, L H, andH;, i = 1,2 are closed linear subspaces/of

In this situation we say thdt is theinner orthogonal sum of the two closed subspafesand

Hs.



336 13 Hilbert Space

(a) Riesz’s First Theorem

Problem. Let H; be a closed linear subspace Bf Does there exist another closed linear
subspacéd, such thatd = H, & H,?
Answer: YES.

X Lemma 13.6 ( Minimal Distance Lemma) Let C' be a con-

vex and closed subset of the Hilbert spaée For x € H
let

o(z) = inf{||z —y[| |y € C}.

Then there exists a unique elemerst C' such that

C
o(z) = |lz — .
Proof. Existence. Since o(z) is an infimum, there exists a sequerneg), v, € C, which
approximates the infimumim,, .. ||z — y.|| = o(x). We will show, that(y,) is a Cauchy
sequence. By the parallelogram law (see Propodifion 139)ave

1y = ymll* = g — 2 + & =yl

2 2 2
=2|lyn — 2" + 2|2 — ymll” — 122 — Yo — Yuil|
Yt

2 2
= 2|lyn — x| + 2|z — ym|” — 4 5

X

SinceC is convex,(y, + y,,)/2 € C and thereforg|z — 2% || > o(z). Hence
< 2|lyn = z]|* + 2|z = yml® — do(x)*.
By the choice of y,,), the first two sequences tenddbr)? asm, n — oo. Thus,
S [l = yml* = 2(0*(@) + e(2)?) — 4e(x)* =0,

hence(y,) is a Cauchy sequence. Singkis complete, there exists an element H such
thatlim,, .. vy, = c¢. Sincey, € C andC' is closed,c € C. By construction, we have
|y, — x| — o(z). On the other hand, sincg, — ¢ and the norm is continuous (see
homework 42.1. (b)), we have

[yn — 2l — lle =]

This impliesp(z) = ||c — z||.
UniquenessLet ¢, ¢ two such elements. Then, by the parallelogram law,

0< le=d|>=|lc—z+az—{]|

2
c+c

2

=2lc—z|*+ 2|z = | —4Hx—

< 2(0(x)* + o(x)?) — 40(x)* = 0.

This impliesc = ¢’; the pointc € C which realizes the infimum is unique. n
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H, } Theorem 13.7 (Riesz’s first theorem)
Let H, be a closed linear subspace of the
Hilbert spaceH. Then we have

H, H=H o H,

Xy that is, anyz € H has a unique repre-
> sentationr = x; + o With z; € H; and
$2€AH%.

Proof. Existence. Apply LemmdI3b to the convex, closed dét. There exists a unique
x1 € H; such that

o(x) = inf{[z —yll [y € Hi} = [l — x| < [l — 21 =ty |

forallt € K andy,; € H;. homework 42.2 (c) now implies, = z — z; L y, forall y; € H;.
Hencex, € Hi. Thereforeg = x; + x4, and the existence of such a representation is shown.
UniquenessSuppose that = =, + x5 = 2] + x4, are two possibilities to write as a sum of
elements ofr,, 2, € H, andz,, r, € Hi-. Then

T -2y =ah—x=u

belongs to bothH; and Hi- (by linearity of H, and H,). Hence(u, u) = 0 which implies
u=0. Thatis,z; = 2} andxzy = 5. ]

Letx = z; + x5 be as above. Then the mappingsz) = z; and P (z) = z, are well-defined
on H. They are calledrthogonal projection®of H onto H; and H,, respectively. We will
consider projections in more detail later.

Example 13.3 Let H be a Hilbert space; € H, z # 0, H; = K z the one-dimensional linear
subspace spanned by one single vectorSince any finite dimensional subspace is closed,
Riesz’s first theorem applies. We want to compute the prgjestofz € H with respect taH,
andHi. Letx; = az; we have to determine such thatz — z; , z) = 0, that is

(x—az,z)y=(x,z) —{(az,z) =(z, z) —a(z, z) = 0.

Hence,
C(z, ) (z, 2)

IR R

The Riesz’s representation with respecttp= Kz and H{- is

o= e+ (o= e)
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(b) Riesz’s Representation Theorem

Recall from Sectioh1 thatlaear functionalon the vector spacg' is a mappingr': £ — K
such thatt'(\jx1 + Aoxe) = M F(x1) + Ao F(x9) for all 1, xo € E and\, Ay € K.

Let (E,||-||) be a normed linear space ovE&r Recall that a linear functiondl': £ — K is
calledcontinuousf =, — z in E impliesF(x,,) — F(z).

The set of all continuous linear functiondison £ form a linear spacé&’ with the same linear
operations as ™.

Now let (H, (-, -)) be a Hilbert space. By LemrhaIBB,: H — K, F,(z) = (z, y) defines
a continuous linear functional of. Riesz’s representation theorem states émgtcontinuous
linear functional or# is of this form.

Theorem 13.8 (Riesz’s Representation Theoreml.et /' be a continuous linear functional on
the Hilbert spacédd.
Then there exists a unique elemerg H such thatf'(z) = F,(z) = (z, y) forall z € H.

Proof. Existence.Let H; = ker F' be the null-space of the linear functional H, is a linear
subspace (sincg is linear). H, is closed sincé?, = F~1({0}) is the preimage of the closed
set{0} under the continuous map. By Riesz's first theoremil = H, & Hi-.

Case 1.H{ = {0}. ThenH = H, andF(z) = 0 for all z. We can choosg = 0; F'(z) =
(x,0).

Case 2.H- # {0}. Suppose: € Hi-, u # 0. ThenF(u) # 0 (otherwiseu € Hi- N H,; such
that(u , u) = 0 which impliesu = 0). We have

F (x— ?Eg u) _ () - 29 gy 2o

Hencer — ?Ez; u € H,. Sinceu € Hi* we have
0— <x— ?Eziu u> — o u)— ?Ezi ()
Fo) = o (o) = < féﬁ) u> ~ Rye),

UniquenessSuppose that botly, y» € H give the same functiondl, i.e. F(x) = (z, 1) =
(x, yo) for all z. This implies

(yi —y2, ) =0, =z € H.

In particular, choose = y; — 1. This gives||y; — 1||* = 0; hencey; = y». [
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(c) Example

Any continuous linear functionals di¥(X, ;1) are of the formF(f) = [, fgdu with some
g € L2(X, u). Any continuous linear functional of3 is given by

F((x) =Y 2u¥n,  With () € L.

13.1.4 Orthogonal Sets and Fourier Expansion

Motivation. Let £ = R" be the euclidean space with the standard inner product andastd
basis{ei,...,e,}. Then we have with; = (z, ¢;)

n n n

2 2 _

=S e ol =3l ()= 3
k=1 k=1 k=1

We want to generalize these formulas to arbitrary Hilbeaicgs.

(a) Orthonormal Sets

Let (H, (-, -)) be a Hilbert space.

Definition 13.6 Let{z; | i € I} be a family of elements off .
{z;} is called arorthogonal sebr OSif (z; , z;) = 0 for i # j.
{z;} is called arorthonormal sebr NOSIf (z; , z;) = d;; forall i, j € I.

Example 13.4(a) H = {5, ¢, = (0,0,...,0,1,0,...) with the1 at thenth component. Then
{e, | n € N}isan OSinH.
(b) H = L*((0,2n)) with the Lebesgue measur;, g) = [." fgd\. Then

{1,sin(nz), cos(nx) | n € N}

isan OS inH.

to be orthonormal sets df.

Lemma 13.9 (The Pythagorean Theorem)Let{z, ..., z;} be an OS in, then
4 -l = P+

The easy proof is left to the reader.

Lemma 13.10 Let {z,} be an OS in{. ThenY >, x; converges if and only §°, |||
converges.

The proof is in the appendix.
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(b) Fourier Expansion and Completeness

Throughout this paragraph I1€t,, | » € N} an NOS in the Hilbert spacH.

Definition 13.7 The numbersz, z,), n € N, are calledrourier coefficientof x € H with
respect to the NO$z,, }.

1 sin(nz) cos(nx)

Example 13.5 Consider the NO |n e IN} from the previous ex-

N

ample onH = L*((0,2m)). Let f € H. Then
< sin(na > f(t)sin(nt) dt,
< cos(n > f(t) cos(nt) dt,

<f’m> m/f

These are the usual Fourier coefficients—up to a factor. Matewe have another normaliza-
tion than in Definitio 613 since the inner product there asfactorl /(27).

Proposition 13.11 (Bessel’s Inequality)For x € H we have
Do, @) [P < ) (13.5)
k=1

Proof. Letn € N be a positive integer ang, = = — >, _, (x, xx) z). Then

n n

(yn,xm):(x,xm>—z<x,xk> (xk,xm):<x,xm)—2(:c,xk) Opm = 0

k=1 k=1

form=1,...,n. Hence{y,, (z, x1) z1,...,{x, x,) x,} is an OS. By Lemm@aI3.9

n 2 n n

2 2 2 2

o+ > ey m) wl| = llyal® + D s o) Pllaell® 2 Y [, @) 7,
k=1 k=1 k=1

since||z;||* = 1 for all k. Taking the supremum over allon the right, the assertion follows.
|

2
)™ =

Corollary 13.12 For anyx € H the seriesy  (x, xy) x), converges irf.

k=1
Proof. Since{(x, =)z} is an OS, by LemmaI3]l0 the series converges if and only if the
seriesy > ||[(x, xx) xl|” = S20°, | (x, x3) | converges. By Bessel's inequality, this series
converges. n

We call}";° | (z, =) x; theFourier seriesof z with respect to the NO$z, }.
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Remarks 13.1 (a) In general, the Fourier seriessotloesnot converge tor.

(b) The NOS{ -, Siri(/’%m), =121} gives the ordinary Fourier series of a functigrwhich is

integrable over0, 27).

Theorem 13.13Let{z; | £ € N} be an NOS irf{. The following are equivalent:

oo

@z = Z (x, xy) x, forall z € H,i.e. the Fourier series of converges ta.
k=1

(b) (z, xx) = 0forall £ € N impliesz = 0, i. e. the NOS isnaximal

(c) For everyr € H we havel|z||* =) | (z, o) [*

k=1
00

(d)If x € Handy € H, then(z, y) :Z (x, xp) (Tr, y)-
k=1

Formula(c) is calledParseval’s identity

Definition 13.8 An orthonormal se{z; | i« € N} which satisfies the above (equivalent) prop-
erties is called @omplete orthonormal syste @NOS for short.

Proof. (a) — (d): Since the inner product is continuous in both compohert have

(x,y)= <Z<x, Tk) Tk, Z(y, Tp) xn> = Z (x, zp) (y, zn) (Th, T0)

k=1 n=1 k,n=1

ékn
o0

= <l’,l‘k><l’k,y>
k=1

(d) — (c): Puty = =.
(c) — (b): Supposéz, x;) = 0 for all k. By (c) we then have

Iz1* =" [(z, zx)|> =0; hence z=0.
k=1

(b) — (a): Fixz € H and puty = ) ;| (z, =) x; which converges according to Corol-
lary[I3I2. Withz = z — y we have for all positive integers € N

(z,xn>:<:p—y,xn>:<x—z<x,xk) xk,xn>

k=1

o0
(z, ) = (z, ) Z x, x) (Tp, o) = (x, x,) — (x, x,) = 0.
k=1

This shows: = 0 and therefore: = y, i. e. the Fourier series af converges ta. [
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Example 13.6 (a) H = (5, {e, | n € N} is an NOS. We show that this NOS is complete.
For, letx = (x,) be orthogonal to every,, n € N; thatis,0 = (x,e,) = z,. Hence,

x =(0,0,...) = 0. By (b), {e,} is a CNOS. How does the Fourier seriescdbok like? The
Fourier coefficients of are(z, e,) = x,, such that

00
xr = E Tp €n
n=1

is the Fourier series af . The NOS{e,, | n > 2} is not complete.
(b) H =12 ((0,27)),

1 sin(nz) cos(nx) } { el }

, , ne Ny, and n e
{\ﬁzﬂ VIR Nrh

are both CNOSs ii/. This was stated in Theor€m®6l14

(c) Existence of CNOS in a Separable Hilbert Space

Definition 13.9 A metric spaceF is calledseparableaf there exists a countable dense subset
of .

Example 13.7 (a) R" is separableM = {(r1,...,7,) | r1,...,7, € Q} is a countable dense
setinR".
(b) C" is separableM = {(r; +is1,...,rn +18,) | 71, .., Tny 51, .-, S, € Q} IS a countable

dense subset d@f".

(c) L*([a, b)) is separable. The polynomid]$, =, 22, ... } are linearly independent i*([a, b])
and they can be orthonormalized via Schmidt’s process. Agsaltrwe get a countable CNOS
in L2([a, b]) (Legendre polynomials in casex = 1 = b). However,L?(R) contains no polyno-
mial; in this case thélermite functionsvhich are of the formp,, () e=** with polynomialsp,,,
form a countable CNOS.

More generalL?(G, )\,) is separable for any regio c R™ with respect to the Lebesgue
measure.

(d) Any Hilbert space is isomorphic to sorhé(X, 1) wherey is the counting measure oxj;

X = N gives/,. X uncountable gives a non-separable Hilbert space.

Proposition 13.14 (Schmidt’s Orthogonalization Process) et {y;} be an at most countable
linearly independent subset of the Hilbert spdée Then there exists an NOS} such that
for everyn

lin{y,....yn} =lin{zy, ..., 2.}
The NOS can be computed recursively,

y n
L1 = —17 Lnt1 = (ynJrl - Z <yn+17 xk> xk)/ HNH
vl
Corollary 13.15 Let {e; | £ € N} be an NOS wher&v = {1,...,n} for somen € N
or N = N. Suppose that/; = lin{e, | & € N} is the linear span of the NOS. Then
1 =) ,cn (T, ) e is the orthogonal projection of € H onto H;.
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Proposition 13.16 (a) A Hilbert spaceH has an at most countable complete orthonormal sys-
tem (CNOS) if and only i is separable.

(b) Let H be a separable Hilbert space. Théhis either isomorphic td™ for somen € N or

to /.

13.1.5 Appendix
(a) The Inner Product constructed from an Inner Product Norm
Proof of Propositiod1315. We consider only the cdée= R. Assume that the parallelogram

identity is satisfied. We will show that

(@, y) =~ (lz+yl* = ll= - ylI*)

IS,

defines a bilinear form of.
(a) We show Additivity. First note that the parallelograremdity implies

bty = 5 lertas byl + bty
= 2 eyl 42 ol ~ =y l?) +5 @byl 42 ol ~ llza—ar+]?)
= oyl + oyl + P+ a2 = (o=l + 2 —ar-49])
Replacingy by —y, we have
o1zl = =gl + e =yl + leal + ol =5 (hor—za =yl + haz=a1—yll?)

By definition and the above two formulas,

(1472, ) = = (|21 + 22 + ylI* = llog + 22 — y|?)

(s + yll* = llzy = yll® + ez + yl* = llz2 — yl1*)
:<x17y>+<l‘27y>7

thatis,(-, -) is additive in the first variable. It is obviously symmetrimshence additive in the
second variable, too.

(b) We show(\z, y) = A(z,y) forall A € R, z,y € E. By (@), 2z, y) = 2(z, y). By
induction omn, (nxz, y) = n(z, y) foralln € N. Now letA = 2, m,n € N. Then

m m
n(Az, y) =n<g«%’, y> = <ng«%’, y> =m(z,y)
m
= (o, y)=—{r,y)=A(z,y).
Hence, )z, y) = A (x, y) holds for all positive rational numbeps Suppose\ € @Q,, then

0=({z+(-2),y) =, y)+{-r,y)
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implies (—z, y) = — (z, y) and, moreover{—\z, y) = —\(z, y) such that the equation
holds for allA € Q3. Suppose that € R is given. Then there exists a sequenag), \, € ©Q
of rational numbers with\, — A. This implies\,z — Az for all x € F and, since|-|| is
continuous,

Az, y) = lim (Ao, y) = lim A\, (z,y) = Az, ).

This completes the proof. n

(b) Convergence of Orthogonal Series

We reformulate Lemnia 1310

Let {x,} be an OS inH. Theny ;° x, converges if and only i5 57, ||z
converges.

Note that the convergence of a serjes. , x; of elementsz; of a Hilbert spacef is defined
to be the limit of the partial sumism,, .. > ., z;. In particular, the Cauchy criterion applies
sinceH is complete:

The seriesy _ y; converges if and only if for every > 0 there exists;, € N such

Zyi

i=m

thatm,n > ng imply < €.

Proof. By the above discussiol,:* , z; converges if and only if 7 ;||> becomes small
for sufficiently largem,n € N. By the Pythagorean theorem this term equals

n
> Ml
k=m

hence the series’ z;, converges, if and only if the seri&s ||z,||> converges. [

13.2 Bounded Linear Operators in Hilbert Spaces

13.2.1 Bounded Linear Operators

Let (E1, ||-||;) and(E,, ||-||,) be normed linear space. Recall that a linear Map;, — E, is
calledcontinuousf z,, — z in E, impliesT'(z,,) — T'(z) in Ex.

Definition 13.10 (a) A linear magl’: F; — Es is calledboundedf there exist a positive real
numberC' > 0 such that

IT(x)|l, < Cz||,, forall ze Ey. (13.6)
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(b) Suppose that': E; — E, is a bounded linear map. Then tbperator normis the smallest
numberC satisfying [I3.B) for all: € E;, that is
IT]| = inf{C'>0] Ve b |T()|, <z}

One can show that

@ Izl =swp{ FE o e b0 2ol

(b) TN = sup LT ()5 | |z, <1}
(©) Tl = sup {IT(x)lly | [l=fl, = 1}
Indeed, we may restrict ourselves to unit vectors since
1T (a2)lly _ [ IT@)l, _ [T @),

lozll, — lalllzll, =l

This shows the equivalence of (a) and (c). Sif¢&ax)|, = |a|||T(x)||,, the suprema (b)
and (c) are equal. From The last equality follows from the faat the least upper bound is the
infimum over all upper bounds. From (a) and (d) it follows,

1T ()]l < TN ]l - (13.7)

Also, if F; A Es L E5 are bounded linear mappings, thénS' is a bounded linear mapping
with
TS| < |7 15[ -

Indeed, forz # 0 one has by[{1317)

TS ()l < ISy < WTH ST, -
Hence||(T=5) ()l / l=ll, < [Tl |51l
Proposition 13.17 For a linear mapT': E; — FE, of a normed spacé&’; into a normed space
E5 the following are equivalent:

(&) T is bounded.
(b) T' is continuous.
(c) T is continuous at one point df;.

Proof. (a) — (b). This follows from the fact
[T (x1) = T(2)|| = 1T (21 — 2)|| < [|T][ [y — 2],

andT is even uniformly continuous ofj. (b) trivially implies (c).
(c) — (a). Supposd’ is continuous atr,. To eache > 0 one can findd > 0 such that
|z — xo|| < 0 implies||T(z) — T(xo)| < . Lety = x — x,. In other wordsg|y|| < ¢ implies

IT(y +z0) = T(xo)[| = [T (W) < e

Suppose: € Ey, ||z|]| < 1. Then||§/2z|| < §/2 < 6; hence||T(§/2z2)|| < e. By linearity of T,
|T(2)|| < 2¢/d. This shows|T|| < 2¢/4. n
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Definition 13.11 Let £ and F' be normed linear spaces. L&(E, F) denote the set of all
bounded linear maps frof to F'. In casel’ = F we simply write.Z(E) in place of.Z (E, F).

Proposition 13.18 Let £ and F' be normed linear spaces. The#i(E, F') is a normed linear
space if we define the linear structure by

(S+T)(x) = S(x) + T(x), (AT)(x) = AT(x)
forS,T € Z(E,F), A € K. The operator nornjj 7’| makesZ (E, F') a normed linear space.
Note thatZ (E, F') is complete if and only i is complete.

Example 13.8 (a) Recall that (K", K™) is a normed vector space withA| <

(Zm’ | ai; | * whereA = (a;;) is the matrix representation of the linear operatgrsee

Propositio

(b) The spacé”’ = Z(FE, K) of continuous linear functionals af.

(c) H =L%((0,1)), g € C([0, 1]),
Ty(f)(E) = g(t) f (1)

defines a bounded linear operator@n (see homework)
(d) H = L*((0,1)), k(s,t) € L*([0,1] x [0, 1]). Then

(K)(t) = / k(s,0)f(s)ds, fe H = L2([0,1])

defines a continuous linear operafore .,%(H). We have

(/|k8t||f |ds)
Cs./"“” dS/\f )P ds

:/ | (s, 6) P ds || £I% -
0

2 ! ! 2 2
KO < | ( JALeY] ds) at 11
1K (Nl < W& llzoyxoay 111 -

This showsK f € H and further|| K| < [|k[|; 2 2)- K is called anintegral operator K is
compact, i. e. it maps the unit ball into a set whose closucenspact.
(e)H =L*R),a € R,

1

(K@) = | ks, 0)f

Hence,

Vo)) = f(t —a), tEeR,

defines a bounded linear operator called the shift operaideed,

HVainZ/]R|f(1f—a)|2 dt:/]le(tH2 dt = | fl5;
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since all quotient§V, (z)|| / [[z|| =1, ||V.| = 1.
() H = (5. We define theight-shiftS by

S(l‘l,l’z,...) = (0,1‘1,1‘2,...).
%

Obviously,||S()|| = [|=]| = (3%, | . |*)*. Hence/|S| = 1.

(g) LetE, = C'(]0,1]) andE, = C([0, 1]). Define thedifferentiationoperatonT' f)(¢) = f'(t).

Let||f]|, = || fll, = sup | f(¢)|. ThenT is linear but not bounded. Indeed, lgf(t) = 1 —t".
te€[0,1]

Then| /.||, = 1 andTf,(¢t) = nt"* such that|tf,||, = n. Thus,|Tf.ll, / I fall, = n — +o0
asn — oo. T is unbounded.

However, if we put| f||, = sup | f(t)| + sup | f'(¢)| and|| f], as before, theff’ is bounded
te(0,1] te(0,1]
since

ITflly = sup [ f'(O)[ < |IfIl, = [T <1
t€[0,1]

13.2.2 The Adjoint Operator

In this subsectiort{ is a Hilbert space and’( H) the space of bounded linear operatorston
Let T € Z(H) be a bounded linear operator and= H. ThenF(z) = (T'(x), y) defines a
continuous linear functional oA . Indeed,

| F(e) [ = [(T(), 9) | < [Tyl < [Tyl ) < Clz]]-
CSl T/

Hence,F is bounded and therefore continuous. in particular,
IE< [T vl
By Riesz’s representation theorem, there exists a unigc®ne € H such that
(T'(z), y) = F(z) = (z, 2).

Note that by the above inequality

Iz = IFI < [T lyll - (13.8)
Supposey; is another element aff which corresponds te, € H with

(T(x), 1) = (x, 21).
Finally, letu € H be the element which correspondsjte- v,

(T'(x), y+wy) = (2, u).

Since the element which is given by Riesz’s representation theorem is unigueshaveu =
z + z1. Similarly,
(T'(z), Ay) = F(z) = (z, Az)

shows that\z corresponds toy.
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Definition 13.12 The above correspondenge— z is linear. Define the linear operatdr* by
z = T*(y). By definition,

(T(x), y)={(x, T"(y)), w,yeH. (13.9)
T* is called theadjoint operator tor'.

Proposition 13.19 LetT', T, T» € .Z(H). ThenT™ is a bounded linear operatorwit}t"T* H =
|T||. We have

@ (T +T)*=TF+1T, and
(b) AT)* = XT*.
©) (NT)* =TS T,
(d) If T isinvertible in.Z(H), so isT*, and we havéT*)~! = (T-1)*.
@) (T*)* =T.
Proof. Inequality [I3:B) shows that
[T < ITW Myl v e H.
By definition, this implies
17 < 17

andT™ is bounded. Since

<T* > y T* = <T(y)> ZL‘> = <£L‘, T(y)),

we get(T*)* = T. We conclude|T|| = HT**H < ||
(a). Forz,y € H we have

47 = Il

(T + Te)(2), y) = (T1(2) + Ta(x), y) = (Ti(2), y) + (Ta(x), )
=z, T{'(y)) + (., Ty'(y)) = (=, (I7 + T3)(y)):

which proves (a).
(c) and (d) are left to the reader. n

A mapping*: A — A such that the above properties (a), (b), and (c) are satisfiealled an
involution An algebra with involution is called &algebra

We have seen tha¥’(H) is a (non-commutative}-algebra. An example of a commutative
s-algebra igC(K) with the involutionf*(z) = f(z).

Example 13.9 (ExampléI3B continued)

@H=C" A= (au) € M(n x n, C). ThenA* = (b;;) has the matrix elements; = @;;.
(b) H =L*([0,1)), T,F = Ty.

(c)H =L*R), V,(f )( ) = f(t — a) (Shift operator)}.* = V_
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(d) H = {5. Theright-shift S is defined byS((x,,)) = (0, x1, z2, ...). We compute the adjoint
S*.

<S(l‘), y> = an—lyn = anyn+1 = <($’1,ZL‘2, c. ) , (yg,yg, .. )) .

Hence,S*((y,)) = (y2,ys, - - . ) is theleft-shift

13.2.3 Classes of Bounded Linear Operators

Let H be acomplexHilbert space.

(a) Self-Adjoint and Normal Operators

Definition 13.13 An operatorA € £ (H) is called
(a) self-adjointif A™ = A,
(b)normal, if A*A = A A*,

A self-adjoint operatod is calledpositive if (Az, x) > 0forallxz € H. We write A > 0. If
A and B are self-adjoint, we writel > Bif A— B > 0.

A crucial role in proving the simplest properties plays gadarization identitywhich gener-
alizes the polarization identity from Subsection13.1.2owver, this exist only ircomplex
Hilbert spaces.

4(A(@), y) = (Al +y), s +y) —(Ale—y), z—y) +
+i{A(x +1iy), z+iy) —i(A(z —iy), x — iy) .
We use the identity as follows
(A(z), ) =0 forallz € H implies A =0.

Indeed, by the polarization identityA(x), y) = 0 for all z,y € H. In particulary = A(z)
yields A(z) = 0 for all z; thus,A = 0.

Remarks 13.2 (a) A is normal if and only if|A(z)|| = ||A*(z)|| for all z € H. Indeed, ifA
is normal, then for ali: € H we have{ A*A(z) , z) = (A A*(x), =) which imply || A(z)||* =
(A(z), A(z)) = (A*(z), A*(z)) = ||A*(2)||". On the other hand, the polarization identity
and (A*A(z), z) = (AA™(x), x) implies ((A*A — AA*)(z), ) = 0 for all z; hence
A*A — A A* = 0 which proves the claim.

(b) Sums and real scalar multiples of self-adjoint opesa#we self-adjoint.

(c) The productd B of self-adjoint operators is self-adjoint if and onlyAf and B commute
with each otherAB = BA.

(d) A is self-adjoint if and only iff Az, z) is real for allz € H.

Proof. Let A* = A. Then(Az, z) = (r, Az) = (Az, x) is real; for the opposite direction
(A(x), z) = (z, A(z)) and the polarization identity yieldsA(z), y) = (z, A(y)) for all
z,y; henced™® = A. »
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(b) Unitary and Isometric Operators

Definition 13.14 LetT € - (H). ThenT is called

(@)unitary, if T*T =1=TT*.
(b)isometrigif  ||7(z)|| = ||| forallz € H.

Proposition 13.20 (a) 7T is isometric if and only if 7" = I and if and only if T'(z) , T'(y)) =
(x,y)forall z,y € H.

(b) T" is unitary, if and only ifl" is isometric and surjective.

(c) If S, T are unitary, so are5T and7~!. The unitary operators o/ ( H) form a group.

Proof. (a) T" isometric yields(T'(z) , T'(z)) = (x, ) and further((T™* T — I))(z), «) = 0 for
all z. The polarization identity implie$™ 7" = 1. This implies((T* T — I)(z), y) = 0, for
allz,y € H. Hence,(T'(z), T(y)) = (x, y). Insertingy = x showsT  is |sometr|c
(b) Supposd’ is unitary.7*T = I showsT is isometric. Sincd 7™ = I, T is surjective.
Suppose now]" is isometric and surjective. Sin&is isometric,7(z) = 0 impliesz = 0;
hence,T is bijective with an inverse operat@t—. Inserty = T-(z) into (T'(z), T(y)) =
(x, y). This gives

(T(x),z)=(x, T '(2)), wz¢€H.

HenceT—! = T* and thereford™*T = TT* = 1.
(c) is easy (see homework 45.4). n

Note that an isometric operator is injective with notr(since||7(z)|| / ||z|| = 1 for all z). In
caseH = C", the unitary operators ofi” form theunitary groupU(n). In caseH = R", the
unitary operators o/ form theorthogonal groupO(n).

Example 13.10(a) H = L?(R). The shift operatol/, is unitary sinceV,V, = V,,;. The
multiplication operatofl, f = ¢f is unitary if and only if| g| = 1. T, is self-adjoint (resp.
positive) if and only ifg is real (resp. positive).

(b) H = {5, the right-shiftS((x,,)) = (0,1, 2o, .. .) is isometric but not unitary sincg is not
surjective.S™ is not isometric sincé™(1,0,...) = 0; henceS™ is not injective.

(c) Fourier transform. For f € L'(R) define

TN = = / e ()

Let S(R) = {f € C¥(R) | supyeg |t"fP(t)| < o0, Vn,k € Zy}. $(R) is called the
Schwartz spacafter Laurent Schwartz. We ha8éR) C L'(R) NL*(R), for examplef(x) =
e ¢ 8(R). We will show later thatF: $(R) — S(RR) is bijective and norm preserving,
1F(Lzwy = [1f 2wy, [ € S(R). F has a unique extension to a unitary operatof.&(R.).
The inverse Fourier transform is

(T \/_/ e f(zr)dz, fe S8(R).
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13.2.4 Orthogonal Projections
(a) Riesz’s First Theorem—revisited

Let H, be a closed linear subspace. By Thedreml13.72agyH has a unique decomposition
x = x; + 2o With z; € H,; andz, € Hi-. The mapPy, (z) = x; is a linear operator front/
to H, (see homework 44.1)Py, is called theorthogonal projectionfrom H onto the closed
subspaced;. Obviously,H; is the image ofPy,; in particular, Py, is surjective if and only if
H, = H. Inthis casePy = I is the identity. Since

2 2 2 2 2
1Pr, ()7 = [la]l™ < a7 + o]l = [l

we have|| Py, || < 1. If H; # {0}, there existsanon-zerq € H, such that| Py, (z1)| = ||z1]].
This shows| Py, || = 1.
Here is the algebraic characterization of orthogonal ptaes.

Proposition 13.21 A linear operatorP € #(H) is an orthogonal projection if and only if
P?=PandP* = P.
In this case; = {z € H | P(z) = z}.

Proof. “—". Suppose thaf” = Py, is the projection ontd?;. SinceP is the identity onH,
P?(x) = P(x,) = z; = P(z) forall z € H; henceP? = P.

Letx = 21 + 2o andy = y; + y» be the unique decompositions:ofandy in elements ofH;
andHi-, respectively. Then

(P(x), y) = (x1, y1 +y2) = (21, y1) + (&1, y2) = (21, Y1) = (@1 + 22, y1) = (z, P(y)),
T

that is,P* = P.

“«". SupposeP? = P = P* and putH, = {x | P(z) = x}. First note, that fo® # 0, H, #

{0} is non-trivial. Indeed, sinc&(P(z)) = P(x), the image ofP is part of the eigenspace

of P to the eigenvalues, P(H) C H,. Since forz € Hy, P(z) = z, H; C P(H) and thus

H, = P(H).

SinceP is continuous and0} is closed,H; = (P — I)~*({0}) is a closed linear subspace of

H. By Riesz’s first theoremil = H, @ Hi-. We have to show tha®(z) = z, for all z.

SinceP? = P, P(P(z)) = P(x) for all z; henceP(x) € H,. We showr — P(z) € Hi- which

completes the proof. For, lete H,, then

(x — P(x), z) =(x, z) —(P(x), z) =(x, z) — (x, P(2)) =(x, z) — (x, z) = 0.

Hencer = P(x) + (I — P)(x) is the unique Riesz decompositionofvith respect taH; and
Hi. m

Example 13.11(a) Let{zy,...,x,} be an NOS inH. Then

n

P(z) = Z(x, x) T, T € H,

k=1
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defines the orthogonal projectidh: H — H ontolin{zy,...,z,}. Indeed, sincé’(z,,) =
> e (T, 21) 1), = 2, P2 = P and since

<wa)71» ::ZE:<QU xk><1%7 y>:: <1U §£:<xkazﬁitk> :=<$, PKQ))-

k=1 k=1

Hence,P* = P andP is a projection.

(b) H = L2([0,1]U[2,3]), g € C(]0,1]U[2,3]). For f € H defineT, f = gf. ThenT, = (T,)*
if and only if g(¢) is real for allt. T, is an orthogonal projection i§(¢)> = g(t) such that
g(t) = 0org(t) = 1. Sinceg is continuous, there are only four solutiong: = 0, g, = 1,

93 = X[0,1]» andg; = X[2,3]

In case ofgs, the subspacé; can be identified witi.?([0, 1]) sincef € H, iff T,f = f iff
gf = fiff f(t)=0forallte [2,3].

(b) Properties of Orthogonal Projections

Throughout this paragraph 1€} and P, be orthogonal projections on the closed subspates
and H,, respectively.

Lemma 13.22 The following are equivalent.

(&) P, + P, is an orthogonal projection.
(b) P1P2 - O
(c) H; L H,.

Proof. (a) — (b). Let P, + P, be a projection. Then
(PL+ P)? =P+ PP+ PP+ P;=P +P,+ PP+ PP, P th,
henceP, P, + P, P, = 0. Multiplying this from the left by, and from the right byP; yields
PP+ P PP, =0=P PP + PP.

Th|S Imp|IeSP1P2 - PQPl and f|na”yP1P2 = PQPl = O
(b) — (c). Letz, € H; andz, € H,. Then

0= (PPy(22), 1) = (Pa(2) , Pi(21)) = (22, 71) -

This showsH; | H,.
(c) — (b). Letx, z € H be arbitrary. Then

(PLPy(2), 2) = (Pa(x), Pi(2)) = (22, 21) = 0;
HenceP, P,(z) = 0 and therefore’, P, = 0. The same argument works féx P, = 0.
(b) — (a) Sincepng =0 |mpl|eSP2P1 =0 (V|a H1 1 HQ),
(Pi+P)* =P+ Pf =P+ P,
(PL+P)? =P+ PP+ PP+ Py =P +0+0+ P,
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Lemma 13.23 The following are equivalent

(@) PP, isan orthogonal projection.
(b) P1P2:P2P1.

In this case P, P, is the orthogonal projection ontél; N Hs.

Proof. (b) — (). (P.P)* = P P = PP, = PP, by assumption. Moreove(P; )% =
P PP P, =P P PP = P P,which completes this direction.

(a)— (b). P,P, = (P.P,)* = PP} = P,P,.

Clearly, P, P,(H) C H, andP,P,(H) C H,; henceP, P,(H) C Hy N Hy. On the other hand
x € Hy N Hyimplies Py Pyx = z. This showsP, P,(H) = Hy N Hs. n

The proof of the following lemma is quite similar to that oftprevious two lemmas, so we
omit it (see homework 40.5).

Lemma 13.24 The following are equivalent.

(a) H1 Q HQ, (d) Pl S P27
(b) P1P2:P1, (C) P2P1:P17
(e) P,— P, isanorth. projection, (f) | Pi(2)| < ||P(z)]], =€ H.

Proof. We show (d)= (c). FromP; < P, we conclude that — P, < I — P,. Note that both
I — P, andI — P, are again orthogonal projections éhf- and H-, respectively. Thus for all
xr € H:

I(F = P Pr()II" = {(I = Po)Pr(x), (I = Po) Pr ()
<(I P) (I PQPl ,Pl(ZL')> ] PQPl() Pl(ZL‘)>
{

(I = P)Pi(x), Pi(x)) = (Pi(x) — Pi(z), Pi(x)) = (0, Pi(z)) = 0.

Hence,||(I — P,)Py(z)|* = 0 which implies(I — P,) P, = 0 and therefore®, = P,P,. ]

IN

13.2.5 Spectrum and Resolvent

LetT € Z(H) be a bounded linear operator.

(a) Definitions

Definition 13.15 (a) Theresolvent setof 7', denoted by (7'), is the set of all\ € C such that
there exists a bounded linear opera(T) € £ (H) with

RA(T)(T = M) = (T = A)Ry(T) = I,
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i.e. therel’ — \I has a bounded (continuous) inversg7T"). We call R, (7T") theresolvenof T’
at\.

(b) The setC\ p(T') is called thespectrunof 7" and is denoted by (7).

(c) A € C is called areigenvalueof T' if there exists a nonzero vector calledeigenvectar
with (7" — AI)xz = 0. The set of all eigenvalues is tipeint spectrunw, (7')

Remark 13.3 (a) Note that the point spectrum is a subset of the spectoyil,) C o(T).
Suppose to the contrary, the eigenvaluaith eigenvector belongs to the resolvent set. Then
there existsk, (T') € £ (H) with

y = BA(T)(T = A)(y) = BA(T)(0) = 0

which contradicts the definition of an eigenvector; hengemvalues belong to the spectrum.
(b) A € 0,(T) is equivalent tdI" — AI not being injective. It may happen th&t— A/ is not
surjective, which also implies € o(T) (see ExampleZI312 (b) below).

Example 13.12(a) H = C", A € M(n xn, C). Since in finite dimensional spacésc . (H)
is injective if and only ifT" is surjectiveg(A) = o, (A).
(b) H = L*([0,1)). (Tf)(x) = = f(x). We have

op(T) = 2.

Indeed, supposg is an eigenvalue and € .#2([0,1]) an eigenfunction td", that is(7" —
A)(f) = 0; hence(z — ) f(x) = 0 a.e.on0, 1]. Sincex — Aisnonzeroa.e.f =0a.e.on
[0,1]. Thatisf = 0 in H which contradicts the definition of an eigenvector. We have

C\[0,1] C p(T).

: 1 . .
Suppose\ ¢ [0,1]. Sincex — A\ # 0forall z € [0, 1], g(x) = 5 isa continuous (hence

bounded) function ofp, 1]. Hence,

(Raf)w) = — /(@)

defines a bounded linear operator which is inversB to \I since

120 (25 50) = -0 (25 10)) = £

€r —

We have
o(T) = [0,1].

Suppose to the contrary that there exists p(7") N [0, 1]. Then there exist®, € £ (H) with
RA(T — ) = I. (13.10)

By homework 39.5 (a), the norm of the multiplication operatpis less that or equal tig||
(the supremum norm @f). Choosef. = x(_c r+e)- SiNCeXM = X3,

(T = AD Ll = [z = Nxv.on (@) fe(@) || < S | (2 = Nxv.oy (@) |1l
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However,

sup } (z — )‘)XUE()\)(x) } = sup |z—-A|=¢
z€[0,1] zeUc(N)

This shows
(T = A f|| < el f-] -

Insertingf. into (I310) we obtain
[l = 1BA(T = AD fel| < N[RA T = A fell < [[Rall € | fell

which implies||R,|| > 1/e. This contradicts the boundednessiyfsinces > 0 was arbitrary.

(b) Properties of the Spectrum
Lemma 13.25LetT € £ (H). Then

o(T*) = o(T)*, (complex conjugation) p(T™*) = p(T)*.
Proof. Suppose that € p(7'). Then there exist®, (7') € £ (H) such that

RA(T)T — XI) = (T — N)R\(T) = I
(BA(T)(T = MI))* = (T = ADR)* =1
(T* — X)R\(T)* = Ry(t)™ (T = XI) = I.
This shows R(T*) = R,(T)* is again a bounded linear operator d. Hence,
p(T*) C (p(T))*. Sincex is an involution {™** = T), the opposite inclusion follows.

Sincec (T') is the complement of the resolvent set, the claim for the tspecfollows as well.
]

For A, u, T'andS we have

RA(T) = Ru(T) = (A = ) BA(T) R (T') = (A — p) R (T) RA(T),
RA(T) — RA(S) = BA(T)(S — T)RA(S).

Proposition 13.26 (a) p(7') is open ands(T) is closed.
(b)If Ao € p(T) and| X — \o | < ||Rx, (T)| " then) € p(T) and

(e 9]

RA(T) = 3 (0= o) B (T)"

n=0

(©) If [X| > ||T||, then) € p(T') and

Ry(T) ==Y A"'1"
n=0
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Proof. (a) follows from (b).
(b) For brevity, we writeR,, in place ofRy,(T). With g = | X — Ao ||| Ra,(T)]], ¢ € (0,1) we
have

- n il N _ IR
%D\—)\o‘ | R —%q HR/\OH—fq converges.

By homework 38.4)" x,, converges iy ||z, || converges. Hence,

B=Y"(A— )Ry
n=0

converges inZ (H ) with respect to the operator norm. Moreover,

(T = M)B = (T — A\I)B — (A= \o)B

=D (A= X)"(T = ADRY =S (A= X)) Ry
n=0 n=0

e}

(A= 20)"Ry, = Y (A= o) 'R

n=0

K

Il
o

=(A=2)'R}, =1
Similarly, one shows3(T" — \I) = I. Thus,R,\(T") = B.
(c) Since| A| > ||T||, the series converges with respect to operator norm, say

o0

C= - A

n=0
We have . .
(T = ANC ==Y AT 4 Y AT = \T° = I
n=0 n=0
Similarly, C(T"— A\I) = I; henceR,(T') = C. ]

Remarks 13.4 (a) By (b), R,(7T') is a holomorphic (i.e. complex differentiable) function in
the variable\ with values inZ(H). One can use this to show that the spectrum is non-empty,
o(T) # 2.

(b) If |T'|| < 1,T — I is invertible with inverse- "> 7.

(c) Propositiofi I3.36 (c) means: Afe o(T) then| A | <

|T||. However, there is, in general, a smaller disc around
0 which contains the spectrum. By definition, thigec-

tral radius(7") of T'is the smallest non-negative number
such that the spectrum is completely contained in the disc
around0 with radiusr(T'):

r(T) =sup{|\| | A € o(T)}.
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(d) A € o(T) implies\™ € o(T™) for all non-negative integers. Indeed, suppase= p(7"),
thatisB(T" — \") = (T" — \") B = I for some bounded®. Hence,

BY T\""HMT —\)=(T - \CB=1;
k=0
thus € p(7).
We shall refine the above statement and give a better uppadifou{| A | | A € ¢(T)} than
7).

Proposition 13.27 Let T'€.Z(H ) be a bounded linear operator. Then the spectral radiug of
5

r(T) = lim ||T"|" . (13.11)

The proof is in the appendix.

13.2.6 The Spectrum of Self-Adjoint Operators

Proposition 13.28 Let T = T* be a self-adjoint operator iZ(H). Then\ € p(T) if and
only if there existg’ > 0 such that

(T = AD)z[| = C ||

Proof. Suppose thak € p(7). Then there exists (a non-zero) bounded oper&idfl’) such
that
[zl = 1RA(T)(T" = Al)z]| < [BA(T) (T = AD)z]|

Hence,

1
(T = Azl = iz 2l € H.
[RA(T)]]

We can choosé’' = 1/ ||R,(T")|| and the condition of the proposition is satisfied.
Suppose, the condition is satisfied. We prove the othertibrem 3 steps, i.e7” — \¢/ has a
bounded inverse operator which is defined on the whole sface

Step 1.7" — Al is injective. Suppose to the contrary th@t— \)z; = (T — \)z,. Then

0= [(T" = A1 — 22)[| = Cllz1 — 22|,

and||z; — »|| = 0 follows. Thatisz; = z,. Hence,I' — \I is injective.

Step 2. H, = (T — M )H, the range ofl’ — \I is closed. Suppose that = (7' — A\ )z,
x, € H, converges to somg € H. We want to show thag € H;. Clearly(y,) is a Cauchy
sequence such tha,, — y,|| — 0 asm,n — co. By assumption,

|9m = Yull = (T = M) (2 — 2 || = Cl|20 — Zia| -

Thus,(z,) is a Cauchy sequence . SinceH is completey,, — x= for somexr € H. Since
T — Ml is continuous,
Yn = (T — X))z, — (T — \)z.

n—oo
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Hencey = (T — Al )x and H, is a closed subspace.
Step 3.H, = H. By Riesz first theoremil = H, & Hi-. We have to show thatf;- = {0}. Let
u € Hi, thatis, sincd™ =T,

0={(T~-X)z,u) =z, (I'—X)uy, forall zecH.
This showgT — XI)u = 0, hencel'(u) = Au. This implies
(T(u), u) = Mu, u).

However, T = T* implies that the left side is real, by Rem&rk13.2 (d). Hehce ) is real.
We conclude(T — Al )u = 0. By injectivity of 7" — A\, uw = 0. ThatisH, = H.

We have shown that there exists a linear operéter (T — A\I)~! which is inverse td’ — \I
and defined on the whole spafke Since

[yl = (T = ADS)I = C NS W)l

S'is bounded with|S|| < 1/C. Hence,S = R, (T). n

Note that for any bounded real functigiiz, y) we have

sup f(z,y) = sup(sup f(x,y)) = sup(sup f(z,y)).

In particular,||z|| = sup | (z, y) | sincey = z/ ||x|| yields the supremum and CSI gives the
lyll<t
upper bound. FurthellT'(z)|| = sup |(T'(x), y) | such that
llyll<1
|IT|| = sup sup |(T(z),y)|= sup [(T(z),y)|= sup sup [(T'(x),y)]
l=[<1lyll<1 l=lI<1, [lyll<1 lyll<1flzll<1

In case of self-adjoint operators we can generalize this.
Proposition 13.29 LetT = T* € .Z(H). Then we have

IT|| = sup [(T(z), z)]|. (13.12)

=<1

Proof. LetC' = sup | (T(z), z)|. By Cauchy—Schwarz inequality(T'(x), z) | < |7 ||=|*

l[=]|<1

such thatC < ||T|.
For any real positiver > 0 we have:

||T(x)||2 = (T(x), T(z)) = <T2($) , x> (<T(oz$ + oz_lT(x)) , oar + oz_lT(x)> —

1
T
= —(T(az —a'T(z)), ar — o 'T(z)))

< 2 (Cllox + a7 T@)|* + € oz - 0™ T(@)*)

(2 ozl + 2 0= T@) ) = $ (02 2l + 0= [T @)).

)
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Insertinga? = ||T'(z)]| / ||| we obtain
C
= < T @)l + [l=[H 7))
which implies||T(z)|| < C'||z||. Thus,||T|| = C. ]
Letm = inf (T'(z), ) andM = sup (T'(x), z) denote thdower andupperbound ofT".

ll=]|=1 llz|=1
Then we have

sup | (T(z), x) | = max{[m [, M} = |[T]],

ll=l<1

and
m||z||® < (T(x), z) < M||z|*, forall ze H.

Corollary 13.30 LetT = T™* € .Z(H) be a self-adjoint operator. Then
o(T) C [m, M].
Proof. Suppose thaX, ¢ [m, M|. Then
C:= inf }|)\0—,u| > 0.

pne[m,M

Sincem = Hh'r'lfl (T(xz), z) andM = sup (T(z), =) we have forj|z| = 1
zi= llzl=1

1T = Ao Dzl = 2|l I(T = A D)z = [{(T = AoD)z, 2} | = | {T(x), z) — Ao@i > C.

———
€[m,M] 1
This implies
(T — NoD)z|| > C||z|| forall ze H.
By Propositiofl I3.28)\, € p(T). n

Example 13.13(a) Let H = L?[0,1], ¢ € CJ0,1] a real-valued function, anfrl, f)(t) =

g(t)f(t). Letm = i{lf}g(t), M = sup ¢g(t). One proves that: and M are the lower and
te(0,1 te[0,1]
upper bounds df, such that(7;,) C [m, M]. Sinceg is continuous, by the intermediate value

theoremg (T),) = [m, M].

(b) LetT = T* € Z(H) be self-adjoint. Then all eigenvalues’bfare real and eigenvectors
to different eigenvalues are orthogonal to each otReoof. The first statement is clear from
CorollanyfI33D. Suppose tha(x) = Az andT'(y) = py with A # u. Then

Mz, y)=(T(x),y)=(x, T(y) =01{r,y) =pu,y).

SinceX # p, (z, y) = 0. ]

The statement about orthogonality holds for arbitrary redroperators.
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Appendix: Compact Self-Adjoint Operator in Hilbert Space

Proof of PropositioflI3.27. From the theory of power series, TeeBZ33 we know that the
series

2y T 2" (13.13)
n=0

converges if z | < R and diverges if z | > R, where
1
lim /17

Insertingz = 1/\ and using homework 38.4, we have

o i /\—n—lTn
n=0

diverges if| A\| < lim {/||7"| (and converges if\| > lim {/|T"|]). The reason for the
divergence of the power series is, that the spectr(iffj and the circle with radiu&im {/||7"]

have points in common; hence
r(T) = lim {/[|7™].

(13.14)

On the other hand, by RemdrkT13.4 (d)¢ o(T') implies\" € o(T™); hence, by Remafk13.4
(©),

(A< T = [A] < VT
Taking the supremum over all€ o(T") on the left and thém over alln on the right, we have

r(T) < lim /77| < lim /|77 = r(T).

n—~o0

Hence, the sequencg||7™|| converges te(71") asn tends tooco. ]

Compact operators generalize finite rank operators. lategerators on compact sets are com-
pact.

Definition 13.16 A linear operatorl’ € .Z(H) is calledcompactif the closure?’ (U, ) of the
unit ballU; = {z | ||z|] < 1} is compact inH. In other words, for every sequence,),
x, € Uy, there exists a subsequence such fat,, ) converges.

Proposition 13.31 For 7" € .Z(H) the following are equivalent:

(8) T is compact.

(b) T* is compact.

(c) For all sequences$z,,) with ((x, , y)) — (x, y) converges for ally we have
T(z,) — T(z).

(d) There exists a sequen€g,) of operators of finite rank such thif” — 7, || —
0.
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Definition 13.17 Let 7" be an operator oY and H; a closed subspace &f. We call H; an
reducing subspacéboth H, and H;- areT-invariant, i.e.T'(H,) C H, andT(Hj-) C Hi .

Proposition 13.32 LetT € .Z(H ) be normal.
(a) The eigenspadecr (7' — M) is a reducing subspace fat andker (7' — \I) = ker(T — \I)™*.
(b) If A, 1 are distinct eigenvalues @f, ker(7" — A\I) L ker(T" — ul).

Proof. (a) SinceT is normal, so isI' — A. Hencel|(T — A)(z)| = ||(T'— A)*(z)||. Thus,
ker(T — \) = ker(T — \)*. In particular,T* () = Az if x € ker(T — \).

We show invariance. Let € ker(T' — \); thenT'(z) = Az € ker(T' — «ol). Similarly,
x € ker(T — M)+, y € ker(T — \I) imply

(T(x), y) = (x, T*(y)) = (x, Ay) =0.
Henceker(T — )+ is T-invariant, too.
(b) LetT(x) = A\x andT'(y) = uy. Then (a) and™(y) = fy ... imply
Ma,y) =(T(x),y)= (2. T"(y)) = (=, iy) = uz, y).

Thus(\ — p) (x, y) = 0; sinceX # u, z L y. ]

Theorem 13.33 (Spectral Theorem for Compact Self-Adjoint @erators) Let H be an infi-
nite dimensional separable Hilbert space dfid: . (H) compact and self-adjoint.
Then there exists a real sequeri¢g) with A, — 0and an CNOSe, |n € N} U{f: | k €

N C N} such that
T(e,) = Anen, neN T(fy) =0, keN.

Moreover,
=> Mz, en)en, zeH (13.15)

Remarks 13.5 (a) Since{e, } U{ fx} isa CNOS, any € H can be written as its Fourier series

sz(x,en>en+Z<x

keN

Applying T usingT'(e,,) = A,e,, we have

i (x, e, )\en+z
n=1

keN -0

which established {13115). The main point is the existei@ge@NOS of eigenvectorge,, } U
{fi}-

(b) In caseH = C™ (R™ ) the theorem says that any hermitean (symmetric) matis diago-
nalizable with only real eigenvalues.
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Chapter 14

Complex Analysis

Here are some useful textbooks on Complex Analysis: [IFLBB8{5erman), [Kna7B] (in Ger-
man), [Nee97],[[Rlh&3] (in German), [Hen88].

The main part of this chapter deals with holomorphic funcievhich is another name for a
function which is complex differentiable in an open set. @er bne hand, we are already
familiar with a huge class of holomorphic functions: polymals, the exponential function,
sine and cosine functions. On the other hand holomorphictimms possess quite amazing
properties completely unusual from the vie pointreél analysis. The properties are very
strong. For example, it is easy to construct a real functibicvis 17 times differentiable but
not 18 times. A complex differentiable function (in a small regios automatically infinitely
often differentiable.

Good references are Ahlfors [ARI78], a little harder is CaypwCon78], easier is Howie

[HowO3].

14.1 Holomorphic Functions

14.1.1 Complex Differentiation

We start with some notations.

U, {z]|z|<r} open ball of radiug aroundo
Ur(a) | {z ||z —a]| < R} | open ball of radiug? arounda
U, {z]]2] <7} closed ball of radius aroundo
(O]r {z]0<|z| <r} | punctured ball of radius

S, {z|]z]|=r} circle of radiusr around0

Definition 14.1 LetU C C be an open subset @f andf: U — C be a complex function.
(@) If zp € U and the limit

lim f(Z) _ f(ZO) —. f,(ZO)

2—20 Z— 2
exists, we callf complex differentiablat z, and f'(z,) the derivative off atz,. We call f'(z)
thederivativeof f at z,.

363
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(b) If fis complex differentiable for every, € U, we say thaif is holomorphicin U. We call
f' the derivative off onU.
(c) f is holomorphicat z, if it complex differentiable in a certain neighborhood:gf

To be quite explicit,f’(z,) exists if to every > 0 there exists som& > 0 such that € Us(z)
implies
f(2) = f(#0)

Z — 20

— f,(Z()) < €.

Remarks 14.1 (a) Differentiability of f/ at z, forces f to be continuous at,. Indeed,f is
differentiable at, with derivativef’(z) if and only if, there exists a functior z, ;) such that

f(2) = f(20) + f'(20)(z = 20) + (2 — 20)7(2, 20),

wherelim, .., 7(z, z0) = 0, In particular, taking the limit — z, in the above equation we get

lim f(2) = f(z0),

zZ—20

which proves continuity at.

Complex conjugation is a uniformly continuous function©rsince|z —Z, | = |z — 2, | for
all z, zg € C.

(b) The derivative satisfies the well-known sum, product] gnotient rules, that is, if botlff
andg are holomorphic ir/, so aref + g, fg, andf /g, providedg # 0 in U and we have

_T9-Jg

(f+9)'=f+d, (f9)=/fg+[fd, (g) 7

Also, the chain rule holds; i/ Lvcare holomorphic, so ig-f and

(9°f)'(2) = g'(f(2)) ['(2)-

The proofs are exactly the same as in the real case. Sinceniseaat functiong(z) = ¢ and

the identity f(z) = = are holomorphic ifC, so is every polynomial with complex coefficients
and, moreover, every rational function (quotient of twoymamials)f: U — C, provided the
denominator has no zeros in So, we already know a large class of holomorphic functions.
Another bigger class are the convergent power series.

Example 14.1 f(z) = | z|* is complex differentiable d@twith f/(0) = 0. f is not differentiable
atz, = 1. Indeed,

2
lim f(h+0) = £(0) = hmﬂ = limh = 0.
h—0 h h—0 h h—0

On the other hand. Lete R

1 2 2 2

T el Ml POl e
e—0 £ e—0 g

whereas
C1+ie)P-1 . 1+4e2-1
lim———— =lim—«+—+— = 0.

e—0 1€ e—0 1€
This shows thaf’(1) does not exist.
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14.1.2 Power Series

Recall from Subsectidn2.3.9 that a power sebiés, 2" has a radius of convergence
1

Clim e

n—oo

That is, the series converges absolutely forallith | z | < R; the series diverges for | > R,
the behaviour fot z | = R depends on théc,,). Moreover, it converges uniformly on every
closed balll/, with 0 < r < R, see Propositidng.4.

We already know that a real power series can be differentiglEmentwise, see Corolldry6l11.
We will see, that power series are holomorphic inside itsusadf convergence.

Proposition 14.1 Leta € C and
f(z) = Z Cn(z —a)" (14.1)
n=0

be a power series with radius of convergeri¢eThenf: Ug(a) — C is holomorphic and the
derivative is

f'(z) = Z nep(z —a)" . (14.2)

Proof. If the series[(T4]1) converges ifk(a), the root test shows that the series(14.2) also
converges there. Without loss of generality, take 0. Denote the sum of the seriés (14.2) by
g(z), fix w € Ug(0) and choose so thatj w | < r < R. If z # w, we have

Q=1 0y~ 3, ( —wt nw) |

Z—Ww
n=0

The expression in the brackets(isf n = 1. Forn > 2 itis (by direct computation of the
following term)

n—1 n—1
= (z —w) Z kawk=tn=hl = Z (kwk_l 2R — gwhr R (14.3)
k=1 k=1

which gives a telescope sum if we shift= £+ 1 in the first summand. Ifz | < r, the absolute
value of the sunf{I413) is less than
n(N/_>1) n—2
N 2
2
SO
f(z) = f(w)

Z—Ww

—g(w)‘ g\z—w|2n2\cn\r”_2. (14.4)
n=2

Sincer < R, the last series converges. Hence the left sideofi(14.4st0 asz — w. This
says thatf’(w) = g(w), and completes the proof. [
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Corollary 14.2 Sincef’(z) is again a power series with the same radius of convergét)dhe
proposition can be applied t@f(z). It follows thatf has derivatives of all orders and that each
derivative has a power series expansion around

9 (2 i nn—1)(n—k+1)c,(z —a)" " (14.5)
n==k

Insertingz = a implies
f®a) =k, k=0,1,....

This shows that the coefficientsin the power series expansigitz) = >, c,(z — a)" of f
with midpointa are unique.

(e 9] n

Example 14.2 The exponential function® = E —Z' is holomorphic on the whole complex
n:
n=0

plane with(e?)" = e*; similarly, the trigonometric functionsin z andcos z are holomorphic in
C since

o0 L2+ o0 2n
sinz = E ()" ———, cosz= E (—1)" .
| |
— (2n+1)! — (2n)!
We have(sin z)" = cos z and(cos z)’ = —sin 2.

Definition 14.2 A complex function which is defined o and which is holomorphic on the
entire complex plane is called amtire function.

14.1.3 Cauchy—Riemann Equations

Let us identify the complex field’ and the two dimensional real plaf via » = z + iy, that

is, every complex number corresponds to an ordered péir, y) of real numbers. In this way,
a complex functionv = f(z) corresponds to a functioti — R? whereU C C is open. We
havew = u + iv whereu = u(x,y) andv = v(z,y) are the real and the imaginary parts of
the functionf; v« = Rew andv = Imw. Problem: What is the relation between complex
differentiability and the differentiability of as a function fromR? to R2?

Proposition 14.3 Let
fU—-C, UcCcC open aclU

be a function. Then the following are equivalent:

(a) f is complex differentiable at.

(b) f(x,y) = wu(z,y) + w(x,y) is real differentiable ata as a function
f: U c R? — R?, and the Cauchy—Riemann equations are satisfied at

ou ov ou ov
Sl = 5, G = ~5(),
Uy = Uy, Uy = —Vy. (14.6)
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In this case,

f/:Ux+iUx:Uy—iuy.
Proof. (a) — (b): Suppose that = h + ik is a complex number such that+ z € U; put
f'(a) = by + iby. By assumption,

o L@ 2) = f(a) = 2f'(0)

= 0.
= ]

We shall write this in the real form with real variablesind%. Note that

C(hby— kb (b =)\ (h
© \hby +kby)  \by b k)

This implies, with the identification = (h, k),

SR 910

=0 =]

=0.

That is (see Subsectibn¥.2)js real differentiable at with the Jacobian matrix

Fla=psa=(; ). (14.7)

By Propositiol 716, the Jacobian matrix is exactly the matfithe partial derivatives, that is

o= 7).

Comparing this with[[T4]7), we obtaim,(a) = v,(a) = Re f'(a) andu,(a) = —v,(a) =
Im f’(a). This completes the proof of the first direction.

(b) — (a). Sincef = (u,v) is differentiable az € U as a real function, there exists a linear
mappingD f(a) € £ (R?) such that

|+ i) - s - Dr@ ()

lim = 0.
(h,k)—0 (A, k)]

oro= (3 3)

The Cauchy—Riemann equations show thdttakes the form

prw=(, ).

By Propositiofl.Z16,
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whereu, = b; andv, = b,. Writing

h hb, — kb .
Df(a) (k) = (hb; N kbj) = 2(by + iby)

in the complex form withe = h+ik givesf is complex differentiable at with f'(a) = b; +ibs.
|

Example 14.3 (a) We already know thaf(z) = 2? is complex differentiable. Hence, the
Cauchy—Riemann equations must be fulfilled. From

flz)=2"=(x+1y)’ =2 —y* +2day, ulz,y)=2>—y> v(z,y) =2y
we conclude
Uy = 2T, Uy = —2y, v, =2, v,=2.

The Cauchy—Riemann equations are satisfied.

(b) f(z) = | z|*. Sincef(z) = 22 + y% u(x,y) = 2> + y% v(z,y) = 0. The Cauchy-Riemann
equations yield:, = 2z = 0 = v, andu,, = 2y = 0 = —v, such that = 0 is the only solution
of the CRE.z = 0 is the only point wherg is differentiable.

f(z) = z is nowhere differentiable sine€z, y) = z, v(z,y) = —y; thus

1 =u, #v, = —1.

A function f: U — C, U C C open, is calledocally
constant inU, if for every pointa € U there exists a ball
V with a € V' C U such thatf is constant orV.

Clearly, on every connectedness component/pff is

constant. In fact, one catefinelU to be connected if for
every holomorphi¢': U — C, f is constant.

Corollary 14.4 LetU c C be openand: U — C be a holomorphic function o#.

(@)If f'(z) =0forall z € U, thenf is locally constant ifJ.

(b) If f takes real values only, thehis locally constant.

(c) If f has a continuous second derivative= Re f andv = Im f are harmonic functions,
i.e., they satisfy the Laplace equatidnu) = wu,, + u,, = 0 andA(v) = 0.

Proof. (a) Sincef’(z) = 0 for all z € U, the Cauchy—-Riemann equations imply = v, =
vy, = v, = 0in U. From real analysis, it is known thatandv are locally constant i&/ (apply
CorollanyfZI2 withgrad f(a + 6x) = 0).

(b) Sincef takes only real valuesx,y) = 0 for all (z,y) € U. This impliesv, = v, = 0o0n
U. By the Cauchy—Riemann equations,= v, = 0 andf is locally constant by (a).
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(c) u, = v, impliesu,, = v,, and differentiatingu, = —wv, with respect toy yields
Uy = —Ugy. Since bothu andwv are twice continuously differentiable (since sofis by
Schwarz’ Lemma, the sum i8,, + u,, = v,, — v, = 0. The same argument works for
Vgg + Vyy = 0. ]

Remarks 14.2 (a) We will see soon that the additional differentiabilitygsamption in (c) is
superfluous.

(b) Note, that an inverse statement to (c) is easily provéd) & (a,b) x (c¢,d) is an open
rectangle and:: Q — R is harmonic, then there exists a holomorphic functfan) — C
such that: = Re f.

14.2 Cauchy’s Integral Formula

14.2.1 Integration

The major objective of this section is to prove the convecsBropositiofi I4]1: Every i
holomorphic function is representable as a power serieS.inThe quickest route to this is
via Cauchy’s Theorem and Cauchy’s Integral Formula. Thaired integration theory will be
developed. It is a useful tool to study holomorphic funcsion

Recall from SectiofiBl4 the definition of the Riemann inteégfaa bounded complex valued
functiong: [a,b] — C. It was defined by integrating both the real and the imagipanys of

¢. In what follows, gpathis always a piecewise continuously differentiable curve.
Definition 14.3 Let U < C be open and

f: U — C a continuous function ofy. Sup-
pose thaty: [t1,t,] — U is a path inU. The
integral of f along~ is defined as the line inte-
gral

/ f(2)dz =Y / F(/ )Y (1) dt, (14.8)

Y kzltk—l

where ~ is continuously differentiable on
[tr_1,tx) forallk =1,... n.
By the change of variable rule, the integralfodlong~y does not depend on the parametrization
~v of the path{~(t) | t € [to, t1]}. However, if we exchange the initial and the end poin{ @,
we obtain a negative sign.

Remarks 14.3 (Properties of the complex integral)a) The integral off along~ is linear
overC:

/(aﬁ+ﬁf2)dz:a/f1dz+ﬁ/f2dz, /Wf(z)dz:—/wf(z)dz,

v
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wherevy_ has the opposite orientation of .
(b) If v, and~, are two paths so that, and~; join to form~, then we have

/f(z)dzz/f(z)dz+/wf(z)dz.

(c) From the definition and the triangle inequality, it falls that for a continuously differen-
tiable pathy

/f(z)dz <MY,

where| f(z)| < M for all z € v and/ is the length ofy, ¢ = f;’|7’(t)| dt. t € [ty,t1]. Note
that the integral on the right is the length of the cume).
b

(d) The integral off over~y generalizes the real integrAlf (¢) d¢. Indeed, lety(t) = ¢, ¢ € [a, 1],

/f(z) dz:/bf(t) dar.

(e) Lety be the circles,.(a) of radiusr with centera. We can parametrize tipositively oriented
circle asv(t) = a + re, t € [0,27]. Then

then

2w

/f(z) dz =ir / f(a+re)edt.
¥ 0

Example 14.4 (a) Let,(t) = €, ¢ € [0, 7], be the half of the unit circle fromto —1 viai and
Y2(t) = —t, t € [-1, 1] the segment from to —1. Thenv, (¢) = ie" and,(t)’ = —1. Hence,

/22 dz = i/ e2itelt 4t = i/ e 2 4t = i/ et d¢
0 0 0

7
™

= (-1-1)=2

! 2
/Ede = —/ t?dt = —=.
see (b) 1 3

Y2

i
= —‘e
—1

—it

In particular, the integral of? is not path independent.

(b)
/ % _ /27r irett R /27r e_(n_l)it e 0, n # 1
r AL 0 rneint 0 2771’ n=1.
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14.2.2 Cauchy’s Theorem

Cauchy’s theorem is the main part in the proof that every imolomorphic function can be
written as a power series with midpoimt As a consequence of Corolldry 4.2, holomorphic
functions have derivatives of all orders.

We start with a very weak form. The additional assumptiothiat f has an antiderivative.

Lemma 14.5 Let f: U — C be continuous, and suppose tlfalhas an antiderivativé” which
is holomorphic o/, F’ = f. If v is any path in joining z, and z; from U, we have

/f(z) dz = F(z) — F(z).

In particular, if v is a closed path it/

/ F(z)dz = 0.

Proof. It suffices to prove the statement for a continuously déffeiable curvey(t). Puth(t) =
F(~(t)). By the chain rule

d

W(t) = F(y(8) = F'(v(0O)'(8) = f(v ()Y (1)

By definition of the integral and the fundamental theoremad€walus (see Subsection 5.5),

[ 1= [ fo@n®d= [ Kea= bk =ho) - ha) = Fla) - Pl

Example 14.5 (a)

/1_i T Gt R Chk i
2+3i 4 4

(b) [Merdz=—1—e.

Theorem 14.6 (Cauchy’s Theorem)Let U be a simply connected region @ and letf(z) be
holomorphic inU. Suppose that(t) is a path inU joining z, and z; in U. Then [ f(z)dz

5
depends on, and z; only and not on the choice of the path. In particulfirf(z) dz = 0 for

N
any closed path /.

Proof. We give the proof under the weak additional assumption fhabt only exists but is
continuous irU. In this case, the partial derivatives, v, v,, andv, are continuous and we can

apply the integrability criterion Propositi@n®8.3 which sva consequence of Green’s theorem,
see Theorei1d.3. Note that we ndédo be simply connected in contrast to Lenimall4.5.
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Without this additional assumptiorf’(is continuous), the proof is lengthy (sée [FB93,an89,
Jan938]) and starts with triangular or rectangular patlisisgeneralized then to arbitrary paths.
We have

/f(z)dz:/(u+iv)(dx+idy):/(udx—vdy)+i/(vdx+udy).

v v v

We have path independence of the line intedgré! dz + @ dy if and only if, the integrability

condition@, = P, is satisfied if and only ifP d; + @ dy is a closed form.

In our case, the real part is path independent if and onlyuif = w,. The imaginary part is
path independent if and only if, = v,. These are exactly the Cauchy—Riemann equations
which are satisfied sincgis holomorphic. n

Remarks 14.4 (a) The proposition holds under the following weaker assionp f is contin-
uous in the closur€ and holomorphic irt/, U is a simply connected region, and= 90U is a
path.

(b) The statement is wrong without the assumptibhi$§ simply connected”. Indeed, consider
the circle of radius' with centera, that isy(t) = a + re. Thenf(z) = 1/(z — a) is singular
ata and we have

dZ 2T eit 27
/ :ir/ .dt:i/ dt = 27i.
zZ—a o ret 0

Sr(a)

(c) For a non-simply
connected regioty one
cuts G with pairwise
inverse to each other
paths (in the picturei;,
0, 03 andd,). The re-
sulting regionG is now
simply connected such
that [ f(z)dz = 0 by
oG

(a).
Since the integrals alony, : = 1, ..., 4, cancel, we have
/ f(z)dz =0.
Y+71+72

In particular, if f is holomorphicin{z | 0 < |z —a| < R} and0 <

r <19 < R, then
/f(z)dz: / f(z)dz

Sry (a) Sry(a)

if both circles are positively oriented.
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Proposition 14.7 Let U be a simply connected region, € U, Uy = U\ {z}. Suppose thaf
is holomorphic inly and bounded in a certain neighborhood:gf

Then
/f(z)dz =0

for every non-selfintersecting closed pat U.

Proof. Suppose thdtf(z) | < C'for |z — zy | < 9. For anye with 0 < ¢ < g5 we then have by
RemarT41 (c)

/f(z)dz < 2me C.

Se(z0)
By RemariCTZH# (c)/ (=) ds = / f(2)ds = / £(2) dz. Hence
i SEO(ZO) SE(ZO)
/f(z)dz = / f(z)dz | < 2meC.
Y SE(ZO)
Since this is true for all small > 0, [ f(z)dz = 0. ]

5
We will see soon that under the conditions of the propositfazan be made holomorphic af,
too.

14.2.3 Cauchy’s Integral Formula

Theorem 14.8 (Cauchy’s Integral Formula) Let U be a region. Suppose thétis holomor-
phic inU, and~ a non-selfintersecting positively oriented patltirsuch thaty is the boundary
of Uy C U; in particular, Uy is simply connected.

Then for every, € U, we have

1 f(z)dz
U e g
o

(14.9)

Proof. a € U, is fixed. Forz € U we define

JRI@ g,
F(z):{ o P7

0, zZ =a.

Then F'(z) is holomorphic inU \ {a} and bounded in a neighborhood @kince f'(a) exists
and therefore,

f(z) = [(a)

=Y pw)

<€
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asz approaches. Using Proposition14]7 and Remark14.4 (b) we hivé(z) dz = 0, that is
ol
[1=t@,
zZ—a
v

such that

zZ—a zZ—a
v v v

f(z)dz: f(a)dz:f(a)/ dz

Remark 14.5 The values of a holomorphic functiofiinside a pathy are completely deter-
mined by the values of on~.

Example 14.6 Evaluate

[T::/ sin z &
22 +1
incases: = 1+iandr = 1,2,3.

Solution. We use the partial fraction decomposition 5f+ 1 to obtain linear terms in the

denominator.
11 1 1
241 2i\z—1 z+i/)"°

Hence, withf(z) = sin z we have in case = 3

s d 1 . 1 .
I = / sinzdz L SmZ,dz— L / Sm%dz
2241 2i z—1 2i z+1i
Sr(a) Sr(a) Sr(a)

=7(f(i) — f(—1)) = 27sin(i) = wi(e — 1/e).

In caser = 2, the functions;% is holomorphic inside the circle of radi@swith centera. Hence,

[2 = WSin(i) = [3/2
In caser = 1, both integrand are holomorphic, such tliigt: 0.

Example 14.7 Consider the functiorf(z) = ¢** which
is an entire function. Let,(t) = ¢, t € [0, R], be the
segment fron?) to R on the real line; lety,(t) = Re',
t € [0,7/4], be the sector of the circle of radiugwith
center0; and let finallyys(t) = te'™/4, t € [0, R], be the
segment front) to Re'™/4. By Cauchy’s Theorem,

Il‘|—[2—[3: / f(Z)dZ:O

Y1+72—73
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Obviously, since(ei’f/‘l)2 =e™/2 =

R
Il = / eitQ dt,
0
R
I3 = ei”/4/ et dt
0

We shall show thattl,(R) | — 0 asR tends tooo. We have

w/4
nf
0

Note thatsin ¢ is a concave function off), 7 /2], that is, the graph of the sine function is above
the graph of the corresponding linear function throg@to) and (= /2, 1); thus,sint > 2t¢/m,
t € [0,7/2]. We have

/4
I < ~Rdtjw g, T ( L (1 _ o R
| 2(R)\_R/O e dt = — = (e ) o e )

We conclude that/;(R) | tends to) as R — oo. By Cauchy’s Theorend; + I, — I3 = 0 for
all R, we conclude

eiR2 (cos 2t+isin 2t)

/4 2 2it : /4 .
|IZ(R) | - / el(R € )Rielt dt dt S R/ efR sin 2t dt.
0 0

lim I;(R) = / ¢t dt = /4 / e dt = lim I3(R).
0 0

R—o0c0 R—o0

The integral on the right is/7/2 (see below); henceé” = cos(#2?) + isin(¢2) implies
/ cos(t?) dt = vam _ / sin(t?) dt.
0 4 0

These are the so callddesnelintegrals. We show that = f0°° e dr = \/7/2. (This was
already done in Homework 4Epr, we compute the double integral using Fubini’s theorem:

//e_”2_y2 dady = / e dx/ eV dy = I°.
0 0
0 0

Passing to polar coordinates yieldsdy = r dr, 2% + y? = r2 such that

2 2 7T/2 R 2
// e ¥ dedy = lim / d(p/ e " rdr.
R—oo [ 0

(R+)2

The change of variable$ = ¢, dt = 2r dr yields

Lm [ 7 NZS
I?=-= e = = I=Y—.
22/0 ¢ 1 2

This proves the claim. In addition, the change of variakles= s also yields

() [ G
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Theorem 14.9 Let v be a path in an open sét and g be a continuous function ofi. If a is

not on~, define
h(a):/ 9(2) dz.

zZ—a

v

Thenh is holomorphic on the complementpin U and has derivatives of all orders. They are
given by

h™(a) = n! / % dz.
z—a)"
Y
Proof. Let b € U and not ory. Then there exists
somer > 0 such that = — b| > r for all pointsz on
v. Let0 < s < r. We shall see that has a power

series expansion in the ball(b). We write

1 1 1 1

z—a z—b—(a—b) z-D1-22

1 1+a—b+ a—>b 2+

2 —b z2—b z2—b '
This geometric series converges absolutely and uni-
formly for |a — b| < s because

z—>

a—b' s

Sinceyg is continuous and is a compact sey(z) is bounded ony such that by Theorem®.6,
the serie "> | g(z) (=2)" can be integrated term by term, and we find

)= | ZM% az

= [
= Z cn(a —b)",

where
. / g(z) dz
" (z — b)ntl’
Y

This proves that can be expanded into a power series in a neighborhodd &y Propo-
sitionlIZ1 and CorollafyT4.2f has derivatives of all orders in a neighborhoodofBy the
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formula in CorollaryTZP

™M (b) = nle, = n! / %

Y

Remark 14.6 There is an easy way to deduce the formula. Formally, we cahamge the
differentiation; and [_:

K (a) = d% / 5(_2)(1 dz = / % (9(2)(z —a) ") dz = / (ngzi)z dz.

h'(a) = dia / (9(2)(z —a)?) dz = 2/ (Zg£23)3 dz.

Theorem 14.10 Suppose thaf is holomorphic i/ andU,.(a) C U, thenf has a power series
expansion i/, (a)

f(2) =) calz—a)"
n=0
In particular, f has derivatives of all orders, and we have the followtoefficient formula
f™a) 1 f(z)dz
= = — — 14.10
n! 27i (z —a)ntt ( )
S (a)

n

Proof. In view of Cauchy’s Integral Formula (Theor€m14.8) we abta

flo) =5 [ 12

27 zZ—a
Sr(a)

Insertingg(z) = f(2)/(2xi) (f is continuous) into Theoren14.9, we see thaan be expanded
into a power series with centerand, therefore, it has derivatives of all orders at

f(n)(a):”_!' / (ﬂﬂ

27 z—a)"tl
Sr(a)

14.2.4 Applications of the Coefficient Formula

Proposition 14.11 (Growth of Taylor Coefficients) Suppose thaf is holomorphic inU and
is bounded by/ > 0in U, (a) C U; thatis,|z —a| < rimplies| f(z) | < M.
Let> * ,c.(z — a)" be the power series expansion/oét a.
Then we have
e < 2 (14.11)

rn’



378 14 Complex Analysis

Proof. By the coefficient formula [[I410) and Remhrkd4.3(c) we ehawting that
f(z)

M
o o forz € S,a

r

1 j?(Z) 1 M M M

Sl | g de | < = 0(S,(a)) = I —

lenl < 2mi / (z —a)ntl 1= o gt (Sr(a)) D r o
Sr(a)

Theorem 14.12 (Liouville’s Theorem) A bounded entire function is constant.

Proof. Suppose thatf(z)| < M for all = € C. Sincef is given by a power serief(z) =
> o2 o a2 With radius of convergencE = oo, the previous proposition gives

M
|Cn| f; ;;;

for all » > 0. This shows:,, = 0 for all n # 0; hencef(z) = ¢, is constant. ]

Remarks 14.7 (a) Note that we explicitly assumgéto be holomorphic on the entire complex
plane. For examplef(z) = e'/# is holomorphic and bounded outside every 5al{0). How-
ever, f is not constant.

(b) Note thatf(z) = sin z is an entire function which is not constant. Herde - is unbounded
as a complex function.

Theorem 14.13 (Fundamental Theorem of Algebra)A polynomialp(z) with complex coeffi-
cients of degredeg p > 1 has a complex root.

Proof. Suppose to the contrary that:) = 0 for all z € C. It is known, see Example3.3, that
| l‘im | p(2) | = +o0. In particular there exist® > 0 such that

|zl 2 R= [p(z)| = 1.

That is, f(z) = 1/p(z) is bounded byl if |z| > R. On the other handf is a continuous
function and{z | | z| < R} is a compact subset 6f. Hence,f(z) = 1/p(z) is bounded on
Up, too. That is,f is bounded on the entire plane. By Liouville’s theorefris constant and so
is p. This contradicts our assumptidag p > 1. Hence,p has a root inC. [

Now, there is an inverse-like statement to Cauchy’s Theorem

Theorem 14.14 (Morera’s Theorem)Let f: U — C be a continuous function wheté C C
is open. Suppose that the integralfoélong each closed triangular pafh;, z2, 23] in U is 0.
Thenf is holomorphic inU.
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Proof. Fix z; € U. We show thaff has an anti-derivative in a small neighborhdadz,) C U.
Fora € U.(z) define

F(a) = /f(z) dz.
Note thatF'(a) takes the same value for all polygonal paths

from z, to a by assumption of the theorem. We have

F(a+h) — F(a)
h

— f(a)

_‘1

where the integral on the right is over the segment farta
a + h and we useqffh cdz = ch. By RemarkIZ41 (c), the
right side is less than or equal to

< sup [£(2) - f(@)|[h]= sup |f(z)— fla)].

| | zeUp(a) zeUp(a)

Since f is continuous the above term tends (tcas i tends to0. This shows thatF' is
differentiable at with F”(a) = f(a). SinceF is holomorphic inU, by TheoreniIZ10 it has
derivatives of all orders; in particulgris holomorphic. ]

Corollary 14.15 Suppose thatf,) is a sequence of holomorphic functions @Gn uniformly
converging tof onU. Thenf is holomorphic orUU.

Proof. Sincef,, are continuous and uniformly convergingjs continuous ort/. Let~ be any
closed triangular path itv. Since( f,,) converges uniformly, we may exchange integration and
limit:
/f(z) dz = / lim f,(z)dz = lim [ f.(2)dz= lim 0 =0
v y T v

n—~oo n—~o0

since eactly,, is holomorphic. By Morera’s theorent,is holomorphic inU. [

Summary

LetU be aregion ang: U — C be a function ort/. The following are equivalent:

(@) f is holomorphic inU.

(b) f = u + iv is real differentiable and the Cauchy—Riemann equatigns: v,
andu, = —v, are satisfied /.

(c) If U is simply connectedf is continuous and for every closed triangular path
v = [21,22, 2] InU, [ f(2) dz = 0 (Morera condition).
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(d) f possesses locally an antiderivative, that is, for every U there is a ball
U.(a) C U and a holomorphic functiof' such that’(z) = f(z) forall z € U.(a).

(e) f is continuous and for every bdll.(a) with U,.(a) C U we have

_ 1 (2)
f<b)—2_7ri z—bdz’ Vb e Ula).
Sr(a)

(f) Fora € U there exists a ball with centersuch thatf can be expanded in that
ball into a power series.

(g) For every ballB which is completely contained i, f can be expanded into a
power series irB.

14.2.5 Power Series

Since holomorphic functions are locally representabledwsy series, it is quite useful to know
how to operate with power series. In case that a holomorpimction f is represented by a
power series, we say thétis ananalyticfunction. In other words, every holomorphic function
is analytic and vice versa. Thus, by TheofemIl4.10, any hotphic function is analytic and
vice versa.

(a) Uniqueness

If both > ¢,2" and " b,z" converge in a ball around and define the same function then
¢, = b, forall n € Ny.

(b) Multiplication

If both > ¢,,z™ and) _ b,,z" converge in a ball/,(0) around0 then

o0 o0 [ee]
E 2" - E b2 = E d,z", |z|<m,
n=0 n=0 n=0

whered,, = >} _, cn—kbs.
(c) The Inversel/ f

Let f(z) = ¥ _ c,z" be a convergent power series and

n=0
Co 7é 0.

Then f(0) = ¢y # 0 and, by continuity off, there exists: > 0 such that the power series
converges in the ball/,(0) and is non-zero there. Henck/,f(z) is holomorphic inU,.(0) and
therefore it can be expanded into a converging power seriés0)), see summary (f). Suppose
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thatl/f(z) = g(z) = ibnz”, |z| < r. Thenf(2)g(z) =1 =140z + 022 + -+, the
uniqueness and (b) yienlaos

1 =1coby, 0=coby +cibg, 0= coby+ c1b1 + c2by, - -+
This system of equations can be solved recursivelybfom € Ny, for exampleb, = 1/c,
by = —c1bg/ co.
(d) Double Series
Suppose that

= ickn(z —a)", keN

are converging i/, (a) power series. Suppose further that the series

> f(2)

converges locally uniformly it/..(a) as well. Then

kf;fk(z) Z(chn> z—a)"

In particular, one can form the sum of a locally uniformly eergent serie$ _ fi(z) of power
series coefficientwiseNote that a series of functions ;- , fx(z) converges locally uniformlgt b if
there existg > 0 such that the series converges uniformlyjir(b).

Note that any locally uniformly converging series of holapitic functions defines a holo-
morphic function (Theorem of Weierstral3). Indeed, sinees#ries converges uniformly, line
integral and summation can be exchanged:Let |2,z 23| be any closed triangular path inside
U, then by Cauchy’s theorem

/f dz—/Vka dz—z dz—ZO—O

k=1 k17

By Morera’s theoremf(z) = >",7, f(z) is holomorphic.

(e) Change of Center

Let f(z) = > 2, cn(z — a)" be convergent iV, (a), r > 0, andb € U,(a). Thenf can be
expanded into a power series with ceriter

= i bo(z—=0)", b, = f(”)(b)’
—0

n!

with radius of convergence at least- |b — a|. Also, the coefficients can be obtained by
reordering for powers ofz — b)* using the binomial formula

n

(z—a)”:(z—b+b—a)nzz(Z)(z—b)k(b—a)n—k.

k=0
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(f) Composition
We restrict ourselves to the case

f(z)=ap+arz+az* +---
g(2) = byz + by2® + - -
whereg(0) = 0 and therefore, the image gfis a small neighborhood of and we assume that

the first power serieg is defined there; thug;(¢(z)) is defined and holomorphic in a certain
neighborhood of, see RemaidkT4.1. Hence

h(z) = f(g(z)) =cy+ciz+ 0222 I

where the coefficients, = A (0)/n! can be computed using the chain rule, for example,
co = f(9(0)) = ag, c1 = f'(9(0))g'(0) = a1 b.

(9) The Composition Inversef —*

Suppose thaf(z) = >~ 7  a,2", a; # 0, has radius of convergence> 0. Then there exists a

power serieg(z) = >, b,z" converging orl/.(0) such thatf(g(z)) = z = g(f(z)) for all
z € U.(0). Using (f) and the uniqueness, the coefficigntsan be computed recursively.

Example 14.8 (a) The function

1
1422 3-—z

f(2)

is holomorphic inC\ {i, —i,3}. Expandingf into a power series with centér the closest
singularity tol is +i. Since the disc of convergence cannot contsirthe radius of convergence
is|1—1i| = /2. Expanding the power series around- 2, the closest singularity of is 3;
hence, the radius of convergence is NGwv- 2| = 1.

1
(b) Change of center. We want to expafic) = 1

—Z
which is holomorphic inC\ {1} into a power series

! aroundb = i/2. For arbitraryb with |b| < 1 we have
\ 1 1 1 1
% l—2 1-b—(2—b) 1-b 1—22

1 1-b

=3 o0 = ).

n=0

By the root test, the radius of convergence of this serieg is b|. In caseb = i/2 we have
r=|1-i/2| =+/1+1/4 = +/5/2. Note that the power seridst z + 2% + - - - has radius of
convergencé and a priori defines an analytic (= holomorphic) functionhe bpen unit ball.
However, changing the center we obtain an analytic contionaf f to a larger region. This
example shows that (under certain assumptions) analytatifins can be extended into a larger
region by changing the center of the series.
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14.3 Local Properties of Holomorphic Functions

We omit the proof of the Open Mapping Theorem and refei fa93a Satz 11, Satz 13] see
also [Con78].

Theorem 14.16 (Open Mapping Theorem)Let G be a region and/ a non-constant holomor-
phic function onG. Then for every open subdétC G, f(U) is open.

The main idea is to show that any at some paihblomorphic functionf with f(a) = 0 looks
like a power function, that is, there exists a positive ietdgsuch thatf(z) = h(z)* in a small
neighborhood of, wheref is holomorphic at: with a zero of ordei ata.

Theorem 14.17 (Maximum Modulus Theorem)Let f be holomorphic in the regio® and
a € Uisapointsuchthatf(a)| > | f(2)]|forall z € U. Thenf must be a constant function.

Proof. First proof. Let V' = f(U) andb = f(a). By assumption|b| > |w | forall w € V.
b cannot be an inner point 6f since otherwise, there is somén the neighborhood of with
|c¢| > | b| which contradict the assumption. Hericis in the boundaryV' N V. In particular,
V' is not open. Hence, the Open Mapping Theorem saysftigtonstant.
Second ProofWe give a direct proof using Cauchy’s Integral formula. Fordicity let a = 0
and letU,.(0) C U be a small ball ir/. By Cauchy’s theorem with = S,.(0), z = y(t) = re',
t € [0,2n], dz = riel* dt we get

poy= L [Tt L

27'(_1 0 7'eit 27T 0

f(re') dt

In other words,f(0) is the arithmetic mean of the values ffon any circle with centef.
Let M = | f(a)| > | f(2)| be the maximal modulus of on U. Suppose, there exists
with zy = reel™ with ry < r and| f(z) | < M. Sincef is continuous, there exists a whole
neighborhood of € U.(t,) with | f(re'") | < M. However, in this case

1 27 )
\—’— f(re)d ‘<%/0 | f(re") | dt < M

which contradicts the mean value property. Hengé;) | = M is constant in any sufficiently
small neighborhood of. Let z; € U be any point inlU. We connect) andz; by a path in
U. Letd be its distance from the bounda®y/. Let > continuously moving front to z; and
cosider the chain of balls with centeiand radiusi/2. By the above| f(z) | = M in any such
ball, hence f(z) | = M in U. It follows from homework 47.2 thaf is constant. ]

Remark 14.8 In other words, iff is holomorphic inG andU C G, thensup | f(2) | is attained

on the boundargU. Note that both theorems are not true in the real settlng iMiage of the
sine function of the open s@t, 27) is[—1, 1] which is not open. The maximum ¢fz) = 1—2?
over(—1, 1) is not attained on the boundary singe-1) = f(1) = 0 while f(0) = 1. However
| 22 — 1| on the complex unit ball attains its maximumin= +i—on the boundary.
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Recall from topology:

e An accumulation poinbf a setM C C is a point ofz € C such that for every > 0,
U.(z) contains infinitely many elements 1. Accumulation points are in the closure of
M, not necessarily in the boundary df. The set of accumulation points 8f is closed
(Indeed, suppose thatis in the closure of the set of accumulation pointsiéf Then
every neighborhood af meets the set of accumulation pointsidgt in particular, every
neighborhood has infinitely many elementidf Henceu itself is an accumulation point
of M).

e M is connectedf every locally constant function is constait! is not connected i/ is
the disjoint union of two non-empty subsetsand B, both are opelandclosed in)M.

For example,M = {1/n | n € N} has no accumulation point i\ {0} but it has one
accumulation point), in C.

Proposition 14.18 Let U be a region and lef : U — C be holomorphic iriJ.
If the set”Z( f) of the zeros of has an accumulation point ifi, thenf is identically0 in U.

Example 14.9 Consider the holomorphic functiof(z) = sin %, f: U — C, U = C\{0} and
with the set of zero& (f) = {z, = = | n € Z}. The only accumulation poiritof Z( f) does
not belong ta/. The proposition does not apply.

Proof. Suppose: € U is an accumulation point of (f). Expandf into a power series with
centera:

flz) = ch(z—a)”, |z —al <.
n=0
Sincea is an accumulation point of the zeros, there exists a seguengof zeros converging
to a. Sincef is continuous at, lim, .« f(z,) = 0 = f(a). This shows;, = 0. The same
argument works with the function

fi)=c+c(z—a)+es(z—a) +--- = —,

which is holomorphic in the same ball with centesind has: as an accumulation point of zeros.
Hence,c; = 0. In the same way we conclude that=c3 = --- = ¢, = --- = 0. This shows
that f is identically0 onU,.(a). That is, the set

A ={a € U | ais an accumulation point of (f) }
is an open set. Also,
B = {a € U | ais not an accumulation point ¢f(f) }

is open (with every non-accumulation pomtthere is a whole neighborhood ehot contain-
ing accumulation points af (f)). Now, U is the disjoint union ofA and B, both are open as
well as closed ir/. Hence, the characteristic function dns a locally constant function ofi.
SinceU is connected, eithdd = A or U = B. Since by assumptioA is non-emptyA = U,
thatisf is identically0 on U. n
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Theorem 14.19 (Uniqueness Theoremyuppose that andg are both holomorphic functions
onU andU is a region. Then the following are equivalent:

@/f=gy

(b) The seth = {2 € U | f(z) = g(=)} wheref andg are equal has an accumu-
lation pointinU.

(c) There exists, € U such thatf™ (z,) = ¢™(z,) for all non-negative integers
n e No.

Proof. (a) <« (b). Apply the previous proposition to the functign- g.

(a) implies (c) is trivial. Suppose that (c) is satisfied. ihthe power series expansion of
f — g atz, is identically0. In particular, the se¥(f — ¢) contains a balB.(z,) which has an
accumulation point. Hencg,— g = 0. [

The following proposition is an immediate consequence efuthiqueness theorem.

Proposition 14.20 (Uniqueness of Analytic Continuation)Suppose that/ ¢ U c C where
U is a region andM has an accumulation point ifi. Letg be a function onV/ and suppose
that f is a holomorphic function ofy which extentg, thatis f(z) = g(z) on M.

Thenf is unique.

Remarks 14.9 (a) The previous proposition shows a quite amazing propdrayholomorphic
function: It is completely determined by “very few valuesThis is in a striking contrast to
Ce°-functions on the real line. For example, the “hat function”

= <1,
he) = { |z

0 |z | >1

is identically0 on [2, 3] (a set with accumulation points), howeveris not identically0. This
shows that: is not holomorphic.

(b) For the uniqueness theorem, it is an essential pointthatconnected.

(c) Itis now clear that the real functiafi, sin z, andcos x have a unique analytic continuation
into the complex plane.

(d) The algebrad(U) of holomorphic functions on a regioli is a domain that is, fg =

0 implies f = 0 or g = 0. Indeed, suppose thdtz,) # 0, then f(z) # 0 in a certain
neighborhood ot (by continuity of f). Theng = 0 on that neighborhood. Since an open set
has always an accumulation point in itself= 0.

14.4 Singularities

We consider functions which are holomorphic in a puncturak l%,«(a). From information
about the behaviour of the function near the center number of interesting and useful results
will be derived. In particular, we will use these results t@leate certain unproper integrals
over the real line which cannot be evaluated by methods otited.
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14.4.1 Classification of Singularities

Throughout this subsectidriis a regiong € U, andf: U\ {a} — C is holomorphic.

Definition 14.4 (a) Let f be holomorphic inJ \ {a} whereU is a region and. € U. Thena is
said to be amsolated singularity

(b) The pointa is called aremovable singularityif there exists a holomorphic function
g: U.(a) — Csuchthay(z) = f(z) forall zwith0 < |z —a| < r.

Example 14.10The functions%, % ande!/# all have isolated singularities &t However,
z

only f(z) = "% has aremovable singularity. The holomorphic functyon) which coincides
with f on(D\{ZO} isg(z) =1 —22/31 + 2%/5! — + ... Hence, redefining (0) := ¢(0) = 1
makesf holomorphic inC. We will see later that the other two singularities are notoeable.
It is convenient to denote the the new functipwith one more point in its domain (namety
also byf.

Proposition 14.21 (Riemann—1851)Suppose that: U\ {a} — C, a € U, is holomorphic.
Thena is a removable singularity of if and only if there exists a punctured neighborhood

U,(a) wheref is bounded.

Proof. The necessity of the condition follows from the fact, thdtadomorphic functiory is
continuous and the continuous functipy(z) | defined on the compact skt »(a) is bounded,
hencef is bounded.

For the sufficiency we assume without loss of generality; 0 (if a is non-zero, consider the
function f(z) = f(z — a) instead). The function

h(z) = {; fz),  2#0,

z=20

is holomorphic irf]r(o). Moreover,. is differentiable a0 sincef is bounded in a neighborhood
of 0 and

h'(0) = lim h(z) = 10) =lim zf(z) = 0.

z—0 z z—0

Thus,h can be expanded into a power serie8,at
h(z) =co+crz+coz® +c32® + - =2 +e32® + - -
with ¢y = ¢; = 0 sinceh(0) = A/(0) = 0. For non-zera: we have

h(z

The right side defines a holomorphic function in a neighbochof 0 which coincides withf
for z # 0. The settingf(0) = ¢, removes the singularity &t [
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Definition 14.5 (a) An isolated singularity of f is called gpoleof f if there exists a positive
integerm € N and a holomorphic function: U,(a) — C such that

The smallest number. such thatz — a)™ f(z) has a removable singularity atis called the
order of the pole.

(b) An isolated singularity; of f which is neither removable nor a pole is calledessential
singularity.

(c) If fis holomorphic at: and there exists a positive integerand a holomorphic function
such thatf(z) = (z — a)™g(z), andg(a) # 0, a is called azero of orderm of f.

Note thatm = 0 corresponds to removable singularities.f () has a zero of ordem at a,
1/f(z) has a pole of ordet: ata and vice versa.

Example 14.11The functionf(z) = 1/2? has a pole of ordet at> = 0 sincez?f(z) = 1 has
a removable singularity @&tandzf(z) = 1/z not. The functionf(z) = (cosz — 1)/z3 has a
pole of orderl at0 since(cosz — 1)/2% = —/(22) + 2 /4! F - - -.

14.4.2 Laurent Series

In a neighborhood of an isolated singularity a holomorphiection cannot expanded into a
power series, however, in a so called Laurent series.

Definition 14.6 A Laurent serieswith centera is a series of the form

e}

Z cn(z —a)"

n=—oo

or more precisely the pair of series

f-(2) = Zc_n(z —a)™" and f.(z)= ch(z —a)".

n=1 n=0

The Laurent series is said to be convergent if both seriegetga.
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I,(Z) converges
f(z) converges

Remark 14.10 (a) f_(z) is “a power series inzi—a.” Thus, we can derive facts about the
convergence of Laurent series from the convergence of pserés. In fact, suppose thitr

is the radius of convergence of the power sepigs | c_,,(" andR is the radius of convergence
of the seriesy°  ¢,2", then the Laurent seri€s, _, c,2" converges in the annulus, =

{z | r < z < R} and defines there a holomorphic function.

(a) The power serieg, (z) = > ., ca(2 — a)" converges in the inner part of the balk(a)
whereas the series with negative_powers, calleptimeipal part of the Laurent seried, (z) =

Y neo Cn(z — a)™ converges in the exterior of the bdl].(a). Since both series must converge,

f (=) convergence in intersection of the two domains which is tireius A, z(a).

The easiest way to determine the type of an isolated singularto use Laurent series which
are, roughly speaking, power series with both positive aghtive powers”.

Proposition 14.22 Suppose thatf is holomorphic in the open annulusi, z(a) =
{z|r<|z—a| < R}. Then f(z) has an expansion in a convergent Laurent series for
A AT,R

o0 . o0 1
fl2) = nZ; ca(2 —a)" + ; e (14.12)
with coefficients
1 f(2)
Cn =5 / = a)y dz, n€Z, (14.13)
Sp(a)

where r < p < R.  The series converges uniformly on every annuMis ;,(a) with
r<s; <s,<R.



14.4 Singularities 389

Proof.
Let z be in the annulusi,, ;, and lety be the closed

path around: in the annulus consisting of the two cir-
cles—S;, (a), S, (a) and the two “bridges.” By Cauchy’s
\ integral formula,

’ _ f(w) fw)

f(z) = w = f1(2) + fa(2) =

2ri
/ f(ivz / Jwly

852 (a) Ss1 (a)

We consider the two functions

flw 1 f(w)
/ —z W f2(2) T om / w—zdw
SS2

Ssy (a)

separately.
In what follows, we will see thatf;(z) is a power series > c,(z — a)" and fo(z) =
> c,nﬁ. The first part is completely analogous to the proof of Thedfd.D.
Case 1w € S, (a). Then|z —a| < |w—a|and|q| = Say |
such that
1 1 1 1 =, <= (z—a)n
w—z w—a (1-22) w—a;q _;(w—a)”“'

Sincef(w) is bounded 0%, (a), the geometric series has a converging numerical upperoun
Hence, the series converges uniformly with respecivfove can exchange integration and
summation:

1 > (z—a)" (z—a)" f(w)dw =
= — 7(1 pr— _— _— = }TL — TL’
hi(z) 2mi / Zof(w) (w —a)rt! v Zo 27 / (w — a)rtt ZOC (2=a)
Sep(a) " " 2 (a) "
wherec, = 55 [ (£ Ez‘;))‘ifil are the coefficients of the power serig$z).
Ssy(a
Case 2.w € S,,(a). Then|z —a| > |w —a|and| ——2 | < 1 such
Zz—Qa

that

| 1Ll &S, e (w=a)
w—zi_z—a(l—u)i Z_a;q ;(Z_a)n+l'

Sincef(w) is bounded o1, (a), the geometric series has a converging numerical upperdoun
Hence, the series converges uniformly with respectwfove can exchange integration and
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summation:

wherec_,, =55 [ f(w) (w— a)"*dw are the coefficients of the serigsg 2).
)

27
f(w
a

Ssy(a)
Since the integran?m, k € 7, is holomorphic in both annulil,, , and A4, ,,, by Re-
markIZ3 (c)
/ f(w)dw / f(w)dw / f(w)dw / f(w)dw
— = ————, and —t = —
(w —a)t (w —a)t (w —a)* (w —a)t
Ssy(a) Sp(a) Ssy(a) Sp(a)

that is, in the coefficient formulas we can replace both es8l, (a) andS;,(a) by a common

circle S,(a). Since a power series converge uniformly on every compdxgetwf the disc of
convergence, the last assertion follows. [ ]

Remark 14.11 The Laurent series of on A, g(a) is unique. lts coefficients,, n € Z are
uniquely determined by (14.]13). Another valuepafith » < p < R yields the same valueg
by RemarkTZH (c).

. . 2 , .
Example 14.12Find the Laurent expansion ¢f(z) = poa—v— in the three annuli with
4 —az
midpoint0
0<|z]<1l, 1<]z|<3, 3<]z].

. . . . 1 1 o
Using partial fraction decompositioyi(z) = ] + p—t we find in the case
@z <1
1 = 1 1/ 1 1 o= /2\"
=2 3—z_§<1—5) _§Z<§)
n=0 3 n=0
Hence,

Inthe casé z| > 1,

and asin (a) fofz| < 3
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such that

(c) Incasd z | > 3 we have

such that

&) =3 1)

We want to study the behaviour gfin a neighborhood of an essential singulaxity It is
characterized by the following theorem. For the proof seev@xy, [Con78, p. 300].

Theorem 14.23 (Great Picard Theorem (1879)Suppose thaf(z) is holomorphic in the an-
nulusG = {z | 0 < | z — a| < r} with an essential singularity at.

Then there exists a complex numherwith the following property. For any complex number
w # wy, there are infinitely many € G with f(z) = w.

In other words, in every neighborhood efthe functionf(z) takes all complex values with
possibly one omission. In case ffz) = e!/* the numben is omitted; in case of (z) = sin
no complex number is omitted.

We will prove a much weaker form of this statement.

Proposition 14.24 (Casorati-Weierstral3)Suppose thaf (z) is holomorphic in the annulus
G ={z]0<]|z—a| < r}with an essential singularity at.

Then the image of any neighborhooduah G is dense inC, that is for everyw € C and any
e > 0andd > 0 there exists € G suchthal z —a| < dand| f(z) —w| < e.

Proof. For simplicity, assume that < . Assume to the contrary that there exigtsc C and
e > 0suchthat f(z) —w| > eforall z € Us(a). Then the function

1 °
g(z) = 7 —w z € Us(a)

is bounded (byl /) in some neighborhood af, hence, by Propositidn I4]24 s a removable
singularity ofg(z). We conclude that

has a removable singularity aif g(a) # 0. If, on the other hand;(z) has a zero at of order
m, that is

= i n(z—=a)", ¢ #0,
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the function(z — a)™ f(z) has a removable singularity @t Thus, f has a pole of ordem: ata.
Both conclusions contradict our assumption thtas an essential singularityat n

The Laurent expansion establishes an easy classificatithre gingularity off ata. We sum-
marize the main facts about isolated singularities.

Proposition 14.25 Suppose thaf(z) is holomorphic in the punctured did¢ = ﬁR(a) and
possesses there the Laurent expangio) = Z cn(z —a)".

n=—oo

Then the singularity at
(a) is removable it;, = 0 for all n < 0. In this case| f(z) | is bounded irU.

(b) is a pole of ordern if c_,, # 0 andc,, = 0 forall n < —m. Inthis caselim, ., | f(z)| =
+00.

(c) is an essential singularity if,, # 0 for infinitely manyn < 0. In this case| f(z) | has no
finite or infinite limit asz — a.

The easy proof is left to the reader. Note that Casorati-\&a&? implies that f(z) | has no
limit at a.

Example 14.13 f(z) = e/* has inC\ {0} the Laurent expansion

o0

1 1
ezzzmzn, |z| > 0.

n=0

Sincec_,, # 0 for all n, f has an essential singularity(@&t

14.5 Residues

ThroughoutV C C is an open connected subsetlof

Definition 14.7 Suppose thaf : (ofr(a) — €, is holomorphic) < r; < r and let

f(Z)Ich(z—a)”’ cn—i/s f(z)dz

e a 271 (a) (Z — a)”“

be the Laurent expansion ¢fin the annulugz | 0 < |z —a| < r}.

Then the coefficient

1
c1=— f(z)dz
2mi Sr, (a)

is called theresidueof f ata and is denoted bfRes f(z) or Res f.
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Remarks 14.12(a) If f is holomorphic at;, Res f = 0 by Cauchy’s theorem.

(b) The integraxy7 f(z) dz depends only on the coefficient; in the Laurent expansion ¢ z)
arounda. Indeed, every summang(z — a)", n # 0, has an antiderivative it \ {a} such that
the integral over a closed path(s

(C)Rfs f+Rfs g= Rfs f+yg andes Af = /\Raes I

Theorem 14.26 (Residue TheoremBuppose thaf: U\{ay,...,a,} — C, a1,...,a, €
U, is holomorphic. Further, let be a non-selfintersecting positively oriented closed cumve

U such that the pointsy, . . ., a,, are in the inner part ofy. Then
f(z)dz=2mi>  Res f (14.14)
v —_
Proof.

As in RemarkIZ}4 we can replage by
the sum of integrals over small circles, one
around each singularity. As before, we ob-
tain

/7 f(z)dzzkfj | 1o

1S, (ap)

where all circles are positively oriented. Applying the défon of the residue we obtain the
assertion. [

Remarks 14.13(a) The residue theorem generalizes the Cauchy’s TheoesnT leoref 141 6.
Indeed, if f(z) possesses an analytic continuation to the paints. ., a,,, all the residues are
zero and thereforg f(2) dz = 0.

(b) If g(2) is holomorphic in the regioty, ¢g(z) = ch(z —a)", ¢o = g(a), then

n=>0

f(z) = %, z € U\{a}

is holomorphic inU \ {a} with a Laurent expansion around

f— CO _— 2 Y
f(z)—z_a+cl+02(z a) 4 -,

wherecy = g(a) = Res f. The residue theorem gives

/ 9(2) dz = 27iRes f = 2micy = 2mig(a).
Z—a a
Sr(a)

We recovered Cauchy'’s integral formula.
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14.5.1 Calculating Residues
(a) Pole of order 1

As in the previous Remark, suppose tlidtas a pole of order ata andg(z) = (z — a) f(z) is
the corresponding holomorphic functionlin(a). Then

Res f =g(a) = lim g(z) = lm(z —a)f(2). (14.15)

z—a,z#a z—a

(b) Pole of orderm
Suppose that has a pole of ordern ata. Then

= oo . _— J— o .. 0 < J— <
f(2) (z—a)er(z—a)m*lJr +Z_a+co+cl(z a)+---, lz—al<r
(14.16)

is the Laurent expansion gfarounda. Multiplying (LZ.18) by(z — a)™ yields a holomorphic
function

(z—a)"f(z) =cemt+cmu(z—a)+ cq(z—a)" "+, Jz—al|<r

Differentiating this(m — 1) times, all terms having coefficient.,,,, ¢_,,,11, ..., c_2 vanish and
we are left with the power series

(o= )™ () = m = eyl — 1)+ 2oz = )+

Insertingz = a on the left, we obtair_;. However, on the left we have to take the limit- a
sincef is not defined at.
Thus, if f has a pol of ordem ata,

1 ) dm—l .
Res f(2) = ooy lim oy (G = @)1 (2)). (14.17)

(c) Quotients of Holomorphic Functions

Suppose thaf = § wherep andq are holomorphic at andq has a zero of order ata, that is
q(a) =0 # ¢ (a). Then, by (a)

lim p(2)
Res £ = lim(z — a) p_(z) = lim P(z) === = p/(a) . (14.18)
a ( z—a q(z) 2—a 4(2)—q(a) lim a(2)—q(a) q (a)

zZ—a zZ—a
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1+24"
" f(z) = 1/(1 + z%) inside the disc{z | |z—1i| < 1} are

ap = ™4 = (14+1)/v2anday = /4 = (=1 +1i)/V2. In-
deed,|a; —i]*> = 2 — V2 < 1. We apply the Residue Theorem
8 and (c) and obtain

Example 14.14Compute [y 4z The only singularities of

d
0 1 TRe / %zQWi(Res f+ Res f):
S1(i) 1 + z al a2

. 1 1 .—a1 — as \/iﬂ'
omi [~ 4+ — | =2 = YT
i (4a§ N 4a:}) Ty 2

14.6 Real Integrals

14.6.1 Rational Functions in Sine and Cosine

Suppose we have to compute the integral of such a functioneoftél period|0, 27|. The idea
is to replace by z = €' on the unit circlegost andsint by (2 4+ 1/z)/2 and(z — 1/2)/(2i),
respectively, and finallylt = dz/(iz).

Proposition 14.27 Supppose thatR(z,y) is a rational function in two variables and
R(cost,sint) is defined for alk € [0, 2x]. Then

2
/ R(cost,sint) dt = 27i Z Res f(2), (14.19)
0 acU1(0) ¢
where . . N .
ro=gr(z (1) 5 (-2))

and the sum is over all isolated singularitiesfif) in the open unit ball.

Proof. By the residue theorem,

f(z)dz =27 Z Res f

51(0) acU1(0)
Let 2z = e' for ¢t € [0, 27]. Rewriting the integral on the left usingz = eidt = iz dt
2w
(2)dz :/ R(cost,sint)dt
S1(0) 0

completes the proof. [

Example 14.15For|a| < 1,

/2” dt 27
o 1—2acost+a> 1—a?
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Fora = 0, the statement is trivially true; suppose naw# 0. Indeed, the complex function
corresponding to the integrand is

1 1 i/a

f(z) = iz(14+a®—az—a/z) - i(—az? —a+ (14 a?)z) - (z—a)(z—1)

a

In the unit disc,f(z) has exactly one pole of ordér namelyz = a. By (IZI%), the formulain
Subsectiof 4351,

Res f=1lim(z —a)f(z) = E -

z—a a

the assertion follows from the proposition:

/2” dt o 2
= 27 = .
o 1—2acost+ a? a?—1 1-—a?

SpecializingiR = 1 andr = a € R in Homework 49.1, we obtain the same formula.

14.6.2 Integrals of the form [*°_ f(x) dw
(a) The Principal Value

We often compute improper integrals of the form f(x) dz. Using the residue theorem, we

calculate limits
R
lim/ f(z)dex, (14.20)
R—o0 R

which is called therincipal value(or Cauchy mean value) of the integral oeand we denote
it by
Vp f(z)dz.

The existence of the “coupled” limilE{I4PR0) in general does imply the existence of the
improper integral

r——00 r §—0Q0

/OO f(z)dz = lim Of(x)dx—i— lim Sf(a:)dx.
o 0

For exampleVp [~ _xdz = 0 whereas|”._xdz does not exist sincé,” zdz = +oo. In
general, the existence of the improper integral impliestlistence of the principal value. ff
is an even function of (x) > 0, the existence of the principal value implies the existesfdbe
improper integral.

(b) Rational Functions

The main idea to evaluate the integial f(x) dz is as follows. LetH = {z | Im(z) > 0}
be the upper half-plane antt H\{ay,...,a,} — C be holomorphic. Choos& > 0 large
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enough such that, | < Rforallk = 1,...,m, thatis, all isolated singularities gfare in the

upper-plane-half-disc of radius aroundo.
Consider the path as in the picture which con-

sists of the segment from R to R on the real
line and the half-circleyr of radiusR. By the
residue theorem,

/_Zf(x) dx+/m f(z)dz = 2m§; %Ss f(2).

iR

lim / f(z)dz=0 (14.21)

R—o00

the above formula implies

R—o0

R m
lim /_Rf(a:) der = 27ri; %ES (2).

Knowing the existence of the improper integyél f(x)dx one has

/OO f(z)dz = 27TiZm:Res (2).
0o — W

Suppose thaf = § is a rational function such thathas no real zeros antkg ¢ > degp + 2.
Then [I421) is satisfied. Indeed, since only the two leaténgs ofp andq determine the the

< © on~g. Using the

limit behaviour of f(z) for | z | — oo, there exist& > 0 with M <
q(2) | — R?

estimateM ¢(v) from RemarkTIZ]3 (c) we get

By the same reason namély(x)/q(z) | < C/x?, for largez, the improper real integral exists
(comparison test) and converges absolutely. Thus, we lnversthe following proposition.

C 7C
< ﬁg(’m) = R R_}—;O 0.

Proposition 14.28 Suppose that and ¢ are polynomials withleg ¢ > degp + 2. Further, ¢

has no real zeros and,, . . ., a,, are all poles of the rational functiofi(z) = f]% in the open
upper half-plandH.
Then .
f(z)dz = 27Tiz Res f
—00 =1 "

xample 14.16 (a) [~ 5. The only zero of)(z) = 2> +1inHisa; = i anddeg(1+2?) =
Example 14.16 (a) [, 192,. The onl f 24 1inHi dd 2

2 > deg(1) + 2 such that

*  dx 1 1
—— —=27iR = 27i
/_001+x2 ™ iesl+z2 ml+z

z=i
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(b) It follows from Exampl&IZ14 that
o 2
/ de = 27i (Res f + Res f) = %

0o L4t

/°° dt _1/°° dt
o 14+t 2 ) 1416

The zeros ofj(z) = 2% + 1 in the upper half-plane are
a, a, a1 = ¢™% ay = ™2 anday = /6. They are all of
multiplicity 1 such that Formuld{IZ118) applies:

(c) We compute the integral

a,=i

1 Res L 1 1 a
es —— = = —=——.
a q(2)  ¢(ar) 6a} 6

By Propositiof 1228 and noting that + a3 = i,

< dt 1. .—-1,. : i
_ = s (/6 . S5im/6) T os
/0 1+t6_227T16 (e +1+e )— 621_

(c) Functions of Typeg(z) el**

Proposition 14.29 Suppose that and ¢ are polynomials withleg ¢ > degp + 1. Further, ¢
has no real zeros and, . . ., a,, are all poles of the rational function = § in the open upper
half-planeH. Put f(z) = g(z) €**, wherea € R is positivea > 0.

Then

/00 f(z)dz = QWiiRes f.
oo —

Proof. (The proof was omitted in the lecture.)

—r+ir ir r+ir
- A

Instead of a semi-circle itis more appropriate to
consider a rectangle now.

\ o
- r

According to the residue theorem,

" rir r—ir —r o
/_rf(x)dx+/r f(z)dz+/ f(z)dz+/ f(z)dz:ngP({lSs f.

r+ir —r+ir
Sincedegq > degp + 1, lim, . | = 0. Thus,s, = sup ﬁ exists and tends to as
|z[>r | 4\Z

T — OQ.



14.6 Real Integrals 399

Consider the second integralwith z = r + it, t € [0,7], dz = idt. On this segment we have
the following estimate

< S, e—Oét

) p(2) plalr+it)

q(2)

which implies

| I5 | gsr/ e’o‘tdt:ﬁ(l—e’a’") gﬁ.
0 « o

A similar estimate holds for the fourth integral fronr + ir to —r. In case of the third integral
onehas =t +ir,t € [-r,r], dz = dt such that

T T
| I3] < / s, | et | qp = sre_o""/ dt = 2rs,e .

-r -r

Since2re=*" is bounded and, — 0 asr — oo, all three integrald,, I35, and/, tend to0 as
r — oo. This completes the proof. [

Example 14.17Fora > 0,

/ * cost gt = o
———dt = —e .
o t?+a? 2a

Obviously,
< cost 1 < el
——dt==R —— dt ).
/0 12 + a? 2 e(/_oot2+a2 )
it
The functionf(z) = ;72 has a single pole of ordérin the upper half-plane at = ai. By
a
formula [(TZIB)
eiz eiz e @
R = — = :
@ 22ta? 22 ai 2ai
Proposition[I4.29 gives the result.
(d) A Fourier transformations
Lemma 14.30Fora € R,
L / e 270 gy — o2 (14.22)
V2 Jwr ' '
Proof.
_Rea a Vs mea | LEUf(2) = e727, z € C andy the closed
rectangular pathy = v, + 72 + 73 + 74 @s in
Y, the picture. Sincef is an entire function, by

‘ Y2 Cauchy’s theorer’r}f7 f(z)dz = 0. Note that
v2 is parametrized as = R + ti, t € [0, al,
-R o R dz = idt, such that
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/f(z)dz:/ e_%(RQ-Ht)?idt:/ e—%(RQ+2Rit—t2)idt

72 0 0

‘/ f(2)dz S/ e_%R2+%t2dt:e_%R2/ 01 qt = Ce 37
Y2 0 0

Since e 2% tends to0 as R — oo, the above integral tends t0, as well; hence
lim / f(z)dz = 0. Similarly, one can showth%ﬁm / f(z)dz = 0. Sincef7 f(z)dz =0,
Y2 T

R—o0

we have/ f(z)dz =0, thatis
Y1+73

/ f(x) dx:/ f(z + ai) de.
Using
/ e 3 dp = v 27,
R
which follows from Exampl&ZI417, page 374, or from homewdrk34 we have

_ 1.2 _ 1,2 : _ 42 1.2 _ 1.2
\/27T:/e 2? dx:/e 2 (T Aar—a®) g — 20 /e 2T T dy
R R R

1.2 5 1.2
e—§z —lax dl‘ — e—§a )

7



Chapter 15

Partial Differential Equations | — an
Introduction

15.1 Classification of PDE

15.1.1 Introduction

There is no general theory known concerning the solvallitgll PDE. Such a theory is ex-

tremely unlikely to exist, given the rich variety of phydiageometric, probabilistic phenomena
which can be modelled by PDE. Instead, research focusesramusgarticular PDEs that are
important for applications in mathematics and physics.

Definition 15.1 A partial differential equatior{abbreviated as PDE) is an equation of the form
F(z,y,. .., u, Uy, Uy, .oy Uggy Ugy, ... ) =0 (15.1)

whereF' is a given function of the independent variableg, . .. of the unknown function:
and a finite number of its partial derivatives.

We callu asolutionof (I5.]) if after substitution ofi(x, y, . . . ) and its partial derivative§ (15.1)
is identically satisfied in some regignin the space of the independent variahtes, . ... The
order of a PDE is the order of the highest derivative that occurs.

A PDE is calledinear if itis linear in the unknown functiom and their derivatives,, u,, u,,,
..., with coefficients depending only on the variableg, .... In other words, a linear PDE
can be written in the form

G(U, Uy, Uy, oy Uy Ugyy, - - ) = [y, .., (15.2)

where the functiory on the right depends only on the variableg, ... andG is linear in all
components with coefficients depending ony,.... More precisely, the formatifferential
operator L(u) = G(u, Uy, Uy, - . ., Ugg, Usy, - . . ) Which associates to each functiatr, y, . . . )
a new functionZ(u)(x,y,...) is a linear operator. The linear PDE{T5.2) () = f) is called
homogeneous f = 0 andinhomogeneoustherwise. For exampleps(zy?)u., — y*u, +

401
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usinz + tan(z? + y*) = 0 is a linear inhomogeneous PDE of orderthe corresponding
homogeneous linear PDEdss(2y?) .y — y*u, + usinz = 0.

A PDE is calledquasi-linearif it is linear in all partial derivatives of order. (the order of the
PDE) with coefficients which depend on the variableg, - - - and partial derivatives of order
less thanm; for exampleu,u,, + u* = 0 is quasi-linearu,,u,, + 1 = 0 not. Semi-linear
equations are those quasi-linear equation in which theficmefts of the highest order terms
does not depend anand its partial derivativesin zu,, +u? = 0 is semi-lineary,u,, +u? = 0
not. Sometimes one considagstem®f PDES involving one or more unknown functions and
their derivatives.

15.1.2 Examples

(1) ThelLaplace equationin n dimensions for a function(z, ..., z,) is the linear second
order equation

AU = Ugypy + -+ Ug,z, = 0.

The solutions: are callecharmonic(or potentia) functions. In case. = 2 we associate
with a harmonic function(x, y) its “conjugate” harmonic function(z, y) such that the
first-order system of Cauchy—Riemann equations

Uy = Vy, Uy = —Vy

is satisfied. A real solutiotwu, v) gives rise to the analytic functiofi(z) = u + iv. The
Poisson equations

Au = f, foragivenfunction f: 2 — R.

The Laplace equation models equilibrium states while thisdda equation is impor-
tant in electrostatics. Laplace and Poisson equation ahdagcribe stationary processes
(there is no time dependence).

(2) Theheat equation.Here one coordinates distinguished as the “time” coordinate, while
the remaining coordinates, . . ., x,, represent spatial coordinates. We consider

u: 2 xRt — R, £ openinR",
whereR* = {t € R | t > 0} is the positive time axis and pose the equation
ku; = Au, where Au =z, + -+ Uy,
The heat equation models heat conduction and other diffysiocesses.
(3) Thewave equation.With the same notations as in (2), here we have the equation
ug — a*Au = 0.

It models wave and oscillation phenomena.
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(4) TheKorteweg—de Vries equation
U — OU UL + Ugyr = 0
models the propagation of waves in shallow waters.
(5) TheMonge—Ampere equation
U Uy — uiy =f
with a given functionf, is used for finding surfaces with prescribed curvature.

(6) TheMaxwell equationsfor the electric field strength’ = (F1, Es, E3) and the magnetic
field strengthB = (B, B, B3) as functions oft, x;, xo, z3):

divB =0, (magnetostatic law)
B; + curl E = 0, (magnetodynamic law)
div E = 47p, (electrostatic lawp = charge density)
E; — curl B = —47j (electrodynamic law; = current density)

(7) The Navier-Stokes equationgfor the velocityv(z,t) = (v!,v?,v%) and the pressure
p(z, t) of an incompressible fluid of densipyand viscosityy:

3
pUg—FpZ'Ui'Ug;i—T]A’UjI—ij, j:172737
=1
dive = 0.

(8) TheSchrodinger equation

h2
ihu, = —%Au + V(z,u)

(m = mass,V = given potential,u: 2 — C) from quantum mechanics is formally
similar to the heat equation, in particular in the c&Se- 0. The factori, however, leads
to crucial differences.

Classification

We have seen so many rather different-looking PDEs, andhtpeless to develop a theory that
can treat all these diverse equations. In order to proceadaméto look for criteria to classify
PDEs. Here are some possibilities

(1) Algebraically.

(a) Linear equations are (1), (2), (3), (6) which is of firaler, and (8)

(b) semi-linear equations are (4) and (7)
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(c) anon-linear equation is (5)

naturally, linear equations are simple than non-linearsoné/e shall therefore mostly
study linear equations.

(I) The order of the equation. The Cauchy—Riemann equations and the Mbageations

(11

are linear first order equations. (1), (2), (3), (5), (7),48) of second order; (4) is of third
order. Equations of higher order rarely occur. The most irtgm PDESs are second order
PDEs.

Elliptic, parabolic, hyperbolicln particular, for the second order equations the following
classification turns out to be useful: Let= (x4, ...,x,) € 2 and

F(l‘7u7u$i7u$i$]‘) = 0

be a second-order PDE. We introduce auxiliary variaplgs;, 7, j = 1, ..., n, and study
the functionF'(z, u, p;, p;;). The equation is calledlliptic in {2 if the matrix

Fpij (.%’, u(:c), U, (l‘), Uiz, (x>)i7j=1 ----- n
of the first derivatives of” with respect to the variables; is positive definite or negative
definite for allx € (2.

this may depend on the functian The Laplace equation is the prominent example of an
elliptic equation. Example (5) is elliptic if (z) > 0.

The equation is calledyperbolicif the above matrix has precisely one negative éndl
positive eigenvalues (or conversely, depending on thecehafi the sign). Example (3) is
hyperbolic and so is (5) if (z) < 0.

Finally, the equation iparabolicif one eigenvalue of the above matrix(isand all the
other eigenvalues have the same sign. More precisely, Unegtieq can be written in the
form

U = F(ta Ty Uy Ug,, uxia:]-)

with an elliptic F.

(IV) According tosolvability. We consider the second-order PBEx, u, u,,, u,,.;) = 0 for

u: {2 — R, and wish to impose additional conditions upon the solutipnypically
prescribing the values af or of certain first derivatives af on the boundaryJ? or part
of it.

Ideally such a boundary problem satisfies the three comdited Hadamard for avell-
posed problem

(a) Existence of a solution for the given boundary values;

(b) Uniqueness of the solution;

(c) Stability, meaning continuous dependence on the baynddues.
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Example 15.1 In the following examples? = R? andu = u(z, y).

(a) Find all solutions: € C*(R?) with u,, = 0. We first integrate with respect toand find
thatw, is independent on, sayu, = a(y). We again integrate with respect toand obtain
u(z,y) = za(y) + b(y) with arbitrary functions: andb. Note that the ODER.” = 0 has the
general solutiomx + b with coefficientsa, b. Now the coefficients arinctionsony.

(b) Solveu,, +u = 0, u € C*(R?). The solution of the corresponding ODE + u = 0,
u = u(x), u € C*(R), isacosx + bsinx such that the general solution of the corresponding
PDE in2 variablesr andy is a(y) cos x + b(y) sin z with arbitrary functions: andb.

(c) Solveu,, = 0, u € C*(R?). First integrateg—y(um) = (0 with respect toy. we obtain
u, = f(x). Integration with respect to yieldsu = / f(x)dz + g(y) = f(x) + g(y), wheref
is differentiable and is arbitrary.

15.2 First Order PDE — The Method of Characteristics

We solve first order PDE by the methoddfracteristics It applies to quasi-linear equations
a(z,y,u)u, + b(z,y, w)u, = c(x,y,u) (15.3)

as well as to the linear equation
a(z,y)u, + b(z, y)u, = co(x, y)u+ c1(z, y). (15.4)

We restrict ourselves to the linear equation withratial conditiongiven as a parametric curve
in the zyu-space

I'=1T1(s) = (wo(s),y0(s),uo(s)), s€(a,b) CR. (15.5)
The curvel” will be called thenitial curve. The initial condition then reads

u(zo(s),y0(s)) = uo(s), s € (a,b).

The geometric idea behind this method is the
y following. The solutionu = w(z,y) can be

thought as surface iR* = {(z,y,u) | x,y,u €

initial curve

wea  RR°}. Starting from a point on the initial curve,
we construct &hracteristic curven the surface

u. If we do so for any point of the initial curve,
we obtain a one-parameter family of character-
istic curves; glueing all these curves we get the
solution surfacex.

characteristic curves

The linear equatioriL.{19.4) can be rewritten as

(a,b,cou+ 1) (uy, uy, —1) = 0. (15.6)
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Recall that(u,, u,, —1) is the normal vector to the surfage, y, u(x,y)), that is, the tangent
equation tou at (g, yo, ug) IS

U — Uy = Uy (x_l‘O) +uy(y_y0) = (:L‘_x()ay_y())u_u()).(ul‘auy)_]') =0.

It follows from (I&®) that(a, b, cou + ¢;) is a vector in the tangent plane. Finding a curve
(x(t),y(t),u(t)) with exactely this tangent vector

(a(z(t),y(1)), b(z (1), y (1)), co(x (1), y(1))u(t) + c1(2(L), y(1)))

is equivalent to solve the ODE

(1) = a(z(t), y(t)), (15.7)
y'(t) = b(x(t), y (1)), (15.8)
u'(t) = col(t), y(£))u(t) + cr(x(t), y(1)))- (15.9)

This system is called theharacteristic equationsThe solutions are calletharacteristic curves
of the equation. Note that the above system is autonomaighiere is no explicit dependence
on the parametetr

In order to determine characteristic curves we need aralr@tndition. We shall require the
initial point to lie on the initial curve(s). Since each curvér(t),y(t), u(t)) emanates from
a different point/"(s), we shall explicitely write the curves in the forfa(¢, s), y(t, s), u(t, s)).
The initial conditions are written as

x(0,8) = z0(s), y(0,s) =1wo(s), u(0,s)=1up(s).

Notice that we selected the paramétsuch that the characteristic curve is located at the initial
curve att = 0. Note further that the parametrization(t, s), y(t, s), u(t, s)) represents a surface
in R3.

The method of characteristics also applies to quasi-liegaations.

To summarize the method: In the first step we identify theahdurveI". In the second step
we select a poing on " as initial point and solve the characterictic equationsgishe point
we selected o’ as an initial point. After preforming the steps for all paimin /", we obtain

a portion of the solution surface, also calletegral surface That consists of the union of the
characteristic curves.

Example 15.2 Solve the equation
Uy + Uy = 2

subject to the initial conditiom(x,0) = z2. The characteristic equations and the parametric
initial conditions are

x(t, s) =1, y(t,s) =1, w(t, s) = 2,
x(0,s) = s, y(0,s) =0, u(0, s) = s

It is easy to solve the characteristic equations:

x(tas):t+f1(5)7 y(tas):t+f2(5)> u(tas):2t+f3(s)'
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Inserting the initial conditions, we find
x(t,s) =t+s, y(t,s) =t, u(t,s) = 2t + s*.

We have obtained a parametric representation of the idtegriace. To find an explicit rep-
resentation we have to invert the transformatio(y, s), y(t, s)) in the form(¢(z,y), s(z,y)),
namely, we have to solve ferandt. In the current example, we find= y, s = = — y. Thus
the explicit formula for the integral surface is

u(z,y) =2y + (z —y)*.

Remark 15.1 (a) This simple example might lead us to think that eachahutalue problem
for a first-order PDE possesses a unique solution. But thistishe case Is the problem(I5.3)
together with the initial conditior.{13.5) well-posed? ndvhich conditions does there exists
a unique integral surface that contains the initial curve?
(b) Notice that even if the PDE is linear, the characteristjoations are non-linear. It follows
that one can expect at most a local existanece theorem fat affttwer PDE.
(c) The inversion of the parametric presentation of thegrakesurface might hide further diffi-
culties. Recall that the implicit function theorem implibst the inversion locally exists if the
Jacobian‘% # 0. An explicit computation of the Jacobian at a poindf the initial curve
gives
Oxr 0y  Oxdy , ,

T = as asar - Wb =y
Thus, the Jacobian vanishes at some point if and only if tletove(a, b) and (zy, y;,) are
linearly dependent. The geometrical meaning/of 0 is that the projection of " into thexy
plane is tangent to the projection of the characteristieeurto thery plane. To ensure a unique
solution near the initial curve we must have# 0. This condition is called th&ansersality
condition

a b

Example 15.3 (Well-posed and lll-posed Problemsfa) Solveu, = 1 subject to the initial
conditionu(0,y) = g(y). The characteristic equations and the inition conditioesgiven by

x =1, y(t,s) =0, w(t, s) =1,
z(0,s) =0, y(0,5) = s, u(0, s) = g(s).

The parametric integral surface(is(t, s), y(t, s), u(t, s)) = (t, s, t+g(s)) such that the explicit
solution isu(z,y) = = + g(y).

(b) If we keepu, = 1 but modify the initial condition inta.(z, 0) = h(z), the picture changess
dramatically.

Ty = ]-7 yt(ta S) - 07 ut(ta S) = 17
z(0,s) = s, y(0,s) =0, u(0,s) = h(s).

In this case the parametric solution is

(x(t,s),y(t,s),u(t,s)) = (t+s,0,t+ h(s)).
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Now, however, the transformation = ¢ + s, y = 0 cannot be inverted. Geometrically, the
projection of the initial curve is the axis, but this is also the projection of the characteristic
curve. In the speial cag€x) = x + ¢ for some constant, we obtainu(t, s) =t + s+ ¢. Then

it is not necessary to inveft, y) since we find at once = =+ c+ f(y) for every differentiable
function f with f(0) = 0. We have infinitely many solutions -#hiqueness fails

(c) However, for any other choice af Existence fails— the problem has no solution at all.
Note that the Jacobian is )
a

J =
Ty Yo

’10

R

Remark 15.2 Because of the special role played by frejecionsof the characteristics on the
zy plane, we also use the term characteristics to denote theoask of the linear PDIE{T5.4)
the ODE for the projection is

20 = S = a(et), y(0), /(1) = L = bla(r), (1), (15.10)
which yieldsy' (z) = % - 2Ei Z;

15.3 Classification of Semi-Linear Second-Order PDEs

15.3.1 Quadratic Forms

We recall some basic facts about quadratic forms and syrmomeditrices.

Proposition 15.1 (Sylvester’'s Law of Inertia) Suppose thatl € R"*" is a symmetric matrix.
(a) Then there exist an invertible matrix € R"*", r,;s,t € Nowithr + s+t = n and a
diagonal matrixD = diag (dy,ds, ..., dy1s,0,...,0) withd; > 0fori =1,...,randd; < 0
fori=r+1,...,7+sand

BAB' = diag (dy,...,d.1s,0,...,0).

We call(r, s, t) thesignature ofA.

(b) The signature does not depend on the change of coordinates,|fi there exist another
regular matrix B’ and a diagonal matrix)’ with D’ = B’A(B’)" then the signature ab’ and
D coincide.

15.3.2 Elliptic, Parabolic and Hyperbolic

Consider the semi-linear second-order PDR wariablesr, .. ., z, in aregionf? C R"

n

Zaij(x) Ug,a; +F(xvuvumw~~auzn) =0 (1511)

ij=1

with continuous coefficients;;(xz). Since we assume € C?({2), by Schwarz's lemma we
assume without loss of generality that = a;;. Using the terminology of the introduction
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(Classification (Ill), see page404) we find that the ma#ix) := (a;;(x)); j=1,..n, COINCides

with the matrix(F,,, ); ; defined therein.

.....

Definition 15.2 We call the PDE[(I5.A1¢lliptic at x, if the matrix A(x() is positive definite
or negative definite. We call garabolicatz, if A(z) is positive or negative semidefinite with
exactly one eigenvalue We call ithyperbolicif A(x,) has the signaturg: —1,1,0),i.e. Ais
indefinite withn — 1 positive eigenvalues and one negative eigenvalue and ncempgenvalue
(or vice versa).

15.3.3 Change of Coordinates

First we study how the coefficients; will change if we impose a non-singular transformation
of coordinatey = ¢(z);

y=@(x,....,x,), l=1,... n;

The transformation is calledon-singularif the Jacoblan%%)(xo) # 0 is non-zero at

any pointx, € 2. By the Inverse Mapping Theorem, the transformation peeselocally an
inverse transformation denoted by= v (y)

=y, yn), l=1,...,n.

Putting
u(y) = u(®(y)), then wu(x)=u(p(z))
and if moreovery;, € C*(£2) we have by the chain rule

n

_ Opi g Py
sz, = (U)o, = ) Gy 92 0w >y, Ere (15.12)
k=1 v J =1 L

Inserting (I5P) intd{15.11) one has

n n

— i Doy D%, -
Z Uy yp, Z g a ax Z Uy, Z Qjj 5 920 (y7 U, uyp cee ,Uyn) =0. (1513)
0T

k,l=1 1,j=1 i,j=1

We denote by, the new coefficients of the partial second derivatives,of

n

~ o1 3%
=Y _ a(x ") By e, (15.14)

1,j=1

and write [I5.IB) in the same form &s{15%.11)

> ()i, + Fy, i, dy,, ..., iy,) = 0.
k=1
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Equation [I5114) later plays a crucial role in simplifyin@® (I=.11). Namely, if we want
some of the coefficients, to be0, the right hand side of{I5.]14) has to (eNriting

_ 9

blj_@x"
J

l,jzl,...,n, B:(blj),

the new coefficient matrix(y) = (. (y)) reads as follows
A=DB-A-B".

By Propositio.I5]1A and A have the same signature. We have shown the following proposi
tion.

Proposition 15.2 The type of a semi-linear second order PDE is invariant urtberchange of
coordinates.

Notation.We call the operatof, with

n

0%u
L(’LL) = ijZ:1 CLZ](I')M + F(.CL', Uy Ugyy - - - ,an)
differential operator and denote lay

- 0%u
Ly(u) =) aij(¥) 5 —
iOT;

i,j=1

the sum of its the highest order ternis; is a linear operator.

Definition 15.3 The second-order PDE(u) = 0 hasnormal formif

m r
L2(u) - Zuzjzj - Z Uz,
j=1

j=m+1

with some positive integers < r < n.

Remarks 15.3 (a) It happens that the type of the equation depends on tim ppiEe 2. For
example, th&richomi equation
Ylzg + Uyy =0

is of mixed type. More precisely, it is elliptic i > 0, parabolic ify = 0 and hyperbolic if

y <0.

(b) The Laplace equation is elliptic, the heat equation ralpalic, the wave equation is hyper-
bolic.

(c) The classification is not complete in case> 3; for example, the quadratic form can be of
type(n —2,1,1).

(d) Casen = 2. The PDE

Uy + 2bUyy + cuyy + F(2,y, u, uy, uy) =0

with coefficientsa = a(zx,y), b = b(z,y) andc = ¢(z, y) is elliptic, parabolic or hyperbolic at
(wo,10) if and only if ac — b*> > 0, ac — b* = 0 orac — b* < 0 at (o, yo), respectively.
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15.3.4 Characteristics

Suppose we are given the semi-linear second-order PDEANR"

ia--(m)ﬂ—l—F(m’uu Uy, ) =0 (15.15)
-~ 1) ﬁxlaxj y Wy Wy e vy Wy ) — '
with Continuoumi]’; Clij(.%') = ajl-(x).

We define the concept of characteristics which plays an itaporole in the theory of PDEs,
not only of second-order PDEs.

Definition 15.4 Suppose that € C'(£2) is continuously differentiablegrad o # 0, and
(a) for some point, of the hypersurfac& = {z € 2 | o(z) = ¢}, ¢ € R, we have

_ 80(.1'0) 80'(.1’0)
Z aj (o) TR 0. (15.16)
2,7=1
Thend is said to becharacteristicat x.
(b) If F is characteristic at every point 61, F is called acharacteristic hypersurfacer simply

a characteristicof the PDE [I5.7]1). Equatiof(I5]16) is called tieracteristic equatiorf
@=1).

In casen = 2 we speak otharacteristic lines

If all hypersurfaces (z) = ¢, a < ¢ < b, are characteristic, this family of hypersurfaces fills
the region(? such that for any point € (2 there isexactly onehypersurface witlr(z) = c.
This ¢ can be chosen to be one new coordinate. Setting

y1 = o(x)

we see from[[15.14) that;; = 0. That is, the knowledge of one or more characteristic hyper-
surfaces can simplify the PDE.

Example 15.4 (a) The characteristic equation of, = 0 is 0,0, = 0 such thatr, = 0 and
o, = 0 define the characteristic lines; the parallel lines to therdmate axesy = ¢, and
x = co, are the characteristics.

(b) Find type and characteristic lines of

T Upy — YUy =0, x#0,y#0.

Sincedet = 2%(—y?) -0 = —z%y* < 0, the equation is hyperbolic. The characteristic equation,
in the most general case, is
ac? + 2bo, o, + 005 = 0.

Sincegrad o # 0, o(x,y) = cis locally solvable foy = y(z) such thay/ = —o,/0,. Another
way to obtain this is as follows: Differentiating the eqoati (x, y) = cyieldso, dz+o0,dy =
0 or dy/ dz = —o,/0,. Inserting this into the previous equation we obtain a qaacODE

a(y')? —2by' +c =0,
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with solutions

2 __
y = LEVI a2,
a

We can see, that the elliptic equation has no charactelisés, the parabolic equation has one
family of characteristics, the hyperbolic equation has fanilies of characteristic lines.
Hyperbolic case.In general, ifc; = ¢1(z,y) is the first family of characteristic lines and
co = wo(z,y) is the second family of characteristic lines,

fz@l(fay)a 77:@2(3579)

is the appropriate change of variable which gives ¢ = 0. The transformed equation then
reads
20Uy + F(&,n, 0, U, Uy) = 0.

Parabolic case.Sincedet A = 0, there is only one real family of characteristic hyperpkne
sayc; = ¢1(z,y). We impose the change of variables
z=pi(ny), y=y
Sincedet A = 0, the coefficient$ vanish (together witl). The transformed equation reads
Gty + F(z,y,1, 1., 1y) = 0.

The above two equations are called tharacteristic form®f the PDE [15.111)
In our case the characteristic equation is

() —y* =0, ¢y ==+y/z.

This yields
d dx
=2 logly|=+logla| + .
y T
We obtain the two families of characteristic lines

C2
y:clx’ y: —_—
T

Indeed, in our example

§===c, nN=xy=c
gives
Ne =Y, Ny =, Nzx = 07 Ty = 07 Ney = 17
Yy 1 Yy 1
gx:_ﬁa fy:;a gzzZQEa Syyzoa fzy:_P-

In our case[(I5.12) reads

Ve = Tge & + 2figy Eatle + Ty 1y + U Sax + Uy Mo
~ 2 ~ ~ 2 ~ ~
Uyy = Ugg fy + 2ugy §yny + Uy 1y + U Eyy + Un My
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Noting 2% = /&, y* = ¢n and inserting the values of the partial derivativeg ahdn we get

2 2
- oy LY
Uaq = Ugg” 3 — 2" len + Uppy” + 2- 5l

~ ~ -~ 9
Uyy = u&? + 2Ugy + Upyx”.
Hence

x2um — yzuyy = —4y2715,7 + 2%'&5 =0
- 11

Ugn— ax—yl% =0.

Sincen = xy, we obtain the characteristic form of the equation to be

_ 1
Ugy — %% = 0.
Using the substitution = ., we obtain, — %v = O which corresponds to the ODE—%@ =

0. Hence,v(n,§) = c(§)/n. Integration with respect tg givesu (¢, n) = A(&)/n + B(n).
Transforming back to the variablesandy, the general solution is

u(z,y)=A <%> Vry + B(xy).

2
T

(c) The one-dimensional wave equation— a*u,, = 0. The characteristic equatieff = a*c
yields

—o0y/o, = dz/dt = & = +a.
The characteristics are = at + ¢; andx = —at + ¢;. The change of variables= = — at
andn = x + at yields @, = 0 which has general solutio({,n) = f(§) + g(n). Hence,
u(z,t) = f(x — at) + g(z + at) is the general solution, see also homework 23.2. .
(d) The wave equation in dimensions has characteristic equation

n
2 _ 2 2 _
o, —a E o, =0.
i=1

This equation is satisfied by the characteristic cone

n

o(x,t) =a*(t —t0)? = (z; — 2{”)* =0,

=1
where the pointz(®, t() is the peak of the cone. Indeed,

o = 2a%(t — 1), o, = —2(z; — 2”)

(2

n

implieso? — a2 S0 (2 — 2()2 = 0.
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Further, there are other characteristic surfaces: therpigees

o(x,t) =at + Z bix; =0,

i=1

where||b]| = 1.

(e) The heat equation has characteristic equalih, o2 = 0 which implieso,, = 0 for
alli = 1,...,n such thatt = c is the only family of characteristic surfaces (the coortkna
hyperplanes).

(f) The Poisson and Laplace equations have the same chastctequation; however we have
one variable less (n9 and obtaingrad o = 0 which is impossible. The Poisson and Laplace
equations don’t have characteristic surfaces.

15.3.5 The Vibrating String
(a) The Infinite String on R
We consider the Cauchy problem for an infinite string (no loump values):

2
Uy — A Ugy = 0,

u(z,0) = up(x), ui(z,0)=u(x),

whereu, andu, are given.
Inserting the initial values into the general solution (seExampldIGMl (c))
u(z,t) = f(x — at) + g(z + at) we get

up(z) = f(2) +9(z), wi(z) = —af'(z) +ag'(z).
Differentiating the first one yields)(z) = f'(z) + ¢'(z) such that

1 1 1 1

/(@) = Jubl) = 5 wla), g(@) = Jue) + 5 ().

Integrating these equations we obtain

@) = guole) = 50 [ @) dy+ A g(o) = gule) + 5 [ )y B

a a

where A and B are constants such thdt+ B = 0 (since f(z) + g(z) = uo(z)). Finally we
have

u(x,t) = f(x — at) + g(z + at)

1 1 1 r+tat
2(u0(:p+at)+u0 (x —at)) —% dy+% ui(y) dy
0
1 r+at

1
uop(x + at) + uo(x — at))

=5 ( (15.17)

T2 ),



15.3 Classification of Semi-Linear Second-Order PDEs 415

It is clear from [I5.1I7) that(z, ¢) is uniquely deter-
mined by the values of the initial functiong andu;
(x.0) in the intervalz — at, z + at] whose end points are
cut out by the characteristic lines through the point
(z,t). This interval represents tltwmain of depen-
dencéor the solution at point(x, t) as shown in the
figure.

x-at g x+at X

Conversely, the initial values at poifg, 0) of the z-axisinfluenceu(z, t) at points(x, ¢) in the
wedge-shaped region bounded by the characteristics th(gu@), i. e. , for{ —at < = < {+at.

This indicates that our “signal” or “disturbance” only mewegith speed. _
We want to give some interpretation of the so-

L bu lution (I5IT). Suppose, = 0 and
t=0 "
1 - = x| <a,
a a X 0, |z | > a.

In this example we consider the vibrating string which isciled at timet = 0 as in the above
picture (givenuy(x)). The initial velocity is zero#; = 0).
u

12 t=1/2

332 -al2 a2 3a2 x
In the pictures one can see the behaviour of

u - the string. The initial peek is divided into two
12 B smaller peeks with the half displacement, one
o a e x m_ovmg to the right and one moving to the left
with speeds.
u
t=2
/\ 1/2 /\
-3a 2a -a a 2a 3a

Formula [I5117) is due to d’Alembert (1746). Usually oneuasssu, € C*(R) andu; €
CY(R). In this caseu € C?(RR?) and we are able to evaluate thiassicalLaplacianA(u)
which gives a continuous function. On the other hand, thietriand side of((I5.17) makes
sense for arbitrary continuous functian and arbitraryu,. If we want to call these:(z,¢) a
generalized solutioof the Cauchy problem we have to alter the meaning @f). In particular,
we need more general notion of functions and derivativess iSlour main objective of the next

section.

(b) The Finite String over [0, ]
We consider the initial boundary value problem (IBVP)

Uy = a*Upy,  u(0,7) = up(z), u(0,7) =ui(z), v € [0,1],u(0,t) =u(l,t) =0, tcR.
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Suppose we are given functiong € C*([0,]) andu; € C*([0,]) on |0, ] with
up(0) = up(l) =0, u1(0) =us1(l) =0, wugy(0)=uy(l)=0.

To solve the IBVP, we define new functiong and z; on R as follows: first extend both
functions to[—(, [] asodd functions, that isfi;(—z) = —u,(x), ¢ = 0,1. Then extend; as a
2[-periodic function to the entire real line. The above assiiong ensure that, € C?(RR) and

uy € Cl(R) Put
1 1 r+at
e, t) = 5 (oo -+ at) + oo — at)) + o [ i) dy,
r—at

2a

Thenu(x,t) solves the IVP.



Chapter 16

Distributions

16.1 Introduction — Test Functions and Distributions

In this section we introduce the notion of distributionsstdibutions are generalized functions.
The class of distributions has a lot of very nice propertiegy are differentiable up to arbitrary
order, one can exchange limit procedures and differeatiatbchwarz’ lemma holds. Distri-
butions play an important role in the theory of PDE, in paiae, the notion of a fundamental
solution of a differential operator can be made rigorousinithe theory of distributions only.
Generalized functions were first used by P. Dirac to studyhtwm mechanical phenomena.
Systematically he made use of the so caliddnction (better:-distribution). The mathemat-
ical foundations of this theory are due to S. L. Sobolev (398&I L. Schwartz (1950, 1915 —
2002).

Since then many mathematicians made progress in the thedistidbutions. Motivation comes
from problems in mathematical physics and in the theory digalifferential equations.

Good accessible (German) introductions are given in thekbad W. Walter [Wal74] and
O. Forster[[For81§ 17]. More detailed explanations of the theory are to be foumthe
books of H. Triebel (in English and German), V. S. Wladimir@w russian and german) and
Gelfand/Schilow (in Russian and German, part |, Il, and [}92,Wla72[GS69, GS64].

16.1.1 Motivation

Distributions generalize the notion of a function. Theylarear functionals on certain spaces of
test functions. Using distributions one can express rigsiothe density of a mass point, charge
density of a point, the single-layer and the double-lay¢epiials, see [Arn04, pp. 92]. Roughly
speaking, a generalized function is given at a point by thedimvalues” in the neighborhood
of that point.

The main idea to associate to each “sufficiently nice” fumii a linear functional’y (a distri-
bution) on an appropriate function spdbas described by the following formula.

Ty, o) = /}R f(@)p(@)dr, eD. (16.1)

417
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On the left we adopt the notation of a dual pairing of vectacgs from DefinitioRZITl1. In
general the bracketl’, ¢) denotes the evaluation of the functiorfalon the test functiorp.
Sometimes it is also written &5(). It does not denote an inner product; the left and the right
arguments are from completely different spaces.

What we really want of ; is

(a) The correspondence should dxee-to-one i. e., different functionald’s andT, corre-
spond to different functiong and g. To achieve this, we need the function spdte
sufficiently large.

(b) The class of functiong shouldcontain at least thecontinuous functions However, if
f(z) = 2", the functionf(z)¢(x) must be integrable oveR, that isz"p(z) € LY(R).
Since polynomials are not ib' (R ), the functionsy must be “very small” for largéx |.
Roughly speaking, there are two possibilities to this endstRake only those functions
© which are identically zero outside a compact set (which ddp@ny). This leads to
the test function®(R). ThenT} is well-defined if f is integrable over every compact
subset ofR. These functiong’ are calledocally integrable

Secondly, we take(z) to be rapidly decreasing as | tends toco. More precisely, we
want

sup [ z" p(x) | < 00

zeR
for all non-negative integers € 7., . This concept leads to the notion of the so called
Schwartz space’(R).

(c) We want todifferentiate f arbitrarily often, even in case th#thas discontinuities. The
only thing we have to do is to give the expression

/}R f@)p(x)dz, eD

ameaning. Using integration by parts and the fact¢tatoo) = ¢(—o0) = 0, the above
expression equals [, f(z)¢'(x) dz. Thatis, instead differentiating, we differentiate
the test functionp. In this way, the functional’,, makes sense as long #g’ is inte-

grable. Since we want to differentiafearbitrarily often, we need the test functignto

be arbitrarily differentiablep € C*(R).

Note that conditions (b) and (c) make the space of test fanstsufficiently small.

16.1.2 Test FunctionsD(IR™) and D(£2)

We want to solve the probleryfip to be integrable for all polynomialg. We use the first
approach and consider only functiopsvhich are0 outside a bounded set. If nothing is stated
otherwise? C R denotes an open, connected subsdt'of
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(a) The Support of a Function and the Space of Test Functions

Let f be a function, defineds of2. The set

supp f :={z € 2] f(z) # 0} CR"
is called thesupportof f, denoted byupp f.

Remark 16.1 (a)supp f is always closed:; it is the smallest closed subgetuch thatf (x) = 0
forallz € R"\ M.

(b) A pointz, ¢ supp f if and only if there exists > 0 such thatf = 0 in U.(z,). This in
particular implies that fof € C*>(R") we havef™®) (z,) = 0 for all k € N.

(c) supp f is compact if and only if it is bounded.

Example 16.1 (a) supp sin = R.

(b) Letletf: (—1,1) = R, f(z) = x(1 — x). Thensupp f = [-1, 1].

(c)The characteristic functiog,; has supporf/.

(d) Leth be the hat function of® — note thatupp h = [—1, 1] andf(z) = 2h(z) — 3h(z —10).
Thensupp f = [-1,1] U [-11,-9].

Definition 16.1 (a) The spaceD(IR™) consists of all infinitely differentiable functionson
R™ with compact support.

D(R") =CP(R") ={f € C*(R") | supp f is compac}.
(b) Let 2 be a region inR™. Define D(42) as follows
D(2) ={f € C®(N2) | supp f is compact inR™ and supp f C 2}.

We callD({?) the space ofest function®n (2.

I\
First of all let us make sure the existence of such

cle functions. On the real axis consider the “hat”
function (also called bump function)

1
I t) <1,
ht) = 4 ¢ ¢]
0, 1] > 1.

h(t)

-1 1

The constant is chosen such that, i(t) dt = 1. The function’ is continuous oR. It was
already shown in Example3.5 that)(—1) = h¥)(1) = 0 for all K € N. Henceh € D(R) is
a test function witlsupp h = [—1, 1]. Accordingly, the function

1
ne izl <1,
o) = ¢ ]
0, ||| > 1.
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is an element oD (IR") with support being the closed unit ballpp h = {z | ||z|| < 1}. The
constant;, is chosen such th@[ h(z)dr = / h(z)dx = 1.

R U1(0)
Fores > 0 we introduce the notation

Thensupp k. = U.(0) and

1 x
he(z)dr = — h{—) dx= / h(y)dy = 1.
/n €" Ju.(0) <5> U1(0)

So far, we have constructed only one functign) (as well as its scaled relativés(x)) which
is C* and has compact support. Using this single hat-functiowe are able

(a) torestrict the support of an arbitrary integrable fiorcl to a given domain by replacing
f by fh.(x — a) which has a support iti.(a),

(b) to makef smooth.

(b) Mollification

In this way, we have an amount@f° functions with compact support which is large enough for
our purposes (especially, to recover the functfainom the functionall’y). Using the function
h., S.L. Sobolev developed the followimgollificationmethod.

Definition 16.2 (a) Letf € L!(R") andg € D(IR"), define theconvolution producy = g by

U*mu»=]mfwmw—yﬁw= Wf@—ywwﬂyzw*ﬁ@&
(b) We define thenollified functionf, of f by

Je= [ xhe.
Note that

£ = [he == [ hlo- i@ (16.2)
Rn U< (z)
Roughly speakingf.(x) is the mean value of in thes-neighborhood of:. If f is continuous

atz, thenf.(zy) = f(&) for somet € U.(xy). This follows from Proposition5.18.
In particular letf = xp the characteristic

function of the interva[l, 2|. The mollification
f- looks as follows

(0, z<1-—¢
*, l—e<z<1+e,
fe() =K1, l14+e<z<2—c¢,
‘ *, 2—e<r<2+4c¢,
1-¢ 1 1+¢ 2—-¢ 2 2+¢ \0’ 2+z—:<x,
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wherex denotes a value betweérand1.

Remarks 16.2 (a) Forf € L}(R"), f. € C*(R"),

(b) f. — finLY(R") ase — 0.

(c) Co(R™) < LYR") is dense (with respect to the'-norm). In other words, for any
f € L'(R") ande > 0 there existg € C(IR") with supp g is compactandy,,, | f — ¢ | dz <e.

(Sketch of Proof). (A) Any integrable function can be appnoated by integrable
functions with compact support. This follows from Exan{gieal

(B) Any integrable function with compact support can be agpnated by sim-
ple functions (which are finite linear combinations of cludeaistic functions) with
compact support.

(C) Any characteristic function with compact support campproximated by char-
acteristic functiong where( is a finite union of boxes.

(D) Any xo where( is a closed box can be approximated by a sequghaoaf
continuous functions with compact support:

fn(x) = max{0,nd(x,Q)}, n €N,

whered(z, )) denotes the distance af from ). Note thatf, is 1 in @ and0
outsidel; /,(Q).

(d) C5°(R™) c LY(R") is dense.
(b) Convergence inD
Notations. Forr € R™ anda € Nj (a multi-index),a = (aq, . . ., a,) we write

la|=a1 +as+ -+ ay,

al =aq! ol
l,a — xil)élx32 .. .l,gn7
ol
D%u(x) = w()

©Oxt - Qwon
Itis clear thatD(R") is a linear space. We shall introduce an appropriate nofioarovergence.

Definition 16.3 A sequencéy, (z)) of functions of D(R™) convergego ¢ € D(R") if there
exists a compact séf C R" such that

(@) supp ¢, C K foralln € N and

(b)

D%p,, = D“p, uniformly on K for all multi-indicesa .

We denote this type of convergencegb),y? ®.
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Example 16.2 Let ¢ € D be a fixed test function and consider the sequépgér)) given by
€)) <@> This sequence converges@an D sincesupp ¢, = supp ¢ for all n and the
n

convergence is uniform for all € R™ (in fact, it suffices to consider € supp ).

. The sequence does not convergd) tm D since the supportsupp (p,) =
nsupp (), n € N, are not in any common compact subset.

(c) (M) has no limit ify # 0, see homework 49.2.
n

Note thatD(RR™) is not a metric space, more precisely, there is no metri®0R") such that
the metric convergence and the above convergence coincide.

16.2 The DistributionsD’(IR")

Definition 16.4 A distribution (generalized function) is a continuous linear functionaltioe
spaceD(R™) of test functions.

Here, a linear functiond’ on D is said to becontinuousf and only if for all sequencegp,,),
©n, p € D, with ¢, - pwe have(T', p,) — (T, ¢) in C.

The set of distributions is denoted BY(IR™) or simply byD’".

The evaluation of a distributiof € D’ on a test functionp € D is denoted byT", ¢). Two
distributions?; and75; are equal if and only ifT; , ¢) = (T, ¢) forall ¢ € D.

Remark 16.3 (Characterization of continuity.) (a) A linear functionall’ on D(RR™) is con-
tinuous if and only ifp, - 0 implies(T", ¢,) — 0 in C. Indeed,T" continuous, trivially
implies the above statement. Suppose now, mat? . Then(yp, — ¢) - 0; thus
(T, o, — @) — 0asn — oo. SinceT is linear, this showsT", ¢,) — (T, ) andT is
continuous.

(b) A linear functionall’ on D is continuous if and only if for all compact seksS there exist a
constantC > 0 and! € Z. such that for all

(T,)|<C sup |D%(x)|, VeeD with suppy C K. (16.3)
zeK, |a|<l

We show that the criteriofi.{I18.3) in implies continuity Bf Indeed, lety - 0. Then there
exists compact subséf C R" such thatupp ¢, C K for all n. By the criterion, there is a
C >0andan € Z, with | (T, ¢,,) | < Csup | D%, (zx) |, where the supremum is taken over
all x € K and multiindicesy with |a| < [. SinceD%yp,, = 0 on K for all «, we particularly
havesup | D%p,, () | — 0 asn — oo. This showsT', ¢,,) — 0 andT'is continuous.
For the proof of the converse direction, see [Tri92, p. 52]

16.2.1 Regular Distributions

A large subclass of distributions @)’ is given by ordinary functions via the correspondence
f < Ty given by(T;, ¢) = / f(z)e(z) dz. We are looking for a class which is as large as
R
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possible.

Definition 16.5 Let {2 be an open subset @". A function f(x) on (2 is said to bdocally
integrableover (2 if f(z) is integrable over every compact subset_ (2; we write in this case
feli ().

loc
Remark 16.4 The following are equivalent:

(@) f € Lio(R").

loc
(b) ForanyR >0, f € L (Ug(0)).
(c) For anyz, € R" there existg > 0 such thatf € L'(U.(x)).

Lemma 16.1 If f is locally integrablef € L}, (£2), T} is a distribution,T; € D'(2).

A distribution?” which is of the forn¥” = T, with some locally integrable functiofiis called
regular

Proof. First, T is linear functional oriD since integration is a linear operation. Secondly, if
L 0, then there exists a compact détwith supp ¢,, C K for all m. We have the

following estimate:

f(@)em () dz

\ < sup | inla) | [ 17| o= Csup ()]
Rn zeK K rxeK

whereC' = [, | f| dz exists sincef € Lj .. The expression on the right tends)tsincey,, ()
uniformly tends t®. Hence(7y , ¢,,) — 0 andT} belongs tdD’. »

Example 16.3 () C(£2) C LL (), L} (2) C L\ (92).
(b) f(z) = % is in L _((0,1)); however,f ¢ L'((0,1)) and f ¢ L _(R) since f is not
integrable ovef—1, 1].

Lemma 16.2 (Du Bois—Reymond, Fund. Lemma of the Calculus ofafiation) Let 2 C
R™ be a region. Suppose théte Li. (R") and (T}, ¢) = 0 for all ¢ € D(£2).

Thenf = 0 almost everywhere if.

Proof. For simplicity we consider the case= 1, {2 = (—m, 7). Fixe with 0 < ¢ < 7. Let
on(x) = e h(x),n € Z. Thensupp p, C [—m, . Since bothe® andh. areC*>-functions,
vn € D(£2) and

cn = (Tt , @n) = / f(z)e ™ h (x)dx =0, n€Z;
and all Fourier coefficients of h. € L?[—m, 7] vanish. From TheoremI3113 (b) it follows that

fh.is 0 in L?(—m, 7). By Propositiof IZ16 it follows thafh. is 0 a.e. in(—x, 7). Since
he >0on(—m, ), f =0a.e. on—m,m). m
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Remark 16.5 The previous lemma shows,fif andf; are locally integrable anél;, = 77, then
f1 = f, a.e.; that is, the correspondence is one-to-one. In thisveagan identifyl.] .(R") C
D’'(R™) the locally integrable functions as a subspace of the Hisgigns.

16.2.2 Other Examples of Distributions

Definition 16.6 Every non-regular distribution is calleihgular. The most important example
of singular distribution is thé-distribution, defined by

<5a7 410> = (,0((1), a < Rn, Y2 - D.

It is immediate thab, is a linear functional orD. Suppose thap, - 0 theny,(z) — 0

pointwise. HenceJ,(¢,) = ¢.(a) — 0; the functional is continuous o and therefore a
distribution. We will also use the notatiatiz — a) in place ofé, andd or §(z) in place of,.

Proofthat ¢, is smgular If 6, e @’Were regular there would exist a functigre L] _such that
b, = Ty, thatisp(a) = [L. f( x) dx. First proof. Let 2 C R" be an open such thatg (2.
Let p € D(92), that is,supp ¢ c Q In particulary(a) = 0. Thatis, [, f(2)¢(z) dz = 0 for

all o € D(£2). By Du Bois-Reymond’s Lemmg, = 0 a.e. in{2. Since(2 was arbitrary,f = 0
a.e. inR"\{a} and thereforef = 0 a.e. inR". It follows thatT; = 0 in D’(R™), however
0, # 0 —a contradiction.

Second Proof for, = 0. Sincef € L. _there exists > 0 such that

loc

d:= /6(0)|f(x)| dz < 1.

Putting ¢(x) = h(x/e) with the bump functionh we havesuppy = U.(0) and
SUpern | () | = ¢(0) > 0 such that
f(@)o(x)dz | < sup|p(z)] | f(2) | dz = ¢(0)d < ¢(0).
R~ U= (0)
This contradicts [, f(z)¢(z) dz | = [¢(0) | = ¢(0).

In the same way one can show that the assignment
(T, p) =D%(a), a€R", €D

defines an element @’ which is singular.
The distribution

(T,¢)=| [f@)D%(x)dz, fE€ Ly,
Rn
may be regular or singular which depends on the propertig¢s of

Locally integrable functions as well as describe mass, force, or charge densities. That is why
L. Schwartz named the generalized functions “distribigion
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16.2.3 Convergence and Limits of Distributions

I functions.

loc

There are a lot of possibilities to approximate the distrdud by a sequence df

Definition 16.7 A sequenceT,,), T,, € D'(R"), is said to beconvergento 7" € D’(R") if and
only if for all ¢ € D(R")
lim T,,(p) = T(p)-

Similarly, letT., ¢ > 0, be a family of distributions irD’, we say thatim. .7, = T if
lim. o 7T.(¢) = T(p) forall p € D.

Note thatD’(IR") with the above notion of convergence is complete, See [Wal029].

Example 16.4 Let f(z) = ix;_1y and f. = 1f (%) be the scaling off. Note thatf. =
1/(2¢)X[-c,)- We will show thtf. — ¢ in D'(R ) Indeed, forp € D(R), by the Mean Value
Theorem of integration,

Th(0) = 5 [ xeeawdo = oo [ pla)de = 3-200€) = 0l6), €€z
for some¢. Sinceyp is continuous ab, ¢ () tends top(0) ase — 0 such that

lim Ty (¢) = ¢(0) = 5(¢).

e—0
This proves the calaim.

The following lemma generalizes this example.

Lemma 16.3 Suppose thaf € L'(R) with [, f(z)dz = 1. Fore > 0 define the scaled

functionf.(z) = 17 (2).
Then lim 7y =4din D'(R).

e—0+0

Proof. By the change of variable theorerfy, f.(x) dz = 1 for all ¢ > 0. To prove the claim we
have to show that for alp € D

/fa z)dz — ¢(0) = /]ng(x)gp(O) dz ase — 0

or, equivalently,

—¢(0)) d

Using the new coordinatgwith = = ¢y, dr = ¢ dy the above integral equals

— 0, ase — 0.

—¢(0))dy |

| renteten — o) ay ] -

Sincey is continuous a0, for every fixedy, the family of functions¢(cy) — ¢(0)) tends to
0 ase — 0. Hence, the family of functions.(y) = f(y)(¢(cy) — ¢(0)) pointwise tends to
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0. Further,g. has an integrable upper bourd; | f |, whereC' = sup | p(x) |. By Lebesgue’s
zeR
theorem about the dominated convergence, the limit of ttegrals i50:

tim [ 1)1 1¢(e) = 0) | dy = [ |0 T () = 0(0)] dy =0,

This proves the claim. n

The following sequences of locally integrable functionpraximates ass — 0.

| 1 e

felz) = mQ sin” —, felw) = — = (16.4)
x? 1
f5($> 28\/_6 4527 fg(l’)zgsmg

The first three functions satisfy the assumptions of the Lenthre last one not sinde™* | is
not in L*(R). Later we will see that the above lemma even holdf7f f(z)daz = 1 as an
improper Riemann integral.

16.2.4 The distribution & 2

Since the function% is not locally integrable in a neighborhood of 1/z is not a regular
distribution. However, we can define a substitute that ddegwith1/z for all = # 0.

Recall that theprincipal value(or Cauchy mean value) of an improper Riemann integral is
defined as follows. Suppogéx) has a singularity at € [a, b] then

o f gt ([ [ )

For exampIefo oz =0,n€N.
Forp € D define

o | ([ )22

ThenF is obviously linear. We have to show, thaty) is finite and continuous ofy. Suppose
thatsupp ¢ C [—R, R]. Define the auxiliary function

<p(9f»‘)—sz>(0)7 x40
©'(0), z=0.

Sincey is differentiable ab, ¢ € C(R). Sincel/z is odd, [*_ dz/z = 0 and we get

ol )

() =
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Sincey is continuous, the above integral exists.
We now prove continuity of’. By Taylor’s theoremy(z) = ¢(0) + z¢'(&,) for some valug,,

betweenr and0. Therefore
e—0 33'

hi%(/ /) ¢(0) +w(§x) ’

g/ |¢'(€,) | dz < 2Rsup| @'(x)] .

zeR

| F(¢

This shows that the conditioh{1$.3) in Remlark16.3 is satisfiithC' = 2R and! = 1 such
that 7' is a continuous linear functional d(R), F' € D’(R). We denote this distribution by

P L
In quantum physics one needs the so called Sokhotsky’s fasniWla72, p.76]
lim ! - = —Wié(x)+91,
e—04+0 x + €1 x

lim -
e—0+0 ¢ — €1

1
= mid(x) + &£ —.
T

Idea of proof: Show the sum and the difference of the abovaditas instead.

2 1 —2i
lim — 0 =29 > lim — = 2ris.
e—0+0 12 4 £2 T e—040 12 + 2

The second limit follows fron{{1614).

16.2.5 Operation with Distributions

The distributions are distinguished by the fact that in meadgulations they are much easier to
handle than functions. For this purpose it is necessary fineleperations on the s&’. We
already know how to add distributions and how to multiplyrtheith complex numbers since
D’ is a linear space. Our guiding principle to define multigiiea, derivatives, tensor prod-
ucts, convolution, Fourier transform is always the same:rdégular distributions, i.e. locally
integrable functions, we want to recover the old well-knavperation.

(a) Multiplication

There is no notion of a produdf, 75 of distributions. However, we can defirel’ = T'a,
T € D'(R"™), a € C*(R™). What happens in case of a regular distributior- 7;?

(aTy, @) = /n a(x) f(x)p(r) dr = - f(@)a(z)p(r)de = (Tf, a ). (16.5)

Obviously,ap € D(R™) sincea € C>*(R™) andy has compact support; thusy has compact
support, too. Hence, the right hand side[0f (16.5) defineseatifunctional orD(RR"™). We
have to show continuity. Suppose that - 0 thenayp,, - 0. Then(T, ap,) — 0 sinceT

iS continuous.
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Definition 16.8 Fora € C>*(R"™) andT" € D’(R"™) we defineaT € D'(R™) by
(oI, @) =(T', ap)
and callaT' the productof ¢ andT'.

Example 16.5 (a) 2% 1 = 1. Indeed, forp € D(R"),

<x@%,gp>z<@%,x@(m)>:\/p/oo xwix) dxz/ﬂ{go(a:)dx:(l,@).

— 00

(b) If f(xz) € C*(R™) then

(f(2)0a, @) = (0a, [(x)p(z)) = fla)pla) = f(a) (ba, @) -

This showsf (x)d, = f(a)d,.
(c) Note that multiplication of distribution is no longersagiative:

o-x @1:0.91:0, 0 x@l =0-1=09.
(
T (b) T T /) (a)

(b) Differentiation

Considern = 1. Suppose thaf € L. is continuously differentiable. Suppose further that

loc

v € D with supp ¢ C (—a, a) such thatp(—a) = ¢(a) = 0. We want to defing¢7’;)’ to beT}..
Using integration by parts we find

Tpooh= [ P = s@el, - [ e i
—— [ s@e @ = (15, ¢).

where we used that(—a) = ¢(a) = 0. Hence, it makes sense to defif¥e , ¢) = — (T}, ¢').
This can easily be generalized to arbitrary partial deikreatD7.

Definition 16.9 ForT € D’(R") and a multi-indexx € Ny defineD*T € D'(R") by
<DaT7 90> = (_1)|a| <T7 Da(ﬁ)'

We have to make sure that*T is indeed a distribution. The linearity @*7" is obvious. To
prove continuity letp,, 7 0. By definition, this impliesD%yp,, - 0. SinceT is continuous,
(', D*p,) — 0. This shows(D*T', ¢,,) — 0; henceD*T is a continuous linear functional
onD.

Note, that exactly the fadd*T" € D’ needs the complicated looking notion of convergence in
D, D*p,, — D“p. Further, a distribution has partial derivatives of all ensl
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Lemma 16.4 Leta € C>*(R"™) andT € D’(R"). Then
(a) DifferentiationD*: D’ — D’ is continuous ifD’, that is,T,, — T in D’ implies D*T,, —
DT inD’.
(b)
0 oa oT
T) = T
8IL‘Z‘ <a ) 8ZL‘Z ta 8ZL‘Z ’

(c) For any two multi-indicesy and

i=1,...,n (productrule)

DT = D*(DPT) = D*(D*T) (Schwarz’s Lemma)

Proof. (a) Suppose that, — 7' in D', that is(7,,, ©) — (T, ¢) for all v € D. In particular,
for¢ = D%p, p € D, we get

(_1)\04\ <DaTn7 90> = <Tn> Da@> - <T> Da@> = (_1)|a| <DaT> 4:0>'

Since this holds for alp € D, the assertion follows.
(b) This follows from

() ()~ )
= — (T, a, (z)p) — <T, a§£> = —(a, T, ¢) - <GT’ 3—;>
= — (T, ¢) + < o (aT) so> - <—%T+ 32, 0T *0>'

“Cancelling” ¢ on both sides proves the claim.
(c) The easy proof usd3* Py = D*(DFyp) for p € D. »

Example 16.6 (a) Leta € R™, f € L. .(R"), » € D. Then
(D%, @) = (=1)1*1 (6, D*¢) = (=1)!*IDp(a)

(Df , ) = (=1)l* [ fDYpdx.

R”

(b) Recall that the so-calladeaviside functior () is defined as the characteristic function of
the half-line(0, +00). We compute its derivative ifv’:

(T, p(x)) = — /RH(:L")@’(:U) dov = — /OOO p(x) dz = —p(2)]g" = (0) = (0, ¥) .

This showsly, = 4.

h f(x) (c) More generally, letf(z) be differentiable onG =
| R\{c} = (—o0,c) U (¢, 00) with a discontinuity of the

a first kind atc.
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The derivative off; in D' is
Ty =Ty + hd., where h= f(c+0)— f(c—0),
is the difference between the right-handed and left-hatidets of [ atc. Indeed, forp € D

we have
(T}, o) = (— | -] °°) F@)g' () do
— —f(c— 0)p(e) + f(c+0)p /f

= ((f(c+0) = f(c=0))0e+ Tpay, )
= <h50 —I—Tf/, <,D>.
(d) We prove thaff (z) = log | z | is in L. .(R) (see homework 50.4, and 51.5) and compute its
derivative inD’(RR).
Proof. Since f(z) is continuous oriR \ {0}, the only critical point is0. Since the integral
(improper Riemann or Lebesgug) log z dz = — [”_ ¢ dt = —1 existsf is locally integrable
at0 and therefore defines a regular distribution. We will shoat fi(z) = 27 1. We use the

factthat/” = ["~ + [*_+ [ for all positivee > 0. Also, the limite — 0 of the right hand
side gives th@{fooo. By definition of the derivative,

(log'| 2|, p(x)) = = (log| x| , ¢'(x)) = /_Oo log|z| ¢'(x)dw

(2o oo [ i)

Since’ [Ylog || ¢/ (x)dx ’ < oo, the middle integral”_log | 2| ¢'(z) dz tends ta) ass — 0
(Apply Lebesgue’s theorem to the family of functiongz) = x[_. (z)log| x| ¢'(x) which
pointwise tends t® and is dominated by the integrable functiog | = | ¢’'(z)). We consider
the third integral. Integration by parts apd+occ) = 0 gives

/ log z ¢'(x) dz = log z ¢(z)| —/ @ dr = logep(e) —/ @ dx.
Similarly,

o0 oox

The sum of the first two (non-integral) terms tend$ s — 0 sincec loge — 0. Indeed,

p(e) — p(—¢)
2¢e

o[ )5 (o2

loge p(e) —loge p(—¢) =loge 2 — 2 lirr(l)glogé ©'(0) = 0.

Hence,
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(c) Convergence and Fourier Series

Lemma 16.5 Suppose thdtf,,) converges locally uniformly to some functiprthatis, f,, = f
uniformly on every compact set; assume further thats locally integrable for alln, f,, €
L%OC(]Rn)'

(@) Thenf € L. (R™) andT}, — Ty in D'(R™).

loc

(b) DTy, — DTy in D'(R") for all multi-indicesa.

Proof. (a) Let K be a compact subset &, we will show thatf € L'(K). Sincef, converge
uniformly on K to 0, by Theoreril8l§ is integrable andim,, . [, f,(z) dz = [, f dz. such
thatf € LL (R™).

We show thatl’;,, — 7 in D'. Indeed, for anyp € D with compact supporf, again by
Theorenl &k and uniform convergencefgf on K,

lim T, (¢) = lim [ fu(0)p(z)de
K

n—~o0 n—oo

— [ (tm 1) plo) do = [ Fla)ote)de = Ty(e)

K K

we are allowed to exchange limit and integration sifigx)(z)) uniformly converges ofi’.

Since this is true for alp € D, it follows thatT;, — T.

(b) By LemmdIEM (a), differentiation is a continuous ofierain D’. ThusD*Ty, — D*T}.
|

Example 16.7 (a) Suppose that, b > 0 andm € N are given such that,, | < a|n|" + b for
all n € 7Z. Then the Fourier series
cheinx’

nez
converges irD’(R).
First consider the series
m-+2
CoT Cn, :
—+ ——— e (16.6)
(m+2)! nEZZ,n;'fO (ni)m+2
By assumption,
Cn e Cn aln|™+b a
—Q - € = .
(ni)m+2 (ni)m+2 (™ T nf?

Since)_, ., nL‘Q < oo, the series[(1616) converges uniformly Brby the criterion of Weier-

stra (Theoreiln@.2). By LemrmaT6.5, the selies16.6) cgegend’, too and can be differ-
entiated term-by-term. Then + 2)*¢ derivative of [I65) is exactly the given Fourier series.

12 ~ The2r-periodic functionf(z) = 5 — 32, = €

[0,27) has discontinuities of the first kind at

HY" \ \ 2rn, n € 7; the jump has height since

FO+0)—f0-0)=5+1=1

P

-1/2



432 16 Distributions

Therefore inD’

The Fourier series of () is

n#0
Note thatf and the Fourier serigson the right are equal ih?(0, 27). Henceffr | f—g|*=0.
This impliesf = g a.e. on[0, 2r]; moreoverf = g a.e. onR. Thusf = gin L] _(R) and f
coincides withg in D’'(R).

1 1 inx H /
f(x):%%ge in D'(R).

By LemmdI&.b the series can be differentiated elementwis® @rbitrary order. Applying
ExampldI&)6 we obtain:

/ ]- o o i inx H /
f(a:)%—%—Zé(x—Qﬂn)—%TZe in D'(R).
neL neZ
(b) A solution ofz™u(z) = 0in D" is

m—1
u(z) = Z 0™ (z), ¢, € C.
n=0
Since for everyp € D andn =0, ..., m — 1 we have

(am6M (), ) = (=1)" (5, (z"p(2))™) = (z™ ()™ _, = 0;
thus, the given: satisfiest™u = 0. One can show, that this is the general solution,lsee [Wla72,
p. 84].
(c) The general solution of the ODE™ = 0 in D’ is a polynomial of degree: — 1.
Proof. We only prove that/ = 0 impliesu = c in D’. The general statement follows by
induction onm.
Suppose that’ = 0. That is, for ally € D we haved = (u', ¥) = — (u, ¢’). In particular,
for p, v1 € D we have

b(x) = / " (o) — i (1) dt. where =1, ).

belongs toD since bothy and ¢; do; ¢, plays an auxiliary role. Sincéu, ¢/') = 0 and
V' = — I p; we obtain
0= <U, 1/}/> = <U, ()0_()01[> = <u7 ()0> - <u7 ()01> <17 90>
= <U, 90> - <1 <U, 901> ) ()0>
:<u—1<u,gp1> ) ()0>:<u_01790>7

wherec = (u, ¢1). Since this is true for all test functiopse D(R"), we obtain) = u — c or
u = ¢ which proves the assertion. [ ]
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16.3 Tensor Product and Convolution Product

16.3.1 The Support of a Distribution

Let T € D’ be a distribution. We say thdt vanishes atr, if there existse > 0 such that
(T', ¢) = 0 for all functionsy € D with suppp C U.(zo). Similarly, we say that two
distributions7; and7; are equal atry, T (xo) = Ta(zo), if 77 — T3 vanishes at,. Note that
T, =Ty ifand only if 77 = T5, ata € R™ for all pointsa € R™.

Definition 16.10 Let 7" € D’ be a distribution. Theupportof 7', denoted byupp 7', is the set
of all pointsz such thafl” does not vanish at, that is

suppT ={z| Ve >0 ¢ € D(U(x)): (T, ¢) # 0}.

Remarks 16.6 (a) If f is continuous, thesupp Ty = supp f; for an arbitrary locally integrable
function we have, in generalpp 7y C supp f. The support of a distribution is closed. Its
complement is the largest open subSedf R" such thatl'[ . = 0.

(b) supp 0, = {a}, thatis,é, vanishes at all points# a. supp Ty = [0, +00), supp Ty, = .

16.3.2 Tensor Products

(a) Tensor product of Functions

Let f: R" — C, g: R™ — C be functions. Then thtensor productf ® ¢g: R — C is
defined viaf®g(z,y) = f(x)g(y),z € R",y € R™.

If ¢ € DR") andvyy, € DR™), k = 1,...,r, we call the functionp(z,y) =
> 1 er(2)Yr(y) which is defined ofR"*™ thetensor producof the functionsp,, andyy. Itis
denoted by) ", vr ®1)y. The set of such tensols;, _, ¢ ® v is denoted byD(R™) ® D(R™).
Itis a linear space.

Note first that under the above assumptionsgrandz;, the tensor producp = >, v ®
P € C*(R™™). Let K; € R™ and K, C R™ denote the common compact supports of
the families{yx} and{yy}, respectively. Therupp ¢ C K; x K,. Since bothk; and K,
are compact, its produdk; x K, is agian compact. Hences(z,y) € D(R™™). Thus,
D(R") @ D(R™) c D(R™™). Moreover,D(R") @ D(R™) is a dense subspaceIR" ™).
That s, for anyy € D(R™*™) there exist positive integerg € N and test function&,ﬁm), w,im)
such that

T'm

Zw,&m) ® w,ﬁm’ — " asm— oo
1=1

(b) Tensor Product of Distributions

Definition 16.11 Let 7" € D'(R™) andS € D’(IR™) be two distributions. Then there exists a
unique distributionF € D’(R™*™) such that for allp € D(RR") andy € D(R™)

Fle®@v) =T()S(1).
This distributionF' is denoted byl’ ® S.
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Indeed, T ® S is linear on D(R™) ® D(R™) such that(T' @ S)(> ., ¢x @ tx) =
> i1 T(¢r)S(¢y). By continuity it is extended fronD(R") @ D(R"™) to D(R""™). For
example, ifa € R", b € R™ thend, ® 6, = d(4,p). Indeed, forp € D(R™) andy € D(R™) we
have

(02 @ ) (¢ ® ¥) = () (b) = (p @ P)(a;b) = dap)(p @ D).
Lemma 16.6 Let FF = T' ® S be the unique distribution i®’(R"*™) whereT € D(R") and

S e D(R™) andn(z,y) € D(R™™).
Thenp(z) = (S(y), n(x,y)) isin D(R™), ¥(y) = (T'(x), n(z,y)) isin D(R™) and we have

<(T®S)> 77) - <S> <T> 77>> = <T’ <S’ 77))
For the proof, seé¢ [Wla72, 11.7].

Example 16.8 (a) Regular DistributionsLet f € L} (R™) andg € L (R™). Thenf ® g €
Ll

oo (R™™) andTy @ T, = Tsg,. INdeed, by Fubini's theorem, for test functiopsindy> one
has

(T ®T,), o @) = Ty, @) (T, ) = / f(@)p(x) da / 9 ()(y) dy

m

_ / F(2)9(y) p(@)i(y) dady = (Trgg , ¢ ® ).

]Rn+m

(b) (62, ® T', m) = (T, n(z0,y)). Indeed,

(020 @ T, (2)U(y)) = (0ay , 0(2)) (T, ¥) = @(0) (T, ¥(y)) = (T, (x0)b(y)) -
In particular,
(0o @ Ty)(n) = / 9(y)n(a,y) dy.

m

(c) For anya € N¢, 5 € N*,
DT @ S) = (DST) @ (D)S) = D’((D°T) ®@ S) = D*(T @ D"S).
Idea of proof in case = m = 1. Letp, v € D(R). Then

0

S T80 =85 (5 o)

= —(T®9) (¢ @) =—=T(L)S() =T'(p)S(¥)
=(T"® S)(p @)

16.3.3 Convolution Product

Motivation: Knowing the fundamental solutiaf of a linear differential operatof, that is
L(€) = 4, one can immediately has the solution of the equafiplj = f for an arbitrary

f, namelyu = € * f where thex is the convolution product already defined for functions in
Definition[I6.2.
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(a) Convolution Product of Functions

The main problem with convolutions is: we run into troublewthe support. Even in case that
f andg are locally integrablef x g need not to be a locally integrable function. However, there
are three cases where all is fine:

1. One of the two functiong or g has compact support.

2. Both functions have support |, +00).

3. Both functions are if.'(R).

In the last caséf = g)(z) = [ f(y y) dy is again integrable. The convolution product is
a commutative and assomatwe operatloribfiR”).

(b) Convolution Product of Distributions

Let us consider the case of regular distributions. Supdusdttf, g, f * g € L}
As usual we want to havg; « T, = Tt,,. Lety € D(R"),

<Tf*g,so>=/<f*g dx—//f )i (2) dady

= / / fW)g)e(y +t) dy dt = Trey(P), (16.7)

(R™).

loc

wherep(y, t) = p(y + ).
There are two problems: (a) in genegals not
a test function since it has unbounded support

y in R?". Indeed,(y,t) € supppif y +t=c €
7 //% supp ¢, which is a family of parallel lines form-
o /// SUPPG (x-+y) ing an unbounded strip. (b) the integral does not
%/ %/ exist. We overcome the second problem if we

impose the condition that the set

K, ={(y,t) € R2" | y € supp Ty, t € supp Ty,
y+1t € supp g}

is bounded for any € D(R"); then the inte-
gral (I&¥) makes sense.

We want to solve the problem (a) by “cutting Define
Trg(p) = lim (T © T,) (0 (y + ey, ).

wherern, — 1 ask — oo andn, € D(R?"). Such a sequence exists; igy, t) € D(R*)

n—~oo

with n(y, t) = Lfor [ly[|*+[/¢]* < 1. Putni(y, 1) = n (£, £), k € N. Thenlimy . ni(y, 1) = 1
for all (y,t) € R*.
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Definition 16.12 LetT', S € D'(R") be distributions and assume that for everg D(R") the
set
K,:={(z,y) € R* |z +y €suppyp, z € suppT, y € supp S}

is bounded. Define
(TS, ¢)=lm (T&S, p(x+y)m,y)). (16.8)
T x S is called theconvolution producof the distributionsS andT'.

Remark 16.7 (a) The sequencE{1®.8) becomes stationary for lagech that the limit exists.
Indeed, for fixedp, the setk,, is bounded, hence there exigtse N such that),(x,y) = 1 for
allz,y € K, and allk > k,. Thatisy(z + y)n(x, y) does not change far > k.

(b) The limit is a distribution irftD’(R")

(c) The limit does not depend on the special choice of the exacp),, .

Remarks 16.8 (Properties)(a) If S or T' has compact support, théh« S exists. Indeed,
suppose thatupp 7" is compact. Them + y € supp ¢ andx € supp 7 imply y € supp ¢ —
supp T = {y1 — y2 | 11 € supp ¢, y2 € suppT'}. Hence(z,y) € K, implies

G, )| < llzll + lyll < Nzl + vl + [lyell < 2C+ D

if suppT” C Ue(0) andsupp ¢ C Up(0). Thatis, K, is bounded.
(b) If S T exists, sodoe¥ «x SandS «T =T x S.
(c) If T S exists, so dd*T « S, T « D*S, D*(T * S) and they coincide:

D*(T % S) = DTS =T % D*S.
Proof. For simplicity letn = 1 andD* = .. Suppose thap € D(RR) then

(S*T), p)=—(S+T,¢) == lim (ST, ¢'(z +y) n(z,y))

k—oo

= — lim <S®T, a% (e(@ + y)m(z, y)) —w($+y)%>

k—o00

0
:I}g&(S’@T,w(x+y)nk(w>y)>—,}£§o<5®T"P(‘“Ly) % >
=~

=0 for largek
=(S"xT, ¢)

The proof of the second equality uses commutativity of thevotution product. n

(d) If supp S is compact and> € D(R") such that)(y) = 1 in a neighborhood ofupp S.
Then

(T 5)(p) =(T®S, plx+y)v(y), VeeDR").

(e) If Ty, T, T3 € D'(R™) all have compact support, th&h « (15 « T3) and (7} x Ty) = T3 exist
andT1 * (T2 * Tg) = (Tl * TQ) * Tg.
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16.3.4 Linear Change of Variables

Suppose thay = Az + b is a regular, linear change of variables; thatdss a regulam x n
matrix. As usual, consider first the case of a regular distidim f(z). Let f(z) = f(Az + b)
withy = Az + b,z = A~ (y — b), dy = det Adx. Then

(Fa). o@) = [ e+ D)ga)do

1
/f b))m dy

\detA\ <f (Ail(y_b>>>'

Definition 16.13 Let 7" € D’(R"), A a regularn x n-matrix andb € R". ThenT'(Ax + b)
denotes the distribution

(T(Az +b), ¢(2)) = —

[det 4] (T(y), p(A™ (y = 1))).

Forexample]'(z) =T, (T(x — a), p(x)) = (T, p(z + a)), in particular,d(z — a) = d,.

(0(x =), ¢(x)) = (0(x), p(z + b)) = ¢(0+b) = p(b) = (%, ¥) -

Example 16.9(a)d xS = S+ 6 = S forall S € D’. The existence is clear sinééas compact
support.

((0%5), p) = lim (6(z) @ S(y), p(z +y)nk(z,y))

k—o0

= lim (S(y), ¢(v)m(0,y)) = (S, ¥)
(b) 0, * S = S(z — a). Indeed,
(0 % S)(p) = lim (30 @ 5, p(x +y)k(, y))
= lim {S(y), p(a+y)m(a.y)) = (), pla+y)) = (Sy—a). ¥).

Inparticulard, * 6, = 044p-
(c) Letp € Li,.(R™) andsupp 7 is compact.

Casen =2 f(z) = log = o € Lioc(R?). We call

Casen >3 f(x) =

Viz) = (o* f)(z //W log dey

surface potential with density.

—— e LL _(R"). We call

loc

ﬁdy

1
Viz) = (ox f)(z) = /n o) |z -yl

vector potential with density.

(d) Fora > 0 andz € R put f,(z) = ﬁme_ﬁ. Thenfo+ fo = f sz
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16.3.5 Fundamental Solutions

Suppose thak[u] is a linear differential operator dR",

Llu] = Z co(x) D%,

lo|<k

wherec, € C*(R").

Definition 16.14 A distribution& € D’(R™) is said to be dundamental solutioof the differ-
ential operatot. if
L(&)=04.

Note that€ € D’(R™) need not to be unique. Itis a general result due to Malgrandé&aren-
preis (1952) that any linear partial differential operatoth constant coefficiengsossesses a
fundamental solution.

(a) ODE

We start with an example from the theory of ordinary difféi@nequations. Recall thal =
X(0,+00) denotes the Heaviside function.

Lemma 16.7 Suppose thai(t) is a solution of the following initial value problem for thed®&

Liu] = u™ + a;()u™ Y + - 4 a,, (H)u = 0,
u(0) = /'(0) = --- = u"2(0) = 0,
u(mfl)(O) =1.

Thené = Txy ) is a fundamental solution df, that is, it satisfied.(€) = 0.
Proof. Using Leibniz’ rule, ExampleI8.5 (b), and0) = 0 we find
& =6T, + Tiw = u(0)0 + T = Thrur.
Similarly, on has
& =Tyyry. ., &MY =Ty mny,  E™ = Tyom +6(1).
This yields

L(&) = ™ +ay()e™ Y + -+ 4 (D)E(1) = Tugy puny) +0 = To +6 = 0.

Example 16.10 We have the following example of fundamental solutions:

y, +ay = 0, &= TH(m)e_‘“‘;
y// + a2y — O, 8 = TH(:L‘) sinazx .

a
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(b) PDE

Here is the main application of the convolution product: wimg the fundamental solution of
a partial differential operatak one immediately knows a weak solution of the inhomogeneous
equations.(u) = f for f € D'(R™).

Theorem 16.8 Suppose that.[u] = Z co D% is a linear differential operator ifR™ with
lo|<k

constant coefficients,. Suppose further that € D’(R") is a fundamental solution df. Let

f € D'(R™) be a distribution such that the convolution prodict € « f exists.

ThenL(S) = finD'.

In the set of distributions db’ which possess a convolution wigh S is the unique solution of

L(S) =T
Proof. By RemarKZI&1 (b) we have

L(S)= Y cD*(Exf)= > cD*(€)x f=L(E)xf=0%f=].

lo|<k lo|<k

Suppose tha$; andS, are both solutions of(S) = f,i.e. L(S,) = L(S2) = f. Then

51—32:(51—32)*5:(51—52)* Z CGDQEZ

la|<k

| |<k

— (Z caDO‘(Sng)> «x&=(f—f)*&=0. (16.9)

16.4 Fourier Transformation in .(IR™) and .%/(IR"™)

We want to define the Fourier transformation for test funddip as well as for distributions.
The problem witHD(IR") is that its Fourier transformation

Fol§) = an [ e pla) da
R
of ¢ is an entire (analytic) function with real suppdt That is,F¢ does not have compact
support. The only test function i which is analytic isD. To overcome this problem, we
enlarge the space of test functiéh C . in such a way that” becomes invariant under the
Fourier transformatioff (.*¥) C ..

Lemma 16.9 Let o € D(R). Then the Fourier transform(z) = o, [, e *(t) dt is holo-
morphic in the whole complex plane and bounded in any halfigpH, = {z € C | Im(z) <

a}.
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Proof. (a) We show that the complex limitm, .o(g(z + h) — g(2))/h exists for allz € C.
Indeed,

g(Z + h) _ g(Z) — o / e—izte_iht — 1()0(75) dt.
R

h h

Since e—izte_”'%go(t) < Cforall z € supp (¢), h € C, |h| < 1, we can apply Lebesgue’s
Dominated Convergence theorem:

lim 25 F hf)b —9) _ /}R e Jim & ;_ Low) dt = a, / e (—it)o(t) dt = F(—itip(t)).

h—0 h—0 R

(b) Suppose thatm (z) < a. Then

19(2)| < an / e @ | et Gop() dE < v, sup | () | / o' dt,
R K

teK

whereK is a compact set which contaisspp .

16.4.1 The SpaceZ(R")

Definition 16.15 .’(R") is the set of all functiong € C*>(R™) such that for all multi-indices
aandg

Pas(f) = seuﬂgn}xﬂpaf(g;)} < 0.

& is called theSchwartz spacer thespace of rapidly decreasing functions
S(R") ={f € C*(R") | Va,B: Pap(f) < oo}

Roughly speaking, a Schwartz space function is a functienedsing td (together with all its
: I . 1
partial derivatives) faster than any rational functlgﬁ asx — oo. In place ofp, s one can
X

also use the norms
pra() = Y paple), kl€Zy

lo|<k, | BI<L,
to describe” (R™).
The set”(R") is a linear space angl, s are norms on.
For exampleP(z) ¢ . for any non-zero polynomiaP(z); howevereI”I* ¢ .7 (R™).
< (R"™) is an algebra. Indeed, the generalized Leibniz rule engyiég - 1)) < oco. For
example f(z) = p(x)e~* *ttc ¢ > 0, belongs to”(RR) for p is a polynomialg(z) = e~ |*|
is not differentiable af and hence not i’ (RR).

Convergence inY

Definition 16.16 Let p,,, ¢ € .. We say that the sequengg, ) converges in to ¢, abbrevi-
ated byyp,, P if one of the following equivalent conditions is satisfiea &ll multi-indices
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o andg:

Pa,s(@ — on) — 0;

27 D*(p — ,) =3 0, uniformly onRR™;
7 D%, = 2°D%p, uniformly onRR™.

Remarks 16.9 (a) In quantum mechanics one defines plositionand momentum operators
Qkande,k: 1,...,n, by

Dy

(@up)(z) = zrp(@), - (Prp)(z) = =5 =,

respectively. The space’ is invariant under both operato€, and P;; that isz’ D% (z) €

S (R™) forall p € .Z(R™).

(b) (R"™) C LY(R™).

Recall that a rational functio?(z)/Q(x) is integrable ovefl, +co) if and only if Q(x) # 0

for z > 1 anddeg @ > deg P + 2. Indeed,C'/z? is then an integrable upper bound. We want
to find a condition onn such that

/ dx
T, =
re (1+ o]

For, we use that any non-zeroc R™ can uniquely be written as = r y wherer = ||z|| andy
is on the unit spherg™”~!. One can show thadz, dz, - - - dz,,, = r*~!1dr dS wheredS is the
surface element of the unit spheie L. Using this and Fubini’s theorem,

/ / / r*~1drds iy /°° rr—ldr
1+ ||=|)m —i—HxH g1 (L4720 A )

wherew,_; is the(n — 1)-dimensional measure of the unit sphefe’. By the above criterion,
the integral is finite if and only i#m — n 4+ 1 > 1if and only if m > n/2. In particular,

/ dx -
— <
re 1+ [z

In casen = 1 the integral isr.
By the above argument

om dx
[ re@ae= [ 10+ 10™ew)|

dx
< C'poom / _ ¥
= U Po2 (‘P) - ”tzn

(c) D(R") c (R™); indeed, the supremum, () of any test functionp € D(R") is finite
since the supremum of a continuous function over a compads $aite. On the other hand,
D C § sincee 7l is in.# but not inD.

(d) In contrast tdD(IR"), the rapidly decreasing functiong(IR™) form a metric space. Indeed,
< (R™) is a locally convex space, that is a linear spécsuch that the topology is given by a
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set of semi-normg,, separating the elements of, i.e. p,(z) = 0 for all « impliesz = 0.
Any locally convex linear space where the topology is givgralsountableset of semi-norms
is metrizable. Letp,),ex be the defining family of semi-norms. Then

o S 1 pn(99—?/1) ;
(i(%?/f);z—nm, o, eV

defines a metric o’ describing the same topology. (In our case, use Cantortsdi@gonal

method to write the norms,;, k,[ € N, from th array into a sequengg.)

Definition 16.17 Let f(x) € L'(RR"), then theFourier transform¥ f of the functionf(x) is
given by

= f e i€
THO =16 = = [ e
wherez = (z1,...,2,),{ = (&, ..., &), andz - £ = Y7, 2.

Let us abbreviate the normalization factay, = ﬁ Caution, Wladimirow, [[WIa7?2] uses

another convention with*™¢* under the integral and normalization factoin place ofa,,.
Note that¥ f(0) = o, [, f(x) dz.

Example 16.11We calculate the Fourier transformJy of the function
o(z) = e lel7/2 = g=372 4 € R,
(a)n = 1. From complex analysis, LemmaT4.30, we know

22

e 2 e g e 522
ff( ) (&) = \/_ / dr = . (16.10)
(b) Arbitrary n. Thus,

Tol) = 9(6) = an [ e dZ oIS g
= Oén/ H efézi*ixk&c dz, - - - dz,,
" k=1
= H ap, /e%xiixkik day,
ﬁ Y
2
Hence, the Fourier transform of 2** is the function itself. It follows via scaling — cz that

3”(5#) (€)= Leim

C’I’L

N:I»i

Theorem 16.10Lety, ¢y € .(R"). Then we have

(i) F(x®(x)) =il*l D¥(Fy), thatisFeQ, = —PTF, k=1,...,n
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(i) F(Dp(x))(&) =ilvlex (Fp)(€), thatisFoP, = QpeF, k=1,...,n.

(iii) F(¢) € L(R™), moreoverp, ¢ impliesFp,, — Fp, that is, the Fourier transform
F is a continuous linear operator o '

(iv) F(pxv) =, F(p) F(¥).

V) Fp-v) = an F(p) * F(¥)

(Vi)

B 1

~ |det A

whereA is a regularn x n matrix andA~" denotes the transpose df !. In particular,

F(p(Az +1b))(€) ATy (A7TE),

T = (@) (§).
Tpla +D)(E) = € (T0)(©)

Proof. (i) We carry out the proofin case= (1,0,...,0). The general case simply follows.

TN = anar [ Sl

Sincegg (¢77) p(z) = —iz1e 7 p(x) tends td) asz — oo, we can exchange partial differ-

entiation and integration, see ProposifioanIP.23 Hence,

6’%(?@)(0 ——an [ & (o) do = F-impl)(€).

(if) Without loss of generality we again assume= (1,0,...,0). Using integration by parts,
we obtain

7 (o) © = [ @ = [ () plo)aa

axl R» al'l

_ i, / (€78 plo) dr = i€ (F)(E):

(iii) By (i) and (ii) we have for| | < k and| 3| < I

DT <, [ DG [dea [ (el 31D | da

[v[<k

x I+n+1
SCQ/ (1+H H >Z|D7§0(x)|d$

n+1
O T A

< ¢ Sup ((1 + |z > [ D) )
zeR"™

[v[<k

< Ca Prignt1(9).
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This impliesFy € . (R") and, moreove§: . — . being continuous.
(iv) First note thatL!(R") is an algebra with respect to the convolution product where
1 # gl < [1fllee lgll:- Indeed,

I eal = [ Arwglar= [ ([ 15tate =) ay) ao
< [1ro1( [ lata=n1a) a

<llgller [ 1) T dy = [F L Mgl -
R

This in particular shows thatf x g(z) | < oo is finite a.e. onR™. By definition and Fubini’s
theorem we have

Fos)© =an [ [ plyule -y dyds

= anl/ <an/ e’i(“’y)'gw(x — ) dx) ane VEp(y) dy
= a,'FP(&) Fp(¢).

z=x—Y

(v) will be done later, after Propositi@n16]11.
(vi) is straightforward usingA~'(y) , &) = (y, A=7(£)). m

Remark 16.10 Similar properties a§ has the operatdgg which is also defined oh!(R"):

G(€) = H(€) = an / e+ (1) dar

n

Puty_(x) := ¢(—x). Then

So=Fp_ =3F(p) and Fp=Gp_ =G(p).

It is easy to see that (iv) holds f&r, too, that is

S(p 1) = a,'G(0)S(¥).

Proposition 16.11 (Fourier Inversion Formula) The Fourier transformation is a one-to-one
mapping of”(R") onto.”(R™). The inverse Fourier transformation is given §y:

F(Gp) =5TF¢) =p, ¢eL(R").

2,2

Proof. Lety)(z) = e~ 2" and¥(z) = ¢(ex) = e~ 2. Then¥.(z) := FW(z) = %o (£). We
have

ozn/n U (x)dr = ap /]R" é@/} (g) dz = oy, Y(x)dz = (0) = 1.

R
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Further,
;/kp()()d—L ()p(er) dz —r ——z | $(2)p(0) dz = (0)
Noril . (x)p(x x—mn Rn¢f cx)dr = —=n ¢$90 =)

(16.11)

In other words¢,, V. () is ad-sequence.
We compute§(Fp ¥)(x). Using Fubini's theorem we have

(T ) (w) = = n(%)(f)w(f)e”fdf - ( e L PO [ ety apae
1
== | et [ wgacay
- = / o) )y — 1) dy
o \/21_7rn nff![/(z) p(z+x)dz = ﬁ . VU (2)p(z +x)dz

o(x).

—
ase — 0, see[I&N)
On the other hand, by Lebesgue’s dominated convergenceetneo

iy S5 1)(w) = an | FROUO0) e = 0, [ (T E = S(To)a).

n

This proves the first part. The second p&tGy) = ¢ follows from G(p) = F(@), F(¢) =
§(®), and the first part. -

We are now going to complete the proof of Theofem116.10 (v}, IEbp = G, andy) = Gy
with ¢, 1, € .. By (iv) we have

Fle-v) = F(5(p1)5(1h1)) = FlanS(e1 * 1)) = anpr * Y1 = anFp * Fip.
Proposition 16.12 (Fourier—Plancherel formula) For ¢, ¢ € . (R") we have

| evdae= [ 550

In particular, [|¢[| ;2 gy = [1F (@) |2 (g

Proof. First note that

F()(—y) = an / ) V) (z) de = ap / ) e—iry)(z) doe = F() (y). (16.12)
By Theorenfi.I&.T0 (v),
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Remark 16.11 .(R") C L*(R") is dense. Thus, the Fourier transformation has a unique
extension to a unitary operatér: L*(R") — L*(R"). (To a givenf € L? choose a sequence
o, € . converging tof in the L?-norm. Since¥ preserves th&?-norm, ||Fo,, — Fo,|| =

l¢n — @mll @and(p,) is a Cauchy sequence It¥, (Fp,,) is a Cauchy sequence, too; hence it
converges to somg € L2 We defineF(f) = g.)

16.4.2 The Space”’(IR")

Definition 16.18 A tempered distributiorfor slowly increasing distribution) is a continuous
linear functionall” on the space”(R"). The set of all tempered distributions is denoted by
S (R™).

A linear functional? on . (IR™) is continuous if for all sequences, € . with ¢, — 0,

For ¢, € D with ¢, - 0 it follows thaty,, — 0. So, every continuous linear functional

on . (restricted tdD) is continuous orD. Moreover, the mapping . — D', «(T) = T'[p
is injective sincel'(¢) = 0 for all ¢ € D impliesT(v)) = 0 for all v» € . which follows
from D C . is dense and continuity af. Using the injection, we can identify.” with as a
subspace ob’, .’ C D'. That is, every tempered distribution “is” a distribution.

Lemma 16.13 (Characterization of.””) A linear functionall’ defined on#(R") belongs to
<'(R") if and only if there exist non-negative integéraind/ and a positive numbef’ such
that for all ¢ € .(R")

| T(p) | < Cpule),

wherepu(p) = Y pas(e).
|a|<k|81<L,

Remarks 16.12 (a) With the usual identificatiofi < 7'; of functions and regular distributions,
LI(R") € #(R"), L(R") € 7' (R").

(b) L., ¢ .7, for exampleT; ¢ .7'(R), f(z) = ¢, sinceT}(y) is not well-defined for all
Schwartz functiorp, for examplel . <e‘””2> = 4o00.

() If T'e D'(R™) andsupp 7' is compact therd” € .'(R").

(d) Let f(z) be measurable. If there exiSt> 0 andm € N such that

| fx)| <CA+|z]H)™ a.exeR™

ThenT; € .. Indeed, the above estimate and Rerflarkl16.9 imply
(T, o) | = ; fx)p(z)da| < C/R (1 [l [*)™ (1 + [l

dx
< Chomion / B
< Cpoamian(p) . (1+||I||2)n

1
—_—— X dl’
A+ el )

By LemmdIB&IB/ is a tempered regular distributiofi(z) € ..
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Operations on.”

The operations are defined in the same way as in ca®8.ddne has to show that the result is
again in the (smaller) spac€’. If T € .’ then

(@) DT € .« for all multi-indicesa.

(b) f-T € . forall f € C>*(RR"™) such thatD“ f growth at most polynomially at infinity for all
multi-indicesa, (i. e. for all multi-indicesw there exist’,, > 0 andk,, such that D f(z) | <
Call + [|z])*.)

(c) T(Ax + b) € .7’ for any regular reah x n- matrix andb € R".

@) 7T e '(R")andS € . (R™) impliesT @ S € '(R"*™).

(e) LetT € ' (R"), v € #(R"). Define the convolution product

(VT ) =(1z)@T(y)), p(x)p(z +y)), ¢S R

= <T, U(x)p(z +y) dw>
]Rn
Note that this definition coincides with the more general Bigéin[I6.12 since

lim ¢ (z)p(x + y)ne(z,y) = ()p(z +y) € L (R*™).

k—o0

16.4.3 Fourier Transformation in ./ (IR™)

We are following our guiding principle to define the Fouriartsform of a distributiofi” € .#”:
First consider the case of a regular tempered distributitv'e.want to definef(7y) := Ty;.
Suppose thaf(z) € L'(R") is integrable. Then its Fourier transformati@if exists and is a
bounded continuous function:

T | San/

R”

eifmf(x) } dr = o, /]Rn | f(z) ] dz = oy, || T < o0.

By RemarflZI& T2 (d)f f defines a distribution in”’. By Fubini’s theorem

Tsgo )= [ F7E0(00E = [ flaje @) s

R2n

— . f(x)Fo(z)de = (Ty, Fp) .

Hence,(T5;, ¢) = (Tt , Fp). We take this equation as the definition of the Fourier tramsf
mation of a distributior!” € ..

Definition 16.19 ForT" € .’ andy € .# define
(IT, ) = (T, Fp). (16.13)

We call FT the Fourier transformof the distribution?".
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SinceFy € Z(R"™), FT it is well-defined on.”. Further,JF is a linear operator and' a
linear functional, henc87 is again a linear functional. We show th#t is a continuous linear
functional on.”. For, lety, ¢ in .. By TheoreniI&10F v, — Fp. SinceT is
continuous,

(FT, on) = (T, Fpn) — (T, Fp) = (IT, ¢)

which proves continuity.
Lemma 16.14 The Fourier transformatiof: .’/(R") — .’(IR") is a continuous bijection.

Proof. (a) We show continuity (see also homework 53.3). Suppaselth— T in .”’; that is
forallp € .7, (T, , ¢) — (T, ¢). Hence,

(FTn, ) = (Tn, Fp) — (T, Fp) = (IT', )

n—oo

which proves the assertion.
(b) We define a second transformatien.” — .’ via

(ST, ¢) :==(T, S¢)
and show thaff-§ = §-F = id on.%”. Taking into account Propositien 16111 we have
(S(IT), ) =(FT, Gp) = (T, F(S¢)) =(T', ¢);

thus,G-F = id . The proof of the directioff-G = id is similar; hencey is a bijection. n

Remark 16.13 All the properties of the Fourier transformation as stated@heoreni T80 (i),
(ii), (iii), (iv), and (v) remain valid in case of”’. In particular,F(z*T) = il*l D*(FT).
Indeed, forp € . (R™), by Theoreni I6.10 (ii)

F(2°T)(p) = (2°T, F) = (T, 2°Fp) = (T, (—i) *|F(Dp))
= (=D)ll(=)l*N(D*(FT), ) = (I*IDT, o).

Example 16.12(a) Leta € R™. We computef 4,. Forp € #(R"),

Fh) = 5a(8) = D)@ =an | e p(a) do = Toyia(io)

n

Hence,F§, is the regular distribution corresponding t@r) = a,,e~'“. In particular,¥(6) =

T,,1 is the constant function. Note th&t) = G(0) = ﬁﬂ. Moreover,d(Ty) = §(T1) =
a, .

(0)n=1,b> 0.
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(c) The single-layer distributiorSuppose that is a compact, regular, piecewise differentiable,
non self-intersecting surface R* ando(z) € L (R?) is a function onS (a density function
or distribution—in the physical sense). We define the distion ods by the scalar surface

integral
(005, ¥ / /

The support ofods is S, a set of measure zero with respect to Badimensional Lebesgue
measure. Hencey; is a singular distribution.
Similarly, one defines thdouble-layer distributiorfwhich comes from dipoles) by

(o o) [ o

wherer denotes the unit normal vector to the surface.
We compute the Fourier transformation of the single l&}ers) in case of a sphere of radius
r, S, = {z € R? | ||z| = r} and density = 1. By Fubini’s theorem,

(Fbs, , ) = (Is,(0)» F) \/21_773 //T (/}RS e () dx) dSe

— \/2173 /}R3 (//T(COS@- — isin(x g))d&) p(x)dx

is0

Using spherical coordinates &n, wherez is fixed to be the:-axis andy is the angle between
r and¢ € S,, we havedS = r?sind dp dd andz - £ = r ||x|| cos 9. Hence, the inner (surface)
integral reads

2 ™
= / / cos(||z]| r cos ¥)r? sin ¥9dddey, s = ||z||rcosd, ds= —|z| rsinddd
o Jo

Il .
:27T/ —coss —— ds = dr—— sin(||z|| 7).
E Il ]

Hence,
(Fés, , ¢

-
\/27r ro HfEH ’

the Fourier transformation @ is the regular distribution

2r sin(r ||z||)

ver |zl

(d) The Resolvent of the LaplacianA. Consider the Hilbert space = L?(R") and its dense
subspace”(R"). Forp € . there is defined the LaplacianAy. Recall that the resolvent of
a linear operator! at \ is the bounded linear operator éh, given by R\(A) = (A — \I)7!

Given f € H we are looking foru € H with R\(A) f = u. This is equivalent to solve

3:(5& (l‘) =
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f=(A—A)(u) for u. In case ofA = —A we can apply the Fourier transformation to solve
this equation. By TheoremI&110 (ii)

L 2
—Au—u=f —F (Z %u) — \Fu =957,
1 9Tk

DG (Fu)(€) — AFu(€) = (Fu)(§)(€2 — \) = Ff(€)

_ 31
=5 _»

o) =9 (75959

Fu(§)

Hence,
1

-2
where in the middle is the multiplication operator by thedtion 1/(¢*> — \). One can see that
this operator is bounded i if and only if \ € C\ R, such that the spectrum efA satisfies
O'(—A) C R+.

Ry(=A) =31 oF,

16.5 Appendix—More about Convolutions
Since the following proposition is used in several placesake the statement explicit.

Proposition 16.15 Let T'(x, t) and S(x, t) be distributions inD’(R"*!) with supp T C R" x
R, andsupp S C I'.(0,0). HereI; (0,0) = {(z,t) € R"" | ||z|| < at} denotes the forward
light cone at the origin.

Then the convolutiofi’ x S exists inD’'(R"™!) and can be written as

(T xS, )= (T(x,t) @ S(y,s), nt)n(s)n(as — |lyll) oz +y,t + 5)), (16.14)

o € D(R™), wheren € D(R) with n(t) = 1fort > —s ande > 0 is any fixed positive
number. The convolutiofY + S)(x, t) vanishes fot < 0 and is continuous in both components,
that is
@ If T,y — Tin D'(R™™) andsupp fr, f € R" x R, thenT}, x S — T % S in D'(R"1).
(b) If S;, — S'in D'(R™*!) andsupp Sy, S C I',(0,0), thenT x S, — T S'in D'(R"*).

(

Proof. Sincen € D(R), there exist$ > 0 with n(z) = 0 for x < —4. Letp(z,t) € D(R"™)
with suppp € Ug(0) for someR > 0. Letnx(x,t,y,s), K — R* "2, be a sequence in
D(R**2) converging tol in R?" ™2, see before DefinitidnI61L12. For sufficiently larfflewe
then have

Vi = n(s)nt)n(as — |lyl)nk(z,t,y, s)p(x +y,t + s)

(16.15)
= n(s)n(Onlat = [lyl)p(z +y,t + s) =: .
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To prove this it suffices to show thate D(IR**2). Indeedy) is arbitrarily often differentiable
and its support is contained in

{(z.t,y,9) | st > =d,as — |lyll =2 =6, |z +yl* +|r+s[" < R},

which is a bounded set.
Sincen(t) = 1 in a neighborhood ofupp 7" andn(s)n(as — ||y||) = 1 in a neighborhood of

supp S, T'(z,t) = n(x)T(x,t) andS(y, s) = n(s)n(as — ||y||)S(y, s). Using [I&Ib) we have

(T'xS,p)y=lim (T(x,t)® S(y,s), nx(x,t,y,s)p(x+y,t+s))

K—R2n+2
= lim (T(x,t)®S(y,s), ¥k), ¢ € DR™?).

K—>]R2"+2

This proves the first assertion.
We now prove that the right hand side @I (186.14) defines a woatis linear functional on
D(R™1). Letyy —> pask — oo, Then

b= n()n(s)nlas = lyll) pr(e +y,t +5) — ¢
ask — oo. Hence,
(T*S, o) =(T(x,t) @ S(y,8), Yu) = (T(z,) ® S(y,8), ) = (x5, ), k— o0,

andT = S is continuous.
We show thafl" « S vanishes for < 0. For, lety € D(R™*!) with supp ¢ C R" x (—o0, —d1].
Choosing) > 4;/2 one has

n(tn(s)n(as — |lyl)e(r +y,t+s) =0,

such that(7" « S, ¢) = 0. Continuity of the convolution product follows from the domity
of the tensor product. [
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Chapter 17

PDE Il — The Equations of Mathematical
Physics

In this chapter we study in detail the Laplace equation, veaueation as well as the heat equa-
tion. Firstly, for all space dimensionswe determine the fundamental solutions to the corre-
sponding differential operators; then we consider intialue problems and initial boundary
value problems. We study eigenvalue problems for the Laptauation.

Recall Green’s identities, see Proposiflonll0.2,

/]/UA ) — v dﬁﬁz-//(w——v—)d&
/ / / u) dedydz = / —dS (17.1)

We also need that far € R™\ {0},

1
A <7n2) =0, n=3, Alogllz]) =0, n=2

]

see ExamplEZl5.

17.1 Fundamental Solutions

17.1.1 The Laplace Equation

Let us denote by, the measure of the unit sphede! in R™, that is,w, = 27, ws = 4.

Theorem 17.1 The function

€ 2) = {%mguxu, n=2,
n 1 1 > 3

T o " E

is locally integrable; the corresponding regular distritoon €,, satisfies the equatioA&,, = 4,
and hence is a fundamental solution for the LaplaciafRin

453
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Proof. Step 1.ExampldZb shows that (E(x)) = 0if = # 0.
Step 2By homework 50.4log ||z|| is in L{ .(R?) and1/ ||z||“ € LL .(R") if and only if & < n.

loc loc

Hence,£,,, n > 2, define regular distributions iR".
Letn > 3 andy € D(R"). Using thatl/||z|"* is locally integrable and ExamglEIR.6 (a),
¥ € Dimplies

_(.71:) dx = lim V()

n—2 n—2
T €70 zl|>e T

dax.
]Rn

Abbreviatings, = —1/((n — 2)w,) we have

Ap(x)dx

AL, o) =p, [ 2T

Bt = [ S
_ 4. lim Ap(z)dz

=0 gz 2"

We compute the integral on the right usingr) = —L5, which is harmonic forf|z|| > e,
Av = 0. Applying Green'’s identity, we have

Ap()de ( 19 9 ( 1 )) |
ﬁ” /Hx||2€ ”an72 ﬁn /|:L“||=5 rn—2 ar(p(l‘) (,D(I') Oy \ yn—2 S

Let us consider the first integral as— 0. Note thaty and grad ¢ are both bounded by a
constant since lp is a test function. We make use of the estimate

8 dS 1 a@(x) I clgnfl .
’/mua o7 | = e /|z||a or ’ ~en? /|m|e EECE
which tends td) ases — 0.

Hence we are left with computing the second integral. Note

. . T
@ that the outer unit normal vector to the sphere is- _W
X
such thatZ <—|\z||1"*2> = (n — 2)—r and we have

pn—1

second integrak Bn/ go(:c)ﬂ ds = . / o(x)ds.
ll=l=e

n—1 n—1
[|lz|l=¢ r Wn €

Note thatv,e" ! is exactly the(n — 1)-dimensional measure of the sphere of radiuSo, the
integral is the mean value gf over the sphere of radius Sincey is continuous a), the mean
value tends ta(0). This proves the assertion in case> 3.

The proof in case = 2 is quite analogous. [ ]
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Corollary 17.2 Suppose thaf(x) is a continuous function with compact support. Thee-
& x f is a regular distribution and we havAS = fin D’. In particular,

1
5@ =5 [[ogle—l f)dy, n=2
RQ

Sm:ﬁ/ﬁ[/ TR

Proof. By Theoreni 18185 = & = f is a solution ofLu = f if € is a fundamental solution of
the differential operatof.. Inserting the fundamental solution of the Laplacian+ior 2 and
n = 3 and using thaf’ has compact support, the assertion follows. [

(17.2)

Remarks 17.1 (a) The given solutior {I7.2) is everckassicalsolutions of the Poisson equa-
tion. Indeed, we can differentiate the parameter integraisaal.
(b) The functionG(z,y) = £, (x — y) is called theGreen’s functiorof the Laplace equation.

17.1.2 The Heat Equation

Proposition 17.3 The function

F(IL',t) = WH(t) e 4aZt

defines a regular distributio€ = 7 and a fundamental solution of the heat equation
uy — a’Au = 0, that is

€ — a2 A& = 6(z) ® (). (17.3)

Proof. Step 1.The functionF'(z, t) is locally integrable sincé’ = 0 for ¢ < 0 andF > 0 for
t > 0and

1 2 ! 5
S w2 dx = — —£ =
/nF(x,t)dx— (Traiy e /Rne 12 Az kHl(ﬁ/Re kdgk) 1. (17.4)
Step 2.Fort > 0, F' € C* and therefore
OF x? n
- (= _ )\ F
ot (4a2t2 2t) ’

dr; 202t a2 a

4ait?  2a%t
oOF

—— —a®?AF = 0. 17.5
5 (17.5)

See also homework 59.2.
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We give a proof using the Fourier transformation with resgeche spatial variables. Let
E(&,t) = (F.F)(, t). We apply the Fourier transformation {0 {117.3) and obtains @irder
ODE with respect to the time variable

S EED + PEEE 1) = anl(©5(0)

Recall from ExamplEZI6.10, that + bu = § has the fundamental solution{t) = H(t) e™;
hence

B(&,t) = H(t) ape @€

We want to apply the inverse Fourier transformation witlpess to the spatial variables. For,
note that by Examp[eZI6111,

where, in our case;; = a’t or ¢ = \/ﬁ Hence,
1 1 2 1 22
8(1‘7 t) = H(t) ang.‘_l (e_a2£2t> - o’ 7€ 222 = ———— ¢ 4d%t,
(2m)2  (2a%t)2 (Ama?t)z

Corollary 17.4 Suppose thaf(zx,t) is a continuous function oR" x R, with compact sup-
port. Let

llz— un2

T 4a2(t—
V(z,t) = 4@2 // ?f(y,s)dyds

ThenV (z,t) is a regular distribution inD’(R™ x R, ) and a solution ofu; — a*Au = f in
D'(R™ x Ry).

Proof. This follows from Theoreiii 18.8. n

17.1.3 The Wave Equation

We shall determine the fundamental solutions for the waweaggn in dimensions = 3,

n = 2, andn = 1. In casen = 3 we again apply the Fourier transformation. For the other
dimensions we use thmethod of descent

(a) Casen = 3

Proposition 17.5

Hit
E(w,t) = bs,, ® 4w;2)t

is a fundamental solution for the wave operat@fu = uy — (U2, + Usyey + Uzszs) Where
Jds,, denotes the single-layer distribution of the sphere ofuadit aroundo.

(RY)
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Proof. As in case of the heat equation [B{¢,t) = FE(E, t) be the Fourier transform of the
fundamental solutiod (x, t). ThenE(¢, t) satisfies

0?

B+ @€ = ag1(€)3(1)

Again, this is an ODE of order in t. Recall from ExamplEZI610 that + a?u = §, a # 0, has
a solutionu(t) = H (t)*2%, Thus,

sin(a [|€]])
allgll

where¢ is thought to be a parameter. Apply the inverse Fourier foamstion ¥, ! to this
function. Recall from Examp[EZI61 2 (b), the Fourier transf of the single layer of the sphere
of radiusat aroundo is

E(Sat) = Qa3 H(t)

2at sin(at [|£]])

355 at g =
sl8) = = T
This shows
Er.t) = - L H(1)8s., (@) E = — H(1)5s,0 ()
" 21 2at Sat\M 0 T dmalt Sat

Let's evaluate€s, ¢(x,t)). Using dzy doy dzg = dS, dr wherex = (x4, x5, x3) andr = ||z||
as well as the transformation= at, dr = adt and dS is the surface element of the sphere

S,(0), we obtain
<83,g0(x,t)>:473a2 /Om%//go(a:,t)det (17.6)

Sat

4m2/ // (. 5) as"

_ ! /}R 3 i (l“’ =) de. (17.7)

4ra? |||

(b) The Dimensionsn = 2andn = 1

To construct the fundamental solutién(x,t), © = (1, x2), we use the so-called method of
descent.

Lemma 17.6 A fundamental solutiofi; of the2-dimensional wave operata?, , is given by

(Eo, (21, 29,1)) = lm (Es(x1, 22, 23, 1) , @21, 22, )N (23)) ,

k—o00

where&; denotes a fundamental solution of th&limensional wave operatdr, ; andn,, €
D(R) is the function converging tbask — oo.
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Proof. Letp € DRR?). Noting that;; — 0 uniformly onRR ask — oo, we get

(Oa28s, p(x1,72,1)) = (€2, Oapp(w1, 72,1))
= klggo (€3, Oag(@(x1, 22, )M1(23)))
= lim (€3, Oapp(w1, 2, t)ni(x3)+o-m (23))
= lim (&5, Oa3(p(1, 22,1) mi(23)))
= lim (Fas€s, @1, 22, () =
Jim (S, 22, 23)0(1) , @1, 22, 1)(3))
= ¢(0,0,0) = (0(x1, 22, 1), (1, 72,1)) .

In the third line we used thak,, ., ., (¢(z1, 22, t)n(x3)) = Auy w1, 22, 8) ) + 00 (23).
]

Proposition 17.7 (a) For z = (1, 7o) € R? andt € R, the regular distribution

ety = L @t —lal) _ o 7= at> ol
C e VerE—a o at < |l

is a fundamental solution of tiedimensional wave operator.
(b) The regular distribution

1

1 2a’
1(e.1) = 5 H(at ~ |a]) = {

0, |z | > at

|z | < at,
is a fundamental solution of the one-dimensional wave dpera

1
4 0,2/ // ZL‘1,.I‘2, det
™

We compute the surface element of the sphere of raﬂ]tmoundo in terms ofxq, x5. The

Proof. By the above lemma,

(€2, (a1, 2, 1)) = (€3, (21, 22, 1) 1(23))

surface is the graph of the functiog = f (1, z2) \/a2t2 — z3. By the formula before
ExampléIOUAS = /1 + f2 + f2 dx; da,. In case of the sphere we have
dS,. ., = at dxq das

242 _ 2 _ 2
\/at Ty — 25

Integration over both the upper and the lower half-sphezklgifactor2,

o0 1 t t
= = / // a 90 1, 22, ) dl‘l dl’z dt
47Ta a2t2 — 3 — 23

w1+m2<a2t2

t
/ / / ez, 22, Az, Az, dt.
" 2ra Va2 —x? — a2

||a:|\<at
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This shows tha€,(x, t) is a regular distribution of the above form.
One can show directly that; € L .(R*). Indeed, [[[ &x(z1,22,t)dzdt < oo for all

loc

R2x[-R,R]
R > 0.
(b) It was already shown in homework 57.2 tiat is the fundamental solution to the one-
dimensional wave operator. A short proof is to be foundindW¥, 11.56.5 Example g)]. [

Use the method of descent to complete this proof. ket € D(R?). Since
Jr | €a(x, 2, t) | daa < oo and [ Eo(xy, 22, t) dz, again defines a locally integrable func-
tion, we have as in LemnialY.6

lim Eo(my, o, )Mk (x2) (21, t) doy dg dt.

o k—oo R3

Ei(p) = khfolo (Ea(w1, w2, 1), (w1, t)mk(22))

Hence, the fundamental solutién is the regular distribution

El(xlat) :/ 82(1‘1737271;) dl’g

17.2 The Cauchy Problem

In this section we formulate and study the classical and rg¢éined Cauchy problems for the
wave equation and for the heat equation.

17.2.1 Motivation of the Method

To explain the method, we first apply the theory of distribntio solve an initial value problem
of a linear second order ODE.
Consider the Cauchy problem

u"(t) + a’u(t) = f(t), ulimos=1uo, U |imo4= w1, (17.8)
wheref € C(R;). We extend the solution(t) as well asf(¢) by 0 for negative values of,
¢t < 0. We denote the new function hiyand f, respectively. Sincé has a jump of height,
at0, by Exampl€&I&l6:/' (1) = {u/(t)} + uod(t). Similarly, v'(¢) jumps at0 by u; such that
a’(t) = {u"(t)} + upd’(t) + u16(t). Henceu satisfies orR the equation

"+ i = f(t) + upd (t) + ud(t). (17.9)

We construct the solutioi. Since the fundamental soluti@rit) = H (¢) sinat/a as well as the
right hand side offl{I719) has positive support, the convaiuproduct exists and equals

0= &% (f +ued (t) +uid(t)) = &% f +upl(t) + ur &(t)

1 t
R / f(r)sina(t — 7)dr + up€'(t) + w1 E(2).
aJo
Since in case > 0, u satisfies[[I719) and the solution of the Cauchy problem iquaithe
above formula gives the classical solutionfar 0, that is

I in at
u(t) = — / f(7)sina(t — 7)d7 4 ug cos at + uy A
a Jo a
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17.2.2 The Wave Equation

(a) The Classical and the Generalized Initial Value Problem—EXxistence, Uniqueness, and
Continuity

Definition 17.1 (a) The problem

O.u = f(z,t), xze€R"t>0, (17.10)
ul;_gy = uo(@), (17.11)
ou
ou = uy(z), (17.12)
Ot |, o,

where we assume that
feCMR"xRy), wup€ CHR"™), u € CR"M).

is called theclassical initial value problengCIVP, for short) to the wave equation.
A functionu(x, t) is calledclassical solutiorof the CIVP if

u(z,t) € CHR" x RY) N CHR" x R.,),

u(z,y) satisfies the wave equation{14.10) for- 0 and the initial conditions[{I711) and
(I712) ag — 0 + 0.
(b) The problem

0,U = F(z,t) + Up(x) @ 0'(t) + U (x) @ 6(t)

with £ € D'(R""), U,,U; € D'(R"), andsuppF C R" x [0,+o00) is called
generalized initial value problenfGIVP). A generalized functiod/ € D/(R™*!) with
supp UC R™ x [0, 4+00) which satisfies the above equation is called a (generalizedk) so-
lution of the GIVP.

Proposition 17.8 (a) Suppose that(x,t) is a solution of the CIVP with the given data u,
andu;. Then the regular distributioff’, is a solution of the GIVP with the right hand side
Ty +Ty @0 (t)+T,, ®4(t) provided thatf (x, t) andu(z, t) are extended b into the domain
{(z,t) | (x,t) € R" ¢ < 0}.

(b) Conversely, suppose thidtis a solution of the GIVP. Let the distributiofs= T, Uy = T,,,,

U, =T,, andU = T, be regular and they satisfy the regularity assumptions efGhvP.
Then,u(zx, t) is a solution of the CIVP.

Proof. (b) Suppose that/ is a solution of the GIVP; lepp € D(R"™!). By definition of the
tensor product and the derivative,

<Utt_a2AU7¢>:<F790>+<U0®6/7S0>+<U1®67gp>

_ [ Op
= /0 . flz, t)p(z,t) dedt — /n uo(x)a(x, 0)dz + /n uy(x)p(z,0)dz.  (17.13)
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Applying integration by parts with respecttdwice, we find

/ wpy dt = upy|y —/ uppp dt
0 0

= —u(z,0)pi(,0) — wply” +/ ugtep i
0
= —u(x,0)pi(x,0) + u(x, 0)p(x,0) + / gt dt.
0

SinceR™ has no boundary and has compact support, integration by parts with respectdo th
spatial variables yields no boundary terms.
Hence, by the above formula arfd ©w Ap dt dz = [[ Au ¢ dt dz, we obtain

<Utt - azAU, 90> = <U7 et — GQA<P> = / / u(z,t) (SOtt - @2A<P) dtdz
nJo

— /n /OOO (uy — a®Au) @(z,t) dzdt — /n (u(z,0)pi(x,0) — us(x,0)p(x,0)) dr.
(17.14)

For any ¢ € D(R"™ x R,), suppy is contained inR" x (0,+o00) such that
©(z,0) = ¢(z,0) = 0. From [IZIB) and(I7.14) it follows that

/ /OO (f(2,t) — uy + a*Au) p(z,t) dt dz = 0.
nJo

By LemmdI&.R (Du Bois Reymond) it follows that — a>Au = f onR"™ x R... Inserting this
into (IZIB) and{I714) we have

/n(uo(x) —u(z,0))pi(x,0)dr — / (ur(z) — ue(x,0)) p(z,0)der = 0.

n

If we seto(z,t) = 1 (x)n(t) wheren € D(IR) andn(t) = 1 is constant in a neighborhood of
¢.(x,0) = 0 and therefore

[ ()~ wle.0)0@) =0, v € DR,

Moreover,

/n(uo(x) —u(z,0))Y(z)de =0, 1€ D(R")
if we setp(x,t) = tn(t)y(x). Again, Lemm&IE6l2 yields
uo(z) = u(z,0), u(xr) = uz,0)

andu(x,t) is a solution of the CIVP.
(a) Conversely, ifu(x, t) is a solution of the CIVP thefi {I7114) holds with

Uz, t) = H(t)u(x,t).
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Comparing this with[{I7.13) it is seen that
Ui —PAU=F+Uy @0 +U,®6
whereF' (z,t) = H(t) f(x,t), Uy(z) = u(z,0) andU; (z) = w(z, 0). ]

Corollary 17.9 Suppose that’, U,, andU; are data of the GIVP. Then there exists a unique
solutionU of the GIVP. It can be written as

U=V+VvVO 4y
where
o0&,
ot
Herel, x, U, := &, = (U;(z)®4(t)) denotes the convolution product with respect to the spatial
variablesz only. The solutior/ depends continuously in the sense of the convergeribéon

F, Uy, andU;. Here&,, denote the fundamental solution of thelimensional wave operator
O

a,n*

V=ExF VO=¢,%U, V=

X UQ.

Proof. The supports of the distributiori @ ¢’ andU; ® § are contained in the hyperplane
{(x,t) € R"™! | t = 0}. Hence the support of the distributiéht- Uy @ ¢’ + U; @ ¢ is contained
in the half spac&®” x R, .

It follows from PropositiofiI6.35 below that the convolutiproduct

U=, % (F+Uy®d§ +U; ®0)

exists and has support in the positive half spaee0. It follows from Theoreni 1618 thdf is a
solution of the GIVP. On the other and, any solution of the BINas support iftR” x R, and
therefore,

by PropositiofZI6.15, posses the convolution with By TheoreniLIGI8, the solutiofl is

unique.

Suppose that/, — U; ask — oo in D’(R™ ") then&,, x U, — &, x U; by the continuity of
the convolution product i’ (see PropositidnI6.15). m

(b) Explicit Solutions for n = 1, 2, 3

We will make the above formulas from Corolldry1]7.9 explititat is, we compute the above
convolutions to obtain the potentidls V), andV/(),

Proposition 17.10Let f € C*(R™ x R, ), up € C3(R"), andu; € C*(R") for n = 2, 3; let
f e CY{R,), up € C*)(R), andu; € C}(R) in casen = 1.
Then there exists a unique solution of the CIVP. It is givecasen = 3 by Kirchhoff’s formula

(o, 1) = 4;@2 ///f(y”";__%;y”) dy+%//u1(y)d5y+% %//uo(y)dSy

Uqt () Sat () Sat(z)

(17.15)
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The first termV/ is calledretarded potential
Incasen = 2, x = (z1,22), y = (v1,y2), it is given by Poisson’s formula

u1) 27TCL/ // dynis_ //\/a2t2 ||33 P

a(t s) y” Uat(x

. (17.16
27Ta ot // \/a2t2 ( )
Uat

yH

In casen = 1itis given by d’Alembert’s formula

z4a(t—s) z+at 1
/ / fly,s dyds+—/ )dy+2(u0(x+at)+u0(x—at)).
z—a(t—s)

(17.17)
The solutioru(z, t) depends continuously an, u;, and f in the following sense: If
[F=F|<e Jw—igl<e, Jm—il<e, |grad(u - )| <<
(where we impose the last inequality only in cages 3 andn = 2), then the corresponding
solutionsu(z, t) anda(z, t) satisfy ina stripd <t < T
|u(z,t) —a(z,y) | < %T% + Teq +¢e9 + (aTzy),
where the last term is omitted in case= 1.

Proof. (idea of proof) We show Kirchhoff’s formula.

(a) The potential term witly.

By Propositiol I&.15 below, the convolution proddgt+ f exists. It is shown in([Wla72, p.
153] that for a locally integrable functiof e L} .(R"™!) with supp f C R™ x Ry, &, * T} is
again a locally integrable function.

Formally, the convolution product is given by

€ax 1)) = [ &alys)fa =t =s)dyds = | &=yt =) fly9) dyds,

where the integral is to be understood the evaluatio®s0f, s) on the shifted functiorf (z —
y,t — s). Sincef has support on the positive time axis, one can restrict &vees®s > 0 and
t —s >0, thatis to0 < s < t. That is formula[IZ16) gives

83*f(:p,t):4ﬁ1a2 /Oté//f(x—y,t—s)dS(y)ds

Sas

Usingr = as, dr = ads, we obtain

SRy e e

V(x,t
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Using dy; dy, dys = drdS as well ag|y|| = » = as we can proceed

_ lwll

t) “)d dys dys.
Vi 4m2 /// H H Y2 Cus

at(O)

The shiftz = = — y, dz; dz; dz3 = dy; dys dys finally yields

|l z||>
t) dz.
Viz, 47ra2 /// ]x —z|| &

at(x)

This is the first potential term of Kirchhoff’s formula.
(b) We computd/ (M) (z, t). By definition,

v =&, % (ug ®0) = E3 %, uy.

Formally, this is given by,

1 1
dmat /// 05, (y) ma(z —y) dy = Aralt // ui(z —y)dS(y)
Sat
47ra2t //m )dS(y
Sat

(c) Recall tha{ D*S) « T' = D*(S = T'), by RemarkZd&I18 (b). In particular

VO (z,t) =

0
a (83 X Uo) )

which immediately gives (c) in view of (b). [ ]

Esx (ug®4') =

Remark 17.2 (a) The stronger regularity (differentiability) conditi® on f, uq, u; are neces-
sary to prove, € C?(R" x R™) and to show stability.

(b) Propositio IZ10 and CorolldryIV.9 show that the GIgPtiie wave wave equation is a
well-posed problem (existence, uniqueness, stability).

17.2.3 The Heat Equation
Definition 17.2 (a) The problem

uy — a*Au = f(x,t), x€R"t>0 (17.18)
u(z,0) = up(x), (17.19)

where we assume that
feCR"xRy), wuge CR")
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is called theclassical initial value problenCIVP, for short) to the heat equation.
A functionu(z, t) is calledclassical solutiorof the CIVP if

u(z,t) € C*(R™ x (0, +00)) N C(R™ x [0, +00)),

andu(z, t) satisfies the heat equatidn {114.18) and the initial comlifid”19).
(b) The problem
U —a’AU =F + Uy ® 6

with £ € D'(R"), Uy € D'(R™), andsupp F' C R" x R, is calledgeneralized initial
value problen{GIVP). A generalized functiot’ € D'(R"™!) with supp U € R"™ x R, which
satisfies the above equation is callegemeralized solutionf the GIVP.

The fundamental solution of the heat operator has the faligwroperties:

/ E(x,t) de =1,

E(x,t) — 0(x), as t—0+.

The fundamental solution describes the heat distributfaa moint-source at the origi(0, 0).
Sinceé(z,t) > 0forallt > 0and allx € R", the heat propagates with infinite speed. Thisis in
contrast to our experiences. However, for short distartbed)eat equation is gives sufficiently
good results. For long distances one uses the transporti@gudVe summarize the results
which are similar to that of the wave equation.

Proposition 17.11 (a) Suppose that,(x,t) is a solution of the CIVP with the given dafa
and ug. Then the regular distributiofi; is a solution of the GIVP with the right hand side
T+ T,u—o ®  provided thatf (z, t) andu(z, t) are extended tg(x, t) andii(z, t) by 0 into the
left half-space{(z, ) | (x,t) € R"™, t < 0}.

(b) Conversely, suppose thdtis a solution of the GIVP. Let the distributiohs= T}, Uy = T,,,,
andU = T, be regular and they satisfy the regularity assumptions efGhHvVP.

Then,u(z, t) is a solution of the CIVP.

Proposition 17.12 Suppose thak’ andU, are data of the GIVP. Suppose further tiaand U
both have compact support. Then there exists a solutiofthe GIVP which can be written as

U=V+VvV®

where
V=exF VO ==¢gx U,.

The solution/ varies continuously witl” and U,,.
Remark 17.3 The theorem differs from the corresponding result for theenaquation in that

there is no proposition on uniqueness. It turns out that hé”@annot be solved uniquely. A.
Friedman, Partial differential equations of paraboliceygave an example of a non-vanishing
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distribution which solves the GIVP with = 0 andU, = 0.
However, if all distributions are regular and we place adddl requirements on the growth for
t, ||z|| — oo of the regular distribution, uniqueness can be achieved.

For existence and uniqueness we introduce the followingsabé functions

M={feCR"xRy)|f isboundedonthestripR" x [0,7] forall T > 0},
Cy(R")={f € C(R") | f isboundedon R"}

Corollary 17.13 (a) Let f € M anduy € C,(R™). Then the two potential®’(z,¢) as in
CorollarylIZ3 and

VO (,t) =€+ T,y @6 = % / wo(y)e T dy
are regular distributions and. = V' 4 V¥ is a solution of the GIVP.
(b) In casef € C?*(R" x R, ) with D*f € M for all « with || < 1 (first order partial
derivatives), the solution ifa) is a solution of the CIVP. In particulal/ ¥ (z,t) — uo(z) as
t — 0+.
(c) The solution: of the GIVP is unique in the clasH.

17.2.4 Physical Interpretation of the Results

s The backward light cone
9

r_(xt)

Y,

\/ Y,
(x,t)

The forward light cone

Y radius = at V.
1

Definition 17.3 We introduce the two cones R"!
I (x,t) ={(y,s) | |l =yl <alt —s)}, s<t,
I'i(z,t) ={(y,s) | [z —yll <als—1)}, s>t

which are calledlomain of dependengbackward light cone) andomain of influencéorward
light cone), respectively.

Recall that the boundariéd’, anddI"_ are characteristic surfaces of the wave equation.
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(a) Propagation of Waves in Space

Consider the fundamental solution

1
83(l’,t) = mégat X T%
of the 3-dimensional wave equation.
Su It shows that the disturbance at time- 0 effected by a

point source)(x)d(t) in the origin is located on a sphere
of radiusat around0. The disturbance moves like a
spherical wave||z|| = at, with velocity a. In the be-
ginning there is silence, then disturbance (on the sphere),
and afterwards, again silence. This is callddygens’
principle.

Disturbance is on a sphere of radius at

It follows by the superposition principle that the solutiofi,t,) of an initial disturbance
up(x)d'(t) + u1(x)d(t) is completely determined by the valueswgfandwu; on the sphere of
the backwards light-cone at= 0; that is by the values,(z) andu,(x) at all valuesr with
|z — zo|| = ato.

Now, let the disturbance be situated in a com-
pact setK rather than in a single point. Sup-
pose that/ and D are the minimal and maximal
distances ofr from K. Then the disturbance
starts to act inz at timet, = d/a it lasts for

(D —d)/a; and again, fot > D/a = t; there

is silence atr. Therefore, we can observe a for-
ward wave front at timé, and a backward wave
front at timet;.

silence

silence

This shows that the domain of influeng€( K') of compact sek is the union of all boundaries
of forward light-coned’, (y, 0) with y € K at timet = 0.

M(K) = {(y,s)| Jz€K: |z —yl| = as}.

(b) Propagation of Plane Waves
Consider the fundamental solution
H{(at — [Jz|])

Eo(x,t) = . x = (x1,19)
omay/a2t? — ||z||?

of the2-dimensional wave equation.
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It shows that the disturbance effected by a point
sourced(z)d(t) in the origin at timeD is a disc
U, of radiusat around0. One observes a for-
ward wave front moving with speed In con-
trast to the3-dimensional picture, there exists
no back front. The disturbance is permanently
present front, on. We speak of waveiffusion
Huygens’ principle does not hold.

t=0 t=1

=4

Diffusion can also be observed in case of arbitrary initiagtutbanceu, ()’ (t) + uy (z)d(t).
Indeed, the superposition principle shows that the domadependence of a compact initial
disturbancéy is the union of all discé/,;(y) withy € K.

(c) Propagation on a Line

Recall thaté, (z,t) = 5-H(at — |z |). The disturbance at time > 0 which is effected by a
point source(z)d(t) is the whole closed intervél-at, at]. We have two forward wave “fronts”
one at the point = at and one at = —at; one moving to the right and one moving to the left.
As in the plane case, there does not exist a back wave fonthaeree diffusion.

For more details, see the discussion in Wladimirew, [Wlax. 21,55 — 159].

17.3 Fourier Method for Boundary Value Problems

A good, easy accessable introduction to the Fourier methtmlbe found in[[KK71].

In this section we use Fourier series to solve BEVP to thed@pkquation as well as initial
boundary value problems to the wave and heat equations.

Recall that the following sets are CNOS in the Hilbert spAce

1 int
——e"™ | neZ,y, H=L*a,a+2n),
{ Lo | } ( )
]_ 27r1t 2
——eta" | neZ H =1%(a,b),
{ra | } (a.b)
{1 L sin(nt), —= cos(nt) | e]N} H=12(a,a + 2)
—smn cos(nt) | n = L*(a,a + 2m),
/ \/_

{m \/78111(6_& ) bf cos<b2_—7rnt) |nE]N}, H =1%(a,b),

For any functionf € L'(0, 27) one has an associated Fourier series

. 1 2m .
) ene™ e, = T / F(t)e ™ dt.
0
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Lemma 17.14 Each of the following two sets forms a CNOSHn= L?(0,7) (on the half

interval).
{\/g sin(nt) | n € IN}, {\/g cos(nt) | n € ]NO}'

Proof. To check that they form an NOS is left to the reader. We shawpteteness of the first
set. Letf € L?(0, 7). Extendf to an odd functionf € L?(—x,7), thatis f(z) = f(z) and
f(=x) = —f(z) for = € (0, 7). Sincef is an odd function, in its Fourier series

% + ; a, cos(nt) + by, sin(nt)

we havex,, = 0 for all n. Since the Fourier seri€s > , b, sin(nt) converges tgf in L?(—, ),
it converges tof in L?(0, 7). Thus, the sine system is complete. The proof for the cosine
system is analogous. [

17.3.1 Initial Boundary Value Problems
(a) The Homogeneous Heat Equation, Periodic Boundary Contons

We consider heat conduction in a closed wire loop of lerxgthLet u(z, t) be the temperature
of the wire at position: and timet. Since the wire is closed (a loop)(z,t) = u(x + 27,t);

u IS thought to be &x periodic function onR for every fixedt. Thus, we have the following
periodic boundary conditions

w(0,t) = u(2m,t), wuy(0,t) =u,(2m,t), teRy. (PBC)
The initial temperature distribution at time= 0 is given such that the BIVP reads

U — Uy =0, x ER, >0,
u(z,0) =up(x), z€R, (17.20)
(BEQ)

Separation of variables.We are seeking solutions of the form
u(z,t) = f(x) - g(t)
ignoring the initial conditions for a while. The heat eqoatthen takes the form

1) _ ()
@ g() ~ fla)

We obtain the system of two independent ODE only coupled:by

= Kk = const.

fla)g'(t) = a®f"(2)g(t) <=

(@) —kf(x) =0, ¢t —a’kg(t)=0.
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The periodic boundary conditions imply:

f(0)g(t) = f(2m)g(t), [f'(x)g(t) = f"(2m)g(t)
which for nontrivialg gives f(0) = f(27) and f’(0) = f'(2x). In casex = 0, f"(z) = 0 has
the general solutiorf(z) = ax + b. The only periodic solution ig(x) = b = const. Suppose
now thats = —1? < 0. Then the general solution of the second order ODE is

f(z) = 1 cos(vx) + cosin(ve).

Sincef is periodic with perio®, only adiscreteset of values are possible, namely, = n,
n € Z. This impliesk,, = —n?,n € N.
Finally, in casex = 1 > 0, the general solution

f(z) = 1" + coe™™®
provides no periodic solutions So far, we obtained a set of solutions
fn(z) = ay cos(nx) + b, sin(nz), n € N,
corresponding ta,, = —n?. The ODE forg, (¢) now reads
g, () + a*n’g,(t) = 0.

Its solution isg, (t) = ce~*"*!, n € N. Hence, the solutions of the BVP are given by

Up(z,t) = e~ a, cos(nz) + by sin(nz)), n € N, ug(z,t) = %
and finite or “infinite” linear combinations:
- 50 + nZ:Oe a’n t (ay, cos(nzx) + by, sin(nz)), (17.21)
Consider now the initial value, thatis= 0. The corresponding series is
u(z,0) = 70 Zan cos(nz) + b, sin(nz), (17.22)

n=0

which gives the ordinary Fourier series«@f(z). That is, the Fourier coefficient, andb,, of
the initial functionu(x) formally give a solutionu(x, t).

1. If the Fourier series af, pointwise converges ta, the initial conditions are satisfied by
the functionu(z, t) given in [IZ.21L)

2. If the Fourier series of, is twice differentiable (with respect to), so is the function

u(x,t) given by [IZ21).
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Lemma 17.15 Consider the BIVRIZ.20) (a) ExistenceSuppose that, € C*(RR) is periodic.
Then the function (z, ) given by@Z21)is in C2, ([0, 27] x R ) and solves the classical BIVP
(IZ20)

(b) Uniqueness and Stabilityn the class of function§2, ([0, 2x] x R.) the solution of the
above BIVP is unique.

Proof. (a) The Fourier coefficients oiff) are bounded such that the Fourier coefficientsof
have growthl /n? (integrate the Fourier series 034) four times). Then the series far,.(x, t)

: o 1 : :
andu,(z,t) both are dominated by the serlg —; hence they converge uniformly. This
n

n=0
shows that the seriegz, t) can be differentiated term by term twice w.rtand once w.r.tt.
(b) For any fixedt > 0, u(z, t) is continuous inc. Considen(t) := ||u(x,t)||i2(0727r). Then

V' (t) = % (/0% u(w,t)? dx) =2 /0% u(z, t)u, (v, t) doe = 2 /0% u(z, t)a* g, (v,t) do

27 27
=2 (aZUxu‘zﬂ - aQ/ (g (z,1))? dx) = —2a2/ u?dr <0.
0 0

This shows that(¢) is monotonically decreasing in

Suppose now:; andus both solve the BIVP in the given class. Then= u; — uy solves
the BIVP in this class with homogeneous initial values, tisai(z,0) = 0, hence,w(0) =
|u(z,0)||7, = 0. Sincew(t) is decreasing fot > 0 and non-negative;(t) = 0 for all t > 0;
henceu(z,t) = 0in L?(0,2x) for all ¢ > 0. Sinceu(z,t) is continuous inz, this implies
u(z,t) = 0 for all x andt. Thus,u;(z,t) = us(x,t)—the solution is unique.

Stability. Sincev(t) is decreasing

Sup ”U(xvt)”m(o,%) < HUOHLQ(O,QW)'
teR4+

This shows that small changes in the initial conditiagsmply small changes in the solution
u(z,t). The problem is well-posed. ]

(b) The Inhomogeneous Heat Equation, Periodic Boundary Cadlitions

We study the IBVP

Uy — GQUJ?J? - f(l‘,t),

u(z,0) =0, (17.23)
(EEQ)
Solution. Let e, (x) = ¢ /\/27, n € 7, be the CNOS irl.?(0, 27). These functions are all
eigen functions with respect to the differential operafgefy, e/ (r) = —n?e,(z). Lett > 0 be

fixed and

Jla,t) ~ ) ealt) ea(2)

nez
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be the Fourier series gf(x, t) with coefficients, (¢). Foru, we try the following ansatz

u(a,t) ~ Y dn(t) eq(x) (17.24)

neZ

If f(x,t) is continuous inz and piecewise continuously differentiable with respect tats
Fourier series converges pointwise and we have

Uy — AUy = Z (e, d'(t) + a’n’e,d(t)) = f(x,t) = Z cn(t)ey,.

neZ neN

For eachn this is an ODE it
d,(t) + a*n’d,(t) = c,(t), d,(0)=0.

From ODE the solution is well-known

Under certain regularity and growth conditions pn{I7.24) solves the inhomogeneous IBVP.

(c) The Homogeneous Wave Equation with Dirichlet Conditios

Consider the initial boundary value problem of the vibrgtatring of lengthr.

(E) Uy — a2 Uyy = 0, O<z<m t>0;
(BC) u(0,t) = u(m, t) =0,
(IC) u(z,0) = ¢(x), u(z,0) =¢(x), O0<z<m.

The ansatz(z,t) = f(x)g(t) yields

§=m§?f%hwm,w%@.

The boundary conditions imply(0) = f(7) = 0. Hence, the first ODE has the only solutions

fu(x) = cpsin(nx), K, =-n* neN.

The corresponding ODEs fgrthen read
gi + na’g, = 0,

which has the general solutiar cos(nat) + b, sin(nat). Hence,

u(z,t) = Z(an cos(nat) + b, sin(nat)) sin(nz)

n=1
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solves the boundary value problem in the sens®@ik?) (choose any,,, b, of polynomial
growth). Now, insert the initial conditions,= 0:

u(z,0) = Z a, sin(nx) = o(x), w(z,0)= Z nab,, sin(nx) = (x).

Since{/2 sin(nz) | n € N} isa CNOSInL?(0, ), we can determine the Fourier coefficients
of ¢ and with respect to this CNOS and obtaip andb,,, respectively.
Regularity. Suppose that e C*([0,7]), ¢ € C3([0, «]). Then the Fourier-Sine coefficients

andanb, of ¢ andy have growthl /n* and1/n3, respectively. Hence, the series

u(x,t) = Z(an cos(nat) + by, sin(nat)) sin(nz) (17.25)

n=1
can be differentiated twice with respectit@r ¢ since the differentiated series have a summable
upper bound_ ¢/n%. Hence,[IZ.25) solves the IBVP.
(d) The Wave Equation with Inhomogeneous Boundary Conditios
Consider the following problem i ¢ R"
Uy — a*Au =0,

u(z,0) = uy(x,0) =0

u|an = w(x,t).

Idea. Find an extension(z, t) of w(z,t), v € C*(2 x R, ), and look for functionsi = u — v.
Thenu has homogeneous boundary conditions and satisfies the IBVP

ﬂtt — CL2A'& = —Ust + CL2AU,
fb(l‘, O) = —’U(l‘,O), Tlt(l', O) = _/Ut(x70)
i oo = 0.

This problem can be split into two problems, one with zerdiahiconditions and one with
homogeneous wave equation.

17.3.2 Eigenvalue Problems for the Laplace Equation

In the previous subsection we have seen that BIVPs usingdf@amethod often lead to bound-
ary eigenvalue problems (BEVP) for the Laplace equation.

We formulate the problems. Let= 1 and{2 = (0,1). One considers the following types of
BEVPs to the Laplace equatiofi! = \f:

e Dirichlet boundary conditionsf(0) = f(I) = 0.

e Neumann boundary conditiong’(0) = f'(l) = 0.
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e Periodic boundary conditionsf:(0) = f(1), f'(0) = f'(I).
e Mixed boundary conditionsy, f(0) + a f'(0) =0, G f(1) + Bof'(1) = 0.

e Symmetric boundary conditions: d4fandv are function satisfying these boundary condi-
tions, then(u'v — uv')|lo = 0. In this case integration by parts gives

/l(u"v —w")dr = v'v — v'u|l0 - /l(u'v' —v'u')dx = 0.
0 0
Thatisu”-v = u-v” and the Laplace operator becomes symmetric.
Proposition 17.16 Let {2 ¢ R". The BEVP with Dirichlet conditions
Au=\u, ulpo=0, ueC*(2)nCHN) (17.26)

has countably many eigenvaluks All eigenvalues are negative and of finite multiplicityt Le
0> A > X\ >--- then sequence%k) tends to0. The eigenfunctions, corresponding to\,
form a CNOS ifl.2(£2).

Sketch of proof(a) Let H = L?(£2). We use Green's* formula withu = v , u |go= 0,

/uAud:L‘—l—/(Vu)zdx—O.
0 0

to show that all eigenvalues & are negative. Lef\u = A\u. First note, that\ = 0 is not an
eigenvalue ofA. Suppose to the contraryu = 0, that is,u is harmonic. Since |s,= 0, by
the uniqueness theorem for the Dirichlet problem; 0 in (2. Then

/\HuH2:)\<u7 u> = </\u,u> = <Au, U>:/

uAudr = —/(Vu)de < 0.
7 7

Hence,\ is negative.
(b) Assume that a Green'’s functighfor (2 exists. By [IZ-34), that is

w(y) = | Glz,y) Au(z)dze + / u(z) 2889 450,
Q N O,
u |po=0implies

uly) = [ Gy Bu(w) ds
(9]
This shows that the integral operatdr L?(£2) — L*({2) defined by
(40)y) = [ Glay)ola)do
9

is inverse to the Laplacian. Sing&(x,y) = G(y,x) is real, A is self-adjoint. By (a), its
eigenvalues] /) are all negative. If

// | G(z,y) [* dzdy < oo,

02x 82
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A is acompactoperator.

We want to justify the last statement. L@t f)(z) = [, k y) dy be an integral operator
on H = L*(2), with kernelk(z,y) € H = LZ(Q x 2). Let {un ] n € N} be a CNOS in#;
then{u,(x)u,(y) | n,m € N} isa CNOS inX. Letk,,, be the Fourier coefficients @fwith
respect to the basig., (z)u,,(y)} in H. Then

- /Q FW)D komtin(2)um (y) dy

- S uto) (S [t s00)
:Zunx anm f?um :anm<f,um> Uy, -

This in particular shows that
el —Zk (f, tm) <kaanH —HfH/ k(a,y)* dady = [|f]|” ZHKunH
I1E]|* SZ!IKunII

We show thats is approximated by the sequend€,,) defined by

anzzzkrm<f7 um) Uy

m r=1

of finite rank operators. Indeed,

m r=n-+1 r=n+1

such that N
1K — K| =sup > k7, — 0
™ r=n41
asn — oo. Hence,K is compact.
(c) By (a) and (b),A is a negative, compact, self-adjoint operator. By the spkttteorem for
compact self-adjoint operators, Theolem1IB.33, theraeais NOS(«u,;) of eigenfunctions to
1/\ of A. The NOS(uy) is complete sincé is not an eigenvalue of.

Example 17.1 Dirichlet Conditions on the Square.Let Q = (0,7) x (0,7) C R2 The
Laplace operator with Dirichlet boundary conditions@rhas eigenfunctions

2
Umn (2, y) = - sin(max) sin(ny),

corresponding to the eigenvalugs, = —(m? + n?). The eigenfunction$u,,,, | m,n € N}
form a CNOS in the Hilbert spade’((2).
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Example 17.2 Dirichlet Conditions on the ball U (0) in IR?. We consider the BEVP with
Dirichlet boundary conditions on the ball.

—Au = Mu, ulg 0)=0.

In polar coordinates(x,y) = u(r, ¢) this reads,

10 1
At(r, ) = - (Tﬁr)+ﬁﬂ<p¢:—)\ﬂ, 0<r<l1l, 0<¢p<2nm.
Separation of variablesWe try the ansatz(r, ¢) = R(r)®(p). We have the boundary condi-
tion R(1) = 0 and inR(r) is bounded in a neighborhood of= 0. Also, ¢ is periodic. Then
24 =R and
0
or

Hence Au = —Au now reads

9, _
(rR'®) = (R +rR")®, ,, = RD".

(rir) = or

/
(i + R”) D+ R@” = —A\RD
r

L (A
r __:_/\
R +7"2Q5
T’R/—FT2R” ) @//
R e e

In this way, we obtain the two one-dimensional problems
Q"+ ud =0, &0)=o27);
PR +rR + (M —u)R=0, |R(0)|<oo, R(1)=0. (17.27)
The eigenvalues and eigenfunctions to the first problem are
=k, D) =e*, ke Z.

Equation [IZ.27) is the Bessel ODE. Ror= £? the solution of [I7.27) bounded in= 0 is
given by the Bessel functios,(rv/)). Recall from homework 21.2 that

0o n 2n+k
Z ') (3) . ke N,.
~ nl (n+k)!
To determine the eigenvalueswe use the boundary conditidR(1) = 0 in (LZZT), namely
Je(v/A) = 0. Hence /A = juj, whereyy;, j = 1,2, ..., denote the positive zeros df. We
obtain
Mg = Higs Rig(r) = Je(uigr), j=1,2,--.

The solution of the BEVP is
)\kj = quj’ Uk](l') = J|k|(:u‘k|j,r)eik<p7 ke Z7 j = 1727 Tt

Note that the Bessel functiods, | k¥ € Z, } and the systemje’** | k£ € 7Z} form a complete
OSinL2((0,1),rdr) and in inL2(0, 27), respectively. Hence, the Q% | k € Z, 1 € Z, } is
a complete OS in.?(U;(0)). Thus, there are no further solutions to the given BEVP. Forem
details on Bessel functions, sée [FK98, p. 383].
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17.4 Boundary Value Problems for the Laplace and the Pois-
son Equations

Throughout this section (if nothing is stated otherwise)wik assume that? is a bounded
region inR", n > 2. We suppose further tha belongs to the class?, that is, the boundary
012 consists of finitely many twice continuously differentiathlypersurfaces?’ := R"\ (2 is
assumed to be connected (i. e. it is a region, too). All fumgiare assumed to be real valued.

17.4.1 Formulation of Boundary Value Problems
(a) The Inner Dirichlet Problem:

Giveny € C(002) andf € C(92), findu € C(£2) N C?(£2) such that

>
.

8
N~—

I

f(z) Yze 2, and
o(y), Yy € 01

=
3
I

(b) The Exterior Dirichlet Problem:

Giveny € C(002) andf € C(£2'), findu € C(£2) N C%(£2') such that

>

<
—
Na¥

I

f(x), Ve e ', and
u(y) = o(y), Yy € 9L,

| l|im u(z) = 0.
(c) The Inner Neumann Problem:

n

Giveny € C(02) and f € C(2), findu € C}(2) N C*(2)
such that

Au(z) = f(x) Vx e 2, and

ou

—(y) = Q.

o W) =), Yyeo
Here- 2 (y) denotes the limit of directional derivative

ou

5 W) = lim 7i(y) - gradu(y — ti(y))

andri(y) is the outer normal t6? aty € 0(2. Thatis,z € (2 approacheg € J{2 in the direction
of the normal vectofi(y). We assume that this limit exists for all boundary points 0.
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(d) The Exterior Neumann Problem:

# xEy+n _ _
Giveny € C(02) andf € C(£2), findu € C'(£2') N
n C?(£2') such that
Au(z) = f(x) Yz e, and

Ju

= (y) = 0

o7, W) =¢ly), Yy eo

‘ 1|iH1 u(z) = 0.

Here%+(y) denotes the limit of directional derivative

ou

9, W) = Jim 5iy) - gradu(y +ti(y))

andii(y) is the outer normal té? aty € 0f2. We assume that this limit exists for all boundary
pointsy € d£2. In both Neumann problems one can also look for a functienC?(2) N C(12)
oru € C*()N C(ﬁ'), respectively, provided the above limits exist and definetiooous
functions on the boundary.

These four problems are intimately connected with eachroéimel we will obtain solutions to
all of them simultaneously.

17.4.2 Basic Properties of Harmonic Functions

Recall that a functiom € C?(£2), is said to benharmonicif Au = 0in 2.
We say that an operatdr on a function spac& overR" is invariantunder a affine transfor-
mationT’, T'(z) = A(x) 4+ b, whereA € Z(R"),b € R", if

LeT* = T*L,

whereT*: V. — Vis given by(T*f)(z) = f(T(z)), f € V. It follows that the Laplacian is
invariant under translation§'(z) = x+b) and rotationd (i.e. T'T = TT" = I). Indeed, for
translations, the matri® with A = BABT is the identity and in case of the rotatid®,= 7.
SinceA = I, in both casesd = A = I; the Laplacian is invariant.

In this section we assume th@tC R" is a region where Gaul?’ divergence theorem is valid for
all vector fieldsf € C(£2) N C(12) for :

[ divi@ae= [ p)- a5
2 of2
where the dot denotes the inner product iR”. The term under the integral can be written as

wy) = fly)- dS = (A1), fu®) - (dya A dys A+ A dyp, —dys A dyg A=+ A dyn,
(=D g A A dyea)

=S (DR () dys A A g A A dy,
k=1
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where the hat means ommission of this factor. In this wéy) becomes a differentiah — 1)-
form. Using differentiation of forms, see Definitibn1ll.7e wbtain

dw = div f(y)dys A dya A -+ - A dy,.

This establishes the above generalized form of Gaul?’ davergtheorem. Lét : 02 — R be
a continuous scalar function @112, one can defin€ (y) dS(y) := U(y)ii(y) - dS(y), wherefi
Is the outer unit normal vector to the surfaz€.

Recall that we obtain Green’s first formula insertifigy) = v(z)Vu(z), u,v € C*(2):

/ v(x)Au(x) dx + / Vu(x) - Vo(x)de = / v(y)a—qf(y) dS(y).
0 2 an on
Interchanging the role af andv and taking the difference, we obtain Green’s second formula
ou ov
[ @du@) -~ u)dela)) do = [ (o) Gr0) - ) 5h0) ) dS@). @729
0 a0 8” 8”

Recall that

1
&a(w) = 5-logllall, n=2
1 —n—+2
S >3
g Il

are the fundamental solutions of the LaplaciafRih
Theorem 17.17 (Green’s representation formula)Letu € C?(12).

Then forz € 2 we have

wo) = [ e dutay+ [ (u) G0 - e =) Ge) ) a5

(17.29)

Here % denotes the derivative in the direction of the outer normigth wespect to the variable
Y.

Note that the distribution§Au}, (% 800), and% (u o) have compact support such that the
convolution products witlg,, exist.

Proof. Idea of proofFor sufficiently small > 0, U.(z) C (2, since(2 is open. We apply
Green'’s second formula with(y) = €,,(x — y) and2\ U.(z) in place of(2. Sincet, (z — y)

is harmonic with respect to the variabjen 2\ {z} (recall from ExamplgZl5, that,(z) is
harmonic inR™\ {0}), we obtain

/ En(r —y)Ay) dy = /m (En(x - y)%(y) - U(y)%ﬁy_y)) dS(y)

2\ U.(z)

[ (e =g - 250 as). ar.30

o o,
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In the second integrad denotes the outer normal f&\ U.(x) hence the inner normal éf.(z).

We wish to evaluate the limits of the individual integralstims formula ass — 0. Consider
the left-hand side o IZB0). Sineec C?(2), Au is bounded; sincé€, (z — y) is locally
integrable, the lhs converges to

/ En(r —y) Au(y) dy.
02

OndU.(x), we havet,, (x — y) = 3,e "2, B, = —1/(w,(n — 2)). Thus as — 0,

ou 3, ou B du(y)
/ &z — y)%(y) ds| < an‘ / %(y) ‘ ds < an‘ sup o / ds

U, (x) U (z) Se(x)

wpe™ 1 sup ’ =(Ce — 0.

o (TL — 2)wn€”*2 Ue(z)

Furthermore, sincé is the interior normal of the ball.(y), the same calculations as in the
proof of Theorer®IZ11 show th8fzi=v) — —g, 4 (e=n+2) = —c=n+1/y,, . We obtain,

/ u(y) 2T =Y gy = L [ ) asw) — uta).

on, WpEN™
U (x) Se(x)

J

N
spherical mean

In the last line we used that the integral is the mean value @fer the spherg.(z), andu is
continuous at:. n

Remarks 17.4(a) Green’s representation formula is also true for fumdio
u € C2(2) N CY(2). To prove this, consider Green’s representation theorensroaller
regionsf2. C {2 such that2. C (2.

(b) Applying Green’s representation formula to a test fiorcy € D((2), see Definitiof 1611,
e(y) = 2£(y) = 0, y € 912, we obtain

o) = / &.(z — y)Ap(z) da

(c) We may now draw the following consequence from Greergsasentation formula: If one
knowsAuwu, thenu is completely determined by its values and those of its nbdeaavative on
d{2. In particular, a harmonic function a2 can be reconstructed from its boundary data. One
may ask conversely whether one can construct a harmonitidanfor arbitrary given values

of u and% on d{2. Ignoring regularity conditions, we will find out that this not possible in
general. Roughly speaking, only one of these data is suffitbedescribe. completely.

(d) In case of a harmonic functianc C2(2)NC!(12), Au = 0, Green’s representation formula

reads { = 3):

() 1 ( 1 Ou(y) 0 1

= — - — — dS(vy). 17.31
I oo \[z 9] on (y)anynas—yn) ) (17.31)
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In particular, the surface potentidis® () and VY (z) can be differentiated arbitrarily often
for z € £2. Outsideds?2, V© andVV™ are harmonic. It follows fron{IZB1) that any harmonic
function is aC>-function.

Spherical Means and Ball Means

First of all note that: € C*(§2) andu harmonic inf2 implies

/ uy) 45—, (17.32)
1s]

o on

Indeed, this follows from Green’s first formula inserting= 1 andu harmonic,Au = 0.

Proposition 17.18 (Mean Value Property) Suppose that is harmonic inUz(z,) and contin-
uous inUg(xo).
(a) Thenu(z,) coincides with its spherical mean over the sphegéz, ).

1

wy, R7—1

u(zo) =

/ u(y) dS(y) (spherical mean) (17.33)
Sr(zo)

(b) Further,
n

wy R

u(xy) = / u(x)dz (ball mean)
Ur(zo)
Proof. (a) For simplicity, we consider only the cage= 3 andxy = 0. Apply Green’s repre-

sentation formula{I731) to any ball = U,(0) with p < R. Noting (IZ3P) from[(I731) it

follows that
1 (1 Ou(y) / 0 1
u(0) = — —/ _,dS— uyT—dS
© 4m <P s, O $,(0) ( )(%y ]l

1 / 0 1 1 1
= u(y) =—=——dS = — u(y) = ds
4 Js,0) ity [ly|| 41 Js,(0) p?

1

= u(y) dsS,
Amp? /Sp<o> )

Sinceu is continuous on the closed ball of radildsthe formula remains valid as— R.
(b) Usedz = dzy---dx, = dr dS, where||z|| = r. Multiply both sides of [[I7.33) by
r"~!dr and integrate with respect tofrom 0 to R:

R — 1
" u(xg) dr :/ " ( / u(y) dS) dr
/0 ’ 0 W™ Js o)

1 1
—R"u(zg) = —/ u(x) dz.
n Ur(xo)

Wn,

The assertion follows. Note th&t"w, /n is exactly then-dimensional volume ot/ (). The
proof in case: = 2 is similar. [
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Proposition 17.19 (Minimum-Maximum Principle) Letwu be harmonic in2 and continuous
in £2. Then

r&gﬂ(ﬂf) = max u(z);

i. e. v attains its maximum on the boundary?. The same is true for the minimum.

Proof. Suppose to the contrary thaét = u(zy) = maxu(x) is attained at an inner point, € (2
xEeS?

andM >m = mg%u(x) = u(yo), yo € 012.
BAS
(a) We show that(z) = M is constant in any ball.(xy) C {2 aroundz,.
Suppose to the contrary thatr,) < M for somez; € U.(z). By continuity ofu, u(z) < M
forall x € U.(xo) N U,(z1). In particular

M = u(xg) = nn/ u(z)de < nn/ Mdy = M;
WnE™ J Be(x0) Wn€™ J Be(xo)

this is a contradictiony is constant i/ (z).

(b) u(x) = M is constant inf2. Letxz; € (2; we will show thatu(z,) = M. Since{? is
connected and bounded, there exists a path frgno =; which can be covered by a chain of
finitely many balls inf2. In all balls, starting with the ball around, from (a),u(z) = M is
constant. Hencey is constant inf2. Sinceu is continuousy is constant in2. This contradicts
the assumption; hence, the maximum is assumed on the bqun@ar

Passing fromu to —u, the statement about the minimum follows. [ ]

Remarks 17.5 (a) A stronger proposition holds with “local maximum” in p&of “maximum”
(b) Another stricter version of the maximum principle is:

Letu € C%(£2) N C(2) andAu > 0 in £2. Then eithem is constant or

u(y) < maxu(z)

forally € 2.

Corollary 17.20 (Uniqueness)The inner and the outer Dirichlet problem has at most one so-
lution, respectively.

Proof. Suppose that; andu, both are solutions of the Dirichlet probleddu; = Auy, = f.
Putu = u; — us. ThenAu(z) = 0 for all x € 2 andu(y) = 0 on the boundary € 042.

(@) Inner problem. By the maximum principle(z) = 0 for all z € 2; that isu; = us.

(b) Suppose that # 0. Without loss of generality we may assume that
u(zy) = a > 0 for somez; € (2. By assumption|u(z)| — 0 as

x — oo. Hence, there exists > 0 such that| u(z) | < «/2 for all

x > r. Sinceu is harmonic inB,.(0) \ £2, the maximum principle yields

= < < a/2;
@ = ulan) <, s, ulo) < of2

a contradiction.
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Corollary 17.21 (Stability) Suppose that; andu, are solutions of the inner Dirichlet prob-
lem Au; = Auy = f with boundary values (y) and p,(y) on 0f2, respectively. Suppose
further that

[1(y) —pa(y) | < e Vyeon
Then|u,(z) — uy(x) | < eforall z € 0.
A similar statement is true for the exterior Dirichlet pretl.

Proof. Putu = u; — us. ThenAu = 0 and|u(y)| < ¢ for all y € 0f2. By the Maximum
Principle,| u(z) | < e forall x € 0. n

Lemma 17.22 Suppose that is a non-constanharmonic function orf2 and the maximum of
u(z) is attained aty € 012.
ThenZ:(y) > 0.

For the proof se€ [11192, 3.4.2. Theorem, p. 174].

Proposition 17.23 (Uniqueness)a) The exterior Neumann problem has at most one solution.
(b) A necessary condition for solvability of the inner Neumarobfem is

/(mgodS: /Qf(x)d:c.

Two solutions of the inner Neumann problem differ by a carista

Proof. (a) Suppose thai; andu, are solutions of the exterior Neumann problem, thea

uy — uy satisfiesAu = 0 and%(y) = (0. The above lemma shows thatz) = ¢ is constant in
(2. Sincelim| , |, u(z) = 0, the constant is 0; henceu; = us,.

(b) Inner problem. The uniqueness follows as in (a). The s&teof the formula follows from
(]]IB)Withvzl,Au:f,%:O. ]

Proposition 17.24 (Converse Mean Value TheoremBuppose that € C({2) and that when-

everz, € {2 such thatU,(z,) C {2 we have the mean value property

1 1
u(xg) = u(y)dS(y) = — w(xg +ry) dS(y).
(o) /w) (v) dS(y) /81(0) (20 + ry) dS(y)

T wyrnl W,
Thenu € C*>(£2) andu is harmonic in{2.

Proof. (a) We show that, € C>(£2). The Mean Value Property ensures that the mollification
h. * u equalsu as long ad/,.(zo) C §2; that is, the mollification does not change By
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homework 49.4y € C* sinceh, is. We proveh, « u = u. Hereg denotes thé-dimensional
bump function, see page419.

u(y)ha(z — y) dy = / u(z — y)he(y) dy

n

wle) = (uh)@) = [
_ /U u(e — ph(y/e)e " dy /U PIRCEE OIS

—Yi
=

€

<(0)
1
= / / u(z — ray)g(r)fr”’l dS(y)dr
0 S1(0)

n

= onn(a) [ gyt ar =ute) [ bio)dy = uio)

Second Part.Differentiating the above equation with respect-tgields fUT(I) Au(y)dy = 0
for any ball in(2, since the left-hand side(x) does not depend an

d

0=
dr Js, o)

u(x +ry)dS(y) = /S o y - Vu(z +ry)dS(y)

= / (r'2)Vu(z + 2)r' " dS(2)
Sr(0)

— / () - V(e + 2) dS(2)
Sr(0)

:fr"/s @(:IH—Z) dS(z)

+(0) 8ﬁ

= ,,,n/ a“(;y) dS(y) = 7’"/ Au(z)dz.
Sr(z0) on Ur(z0)

In the last line we used Greer?8! formula withv = 1. ThusAu = 0. Suppose to the contrary
that Au(xg) # 0, sayAu(zg) > 0. By continuity of Au(x), Au(z) > 0 for x € U.(x). Hence
Jur.(ay) Au(z) dz > 0 which contradicts the above equation. We concludedtiatharmonic in
UT(I‘()). |

Remark 17.6 A regular distribution. € D’((?) is calledharmonicif Au = 0, that is,

(Au, p) = /Qu(:v) Ap(z)de =0, ¢ e D).

Weyl's Lemma: Any harmonic regular distribution is a harmonic functiom particular,u €
C>(£2).

Example 17.3 Solve

Au= -2, (z,y)€ 2=1(0,a)x(=b/2,b/2),

u |aQ:0
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Ansatz:u = w + v with Aw = 0. For example, choose = —2? + axz. ThenAv = 0 with
boundary conditions

v(0,y) = v(a,y) =0, wv(z,—b/2) =v(z,b/2) = 2° — az.

Use separation of variables(z, y)) = X (x)Y (y) to solve the problem.

17.5 Appendix

17.5.1 Existence of Solutions to the Boundary Value Problesn
(a) Green'’s Function

Let u € C%(2) N CY(§2). Let us combine Green's representation formula and Green’s
2nd formula with a harmonic function(z) = v,(z), = € 2, wherey € (2 is thought to be
a parameter.

ou

() G2 =) - ale =) G0 ) a5

u(y)z/ﬂé’n(x—y) Au(x)dx+/

)
v, ou

0= /Q vy (1) Au(z) dz + /a ) (u(a:)%(x)—vy(:c)%(x)) dS()

Adding up these two lines and denoti6fz, y) = &, (z — y) + v,(x) we get

0G(x,y) ou

uly) = /Q Glay) Au(z) dz + / (u(x)Tﬁx—G(x,y)%(x)) dS(x).

052

Suppose now thaf (z, y) vanishes for all: € 042 then the last surface integralisand

u(y) = /Q G(z,y) Au(z) da + / u(z) a%(g;y) dS(x). (17.34)

a12

In the above formulay is completely determined by its boundary values andin (2. This
motivates the following definition.

Definition 17.4 A functionG': 2 x {2 — R satisfying

(@)G(z,y) =0forallz € 002,y € 2,z #y.
(b) vy (z) = G(x,y) — E,(z — y) is harmonic inr € 2 forall y € 2.

is called aGreen'’s functiorof (2. More preciselyG(z,y) is a Green'’s function to the inner
Dirichlet problem on(?.

Remarks 17.7 (a) The functiorv,(z) is in particular harmonic i = y. Since€,,(z — y) has
a pole atr = y, G(z,y) has a pole of the same orderzat= y such that7(z,y) — €, (x — y)
has no singularity.

If such a functionG(x, y) exists, for allu € C?(2) we have[[I7.34).
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In particular, if in additiony is harmonic inf?,

u(y) = /arz u(:zc)M dS(x). (17.35)

O
This is the so calle@oisson’s formula fof?2. In general, it is difficult to find Green'’s function.
For most regions? it is even impossible to givé/(x, y) explicitely. However, if(2 has kind
of symmetry, one can use the reflection principle to constilie, y) explicitely. Nevertheless,

G(z,y) exists for all “well-behaved?? (the boundary is &*-set and GauR’ divergence theorem
holds for{?2).

(c) The Reflection Principle

This is a method to calculate Green'’s function explicitelgase of domain& with the follow-
ing property: Using repeated reflections on spheres and p@rplanes occurring as boundaries
of (2 and its reflections, the wholg" can be filled up without overlapping.

Example 17.4 Green'’s function on a ball'z(0). For, we use the reflection on the sph&r€0).
Fory € R™ put

R R2
7= { e Y70

\\\j/i// ;

Note that this map has the the propestyy = R? and HyHQy = R%y. Points on the sphere
Sr(0) are fix under this mag; = y. Let £,,: R, — R denote the corresponding &, radial
scalar function with€(x) = E,,(||z|), thatisE,(r) = —1/((n — 2)w,r"2), n > 2. Then we
put

00, Y=

Glog - LBl =u =B (e =31). w70, 1738
B - Bu(R), y=0 |

Forxz # y, G(z,y) is harmonic inz, since for||y|| < R, ||y|| > R and therefore: — 3 # 0. The
functionG(z, y) has only one singularity itz (0) namely atz = y and this is the same as that
of €,(z — y). Therefore,

B (% -gll). w0,
E.(R), y=0.
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is harmonic for allz € §2. Forz € 92 = Si(0) we have fory # 0

6(o.9) = B (el + Wl* = 20-9)*) = B (100 (P + 1 - 20-3)*)

1
: Iy 7’
= B, (R + |yl - 22 1)*) - E. (<y2+R22y2x~R2

= B (B + gl — 20 )*) = B (P + B2 = 22-9)*) = 0.
Fory = 0 we have
G(x,0) = Eu(|lz]) — Ea(R) = Eu(R) — Eo(R) = 0.

This proves that:(x,y) is a Green’s function fot/z(0). In particular, the above calculation
shows that = ||z — y|| and7 = 12l ||z — 7| are equal ifr € 2.

One can show that Green'’s function is symmetric, that(is, y) = G(y, ). This is a general
property of Green'’s function.

To apply formulal(I7.34) we have to compute the normal dévieajTG(x, y). Note first that
Ny
for any constant € R"™ andx € Sg(0)

0 x xr—z
— -V — N
g le =2l =7 V(e = =[) T Sz = =) o= 2]
Note further that for|z|| = R we have
r=le—yl =" g, (17.37)
2
@) o5y 0= Ry (17.39

Hence, fory # 0,

0 - 1 0 —n+42 0 ”Z/”inJr2 —(—n+2
-9

Wr, lz =yl Jal R Hl’ gl el

n+2
—1—n+1
|z =gl ™"

1  lyll®
= o R <<f‘y>'l"<x‘y>ﬁ'l’
By (IZ.38), the expression in the brackets’— ||y||°. Hence,

0 R —|yl° 1

walt e =yl
This formula holds true in casg = 0. Inserting this into[{17.34) we have for any harmonic
functionu € C?(Ux(0)) N C(Ug(0)) we have

Rl [ )
W) =" 4) O dS(), (17.39

This is the so calle®oisson’s formula for the ball'z(0).
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Proposition 17.25 Letn > 2. Consider the inner Dirichlet problem if? = Ug(0) and f = 0.
The function

S [ sl <R
uly) = Sl
oY), lyll = R

is continuous on the closed ball;(0) and harmonic inJz(0).
In casen = 2 the functionu(y), can be written in the following form

U@ZRB<1AMf®Z+%%>,th@C@-

2mi z2—Y z

For the proof of the general statement with> 2, see[[Jos02, Theorem 1.1.2] ér[Joh82, p.
107]. We show the last statement for= 2. Sinceyz — 7z is purely imaginary,

ity p E-D) o 12—y yE-gr Ryl

Re — = .
z—y (z—y)(z-7) |z -y |z -y

. L : d :
Using the parametrization= Re', dt = —Z we obtain
1z

1 z+4y dz 1 [ R2— |y
Re (5 [ w2ty o L [Tl a
27 J3 (0 z—y iz 2 o |z —vy]

R~y o(x) L
—on 3 x|.
T Sr(0) | — Y]

In the last line we have a (real) line integral of the first kingingz = (z1, x2) = z1 +izy = 2,
x € Sg(0) and| dz | = Rdt on the circle.

Other Examples. (@) n = 3. The half-space? = {(x, 7o, 73) € R? | 23 > 0}. We use the
ordinary reflection map with respect to the plane= 0 which is given byy = (y1, y2, y3) —
v = (y1,92, —y3). Then Green’s function t& is

/ 1 1 1

(see homework 57.1)
(b) n = 3. The half ball2 = {(z1, z9,23) € R? | ||z]| < R, x3 > 0}. We use the reflections
y — y' andy — 7 (reflection with respect to the sphefg(0)). Then

R _ / R —/
G(x,y) = Es(x —y) — mgs(l’ —7) —Es(x—y) + mgz«:(ﬂf -7)
is Green'’s function td@..

©n =3, 02 = {(r1,v9,23) € R* | 2o > 0, 3 > 0}. We introduce the reflection
v = (y1,y2,y3) — y* = (y1, —y2,y3). Then Green’s function t@ is

G(z,y) = Es(x —y) — E(x —y) — Es(z — y™) + Es(z — (¥)).
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Consider the Neumann problem and the ansatz for Green’sidanio case of the Dirichlet
problem:

u(y) I/QH(x,y) Au(z) dx+/m (u(x)%f:y) —H(x,y)%(x)) dS(z). (17.40)

We want to choose a Green’s function of the second Kifa, ) in such a way that only the
last surface integral remains present.
Insertingu = 1 in the above formula, we have

0G(z,y)
- / 9LY) 45(a).
on anx ( )
Imposing,?5% = o = const. , this constant must be = 1/vol(012).

Note, that one defines a Green’s function to the Neumann @mobéplacing(z,y) = 0 on
012 by the condition(;%G(x, y) = const.
Green’s function of second kind (Neumann problem) to thedfabdiusR in R?, U(0).

Hiz.g) = -1 ( Lo, R 2R? )
T,y) = - — + 7 log =
A \llz =yl = lylllle =9l B R =2y + [yl [z -]

(c) Existence Theorems

The aim of this considerations is to sketch the method ofipgpgxistenceof solutions of the
four BVPs.

Definition. Suppose tha? C R, n > 3 and letu(y) be a continuous function on the boundary
012, thatisu € C(012). We call

w(z) = / ) fe=y) dS(y). e R, (17.41)

o0&, "
ow) = [ ul) G -9 dS(w). weR (17.42)
a0 n
adouble-layer potential

Remarks 17.8 (a) Forz ¢ 012 the integrals[(I7.41) anf{17]42) exist.
(b) The single layer potential(z) is continuous orR”. The double-layer potential jumps at
Yo € 002 by u(yo) asz approacheg,, see[I17.43) below.

Theorem 17.26 Let £2 be a connected bounded regionk¥ of the clas<C? and (2’ = R™\ 2
also be connected.

Then the interior Dirichlet problem to the Laplace equatimais a unique solution. It can be
represented in form of a double-layer potential. The egteeumann problem likewise has a
unique solution which can be represented in form of a siteyer potential.
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Theorem 17.27 Under the same assumptions as in the previous theorem, niee Neumann
problem to the Laplace equation has a solution if and only,if ¢(y) dS(y) = 0. If this
condition is satisfies, the solution is unique up to a corstan

The exterior Dirichlet problem has a unique solution.

Remark. Letup denote the continuous functions which produces the saluiio) of the inte-

rior Dirichlet problem, i.ewv(z) = [, up(y) K (z,y) dS(y), whereK (z,y) = %c%(x—y).
Y
Because of the jump relation fofz) atz, € 012:
. 1 . 1
limo@) = o) = v(eo) = lim_ (@) + Sp(a). (17.43)

uip satisfies the integral equation

1

p(z) = §MID($) + /8!2 wip(y) K (x,y)dS(y), =€ 012

The above equation can be writtenas- (A + %I )up, WhereA is the above integral operator
in L2(042). One can prove the following factst is compactA + %I Is injective and surjective,
¢ continuous impliegp continuous. For details, s€e [Tr192, 3.4].

Application to the Poisson Equation

Consider the inner Dirichlet probletAuw = f, andu = ¢ on 2. We suppose thaf <
C(£2) N CL(£2). We already know that

wla) = (€ @) =~ | W) g,

(n = 2)wn Jpo [|lz —y|I"?

is a distributive solution of the Poisson equatidwy = f. By the assumptions ofi, w €
C?(£2) and therefore is a classical solution. To solve the problentrwthe ansatz = w + v.
ThenAu = Aw + Av = f + Av. Hence,Au = f if and only if Av = 0. Thus, the
inner Dirichlet problem for the Poisson equation reducesiéanner Dirichlet problem for the
Laplace equatiothv = 0 with boundary values

o(y) = u(y) —w(y) = o(y) —wl(y) = ¢(y), y €I

Sincep andw are continuous of{?2, SO isp.

17.5.2 Extremal Properties of Harmonic Functions and the Dichlet
Principle

(a) The Dirichlet Principle

Consider the inner Dirichlet problem to the Poisson equatiith given dataf € C(f2) and
p € C(012).
Put

CL(2):={veC(R)|v=¢p on 002}
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On this space define tHairichlet integral by

E(v) = %/Q Vo dz + /Qf -vdex, v e CL(N). (17.44)

This integral is also callednergy integral The Dirichlet principle says that among all functions
v with given boundary valueg, the functionu with Au = f minimizes the energy integral.

Proposition 17.28 A functionu € C(£2) N C?(12) is a solution of the inner Dirichlet problem
if and only if the energy integral attains its minimum o@i,(ﬁ) atu.

Proof. (a) Suppose first that C}D(ﬁ) N C%(£2) is a solution of the inner Dirichlet problem,
Au = f.Forv € CL(12) letw = v —u € CL(£2). Then

E(v):E(u—i—w):%/Q(VujLVw%(Vu+Vw)d:c+/(u+w)fdx

)

1 1
:—/ ku%-/ HVwH2+/Vu-dex+/<u+w>fdx
2 % 2 02 02 02

Sinceu andv satisfy the same boundary conditions|y,= 0. Further,Au = f. By Green’s
1% formula,

/Vu-dex:—/(Au)wdx+/ %wdS:—/fwdx.
2 2 a0 On 2

Inserting this into the above equation, we have
1 2 1 2
E@):—/ V4| +—/ IVul —/fwdx+/(u+w)fdx
2 2 2 2 2 (9}
1
= B(u) + —/ |Vw||* dz > E(u).
2/
This shows that/(u) is minimal.

(b) Conversely, let, € C}D(ﬁ) N C%(£2) minimize the energy integral. In particular, for any test
functiony € D({?2), ¢ has zero boundary values, the function

g(t) = E(u+ty) = E(u) +t/9 (Vu -V + fo) de + %ﬁ/gqu/;HQ dx

has a local minimum at = 0. Hence,g'(0) = 0 which is, again by Green’s" formula and
Y o= 0, equivalent to

O:/Q(Vu~vw+fw)dx:/g(—Au+f)wdx.

By the fundamental Lemma of calculus of variatiods, = f almost everywhere of?. Since
both Au and f are continuous, this equation holds pointwise foradl (2.
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(b) Hilbert Space Methods

We want to give another reformulation of the Dirichlet preinl. Consider the problem
Au = — , U ‘aQ: 0.

On C*(02) define a bilinear map
UVg = / Vu-Vudz.
N

C!(£2) is not yet an inner product space since for any non-vanistongtant functiom, u-uy =

0. Denote byC}(£2) the subspace of functions @it (£2) vanishing on the boundas?2. Now,

u-vg is an inner product of}(£2). The positive definiteness is a consequence of the Poincaré
inequality below. Its corresponding normlis||; = [, ||Vu/|? dz. Letu be a solution of the
above Dirichlet problem. Then for anye C}(§2), by Green'sl** formula

'U-uE:/V'U-Vudx:—/'uAudx:/vfda::v-sz.
Q 2 Q

This suggests that can be found by representing the known linear functional in

F('U):/Q'dex

as an inner produat-ug. To make use of Riesz’s representations theorem, Thebref) W8
have to complet€’}((2) into a Hilbert spacéV with respect to the energy norfj||, and to
prove that the above linear function&lis bounded with respect to the energy norm. This is
a consequence of the next lemma. We make the same assumioha®in the beginning of
Sectiol I7H.

Lemma 17.29 (Poincaé inequality) Let {2 C R™. Then there exist§’ > 0 such that for all
u € CH(02)
[elle) < Cllullg -

Proof. Let (2 be contained in the cubE = {x € R" | |z;| < a,i=1,...,n}. We extendu
by zero outsid&?. For anyx = (2, ..., x,), by the Fundamental Theorem of Calculus

z1 2 x1 2
u(x)2 = (/ Uz, (Y1, T, .o, Ty) dyl) = (/ 1 g, (Y1, @, ...y xy) dyl)

xr1 1 Tl a
< / dy1/ Uil dy; = (1 + a)/ Uil dy; < QG/ Uil dy:.
CSlJ—q —a —a —a

Since the last integral does not dependrpnintegration with respect to, gives

/ u(z)? da; < 4a2/ us, dys.

—a —a

Integrating over,, . .., z, from —a to a we find

/quxSKLaQ/uil dy.
r r
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The same inequality holds faf;, i = 2, ..., n in place ofz; such that

2 _ 293 <4_a2 \V4 24 :CQ 2
[l wdrs = F( u)” dx [l

whereC' = 2a/\/n. n

The Poincaré inequality is sometimes called PoincaiédFch inequality. It remains true for
functionsu in the completioiV. Let us discuss the elementsidfin more detail. By definition,
f € W if there is a Cauchy sequen¢é,) in C}(£2) such that(f,) “converges tof” in the
energy norm. By the Poincaré inequality,,) is also anl.?>-Cauchy sequence. Sinéé&((2)
is complete,(f,,) has anL?-limit f. This showsiV C L?(£2). For simplicity, let2 ¢ R'.
By definition of the energy normyj,, | (f,, — fm)’ > dz — 0, asm,n — oo; thatis(f’) is an
L2-Cauchy sequence, too. Hen¢¢,) has also somg?-limit, say g € L*(£2). So far,

Ifn = flle — 0, |Ify = gl — 0. (17.45)

We will show that the above limits imply’ = g in D’(£2). Indeed, by[[I7.45) and the Cauchy-
Schwarz inequality, for alp € D({2),

1

/ 2 % 712 2
/Q(fn—f)wdm(/glfn—fl dx) (/Qw dx) 0,
" g)odr < ’_ 2d)§( Qd)aﬁ.
[i-gpar< ([ 1r-ora) ([ 1ofar) —o
Hence,

/f’(pdx:—/fgo’dx:—lim/fngo’dx: lim/f;b@dx:/g(pdx.
0 02 T J 0 e J0 02

This showsf’ = g in D’({2). One says that the elementsldf provideweak derivativesthat

is, its distributive derivative is ah?-function (and hence a regular distribution).

Also, the inner product -, is positive definite since thie*-inner product is. It turns out that’

is a separable Hilbert spadé’ is the so calleGobolev spac®,*(2) sometimes also denoted
by H}(£2). The upper indices and2 in W, *(£2) refer to the highest order of partial derivatives
(la| = 1) and thel?-space § = 2) in the definition oflV, respectively. The lower index
refers to the so callegeneralized boundary valu@s For further readings on Sobolev spaces,

see [EQl95, Chapter 6].

Corollary 17.30 F(v) = v- fi2 = [,, f vdz defines a bounded linear functional &.

Proof. By the Cauchy—Schwarz and Poincaré inequalities,

| F() ] < /Q|fv| dz <|[fllez lvlle < Cllflle [[olle-

Hence,F is bounded with| F'|| < C'|| f|.-- ]
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Corollary 17.31 Let f € C(£2). Then there exists a uniquec W such that
veup = U fr2, YveW.

Thisw solves
Au=—f, in D(N).

The first statement is a consequence of Riesz’s represamth#orem; note that is a bounded
linear functional on the Hilbert spad&. The last statement follows frofd(£2) ¢ C(£2) and
u-pg = — (Au, ) = f-pr2. Thisis the so callechodified Dirichlet problemit remains open
the task to identify the solutiom € W with anordinary functionu € C?(2).

17.5.3 Numerical Methods
(a) Difference Methods

Since most ODE and PDE are not solvable in a closed form therea dot of methods to
find approximative solutions to a given equation or a givesbfgm. A general principle is
discretization One replaces the derivativ&z) by one of itsdifference quotients

x+h)—u(x)
A ;

u(z) —u(z — h)
5 ;

O u(x) = u 0 u(z) =

where/ is called the step size. One can also use a symmetric differéf™. =) The
Five-Point formula for the Laplacian iR? is then given by

Apu(z,y) = (05 0 + 0,0 Ju(x,y) =
uw(x — h,y) +u(x+ h,y) +u(z,y — h) +u(x,y + h) — du(z,y)
h?

Besides the equation, the domdihas well as its boundarg(? undergo a discretization: If
2 =1(0,1) x (0,1) then

Qp ={(nh,mh) € 2 |n,me N}, 092, ={(nh,mh) € 02 | n,m € 7Z}.
The discretization of the inner Dirichlet problem then read

Ahu:fa {L'EQ}”

u |po, = ¢.

Also, Neumann problems have discretizatiohs, [Hac92, &nal.

(b) The Ritz—Galerkin Method

Suppose we have a boundary value problem in its variatiemadilation:

Findu € V, so thatu-vg = F(v) forallv € V,
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where we are thinking of the Sobolev spdce= W from the previous paragraph. Of course,
Fis assumed to be bounded.

Difference methods arise through discretising the difieed operator. Now we wish to leave
the differential operator which is hiddening unchanged. The Ritz—Galerkin method consists
in replacing the infinite-dimensional spakeby a finite-dimensional spadéy,

Vv CV, dimVy=N < .

Vi equipped with the norm-||, is still a Banach space. Sinég; C V/, both the inner product
-.-g and F' are defined for, v € Viy. Thus, we may pose the problem

Finduy € Vy, so thatuy-vg = F(v) forall v € Vy,

The solution to the above problem, if it exists, is calRitiz—Galerkin solutiorfbelonging to
V).
An introductory example is to be found in[Ha¢92, 8.1.11, §4]1 see alsd[Brall, Chapter 2].
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