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Chapter 1

Real and Complex Numbers

Basics

NotationsR Real numbersC Complex numbersQ Rational numbersN = {1, 2, . . .} positive integers (natural numbers)Z Integers

We know thatN ⊆ Z ⊆ Q ⊆ R ⊆ C. We writeR+, Q+ andZ+ for the non-negative
real, rational, and integer numbersx ≥ 0, respectively. The notionsA ⊂ B andA ⊆ B are
equivalent. If we want to point out thatB is strictly bigger thanA we writeA ( B.

We use the following symbols

:= defining equation
y,⇒ implication, “if . . . , then . . . ”
⇐⇒ “if and only if”, equivalence
∀ for all
∃ there exists

Let a < b fixed real numbers. We denote theintervalsas follows

[a, b] := {x ∈ R | a ≤ x ≤ b} closed interval
(a, b) := {x ∈ R | a < x < b} open interval
[a, b) := {x ∈ R | a ≤ x < b} half-open interval
(a, b] := {x ∈ R | a < x ≤ b} half-open interval
[a,∞) := {x ∈ R | a ≤ x} closed half-line
(a,∞) := {x ∈ R | a < x} open half-line
(−∞, b] := {x ∈ R | x ≤ b} closed half-line
(−∞, b) := {x ∈ R | x < b} open half-line

11



12 1 Real and Complex Numbers

(a) Sums and Products

Let us recall the meaning of the sum sign
∑

and the product sign
∏

. Supposem ≤ n are
integers, andak, k = m, . . . , n are real numbers. Then we set

n∑

k=m

ak := am + am+1 + · · ·+ an,

n∏

k=m

ak := amam+1 · · ·an.

In casem = n the sum and the product consist of one summand and one factor only, respec-
tively. In casen < m it is customary to set

n∑

k=m

ak := 0, (empty sum)
n∏

k=m

ak := 1 (empty product).

The following rules are obvious: Ifm ≤ n ≤ p andd ∈ Z are integers then

n∑

k=m

ak +

p∑

k=n+1

ak =

p∑

k=m

ak,
n∑

k=m

ak =
n+d∑

k=m+d

ak−d (index shift).

We have fora ∈ R,
n∑

k=m

a = (n−m+ 1)a.

(b) Mathematical Induction

Mathematical induction is a powerful method to prove theorems about natural numbers.

Theorem 1.1 (Principle of Mathematical Induction) Let n0 ∈ Z be an integer. To prove a
statementA(n) for all integersn ≥ n0 it is sufficient to show:

(I) A(n0) is true.
(II) For anyn ≥ n0: If A(n) is true, so isA(n + 1) (Induction step).

It is easy to see how the principle works: First,A(n0) is true. Apply (II) ton = n0 we obtain
thatA(n0 + 1) is true. Successive application of (II) yieldsA(n0 + 2), A(n0 + 3) are true and
so on.

Example 1.1 (a) For all nonnegative integersn we have
n∑

k=1

(2k − 1) = n2.

Proof. We use induction overn. In casen = 0 we have an empty sum on the left hand side (lhs)
and02 = 0 on the right hand side (rhs). Hence, the statement is true forn = 0.
Suppose it is true for some fixedn. We shall prove it forn + 1. By the definition of the sum
and by induction hypothesis,

∑n
k=1(2k − 1) = n2, we have

n+1∑

k=1

(2k − 1) =
n∑

k=1

(2k − 1) + 2(n+ 1)− 1 =
ind.hyp.

n2 + 2n+ 1 = (n + 1)2.

This proves the claim forn + 1.
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(b) For all positive integersn ≥ 8 we have2n > 3n2.
Proof. In casen = 8 we have

2n = 28 = 256 > 192 = 3 · 64 = 3 · 82 = 3n2;

and the statement is true in this case.
Suppose it is true for some fixedn ≥ 8, i. e. 2n > 3n2 (induction hypothesis). We will show
that the statement is true forn+1, i. e. 2n+1 > 3(n+1)2 (induction assertion). Note thatn ≥ 8

implies

n− 1 ≥ 7 > 2 =⇒ (n− 1)2 > 4 > 2 =⇒ n2 − 2n− 1 > 0

=⇒ 3(n2 − 2n− 1) > 0 =⇒ 3n2 − 6n− 3 > 0 | +3n2 + 6n+ 3

=⇒ 6n2 > 3n2 + 6n+ 3 =⇒ 2 · 3n2 > 3(n2 + 2n+ 1)

=⇒ 2 · 3n2 > 3(n+ 1)2. (1.1)

By induction assumption,2n+1 = 2 · 2n > 2 · 3n2. This together with (1.1) yields
2n+1 > 3(n + 1)2. Thus, we have shown the induction assertion. Hence the statement is true
for all positive integersn ≥ 8.

For a positive integern ∈ N we set

n! :=
n∏

k=1

k, read: “n factorial,” 0! = 1! = 1.

(c) Binomial Coefficients

For non-negative integersn, k ∈ Z+ we define

(
n

k

)
:=

k∏

i=1

n− i+ 1

i
=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 2 · 1 .

The numbers
(
n
k

)
(read: “n choosek”) are calledbinomial coefficientssince they appear in the

binomial theorem, see Proposition 1.4 below. It just follows from the definition that

(
n

k

)
= 0 for k > n,

(
n

k

)
=

n!

k!(n− k)! =

(
n

n− k

)
for 0 ≤ k ≤ n.

Lemma 1.2 For 0 ≤ k ≤ n we have:

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
.
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Proof. Fork = n the formula is obvious. For0 ≤ k ≤ n− 1 we have
(
n

k

)
+

(
n

k + 1

)
=

n!

k!(n− k)! +
n!

(k + 1)!(n− k − 1)!

=
(k + 1)n! + (n− k)n!

(k + 1)!(n− k)! =
(n+ 1)!

(k + 1)!(n− k)! =

(
n+ 1

k + 1

)
.

We say thatX is ann-set ifX has exactlyn elements. We writeCardX = n (from “cardinal-
ity”) to denote the number of elements inX.

Lemma 1.3 The number ofk-subsets of ann-set is
(
n
k

)
.

The Lemma in particular shows that
(
n
k

)
is always an integer (which is not obvious by its defi-

nition).
Proof. We denote the number ofk-subsets of ann setXn byCn

k . It is clear thatCn
0 = Cn

n = 1

since∅ is the only0-subset ofXn andXn itself is the onlyn-subset ofXn. We use induction
overn. The casen = 1 is obvious sinceC1

0 = C1
1 =

(
1
0

)
=
(
1
1

)
= 1. Suppose that the claim is

true for some fixedn. We will show the statement for the(n + 1)-setX = {1, . . . , n + 1} and
all k with 1 ≤ k ≤ n. The family of(k+ 1)-subsets ofX splits into two disjoint classes. In the
first classA1 every subset containsn + 1; in the second classA2, not. To form a subset inA1

one has to choose anotherk elements out of{1, . . . , n}. By induction assumption the number
is Card A1 = Cn

k =
(
n
k

)
. To form a subset inA2 one has to choosek + 1 elements out of

{1, . . . , n}. By induction assumption this number isCard A2 = Cn
k+1 =

(
n
k+1

)
. By Lemma 1.2

we obtain

Cn+1
k+1 = Card A1 + Card A2 =

(
n

k

)
+

(
n

k + 1

)
=

(
n + 1

k + 1

)

which proves the induction assertion.

Proposition 1.4 (Binomial Theorem) Letx, y ∈ R andn ∈ N. Then we have

(x+ y)n =

n∑

k=0

(
n

k

)
xn−kyk.

Proof. We give a direct proof. Using the distributive law we find that each of the2n summands
of product(x + y)n has the formxn−k yk for somek = 0, . . . , n. We number then factors
as (x + y)n = f1 · f2 · · · fn, f1 = f2 = · · · = fn = x + y. Let us count how often the
summandxn−k yk appears. We have to choosek factorsy out of then factorsf1, . . . , fn. The
remainingn − k factors must bex. This gives a1-1-correspondence between thek-subsets
of {f1, . . . , fn} and the different summands of the formxn−k yk. Hence, by Lemma 1.3 their
number isCn

k =
(
n
k

)
. This proves the proposition.
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1.1 Real Numbers

In this lecture course weassume the system of real numbers to be given. Recall that the set of
integers isZ = {0,±1,±2, . . .} while the fractions of integersQ = {m

n
| m,n ∈ Z, n 6= 0}

form the set of rational numbers.
A satisfactory discussion of the main concepts of analysis such as convergence, continuity,
differentiation and integration must be based on an accurately defined number concept.
An existence proof for the real numbers is given in [Rud76, Appendix to Chapter 1]. The author
explicitly constructs the real numbersR starting from the rational numbersQ.
The aim of the following two sections is to formulate the axioms which are sufficient to derive
all properties and theorems of the real number system.
The rational numbers are inadequate for many purposes, bothas a field and an ordered set. For
instance, there is no rationalx with x2 = 2. This leads to the introduction of irrational numbers
which are often written as infinite decimal expansions and are considered to be “approximated”
by the corresponding finite decimals. Thus the sequence

1, 1.4, 1.41, 1.414, 1.4142, . . .

“tends to
√

2.” But unless the irrational number
√

2 has been clearly defined, the question must
arise: What is it that this sequence “tends to”?
This sort of question can be answered as soon as the so-called“real number system” is con-
structed.

Example 1.2 As shown in the exercise class, there is no rational numberx with x2 = 2. Set

A = {x ∈ Q+ | x2 < 2} and B = {x ∈ Q+ | x2 > 2}.

ThenA ∪ B = Q+ andA ∩ B = ∅. One can show that in the rational number system,A

has no largest element andB has no smallest element, for details see Appendix A or Rudin’s
book [Rud76, Example 1.1, page 2]. This example shows that the system of rational numbers
has certain gaps in spite of the fact that between any two rationals there is another: Ifr < s

thenr < (r + s)/2 < s. The real number system fills these gaps. This is the principal reason
for the fundamental role which it plays in analysis.
We start with the brief discussion of the general concepts ofordered setandfield.

1.1.1 Ordered Sets

Definition 1.1 (a) LetS be a set. Anorder (or total order) on S is a relation, denoted by<,
with the following properties. Letx, y, z ∈ S.

(i) One and only one of the following statements is true.

x < y, x = y, y < x (trichotomy)

(ii) x < y andy < z impliesx < z (transitivity).
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In this caseS is called anordered set.
(b) Suppose(S,<) is an ordered set, andE ⊆ S. If there exists aβ ∈ S such thatx ≤ β for
all x ∈ E, we say thatE is bounded above, and callβ anupper boundof E. Lower boundsare
defined in the same way with≥ in place of≤.
If E is both bounded above and below, we say thatE is bounded.

The statementx < y may be read as “x is less thany” or “x precedesy”. It is convenient to
write y > x instead ofx < y. The notationx ≤ y indicatesx < y or x = y. In other words,
x ≤ y is the negation ofx > y. For example,R is an ordered set ifr < s is defined to mean
thats− r > 0 is a positive real number.

Example 1.3 (a) The intervals[a, b], (a, b], [a, b), (a, b), (−∞, b), and(−∞, b] are bounded
above byb and all numbers greater thanb.
(b) E := { 1

n
| n ∈ N} = {1, 1

2
, 1

3
, . . . } is bounded above by anyα ≥ 1. It is bounded below

by 0.

Definition 1.2 SupposeS is an ordered set,E ⊆ S, anE is bounded above. Suppose there
exists anα ∈ S such that

(i) α is an upper bound ofE.
(ii) If β is an upper bound ofE thenα ≤ β.

Thenα is called thesupremum ofE (or least upper bound) of E. We write

α = supE.

An equivalent formulation of (ii) is the following:

(ii) ′ If β < α thenβ is not an upper bound ofE.

Theinfimum(or greatest lower bound) of a setE which is bounded below is defined in the same
manner: The statement

α = inf E

means thatα is a lower bound ofE and for all lower boundsβ of E we haveβ ≤ α.

Example 1.4 (a) If α = supE exists, thenαmay or may not belong toE. For instance consider
[0, 1) and[0, 1]. Then

1 = sup[0, 1) = sup[0, 1],

however1 6∈ [0, 1) but 1 ∈ [0, 1]. We will show thatsup[0, 1] = 1. Obviously,1 is an upper
bound of[0, 1]. Suppose thatβ < 1, thenβ is not an upper bound of[0, 1] sinceβ 6≥ 1. Hence
1 = sup[0, 1].
We show will show thatsup[0, 1) = 1. Obviously,1 is an upper bound of this interval. Suppose
thatβ < 1. Thenβ < β+1

2
< 1. Sinceβ+1

2
∈ [0, 1), β is not an upper bound. Consequently,

1 = sup[0, 1).
(b) Consider the setsA andB of Example 1.2 as subsets of the ordered setQ. SinceA∪B = Q+

(there is no rational number withx2 = 2) the upper bounds ofA are exactly the elements ofB.
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Indeed, ifa ∈ A andb ∈ B thena2 < 2 < b2. Taking the square root we havea < b. SinceB
contains no smallest member,A has no supremum inQ+.
Similarly,B is bounded below by any element ofA. SinceA has no largest member,B has no
infimum inQ.

Remarks 1.1 (a) It is clear from (ii) and the trichotomy of< that there is at most one suchα.
Indeed, supposeα′ also satisfies (i) and (ii), by (ii) we haveα ≤ α′ andα′ ≤ α; henceα = α′.
(b) If supE existsand belongs toE, we call it themaximumof E and denote it bymaxE.
Hence,maxE = supE andmaxE ∈ E. Similarly, if the infimum ofE existsand belongs to
E we call it theminimumand denote it byminE; minE = inf E, minE ∈ E.

bounded subset ofQ an upper bound sup max

[0, 1] 2 1 1

[0, 1) 2 1 —
A 2 — —

(c) Suppose thatα is an upper bound ofE andα ∈ E thenα = maxE, that is, property (ii) in
Definition 1.2 is automatically satisfied. Similarly, ifβ ∈ E is a lower bound, thenβ = minE.
(d) If E is a finite set it has always a maximum and a minimum.

1.1.2 Fields

Definition 1.3 A field is a setF with two operations, calledadditionandmultiplicationwhich
satisfy the following so-called “field axioms” (A), (M), and(D):

(A) Axioms for addition

(A1) If x ∈ F andy ∈ F then their sumx+ y is inF .
(A2) Addition is commutative:x+ y = y + x for all x, y ∈ F .
(A3) Addition is associative:(x+ y) + z = x+ (y + z) for all x, y, z ∈ F .
(A4) F contains an element0 such that0 + x = x for all x ∈ F .
(A5) To everyx ∈ F there exists an element−x ∈ F such thatx+ (−x) = 0.

(M) Axioms for multiplication

(M1) If x ∈ F andy ∈ F then their productxy is in F .
(M2) Multiplication is commutative:xy = yx for all x, y ∈ F .
(M3) Multiplication is associative:(xy)z = x(yz) for all x, y, z ∈ F .
(M4) F contains an element1 such that1x = x for all x ∈ F .
(M5) If x ∈ F andx 6= 0 then there exists an element1/x ∈ F such thatx · (1/x) = 1.

(D) The distributive law

x(y + z) = xy + xz

holds for allx, y, z ∈ F .
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Remarks 1.2 (a) One usually writes

x− y, x
y
, x+ y + z, xyz, x2, x3, 2x, . . .

in place of

x+ (−y), x · 1
y
, (x+ y) + z, (xy)z, x · x, x · x · x, 2x, . . .

(b) The field axioms clearly hold inQ if addition and multiplication have their customary mean-
ing. ThusQ is a field. The integersZ form nota field since2 ∈ Z has no multiplicative inverse
(axiom (M5) is not fulfilled).
(c) The smallest field isF2 = {0, 1} consisting of the neutral element0 for addition and the neu-

tral element1 for multiplication. Multiplication and addition are defined as follows
+ 0 1

0 0 1

1 1 0

··· 0 1

0 0 0

1 0 1

. It is easy to check the field axioms (A), (M), and (D) directly.

(d) (A1) to (A5) and (M1) to (M5) mean that both(F,+) and(F \ {0}, ·) arecommutative (or
abelian) groups, respectively.

Proposition 1.5 The axioms of addition imply the following statements.
(a) If x+ y = x+ z theny = z (Cancellation law).
(b) If x+ y = x theny = 0 (The element0 is unique).
(c) If x+ y = 0 they = −x (The inverse−x is unique).
(d)−(−x) = x.

Proof. If x+ y = x+ z, the axioms (A) give

y =
A 4

0 + y =
A 5

(−x+ x) + y =
A 3
−x+ (x+ y) =

assump.
−x+ (x+ z)

=
A 3

(−x+ x) + z =
A 5

0 + z =
A 4
z.

This proves (a). Takez = 0 in (a) to obtain (b). Takez = −x in (a) to obtain (c). Since
−x+ x = 0, (c) with−x in place ofx andx in place ofy, gives (d).

Proposition 1.6 The axioms for multiplication imply the following statements.

(a) If x 6= 0 andxy = xz theny = z (Cancellation law).
(b) If x 6= 0 andxy = x theny = 1 (The element1 is unique).
(c) If x 6= 0 andxy = 1 theny = 1/x (The inverse1/x is unique).
(d) If x 6= 0 then1/(1/x) = x.

The proof is so similar to that of Proposition 1.5 that we omitit.
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Proposition 1.7 The field axioms imply the following statements, for anyx, y, z ∈ F
(a)0x = 0.

(b) If xy = 0 thenx = 0 or y = 0.
(c) (−x)y = −(xy) = x(−y).
(d) (−x)(−y) = xy.

Proof. 0x+ 0x = (0 + 0)x = 0x. Hence 1.5 (b) implies that0x = 0, and (a) holds.
Suppose to the contrary that bothx 6= 0 andy 6= 0 then (a) gives

1 =
1

y
·1
x
xy =

1

y
·1
x

0 = 0,

a contradiction. Thus (b) holds.
The first equality in (c) comes from

(−x)y + xy = (−x+ x)y = 0y = 0,

combined with 1.5 (b); the other half of (c) is proved in the same way. Finally,

(−x)(−y) = −[x(−y)] = −[−xy] = xy

by (c) and 1.5 (d).

1.1.3 Ordered Fields

In analysis dealing with equations is as important as dealing with inequalities. Calculations
with inequalities are based on the ordering axioms. It turnsout that all can be reduced to the
notion of positivity.
In F there are distinguished positive elements (x > 0) such that the following axioms are valid.

Definition 1.4 An ordered fieldis a fieldF which is also an ordered set, such that for all
x, y, z ∈ F

(O) Axioms for ordered fields

(O1) x > 0 andy > 0 impliesx+ y > 0,
(O2) x > 0 andy > 0 impliesxy > 0.

If x > 0 we callx positive; if x < 0, x is negative.

For exampleQ andR are ordered fields, ifx > y is defined to mean thatx− y is positive.

Proposition 1.8 The following statements are true in every ordered fieldF .

(a) If x < y anda ∈ F thena + x < a + y.
(b) If x < y andx′ < y′ thenx+ x′ < y + y′.
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Proof. (a) By assumption(a+ y)− (a+ x) = y − x > 0. Hencea+ x < a+ y.
(b) By assumption and by (a) we havex+ x′ < y + x′ andy + x′ < y + y′. Using transitivity,
see Definition 1.1 (ii), we havex+ x′ < y + y′.

Proposition 1.9 The following statements are true in every ordered field.

(a) If x > 0 then−x < 0, and ifx < 0 then−x > 0.
(b) If x > 0 andy < z thenxy < xz.
(c) If x < 0 andy < z thenxy > xz.
(d) If x 6= 0 thenx2 > 0. In particular,1 > 0.
(e) If 0 < x < y then0 < 1/y < 1/x.

Proof. (a) If x > 0 then0 = −x + x > −x + 0 = −x, so that−x < 0. If x < 0 then
0 = −x+ x < −x+ 0 = −x so that−x > 0. This proves (a).
(b) Sincez > y, we havez − y > 0, hencex(z − y) > 0 by axiom (O2), and therefore

xz = x(z − y) + xy >
Prp.1.8

0 + xy = xy.

(c) By (a), (b) and Proposition 1.7 (c)

−[x(z − y)] = (−x)(z − y) > 0,

so thatx(z − y) < 0, hencexz < xy.
(d) If x > 0 axiom 1.4 (ii) givesx2 > 0. If x < 0 then−x > 0, hence(−x)2 > 0 But
x2 = (−x)2 by Proposition 1.7 (d). Since12 = 1, 1 > 0.
(e) If y > 0 andv ≤ 0 thenyv ≤ 0. But y · (1/y) = 1 > 0. Hence1/y > 0, likewise1/x > 0.
If we multiply x < y by the the positive quantity(1/x)(1/y), we obtain1/y < 1/x.

Remarks 1.3 (a) The finite fieldF2 = {0, 1}, see Remarks 1.2, is not an ordered field since
1 + 1 = 0 which contradicts1 > 0.
(b) The field of complex numbersC (see below) is not an ordered field sincei2 = −1 contradicts
Proposition 1.9 (a), (d).

1.1.4 Embedding of natural numbers into the real numbers

Let F be an ordered field. We want to recover the integers insideF . In order to distinguish0
and1 in F from the integers0 and1 we temporarily write0F and1F . For a positive integer
n ∈ N, n ≥ 2 we define

nF := 1F + 1F + · · ·+ 1F (n times).

Lemma 1.10 We havenF > 0F for all n ∈ N.
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Proof. We use induction overn. By Proposition 1.9 (d) the statement is true forn = 1. Suppose
it is true for a fixedn, i. e. nF > 0F . Moreover1F > 0F . Using axiom (O2) we obtain
(n+ 1)1F = nF + 1F > 0.

From Lemma 1.10 it follows thatm 6= n impliesnF 6= mF . Indeed, letn be greater thanm,
sayn = m+ k for somek ∈ N, thennF = mF + kF . SincekF > 0 it follows from 1.8 (a) that
nF > mF . In particular,nF 6= mF . Hence, the mappingN→ F, n 7→ nF

is a one-to-one correspondence (injective). In this way thepositive integers are embedded into
the real numbers. Addition and multiplication of natural numbers and of its embeddings are the
same:

nF +mF = (n +m)F , nF mF = (nm)F .

From now on we identify a natural number with the associated real number. We writen for nF .

Definition 1.5 (The Archimedean Axiom) An ordered fieldF is calledArchimedeanif for all
x, y ∈ F with x > 0 andy > 0 there existsn ∈ N such thatnx > y.

An equivalent formulation is: The subsetN ⊂ F of positive integers is not bounded above.
Choosex = 1 in the above definition, then for anyy ∈ F there in ann ∈ N such thatn > y;
henceN is not bounded above.
SupposeN is not bounded andx > 0, y > 0 are given. Theny/x is not an upper bound forN,
that is there is somen ∈ N with n > y/x or nx > y.

1.1.5 The completeness ofR
Using the axioms so far we are not yet able to prove the existence of irrational numbers. We
need the completeness axiom.

Definition 1.6 (Order Completeness)An ordered setS is said to beorder completeif for
every non-empty bounded subsetE ⊂ S has a supremumsupE in S.

(C) Completeness Axiom
The real numbers are order complete, i. e. every bounded subsetE ⊂ R has a supremum.

The setQ of rational numbers is not order complete since, for example, the bounded set
A = {x ∈ Q+ | x2 < 2} has no supremum inQ. Later we will define

√
2 := supA.

The existence of
√

2 in R is furnished by the completeness axiom (C).
Axiom (C) implies that every bounded subsetE ⊂ R has an infimum. This is an easy conse-
quence of Homework 1.4 (a).
We will see that an order complete field is always Archimedean.

Proposition 1.11 (a)R is Archimedean.
(b) If x, y ∈ R, andx < y then there is ap ∈ Q with x < p < y.
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Part (b) may be stated by saying thatQ is dense inR.
Proof. (a) Letx, y > 0 be real numbers which do not fulfill the Archimedean property. That is,
if A := {nx | n ∈ N}, theny would be an upper bound ofA. Then (C) furnishes thatA has a
supremumα = supA. Sincex > 0, α − x < α andα − x is not an upper bound ofA. Hence
α−x < mx for somem ∈ N. But thenα < (m+1)x, which is impossible, sinceα is an upper
bound ofA.
(b) See [Rud76, Theorem 29].

Remarks 1.4 (a) If x, y ∈ Q with x < y, then there existsz ∈ R \Q with x < z < y; chose
z = x+ (y − x)/

√
2.

Ex class: (b) We shall show thatinf
{

1
n
| n ∈ N} = 0. Sincen > 0 for all n ∈ N, 1

n
> 0 by

Proposition 1.9 (e) and0 is a lower bound. Supposeα > 0. SinceR is Archimedean, we find
m ∈ N such that1 < mα or, equivalently1/m < α. Hence,α is not a lower bound forE
which proves the claim.
(c) Axiom (C) is equivalent to the Archimedean property together with thetopologicalcom-
pleteness (“Every Cauchy sequence inR is convergent,” see Proposition 2.18).
(d) Axiom (C) is equivalent to theaxiom of nested intervals, see Proposition 2.11 below:

Let In := [an, bn] a sequence of closed nested intervals, that is (I1 ⊇ I2 ⊇ I3 ⊇ · · · )
such that for allε > 0 there existsn0 such that0 ≤ bn − an < ε for all n ≥ n0.
Then there exists a unique real numbera ∈ R which is a member of all intervals,
i. e. {a} =

⋂
n∈N In.

1.1.6 The Absolute Value

Forx ∈ R one defines

| x | :=
{
x, if x ≥ 0,

−x, if x < 0.

Lemma 1.12 For a, x, y ∈ R we have
(a) | x | ≥ 0 and| x | = 0 if and only ifx = 0. Further | −x | = | x |.
(b)±x ≤ |x |, |x | = max{x,−x}, and|x | ≤ a ⇐⇒ (x ≤ a and − x ≤ a).

(c) | xy | = |x | | y | and
∣∣∣ xy
∣∣∣ = | x |

| y | if y 6= 0.

(d) |x+ y | ≤ |x |+ | y | (triangle inequality).
(e) | |x | − | y | | ≤ | x+ y |.

Proof. (a) By Proposition 1.9 (a),x < 0 implies |x | = −x > 0. Also,x > 0 implies |x | > 0.
Putting both together we obtain,x 6= 0 implies | x | > 0 and thus|x | = 0 implies x = 0.
Moreover| 0 | = 0. This shows the first part.
The statement| x | = | −x | follows from (b) and−(−x) = x.
(b) Suppose first thatx ≥ 0. Thenx ≥ 0 ≥ −x and we havemax{x,−x} = x = |x |. If x < 0

then−x > 0 > x and
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max{−x, x} = −x = | x |. This provesmax{x,−x} = | x |. Since the maximum is an
upper bound,| x | ≥ x and |x | ≥ −x. Suppose nowa is an upper bound of{x,−x}. Then
|x | = max{x,−x} ≤ a. On the other hand,max{x,−x} ≤ a implies thata is an upper bound
of {x,−x} sincemax is.
One proves the first part of (c) by verifying the four cases (i)x, y ≥ 0, (ii) x ≥ 0, y < 0, (iii)
x < 0, y ≥ 0, and (iv)x, y < 0 separately. (i) is clear. In case (ii) we have by Proposition1.9 (a)
and (b) thatxy ≤ 0, and Proposition 1.7 (c)

| x | | y | = x(−y) = −(xy) = |xy | .

The cases (iii) and (iv) are similar. To the second part.

Sincex = x
y
· y we have by the first part of (c),| x | =

∣∣∣ xy
∣∣∣ | y |. The claim follows by multipli-

cation with 1
| y | .

(d) By (b) we have±x ≤ |x | and±y ≤ | y |. It follows from Proposition 1.8 (b) that

±(x+ y) ≤ | x |+ | y | .

By the second part of (b) witha = |x |+ | y |, we obtain|x+ y | ≤ | x |+ | y |.
(e) Insertingu := x+ y andv := −y into |u+ v | ≤ |u |+ | v | one obtains

|x | ≤ |x+ y |+ | −y | = |x+ y |+ | y | .

Adding− | y | on both sides one obtains| x | − | y | ≤ | x+ y |. Changing the role ofx andy
in the last inequality yields−(| x | − | y |) ≤ |x+ y |. The claim follows again by (b) with
a = | x+ y |.

1.1.7 Supremum and Infimum revisited

The following equivalent definition for the supremum of setsof real numbers is often used in
the sequel. Note that

x ≤ β ∀x ∈M
=⇒ supM ≤ β.

Similarly,α ≤ x for all x ∈M impliesα ≤ inf M .

Remarks 1.5 (a) Suppose thatE ⊂ R. Thenα is the supremum ofE if and only if

(1) α is an upper bound forE,
(2) For allε > 0 there existsx ∈ E with α− ε < x.

Using the Archimedean axiom (2) can be replaced by

(2’) For all n ∈ N there existsx ∈ E such thatα− 1
n
< x.
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(b) LetM ⊂ R andN ⊂ R nonempty subsets which are bounded above.
ThenM +N := {m+ n | m ∈M,n ∈ N} is bounded above and

sup(M +N) = supM + supN.

(c) LetM ⊂ R+ andN ⊂ R+ nonempty subsets which are bounded above.
ThenMN := {mn | m ∈M,n ∈ N} is bounded above and

sup(MN) = supM supN.

1.1.8 Powers of real numbers

We shall prove the existence ofnth roots of positive reals. We already knowxn, n ∈ Z. It is
recursively defined byxn := xn−1 · x, x1 := x, n ∈ N andxn := 1

x−n for n < 0.

Proposition 1.13 (Bernoulli’s inequality) Letx ≥ −1 andn ∈ N. Then we have

(1 + x)n ≥ 1 + nx.

Equality holds if and only ifx = 0 or n = 1.

Proof. We use induction overn. In the casesn = 1 andx = 0 we have equality. The strict
inequality (with an> sign in place of the≥ sign) holds forn0 = 2 andx 6= 0 since(1 + x)2 =

1 + 2x + x2 > 1 + 2x. Suppose the strict inequality is true for some fixedn ≥ 2 andx 6= 0.
Since1 + x ≥ 0 by Proposition 1.9 (b) multiplication of the induction assumption by this factor
yields

(1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + (n + 1)x+ nx2 > 1 + (n + 1)x.

This proves the strict assertion forn + 1. We have equality only ifn = 1 or x = 0.

Lemma 1.14 (a) For x, y ∈ R with x, y > 0 andn ∈ N we have

x < y ⇐⇒ xn < yn.

(b) For x, y ∈ R+ andn ∈ N we have

nxn−1(y − x) ≤ yn − xn ≤ nyn−1(y − x). (1.2)

We have equality if and only ifn = 1 or x = y.

Proof. (a) Observe that

yn − xn = (y − x)
n∑

k=1

yn−k xk−1 = c(y − x)
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with c :=
∑n

k=1 y
n−k xk−1 > 0 sincex, y > 0. The claim follows.

(b) We have

yn − xn − nxn−1(y − x) = (y − x)
n∑

k=1

(
yn−kxk−1 − xn−1

)

= (y − x)
n∑

k=1

xk−1
(
yn−k − xn−k

)
≥ 0

since by (a)y − x andyn−k − xn−k have the same sign. The proof of the second inequality is
quite analogous.

Proposition 1.15 For every realx > 0 and every positive integern ∈ N there is one and only
oney > 0 such thatyn = x.

This numbery is written n
√
x or x

1
n , and it is called “thenth root ofx”.

Proof. The uniqueness is clear since by Lemma 1.14 (a)0 < y1 < y2 implies0 < yn1 < yn2 .
Set

E := {t ∈ R+ | tn < x}.
Observe thatE 6= ∅ since0 ∈ E. We show thatE is bounded above. By Bernoulli’s inequality
and since0 < x < nx we have

t ∈ E ⇔ tn < x < 1 + nx < (1 + x)n

=⇒
Lemma1.14

t < 1 + x

Hence,1 + x is an upper bound forE. By the order completeness ofR there existsy ∈ R such
thaty = supE. We have to show thatyn = x. For, we will show that each of the inequalities
yn > x andyn < x leads to a contradiction.
Assumeyn < x and consider(y + h)n with “small” h (0 < h < 1). Lemma 1.14 (b) implies

0 ≤ (y + h)n − yn ≤ n (y + h)n−1(y + h− y) < hn(y + 1)n−1.

Choosingh small enough thathn(y + 1)n−1 < x− yn we may continue

(y + h)n − yn ≤ x− yn.

Consequently,(y+ h)n < x and thereforey+ h ∈ E. Sincey+ h > y, this contradicts the fact
thaty is an upper bound ofE.
Assumeyn > x and consider(y − h)n with “small” h (0 < h < 1). Again by Lemma 1.14 (b)
we have

0 ≤ yn − (y − h)n ≤ n yn−1(y − y + h) < hnyn−1.

Choosingh small enough thathnyn−1 < yn − x we may continue

yn − (y − h)n ≤ yn − x.
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Consequently,x < (y − h)n and thereforetn < x < (y − h)n for all t in E. Hencey − h is
an upper bound forE smaller thany. This contradicts the fact thaty is theleast upper bound.
Henceyn = x, and the proof is complete.

Remarks 1.6 (a) If a andb are positive real numbers andn ∈ N then(ab)1/n = a1/n b1/n.

Proof. Put α = a1/n and β = b1/n. Then ab = αnβn = (αβ)n, since multiplica-
tion is commutative. The uniqueness assertion of Proposition 1.15 shows therefore that
(ab)1/n = αβ = a1/n b1/n.

(b) Fix b > 0. If m,n, p, q ∈ Z andn > 0, q > 0, andr = m/n = p/q. Then we have

(bm)1/n = (bp)1/q. (1.3)

Hence it makes sense to definebr = (bm)1/n.

(c) Fix b > 1. If x ∈ R define

bx = sup{bp | p ∈ Q, p < x}. (1.4)

For0 < b < 1 set

bx =
1(
1
b

)x .

Without proof we give the familiar laws for powers and exponentials. Later we will redefine the
powerbx with real exponent. Then we are able to give easier proofs.

(d) If a, b > 0 andx, y ∈ R, then

(i) bx+y = bxby, bx−y = bx

by
, (ii) bxy = (bx)y, (iii) (ab)x = axbx.

1.1.9 Logarithms

Fix b > 1, y > 0. Similarly as in the preceding subsection, one can prove theexistence of a
unique realx such thatbx = y. This numberx is called thelogarithm ofy to the baseb, and we
write x = logb y. Knowing existence and uniqueness of the logarithm, it is not difficult to prove
the following properties.

Lemma 1.16 For anya > 0, a 6= 1 we have
(a) loga(bc) = loga b+ loga c if b, c > 0;
(b) loga(b

c) = c loga b, if b > 0;

(c) loga b =
logd b

logd a
if b, d > 0 andd 6= 1.

Later we will give an alternative definition of the logarithmfunction.
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Review of Trigonometric Functions

(a) Degrees and Radians

The following table gives some important angles in degrees and radians. The precise definition
of π is given below. For a moment it is just an abbreviation to measure angles. Transformation
of anglesαdeg measured in degrees into angles measured in radians goes byαrad = αdeg

2π
360◦

.

Degrees 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦ 270◦ 360◦

Radians 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π 3π
2

2π

(b) Sine and Cosine

The sine, cosine, and tangent functions are defined in terms of ratios of sides of a right triangle:

ϕ .
adjacent side

opposite side
hypotenuse

cosϕ =
length of the side adjacent toϕ

length of the hypotenuse
,

sinϕ =
length of the side opposite toϕ

length of the hypotenuse
,

tanϕ =
length of the side opposite toϕ
length of the side adjacent toθ

.

Let ϕ be any angle between0◦ and360◦. Further letP be the point on the unit circle (with
center in(0, 0) and radius1) such that the ray fromP to the origin(0, 0) and the positivex-axis
make an angleϕ. Thencosϕ andsinϕ are defined to be thex-coordinate and they-coordinate
of the pointP , respectively.

ϕ

ϕ

ϕ

cos

sin
1

x

y

P

If the angleϕ is between0◦ and90◦ this new definition coincides
with the definition using the right triangle since the hypotenuse
which is a radius of the unit circle has now length1.

sin ϕ

x

y

cosϕ
ϕ

P

If 90◦ < ϕ < 180◦ we find

cosϕ = − cos(180◦ − ϕ) < 0,

sinϕ = sin(180◦ − ϕ) > 0.
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cosϕ

x

y

ϕ

sin ϕ

P

If 180◦ < ϕ < 270◦ we find

cosϕ = − cos(ϕ− 180◦) < 0,

sinϕ = − sin(ϕ− 180◦) < 0.

sin ϕ

cosϕ x

y

ϕ

1

P

If 270◦ < ϕ < 360◦ we find

cosϕ = cos(360◦ − ϕ) > 0,

sinϕ = − sin(360◦ − ϕ) < 0.

For angles greater than360◦ or less than0◦ define

cosϕ = cos(ϕ+ k·360◦), sinϕ = sin(ϕ+ k·360◦),

wherek ∈ Z is chosen such that0◦ ≤ ϕ+ k 360◦ < 360◦. Thinking ofϕ to be given in radians,
cosine and sine are functions defined for all realϕ taking values in the closed interval[−1, 1].
If ϕ 6= π

2
+ kπ, k ∈ Z thencosϕ 6= 0 and we define

tanϕ :=
sinϕ

cosϕ
.

If ϕ 6= kπ, k ∈ Z thensinϕ 6= 0 and we define

cotϕ :=
cosϕ

sinϕ
.

In this way we have defined cosine, sine, tangent, and cotangent for arbitrary angles.

(c) Special Values

x in degrees 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦ 270◦ 360◦

x in radians 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π 3π
2

2π

sin x 0 1
2

√
2

2

√
3

2
1

√
2

2

√
3

2
1
2

0 −1 0

cosx 1
√

3
2

√
2

2
1
2

0 −1
2

−
√

2
2
−

√
3

2
−1 0 1

tanx 0
√

3
3

1
√

3 / −
√

3 −1 −
√

3
3

0 / 0
Recall the addition formulas for cosine and sine and the trigonometric pythagoras.

cos(x+ y) = cosx cos y − sin x sin y,

sin(x+ y) = sin x cos y + cosx sin y.
(1.5)

sin2 x+ cos2 x = 1. (1.6)
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1.2 Complex numbers

Some algebraic equations do not have solutions in the real number system. For instance the
quadratic equationx2 − 4x+ 8 = 0 gives ‘formally’

x1 = 2 +
√
−4 and x2 = 2−

√
−4.

We will see that one can work with this notation.

Definition 1.7 A complex numberis an ordered pair(a, b) of real numbers. “Ordered” means
that (a, b) 6= (b, a) if a 6= b. Two complex numbersx = (a, b) andy = (c, d) are said to be
equal if and only ifa = c andb = d. We define

x+ y := (a+ c, b+ d),

xy := (ac− bd, ad+ bc).

Theorem 1.17 These definitions turn the set of all complex numbers into a field, with (0, 0) and
(1, 0) in the role of0 and1.

Proof. We simply verify the field axioms as listed in Definition 1.3.Of course, we use the field
structure ofR.
Let x = (a, b), y = (c, d), andz = (e, f). (A1) is clear.
(A2) x+ y = (a+ c, b+ d) = (c+ a, d+ b) = y + x.
(A3) (x+y)+z = (a+c, b+d)+(e, f) = (a+c+e, b+d+f) = (a, b)+(c+e, d+f) = x+(y+z).
(A4) x+ 0 = (a, b) + (0, 0) = (a, b) = x.

(A5) Put−x := (−a,−b). Thenx+ (−x) = (a, b) + (−a,−b) = (0, 0) = 0.

(M1) is clear.
(M2) xy = (ac− bd, ad+ bc) = (ca− db, da+ cb) = yx.
(M3) (xy)z = (ac − bd, ad + bc)(e, f) = (ace − bde − adf − bcf, acf − bdf + ade + bce) =

(a, b)(ce− df, cf + de) = x(yz).
(M4) x · 1 = (a, b)(1, 0) = (a, b) = x.

(M5) If x 6= 0 then(a, b) 6= (0, 0), which means that at least one of the real numbersa, b is
different from0. Hencea2 + b2 > 0 and we can define

1

x
:=

(
a

a2 + b2
,
−b

a2 + b2

)
.

Then

x · 1
x

= (a, b)

(
a

a2 + b2
,
−b

a2 + b2

)
= (1, 0) = 1.

(D)

x(y + z) = (a, b)(c + e, d+ f) = (ac + ae− bd− bf, ad+ af + bc + be)

= (ac− bd, ad+ bc) + (ae− bf, af + be)

= xy + yz.
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Remark 1.7 For any two real numbersa and b we have(a, 0) + (b, 0) = (a + b, 0) and
(a, 0)(b, 0) = (ab, 0). This shows that the complex numbers(a, 0) have the same arithmetic
properties as the corresponding real numbersa. We can therefore identify(a, 0) with a. This
gives us the real field as a subfield of the complex field.
Note that we have defined the complex numbers without any reference to the mysterious square
root of−1. We now show that the notation(a, b) is equivalent to the more customarya+ bi.

Definition 1.8 i := (0, 1).

Lemma 1.18 (a) i2 = −1. (b) If a, b ∈ R then(a, b) = a+ bi.

Proof. (a) i2 = (0, 1)(0, 1) = (−1, 0) = −1.

(b) a+ bi = (a, 0) + (b, 0)(0, 1) = (a, 0) + (0, b) = (a, b).

Definition 1.9 If a, b are real andz = a+ bi, then the complex numberz := a− bi is called the
conjugateof z. The numbersa andb are thereal partand theimaginary partof z, respectively.
We shall writea = Re z andb = Im z.

Proposition 1.19 If z andw are complex, then
(a) z + w = z + w,
(b) zw = z · w,
(c) z + z = 2 Re z, z − z = 2i Im z,
(d) z z is positive real except whenz = 0.

Proof. (a), (b), and (c) are quite trivial. To prove (d) writez = a+bi and note thatz z = a2 +b2.

Definition 1.10 If z is complex number, itsabsolute value| z | is the (nonnegative) root ofz z;
that is| z | :=

√
z z.

The existence (and uniqueness) of|x | follows from Proposition 1.19 (d). Note that whenx is
real, thenx = x, hence|x | =

√
x2. Thus|x | = x if x > 0 and|x | = −x if x < 0. We have

recovered the definition of the absolute value for real numbers, see Subsection 1.1.6.

Proposition 1.20 Let z andw be complex numbers . Then
(a) | z | > 0 unlessz = 0,
(b) | z | = | z |,
(c) | zw | = | z | |w |,
(d) | Re z | ≤ | z |,
(e) | z + w | ≤ | z |+ |w | .

Proof. (a) and (b) are trivial. Putz = a+ bi andw = c+ di, with a, b, c, d real. Then

| zw |2 = (ac− bd)2 + (ad+ bc)2 = (a2 + b2)(c2 + d2) = | z |2 |w |2
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or | zw |2 = (| z | |w |)2. Now (c) follows from the uniqueness assertion for roots.
To prove (d), note thata2 ≤ a2 + b2, hence

| a | =
√
a2 ≤

√
a2 + b2 = | z | .

To prove (e), note thatz w is the conjugate ofz w, so thatz w + zw = 2 Re (z w). Hence

| z + w |2 = (z + w)(z + w) = z z + z w + z w + ww

= | z |2 + 2 Re (z w) + |w |2

≤ | z |2 + 2 | z | |w |+ |w |2 = (| z |+ |w |)2.

Now (e) follows by taking square roots.

1.2.1 The Complex Plane and the Polar form

There is a bijective correspondence between complex numbers and the points of a plane.

z=a+b i

a

b

Re

Im

z| |r=

ϕ

By the Pythagorean theorem it is clear that
| z | =

√
a2 + b2 is exactly the distance of

z from the origin0. The angleϕ between
the positive real axis and the half-line0z is
called theargumentof z and is denoted by
ϕ = arg z. If z 6= 0, the argumentϕ is
uniquely determined up to integer multiples
of 2π

Elementary trigonometry gives

sinϕ =
b

| z | , cosϕ =
a

| z | .

This gives withr = | z |, a = r cosϕ andb = r sinϕ. Inserting these into the rectangular form
of z yields

z = r(cosϕ + i sinϕ), (1.7)

which is called thepolar formof the complex numberz.

Example 1.5 a) z = 1 + i. Then| z | =
√

2 andsinϕ = 1/
√

2 = cosϕ. This impliesϕ = π/4.
Hence, the polar form ofz is 1 + i =

√
2(cosπ/4 + i sin π/4).

b) z = −i. We have| −i | = 1 and sinϕ = −1, cosϕ = 0. Henceϕ = 3π/2 and−i =

1(cos 3π/2 + i sin 3π/2).

c) Computing the rectangular form ofz from the polar form is easier.

z = 32(cos 7π/6 + i sin 7π/6) = 32(−
√

3/2− i/2) = −16
√

3− 16i.
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z+w

w

z

The addition of complex numbers corresponds
to the addition of vectors in the plane. The ge-
ometric meaning of the inequality| z + w | ≤
| z |+ |w | is: the sum of two edges of a triangle
is bigger than the third edge.

z
w

zw
Multiplying complex numbersz = r(cosϕ +

i sinϕ) andw = s(cosψ + i sinψ) in the polar
form gives

zw = rs(cosϕ+ i sinϕ)(cosψ + i sinψ)

= rs(cosϕ cosψ − sinϕ sinψ)+

i(cosϕ sinψ + sinϕ cosψ)

zw = rs(cos(ϕ+ ψ) + i sin(ϕ+ ψ)), (1.8)

where we made use of the addition laws forsin

andcos in the last equation.
Hence, the product of complex numbers is formed by taking theproduct of their absolute values
and the sum of their arguments.
The geometric meaning of multiplication byw is a similarity transformation ofC. More pre-
cisely, we have a rotation around0 by the angleψ and then a dilatation with factors and center
0.
Similarly, if w 6= 0 we have

z

w
=
r

s
(cos(ϕ− ψ) + i sin(ϕ− ψ)) . (1.9)

Proposition 1.21 (De Moivre’s formula) Letz = r(cosϕ+i sinϕ) be a complex number with
absolute valuer and argumentϕ. Then for alln ∈ Z one has

zn = rn(cos(nϕ) + i sin(nϕ)). (1.10)

Proof. (a) First letn > 0. We use induction overn to prove De Moivre’s formula. Forn = 1

there is nothing to prove. Suppose (1.10) is true for some fixed n. We will show that the
assertion is true forn + 1. Using induction hypothesis and (1.8) we find

zn+1 = zn ·z = rn(cos(nϕ)+i sin(nϕ))r(cosϕ+i sinϕ) = rn+1(cos(nϕ+ϕ)+i sin(nϕ+ϕ)).

This proves the induction assertion.
(b) If n < 0, thenzn = 1/(z−n). Since1 = 1(cos 0 + i sin 0), (1.9) and the result of (a) gives

zn =
1

z−n
=

1

r−n
(cos(0− (−n)ϕ) + i sin(0− (−n)ϕ)) = rn(cos(nϕ) + i sin(nϕ)).

This completes the proof.
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Example 1.6 Compute the polar form ofz =
√

3− 3i and computez15.
We have| z | =

√
3 + 9 = 2

√
3, cosϕ = 1/2, andsinϕ = −

√
3/2. Therefore,ϕ = −π/3 and

z = 2
√

3(cos(−π/3) + sin(−π/3)). By the De Moivre’s formula we have

z15 = (2
√

3)15
(
cos
(
−15

π

3

)
+ i sin

(
−15

π

3

))
= 21537

√
3(cos(−5π) + i sin(−5π))

z15 = −21537
√

3.

1.2.2 Roots of Complex Numbers

Let z ∈ C andn ∈ N. A complex numberw is called annth root ofz if wn = z. In contrast
to the real case, roots of complex numbersare not unique. We will see that there are exactlyn
differentnth roots ofz for everyz 6= 0.
Let z = r(cosϕ + i sinϕ) andw = s(cosψ + i sinψ) annth root ofz. De Moivre’s formula
giveswn = sn(cosnψ + i sinnψ). If we comparewn andz we getsn = r or s = n

√
r ≥ 0.

Moreovernψ = ϕ + 2kπ, k ∈ Z or ψ =
ϕ

n
+

2kπ

n
, k ∈ Z. Fork = 0, 1, . . . , n− 1 we obtain

different valuesψ0, ψ1, . . . , ψn−1 modulo2π. We summarize.

Lemma 1.22 Letn ∈ N andz = r(cosϕ+ i sinϕ) 6= 0 a complex number. Then the complex
numbers

wk = n
√
r

(
cos

ϕ+ 2kπ

n
+ i sin

ϕ+ 2kπ

n

)
, k = 0, 1, . . . , n− 1

are then differentnth roots ofz.

Example 1.7 Compute the4th roots ofz = −1.

w

w w
3

z=-1

w
01

2

| z | = 1 =⇒ |w | = 4
√

1 = 1, arg z = ϕ = 180◦. Hence

ψ0 =
ϕ

4
,

ψ1 =
ϕ

4
+

1 · 360◦

4
= 135◦,

ψ2 =
ϕ

4
+

2 · 360◦

4
= 225◦,

ψ3 =
ϕ

4
+

3 · 360◦

4
= 315◦.

We obtain

w0 = cos 45◦ + i sin 45◦ =
1

2

√
2 + i

1

2

√
2

w1 = cos 135◦ + i sin 135◦ = −1

2

√
2 + i

1

2

√
2,

w2 = cos 225◦ + i sin 225◦ = −1

2

√
2− i

1

2

√
2,

w3 = cos 315◦ + i sin 315◦ =
1

2

√
2− i

1

2

√
2.

Geometric interpretation of thenth roots. Thenth roots ofz 6= 0 form a regularn-gon in the
complex plane with center0. The vertices lie on a circle with center0 and radiusn

√
| z |.
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1.3 Inequalities

1.3.1 Monotony of the Power and Exponential Functions

Lemma 1.23 (a) For a, b > 0 andr ∈ Q we have

a < b ⇐⇒ ar < br if r > 0,

a < b ⇐⇒ ar > br if r < 0.

(b) For a > 0 andr, s ∈ Q we have

r < s ⇐⇒ ar < as if a > 1,

r < s ⇐⇒ ar > as if a < 1.

Proof. Suppose thatr > 0, r = m/n with integersm,n ∈ Z, n > 0. Using Lemma 1.14 (a)
twice we get

a < b ⇐⇒ am < bm ⇐⇒ (am)
1
n < (bm)

1
n ,

which proves the first claim. The second partr < 0 can be obtained by setting−r in place ofr
in the first part and using Proposition 1.9 (e).
(b) Suppose thats > r. Put x = s − r, thenx ∈ Q andx > 0. By (a), 1 < a implies
1 = 1x < ax. Hence1 < as−r = as/ar (here we used Remark 1.6 (d)), and thereforear < as.
Changing the roles ofr ands shows thats < r impliesas < ar such that the converse direction
is also true.
The proof fora < 1 is similar.

1.3.2 The Arithmetic-Geometric mean inequality

Proposition 1.24 Letn ∈ N andx1, . . . , xn be inR+. Then
x1 + · · ·+ xn

n
≥ n
√
x1 · · ·xn. (1.11)

We have equality if and only ifx1 = x2 = · · · = xn.

Proof. We use forward-backward induction overn. First we show (1.11) is true for alln which
are powers of2. Then we prove that if (1.11) is true for somen+1, then it is true forn. Hence,
it is true for all positive integers.
The inequality is true forn = 1. Let a, b ≥ 0 then(

√
a−
√
b)2 ≥ 0 impliesa + b ≥ 2

√
ab and

the inequality is true in casen = 2. Equality holds if and only ifa = b. Suppose it is true for
some fixedk ∈ N; we will show that it is true for2k. Let x1, . . . , xk, y1, . . . , yk ∈ R+. Using
induction assumption and the inequality in casen = 2, we have

1

2k

(
k∑

i=1

xi +
k∑

i=1

yi

)
≥ 1

2

(
1

k

k∑

i=1

xi +
1

k

k∑

i=1

yi

)
≥ 1

2



(

k∏

i=1

xi

)1/k

+

(
k∏

i=1

yi

)1/k



≥
(

k∏

i=1

xi

k∏

i=1

yi

) 1
2k

.
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This completes the ‘forward’ part. Assume now (1.11) is truefor n + 1. We will show it forn.
Let x1, . . . , xn ∈ R+ and setA := (

∑n
i=1 xi)/n. By induction assumption we have

1

n+ 1
(x1 + · · ·+ xn + A) ≥

(
n∏

i=1

xiA

) 1
n+1

⇐⇒ 1

n+ 1
(nA+ A) ≥

(
n∏

i=1

xi

) 1
n+1

A
1

n+1

A ≥
(

n∏

i=1

xi

) 1
n+1

A
1

n+1 ⇐⇒ A
n

n+1 ≥
(

n∏

i=1

xi

) 1
n+1

⇐⇒ A ≥
(

n∏

i=1

xi

)1/n

.

It is trivial that in casex1 = x2 = · · · = xn we have equality. Suppose that equality holds in
a case where at least two of thexi are different, sayx1 < x2. Consider the inequality with the
new set of valuesx′1 := x′2 := (x1 + x2)/2, andx′i = xi for i ≥ 3. Then

(
n∏

k=1

xk

)1/n

=
1

n

n∑

k=1

xk =
1

n

n∑

k=1

x′k ≥
(

n∏

k=1

x′k

)1/n

.

x1x2 ≥ x′1x
′
2 =

(
x1 + x2

2

)2

⇐⇒ 4x1x2 ≥ x2
1 + 2x1x2 + x2

2 ⇐⇒ 0 ≥ (x1 − x2)
2.

This contradicts the choicex1 < x2. Hence,x1 = x2 = · · · = xn is the only case where
equality holds. This completes the proof.

1.3.3 The Cauchy–Schwarz Inequality

Proposition 1.25 (Cauchy–Schwarz inequality)Suppose thatx1, . . . , xn, y1, . . . , yn are real
numbers. Then we have

(
n∑

k=1

xkyk

)2

≤
n∑

k=1

x2
k ·

n∑

k=1

y2
k. (1.12)

Equality holds if and only if there existst ∈ R such thatyk = t xk for k = 1, . . . , n that is, the
vectory = (y1, . . . , yn) is a scalar multiple of the vectorx = (x1, . . . , xn).

Proof. Consider the quadratic functionf(t) = at2 − 2bt+ c where

a =

n∑

k=1

x2
k, b =

n∑

k=1

xkyk, c =

n∑

k=1

y2
k.

Then

f(t) =
n∑

k=1

x2
kt

2 −
n∑

k=1

2xkykt+
n∑

k=1

y2
k

=
n∑

k=1

(
x2
kt

2 − 2xkykt+ y2
k

)
=

n∑

k=1

(xkt− yk)2 ≥ 0.
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Equality holds if and only if there is at ∈ R with yk = txk for all k. Suppose now, there is no
sucht ∈ R. That is

f(t) > 0, for all t ∈ R.
In other words, the polynomialf(t) = at2−2bt+ c has no real zeros,t1,2 = 1

a

(
b±
√
b2 − ac

)
.

That is, the discriminantD = b2 − ac is negative (only complex roots); henceb2 < ac:
(

n∑

k=1

xkyk

)2

<

n∑

k=1

x2
k ·

n∑

k=1

y2
k.

this proves the claim.

Corollary 1.26 (The Complex Cauchy–Schwarz inequality)If x1, . . . , xn andy1, . . . , yn are
complex numbers, then

∣∣∣∣∣
n∑

k=1

xkyk

∣∣∣∣∣

2

≤
n∑

k=1

| xk |2
n∑

k=1

| yk |2 . (1.13)

Equality holds if and only if there exists aλ ∈ C such thaty = λx, wherey = (y1, . . . , yn) ∈Cn, x = (x1, . . . , xn) ∈ Cn.

Proof. Using the generalized triangle inequality| z1 + · · ·+ zn | ≤ | z1 | + · · · + | zn | and the
real Cauchy–Schwarz inequality we obtain

∣∣∣∣∣
n∑

k=1

xk yk

∣∣∣∣∣

2

≤
(

n∑

k=1

| xk yk |
)2

=

(
n∑

k=1

|xk | | yk |
)2

≤
n∑

k=1

|xk |2 ·
n∑

k=1

| yk |2 .

This proves the inequality.
The right “less equal” is an equality if there is at ∈ R such that| y | = t |x |. In the first “less
equal” sign we have equality if and only if allzk = xkyk have the same argument; that is
arg yk = arg xk + ϕ. Putting both together yieldsy = λx with λ = t(cosϕ + i sinϕ).

1.4 Appendix A

In this appendix we collect some assitional facts which werenot covered by the lecture.
We now show that the equation

x2 = 2 (1.14)

is not satisfied by any rational numberx.
Suppose to the contrary that there were such anx, we could writex = m/n with integersm
andn, n 6= 0 that are not both even. Then (1.14) implies

m2 = 2n2. (1.15)
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This shows thatm2 is even and hencem is even. Thereforem2 is divisible by4. It follows that
the right hand side of (1.15) is divisible by4, so thatn2 is even, which implies thatn is even.
But this contradicts our choice ofm andn. Hence (1.14) is impossible for rationalx.
We shall show thatA contains no largest element andB contains no smallest. That is for every
p ∈ A we can find a rationalq ∈ A with p < q and for everyp ∈ B we can find a rationalq ∈ B
such thatq < p.
Suppose thatp is inA. We associate withp > 0 the rational number

q = p+
2− p2

p+ 2
=

2p+ 2

p+ 2
. (1.16)

Then

q2 − 2 =
4p2 + 8p+ 4− 2p2 − 8p− 8

(p+ 2)2
=

2(p2 − 2)

(p+ 2)2
. (1.17)

If p is inA then2− p2 > 0, (1.16) shows thatq > p, and (1.17) shows thatq2 < 2. If p is inB
then2 < p2, (1.16) shows thatq < p, and (1.17) shows thatq2 > 2.

A Non-Archimedean Ordered Field

The fieldsQ andR are Archimedean, see below. But there exist ordered fields without this
property. LetF := R(t) the field of rational functionsf(t) = p(t)/q(t) wherep andq are
polynomials with real coefficients. Sincep andq have only finitely many zeros, for larget,
f(t) is either positive or negative. In the first case we setf > 0. In this wayR(t) becomes an
ordered field. Butt > n for all n ∈ N since the polynomialf(t) = t− n becomes positive for
larget (and fixedn).
Our aim is to definebx for arbitraryreal x.

Lemma 1.27 Let b, p be real numbers withb > 1 andp > 0. Set

M = {br | r ∈ Q, r < p}, M ′ = {bs | s ∈ Q, p < s}.

Then
supM = inf M ′.

Proof. (a)M is bounded above by arbitrarybs, s ∈ Q, with s > p, andM ′ is bounded below by
anybr, r ∈ Q, with r < p. HencesupM andinf M ′ both exist.
(b) Sincer < p < s impliesar < bs by Lemma 1.23,supM ≤ bs for all bs ∈ M ′. Taking the
infimum over all suchbs, supM ≤ infM ′.
(c) Let s = supM andε > 0 be given. We want to show thatinfM ′ < s + ε. Choosen ∈ N
such that

1/n < ε/(s(b− 1)). (1.18)

By Proposition 1.11 there existr, s ∈ Q with

r < p < s and s− r < 1

n
. (1.19)
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Usings− r < 1/n, Bernoulli’s inequality (part 2), and (1.18), we compute

bs − br = br(bs−r − 1) ≤ s(b
1
n − 1) ≤ s

1

n
(b− 1) < ε.

Hence
infM ′ ≤ bs < br + ε ≤ supM + ε.

Sinceε was arbitrary,inf M ′ ≤ supM , and finally, with the result of (b),inf M ′ = supM .

Corollary 1.28 Supposep ∈ Q andb > 1 is real. Then

bp = sup{br | r ∈ Q, r < p}.

Proof. For all rational numbersr, p, s ∈ Q, r < p < s implies ar < ap < as. Hence
supM ≤ ap ≤ infM ′. By the lemma, these three numbers coincide.

Inequalities

Now we extend Bernoulli’s inequality to rational exponents.

Proposition 1.29 (Bernoulli’s inequality) Leta ≥ −1 real andr ∈ Q. Then
(a) (1 + a)r ≥ 1 + ra if r ≥ 1,
(b) (1 + a)r ≤ 1 + ra if 0 ≤ r ≤ 1.
Equality holds if and only ifa = 0 or r = 1.

Proof. (b) Letr = m/n with m ≤ n,m,n ∈ N. Apply (1.11) toxi := 1 + a, i = 1, . . . , m and
xi := 1 for i = m+ 1, . . . , n. We obtain

1

n
(m(1 + a) + (n−m)1) ≥

(
(1 + a)m · 1n−m

) 1
n

m

n
a + 1 ≥ (1 + a)

m
n ,

which proves (b). Equality holds ifn = 1 or if x1 = · · · = xn i. e. a = 0.
(a) Now lets ≥ 1, z ≥ −1. Settingr = 1/s anda := (1 + z)1/r − 1 we obtainr ≤ 1 and
a ≥ −1. Inserting this into (b) yields

(1 + a)r ≤
(
(1 + z)

1
r

)r
≤ 1 + r ((1 + z)s − 1)

z ≤ r ((1 + z)s − 1)

1 + sz ≤ (1 + z)s.

This completes the proof of (a).
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Corollary 1.30 (Bernoulli’s inequality) Leta ≥ −1 real andx ∈ R. Then
(a) (1 + a)x ≥ 1 + xa if x ≥ 1,
(b) (1 + a)x ≤ 1 + xa if x ≤ 1. Equality holds if and only ifa = 0 or x = 1.

Proof. (a) First leta > 0. By Proposition 1.29 (a)(1 + a)r ≥ 1 + ra if r ∈ Q. Hence,

(1 + a)x = sup{(1 + a)r | r ∈ Q, r < x} ≥ sup{1 + ra | r ∈ Q, r < x} = 1 + xa.

Now let−1 ≤ a < 0. Thenr < x impliesra > xa, and Proposition 1.29 (a) implies

(1 + a)r ≥ 1 + ra > 1 + xa. (1.20)

By definition of the power with a real exponent, see (1.4)

(1 + a)x =
1

sup{(1/(a+ 1))r | r ∈ Q, r < x} =
HW 2.1

inf{(1 + a)r | r ∈ Q, r < x}.

Taking in (1.20) the infimum over allr ∈ Q with r < x we obtain

(1 + a)x = inf{(1 + a)r | r ∈ Q, r < x} ≥ 1 + xa.

(b) The proof is analogous, so we omit it.

Proposition 1.31 (Young’s inequality) If a, b ∈ R+ andp > 1, then

ab ≤ 1

p
ap +

1

q
bq, (1.21)

where1/p+ 1/q = 1. Equality holds if and only ifap = bq.

Proof. First note that1/q = 1 − 1/p. We reformulate Bernoulli’s inequality fory ∈ R+ and
p > 1

yp − 1 ≥ p(y − 1) ⇐⇒ 1

p
(yp − 1) + 1 ≥ y ⇐⇒ 1

p
yp +

1

q
≥ y.

If b = 0 the statement is always true. Ifb 6= 0 inserty := ab/bq into the above inequality:

1

p

(
ab

bq

)p
+

1

q
≥ ab

bq

1

p

apbp

bpq
+

1

q
≥ ab

bq
| · bq

1

p
ap +

1

q
bq ≥ ab,

sincebp+q = bpq. We have equality ify = 1 or p = 1. The later is impossible by assumption.
y = 1 is equivalent tobq = ab or bq−1 = a or b(q−1)p = ap (b 6= 0). If b = 0 equality holds if
and only ifa = 0.
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Proposition 1.32 (Ḧolder’s inequality) Let p > 1, 1/p + 1/q = 1, andx1, . . . , xn ∈ R+ and
y1, . . . , yn ∈ R+ non-negative real numbers. Then

n∑

k=1

xkyk ≤
(

n∑

k=1

xpk

) 1
p
(

n∑

k=1

yqk

) 1
q

. (1.22)

We have equality if and only if there existsc ∈ R such that for allk = 1, . . . , n, xpk/y
q
k = c (they

are proportional).

Proof. SetA := (
∑n

k=1 x
p
k)

1
p andB := (

∑n
k=1 y

q
k)

1
q . The casesA = 0 andB = 0 are trivial. So

we assumeA,B > 0. By Young’s inequality we have

xk
A
· yk
B
≤ 1

p

xpk
Ap

+
1

q

yqk
Bq

=⇒ 1

AB

n∑

k=1

xkyk ≤
1

pAp

n∑

k=1

xpk +
1

qBq

n∑

k=1

yqk

=
1

p
∑
xpk

∑
xpk +

1

q
∑
yqk

∑
yqk

=
1

p
+

1

q
= 1

=⇒
n∑

k=1

xkyk ≤
(

n∑

k=1

xpk

) 1
p
(

n∑

k=1

yqk

) 1
q

.

Equality holds if and only ifxpk/A
p = yqk/B

q for all k = 1, . . . , n. Therefore,xpk/y
q
k = const.

Corollary 1.33 (Complex Hölder’s inequality) Let p > 1, 1/p + 1/q = 1 and xk, yk ∈ C,
k = 1, . . . , n. Then

n∑

k=1

| xkyk | ≤
(

n∑

k=1

|xk |p
) 1

p
(

n∑

k=1

| yk |q
) 1

q

.

Equality holds if and only if|xk |p / | yk |q = const. for k = 1, . . . , n.

Proof. Setxk := |xk | andyk := | yk | in (1.22). This will prove the statement.

Proposition 1.34 (Minkowski’s inequality) If x1, . . . , xn ∈ R+ and y1, . . . , yn ∈ R+ and
p ≥ 1 then

(
n∑

k=1

(xk + yk)
p

) 1
p

≤
(

n∑

k=1

xpk

) 1
p

+

(
n∑

k=1

ypk

) 1
p

. (1.23)

Equality holds ifp = 1 or if p > 1 andxk/yk = const.
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Proof. The casep = 1 is obvious. Letp > 1. As before letq > 0 be the unique positive number
with 1/p+ 1/q = 1. We compute

n∑

k=1

(xk + yk)
p =

n∑

k=1

(xk + yk)(xk + yk)
p−1 =

n∑

k=1

xk(xk + yk)
p−1 +

n∑

k=1

yk(xk + yk)
p−1

≤
(1.22)

(∑
xpk

) 1
p

(∑

k

(xk + yk)
(p−1)q

) 1
q

+
(∑

ypk

) 1
p

(∑

k

(xk + yk)
(p−1)q

) 1
q

≤
((∑

xpk

)1/p

+
(∑

yqk

)1/q
) (∑

(xk + yk)
p
)1/q

.

We can assume that
∑

(xk + yk)
p > 0. Using1 − 1

q
=

1

p
by taking the quotient of the last

inequality by(
∑

(xk + yk)
p)1/q we obtain the claim.

Equality holds ifxpk/(xk + yk)
(p−1)q = const. and ypk/(xk + yk)

(p−1)q) = const.; that is
xk/yk = const.

Corollary 1.35 (Complex Minkowski’s inequality) If x1, . . . , xn, y1, . . . , yn ∈ C andp ≥ 1

then

(
n∑

k=1

| xk + yk |p
) 1

p

≤
(

n∑

k=1

| xk |p
) 1

p

+

(
n∑

k=1

| yk |p
) 1

p

. (1.24)

Equality holds ifp = 1 or if p > 1 andxk/yk = λ > 0.

Proof. Using the triangle inequality gives| xk + yk | ≤ |xk | + | yk |; hence∑n
k=1 | xk + yk |p ≤

∑n
k=1(|xk | + | yk |)p. The real version of Minkowski’s inequality

now proves the assertion.

If x = (x1, . . . , xn) is a vector inRn orCn, the (non-negative) number

‖x‖p :=

(
n∑

k=1

|xk |p
) 1

p

is called thep-normof the vectorx. Minkowski’s inequalitie then reads as

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

which is the triangle inequality for thep-norm.
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Chapter 2

Sequences and Series

This chapter will deal with one of the main notions of calculus, thelimit of a sequence. Al-
though we are concerned with real sequences, almost all notions make sense in arbitrary metric
spaces likeRn orCn.
Givena ∈ R andε > 0 we define theε-neighborhood ofa as

Uε(a) := (a− ε, a+ ε) = {x ∈ R | a− ε < x < a+ ε} = {x ∈ R | |x− a | < ε}.

2.1 Convergent Sequences

A sequenceis a mappingx : N→ R. To everyn ∈ N we associate a real numberxn. We write
this as(xn)n∈N or (x1, x2, . . . ). For different sequences we use different letters as(an), (bn),
(yn).

Example 2.1 (a)xn = 1
n
,
(

1
n

)
, (xn) =

(
1, 1

2
, 1

3
, . . .

)
;

(b) xn = (−1)n + 1, (xn) = (0, 2, 0, 2, . . . );
(c) xn = a (a ∈ R fixed),(xn) = (a, a, . . . ) (constant sequence),
(d) xn = 2n− 1, (xn) = (1, 3, 5, 7, . . . ) the sequence of odd positive integers.
(e)xn = an (a ∈ R fixed),(xn) = (a, a2, a3, . . . ) (geometric sequence);

Definition 2.1 A sequence(xn) is said to beconvergent tox ∈ R if

For everyε > 0 there existsn0 ∈ N such thatn ≥ n0 implies

|xn − x | < ε.

x is called thelimit of (xn) and we write

x = lim
n→∞

xn or simply x = lim xn or xn → x.

If there is no suchx with the above property, the sequence(xn) is said to bedivergent.
In other words:(xn) converges tox if any neighborhoodUε(x), ε > 0, contains “almost all”
elements of the sequence(xn). “Almost all” means “all but finitely many.” Sometimes we say
“for sufficiently largen” which means the same.

43
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This is an equivalent formulation sincexn ∈ Uε(x) meansx−ε < xn < x+ε, hence|x− xn | <
ε. Then0 in question need not to be the smallest possible.
We write

lim
n→∞

xn = +∞ (2.1)

if for all E > 0 there existsn0 ∈ N such thatn ≥ n0 impliesxn ≥ E. Similarly, we write

lim
n→∞

xn = −∞ (2.2)

if for all E > 0 there existsn0 ∈ N such thatn ≥ n0 impliesxn ≤ −E. In these cases we say
that+∞ and−∞ areimproper limitsof (xn). Note that in both cases(xn) is divergent.

Example 2.2 This is Example 2.1 continued.
(a) limn→∞

1
n

= 0. Indeed, letε > 0 be fixed. We are looking for somen0 with
∣∣ 1
n
− 0

∣∣ < ε

for all n ≥ n0. This is equivalent to1/ε < n. Choosen0 > 1/ε (which is possible by the
Archimedean property). Then for alln ≥ n0 we have

n ≥ n0 >
1

ε
=⇒ 1

n
< ε =⇒ | xn − 0 | < ε.

Therefore,(xn) tends to0 asn→∞.
(b) xn = (−1)n + 1 is divergent. Suppose to the contrary thatx is the limit. Toε = 1 there is
n0 such that forn ≥ n0 we have|xn − x | < 1. For evenn ≥ n0 this implies| 2− x | < 1 for
oddn ≥ n0, | 0− x | = |x | < 1. The triangle inequality gives

2 = | (2− x) + x | ≤ | 2− x |+ | x | < 1 + 1 = 2.

This is a contradiction. Hence,(xn) is divergent.
(c) xn = a. lim xn = a since| xn − a | = | a− a | = 0 < ε for all ε > 0 and alln ∈ N.
(d) lim(2n− 1) = +∞. Indeed, suppose thatE > 0 is given. Choosen0 >

E
2

+ 1. Then

n ≥ n0 =⇒ n >
E

2
+ 1 =⇒ 2n− 2 > E =⇒ xn = 2n− 1 > 2n− 2 > E.

This proves the claim. Similarly, one can show thatlim−n3 = −∞. But both((−n)n) and
(1, 2, 1, 3, 1, 4, 1, 5, . . . ) have no improper limit. Indeed, the first one becomes arbitrarily large
for evenn and arbitrarily small for oddn. The second one becomes large for evebn but is
constant for oddn.
(e)xn = an, (a ≥ 0).

lim
n→∞

an =

{
1, if a = 1,

0, if 0 ≤ a < 1.

(an) is divergent fora > 1. Moreover,lim an = +∞. To prove this letE > 0 be given. By
the Archimedean property ofR and sincea− 1 > 0 we findm ∈ N such thatm(a− 1) > E.
Bernoulli’s inequality gives

am ≥ m(a− 1) + 1 > m(a− 1) > E.
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By Lemma 1.23 (b),n ≥ m implies

an ≥ am > E.

This proves the claim.
Clearly (an) is convergent in casesa = 0 anda = 1 since it is constant then. Let0 < a < 1

and putb = 1
a
− 1; thenb > 0. Bernoulli’s inequality gives

1

an
=

(
1

a

)n
= (b+ 1)n ≥ 1 + nb > nb

=⇒ 0 < an <
1

nb
. (2.3)

Let ε > 0. Choosen0 >
1

εb
. Thenε >

1

n0b
andn ≥ n0 implies

| an − 0 | = | an | = an <
(2.3)

1

nb
≤ 1

n0b
< ε.

Hence,an → 0.

Proposition 2.1 The limit of a convergent sequence is uniquely determined.

Proof. Suppose thatx = lim xn andy = lim xn andx 6= y. Putε := |x− y | /2 > 0. Then

∃n1 ∈ N ∀n ≥ n1 : |x− xn | < ε,

∃n2 ∈ N ∀n ≥ n2 : | y − xn | < ε.

Choosem ≥ max{n1, n2}. Then| x− xm | < ε and| y − xm | < ε. Hence,

| x− y | ≤ |x− xm |+ | y − xm | < 2ε = | x− y | .

This contradiction establishes the statement.

Proposition 2.1 holds in arbitrary metric spaces.

Definition 2.2 A sequence(xn) is said to beboundedif the set of its elements is a bounded set;
i. e. there is aC ≥ 0 such that

|xn | ≤ C for all n ∈ N.
Similarly, (xn) is said to bebounded aboveor bounded belowif there existsC ∈ R such that
xn ≤ C or xn ≥ C, respectively, for alln ∈ N
Proposition 2.2 If (xn) is convergent, then(xn) is bounded.
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Proof. Let x = lim xn. To ε = 1 there existsn0 ∈ N such that|x− xn | < 1 for all n ≥ n0.
Then|xn | = |xn − x+ x | ≤ | xn − x |+ |x | < |x |+ 1 for all n ≥ n0. Put

C := max{|x1 | , . . . , |xn0−1 | , |x |+ 1}.

Then|xn | ≤ C for all n ∈ N.

The reversal statement is not true; there are bounded sequences which are not convergent, see
Example 2.1 (b).
Ex Class: If (xn) has an improper limit, then(xn) is divergent.
Proof. Suppose to the contrary that(xn) is convergent; then it is bounded, say| xn | ≤ C for all
n. This contradictsxn > E as well asxn < −E for E = C and sufficiently largen. Hence,
(xn) has no improper limits, a contradiction.

2.1.1 Algebraic operations with sequences

The sum, difference, product, quotient and absolute value of sequences(xn) and(yn) are de-
fined as follows

(xn)± (yn) := (xn ± yn), (xn) · (yn) := (xn yn),

(xn)

(yn)
:=

(
xn
yn

)
, (yn 6= 0) | (xn) | := (|xn |).

Proposition 2.3 If (xn) and (yn) are convergent sequences andc ∈ R, then their sum, differ-
ence, product, quotient (providedyn 6= 0 and lim yn 6= 0), and their absolute values are also
convergent:
(a) lim(xn ± yn) = lim xn ± lim yn;
(b) lim(cxn) = c lim xn, lim(xn + c) = lim xn + c.
(c) lim(xn yn) = lim xn · lim yn;
(d) lim xn

yn
= limxn

lim yn
if yn 6= 0 for all n and lim yn 6= 0;

(e) lim | xn | = | lim xn | .

Proof. Let xn → x andyn → y.
(a) Givenε > 0 then there exist integersn1 andn2 such that

n ≥ n1 implies|xn − x | < ε/2 andn ≥ n2 implies| yn − y | < ε/2.

If n0 := max{n1, n2}, thenn ≥ n0 implies

| (xn + yn)− (x+ y) | ≤ |xn − x |+ | yn − y | ≤ ε.

The proof for the difference is quite similar.
(b) follows from | cxn − cx | = | c | | xn − x | and| (xn + c)− (x+ c) | = |xn − x |.
(c) We use the identity

xnyn − xy = (xn − x)(yn − y) + x(yn − y) + y(xn − x). (2.4)

Givenε > 0 there are integersn1 andn2 such that
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n ≥ n1 implies|xn − x | <
√
ε andn ≥ n2 implies| yn − y | <

√
ε.

If we taken0 = max{n1, n2}, n ≥ n0 implies

| (xn − x)(yn − y) | < ε,

so that
lim
n→∞

(xn − x)(yn − y) = 0.

Now we apply (a) and (b) to (2.4) and conclude that

lim
n→∞

(xnyn − xy) = 0.

(d) Choosingn1 such that| yn − y | < | y | /2 if n ≥ n1, we see that

| y | ≤ | y − yn |+ | yn | < | y | /2 + | yn | =⇒ | yn | > | y | /2.

Givenε > 0, there is an integern2 > n1 such thatn ≥ n2 implies

| yn − y | < | y |2 ε/2.

Hence, forn ≥ n2, ∣∣∣∣
1

yn
− 1

y

∣∣∣∣ =

∣∣∣∣
yn − y
yny

∣∣∣∣ <
2

| y |2
| yn − y | < ε

and we getlim( 1
yn

) =
1

lim yn
. The general case can be reduced to the above case using (c) and

(xn/yn) = (xn · 1/yn).
(e) By Lemma 1.12 (e) we have| | xn | − | x | | ≤ |xn − x |. Givenε > 0, there isn0 such that
n ≥ n0 implies |xn − x | < ε. By the above inequality, also| |xn | − | x | | ≤ ε and we are
done.

Example 2.3 (a) zn := n+1
n

. Setxn = 1 andyn = 1/n. Thenzn = xn + yn and we already
know thatlim xn = 1 andlim yn = 0. Hence,lim n+1

n
= lim 1 + lim 1

n
= 1 + 0 = 1.

(b) an = 3n2+13n
n2−2

. We can write this as

an =
3 + 13

n

1− 2
n2

.

Sincelim 1/n = 0, by Proposition 2.3, we obtainlim 1/n2 = 0 and lim 13/n = 0. Hence
lim 2/n2 = 0 andlim (3 + 13/n) = 3. Finally,

lim
n→∞

3n2 + 13n

n2 − 2
=

limn→∞
(
3 + 13

n

)

limn→∞
(
1− 2

n

) =
3

1
= 3.

(c) We introduce the notion of a polynomial and and a rationalfunction.
Givena0, a1, . . . , an ∈ R, an 6= 0. The functionp : R→ R given byp(t) := ant

n+an−1t
n−1 +

· · · + a1t + a0 is called apolynomial. The positive integern is thedegreeof the polynomial
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p(t), anda1, . . . an are called thecoefficientsof p(t). The set of all real polynomials forms a
real vector space denoted byR[x].
Given two polynomialsp andq; putD := {t ∈ R | q(t) 6= 0}. Thenr = p

q
is a called arational

functionwherer : D → R is defined by

r(t) :=
p(t)

q(t)
.

Polynomials are special rational functions withq(t) ≡ 1. the set of rational functions with real
coefficients form both a real vector space and a field. It is denoted byR(x).

Lemma 2.4 (a)Letan → 0 be a sequence tending to zero withan 6= 0 for everyn. Then

lim
n→∞

1

an
=

{
+∞, if an > 0 for almost alln;

−∞, if an < 0 for almost alln.

(b) Letyn → a be a sequence converging toa anda > 0. Thenyn > 0 for almost alln ∈ N.

Proof. (a) We will prove the case with−∞. Let ε > 0. By assumption there is a positive integer
n0 such thatn ≥ n0 implies−ε < an < 0. Tis implies0 < −an < ε and further 1

an
< −1

ε
< 0.

SupposeE > 0 is given; chooseε = 1/E andn0 as above. Then by the previous argument,
n ≥ n0 implies

1

an
< −1

ε
= −E.

This showslimn→∞
1
an

= −∞.
(b) To ε = a there existsn0 such thatn ≥ n0 implies| yn − a | < a. That is−a < yn − a < a

or 0 < yn < 2a which proves the claim.

Lemma 2.5 Suppose thatp(t) =
∑r

k=0 akt
k andq(t) =

∑s
k=0 bkt

k are real polynomials with
ar 6= 0 andbs 6= 0. Then

lim
n→∞

p(n)

q(n)
=





0, r < s,
ar

br
, r = s,

+∞, r > s and ar

br
> 0,

−∞, r > s and ar

br
< 0.

Proof. Note first that

p(n)

q(n)
=
nr
(
ar + ar−1

1
n

+ · · ·+ a0
1
nr

)

ns
(
bs + bs−1

1
n

+ · · ·+ b0
1
ns

) =
1

ns−r
· ar + ar−1

1
n

+ · · ·+ a0
1
nr

bs + bs−1
1
n

+ · · ·+ b0
1
ns

=:
1

ns−r
· cn

Suppose thatr = s. By Proposition 2.3,1
nk −→ 0 for all k ∈ N. By the same proposition, the

limits of each summand in the numerator and denominator is0 except for the first in each sum.
Hence,

lim
n→∞

p(n)

q(n)
=

limn→∞
(
ar + ar−1

1
n

+ · · ·+ a0
1
nr

)

limn→∞
(
bs + bs−1

1
n

+ · · ·+ b0
1
ns

) =
ar
br
.
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Supose now thatr < s. As in the previous case, the sequence(cn) tends toar/bs but the first
factor 1

ns−r tends to0. Hence, the product sequence tends to0.
Suppose thatr > s and as

br
> 0. The sequence(cn) has a positive limit. By Lemma 2.4 (b)

almost allcn > 0. Hence,

dn :=
q(n)

p(n)
=

1

nr−s
1

cn

tends to0 by the above part anddn > 0 for almost alln. By Lemma 2.4 (a), the sequence(
1
dn

)
=
(
p(n)
q(n)

)
tends to+∞ asn → ∞, which proves the claim in the first case. The case

ar/bs < 0 can be obtained by multiplying with−1 and noting thatlimn→∞ xn = +∞ implies
limn→∞(−xn) = −∞.

In the German literature the next proposition is known as the‘Theorem of the two policemen’.

Proposition 2.6 (Sandwich Theorem)Letan, bn andxn be real sequences withan ≤ xn ≤ bn
for all but finitely manyn ∈ N. Further let limn→∞ an = limn→∞ bn = x. Thenxn is also
convergent tox.

Proof. Let ε > 0. There existn1, n2, andn3 ∈ N suchn ≥ n1 impliesan ∈ Uε(x), n ≥ n2

implies bn ∈ Uε(x), andn ≥ n3 implies an ≤ xn ≤ bn. Choosingn0 = max{n1, n2, n3},
n ≥ n0 impliesxn ∈ Uε(x). Hence,xn → x.

Remark. (a) If two sequences(an) and (bn) differ only in finitely many elements, then both
sequences converge to the same limit or both diverge.
(b) Define the “shifted sequence”bn := an+k, n ∈ N, wherek is a fixed positv integer. Then
both sequences converge to the same limit or both diverge.

2.1.2 Some special sequences

Proposition 2.7 (a) If p > 0, then lim
n→∞

1

np
= 0.

(b) If p > 0, then lim
n→∞

n
√
p = 1.

(c) lim
n→∞

n
√
n = 1.

(d) If a > 1 andα ∈ R, then lim
n→∞

nα

an
= 0.

Proof. (a) Let ε > 0. Taken0 > (1/ε)1/p (Note that the Archimedean Property of the real
numbers is used here). Thenn ≥ n0 implies1/np < ε.
(b) If p > 1, putxn = n

√
p−1. Then,xn > 0 and by Bernoulli’s inequality (that is by homework

4.1) we havep
1
n = (1 + p− 1)

1
n < 1 + p−1

n
that is

0 < xn ≤
1

n
(p− 1)

By Proposition 2.6,xn → 0. If p = 1, (b) is trivial, and if0 < p < 1 the result is obtained by
taking reciprocals.
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(c) Putxn = n
√
n− 1. Thenxn ≥ 0, and, by the binomial theorem,

n = (1 + xn)
n ≥ n(n− 1)

2
x2
n.

Hence

0 ≤ xn ≤
√

2

n− 1
, (n ≥ 2).

By (a), 1√
n−1
→ 0. Applying the sandwich theorem again,xn → 0 and so n

√
n→ 1.

(d) Putp = a− 1, thenp > 0. Let k be an integer such thatk > α, k > 0. Forn > 2k,

(1 + p)n >

(
n

k

)
pk =

n(n− 1) · · · (n− k + 1)

k!
pk >

nkpk

2kk!
.

Hence,

0 <
nα

an
=

nα

(1 + p)n
<

2kk!

pk
nα−k (n > 2k).

Sinceα− k < 0, nα−k → 0 by (a).

Q 1. Let (xn) be a convergent sequence,xn → x. Then the sequence of arithmetic means

sn := 1
n

n∑

k=1

xk also converges tox.

Q 2. Let (xn) > 0 a convergent sequence of positive numbers with andlim xn = x > 0. Then
n
√
x1x2 · · ·xn → x. Hint: Consideryn = log xn.

2.1.3 Monotonic Sequences

Definition 2.3 A real sequence(xn) is said to be

(a)monotonically increasingif xn ≤ xn+1 for all n;
(b) monotonically decreasingif xn ≥ xn+1 for all n.

The class ofmonotonic sequencesconsists of the increasing and decreasing sequences.

A sequence is said to bestrictly monotonically increasing or decreasingif xn < xn+1 or xn >
xn+1 for all n, respectively. We writexn ր andxn ց.

Proposition 2.8 A monotonic and bounded sequence is convergent. More precisely, if (xn) is
increasing and bounded above, thenlim xn = sup{xn}. If (xn) is decreasing and bounded
below, thenlim xn = inf{xn}.

Proof. Supposexn ≤ xn+1 for all n (the proof is analogous in the other case). LetE := {xn |
n ∈ N} andx = supE. Thenxn ≤ x, n ∈ N. For everyε > 0 there is an integern0 ∈ N such
that

x− ε < xn0 < x,

for otherwisex− ε would be an upper bound ofE. Sincexn increases,n ≥ n0 implies

x− ε < xn < x,
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which shows that(xn) converges tox.

Example 2.4 Let xn =
cn

n!
with some fixedc > 0. We will show thatxn → 0 asn→∞.

Writing (xn) recursively,

xn+1 =
c

n+ 1
xn, (2.5)

we observe that(xn) is strictly decreasing forn ≥ c. Indeed,n ≥ c impliesxn+1 = xn
c

n+ 1
<

xn. On the other hand,xn > 0 for all n such that(xn) is bounded below by0. By Proposi-
tion 2.8,(xn) converges to somex ∈ R. Taking the limitn→∞ in (2.5), we have

x = lim
n→∞

xn+1 = lim
n→∞

c

n + 1
· lim
n→∞

xn = 0 · x = 0.

Hence, the sequence tends to0.

2.1.4 Subsequences

Definition 2.4 Let (xn) be a sequence and(nk)k∈N a strictly increasing sequence of positive
integersnk ∈ N. We call(xnk

)k∈N a subsequenceof (xn)n∈N. If (xnk
) converges, its limit is

called asubsequential limitof (xn).

Example 2.5 (a)xn = 1/n, nk = 2k. then(xnk
) = (1/2, 1/4, 1/8, . . . ).

(b) (xn) = (1,−1, 1,−1, . . . ). (x2k) = (−1,−1, . . . ) has the subsequential limit−1; (x2k+1) =

(1, 1, 1, . . . ) has the subsequential limit1.

Proposition 2.9 Subsequences of convergent sequences are convergent with the same limit.

Proof. Let lim xn = x andxnk
be a subsequence. Toε > 0 there existsm0 ∈ N such that

n ≥ m0 implies |xn − x | < ε. Sincenm ≥ m for all m, m ≥ m0 implies | xnm − x | < ε;
hencelim xnm = x.

Definition 2.5 Let (xn) be a sequence. We callx ∈ R a limit point of (xn) if every neighbor-
hood ofx contains infinitely many elements of(xn).

Proposition 2.10 The pointx is limit point of the sequence(xn) if and only ifx is a subsequen-
tial limit.

Proof. If lim
k→∞

xnk
= x then every neighborhoodUε(x) contains all but finitely manyxnk

; in

particular, it contains infinitely many elementsxn. That is,x is a limit point of(xn).
Supposex is a limit point of(xn). To ε = 1 there existsxn1 ∈ U1(x). To ε = 1/k there exists
nk with xnk

∈ U1/k(x) andnk > nk−1. We have constructed a subsequence(xnk
) of (xn) with

| x− xnk
| < 1

k
;



52 2 Sequences and Series

Hence,(xnk
) converges tox.

Question: Which sequences do have limit points? The answer is: Everyboundedsequence has
limit points.

Proposition 2.11 (Principle of nested intervals)Let In := [an, bn] a sequence of closed
nested intervalsIn+1 ⊆ In such that their lengthsbn − an tend to0:

Givenε > 0 there existsn0 such that0 ≤ bn − an < ε for all n ≥ n0.

For any such interval sequence{In} there exists a unique real numberx ∈ Rwhich is a member
of all intervals, i. e.{x} =

⋂
n∈N In.

Proof. Since the intervals are nested,(an)ր is an increasing sequence bounded above by each
of thebk, and(bn) ց is decreasing sequence bounded below by each of theak. Consequently,
by Proposition 2.8 we have

∃x = lim
n→∞

an = sup{an} ≤ bm, for all m, and ∃y = lim
m→∞

bm = inf{bm} ≥ x.

Sincean ≤ x ≤ y ≤ bn for all n ∈ N
∅ 6= [x, y] ⊆

⋂

n∈N In.
We show the converse inclusion namely that

⋂
n∈N[an, bn] ⊆ [x, y]. Let p ∈ In for all n, that

is, an ≤ p ≤ bn for all n ∈ N. Hencesupn an ≤ p ≤ infn bn; that isp ∈ [x, y]. Thus,
[x, y] =

⋂
n∈N In. We show uniqueness, that isx = y. Given ε > 0 we find n such that

y − x ≤ bn − an ≤ ε. Hencey − x ≤ 0; thereforex = y. The intersection contains a unique
pointx.

Proposition 2.12 (Bolzano–Weierstraß)A bounded real sequence has a limit point.

Proof. We use the principle of nested intervals. Let(xn) be bounded, say| xn | ≤ C. Hence,
the interval[−C,C] contains infinitely manyxk. Consider the intervals[−C, 0] and[0, C]. At
least one of them contains infinitely manyxk, sayI1 := [a1, b1]. Suppose, we have already
constructedIn = [an, bn] of length bn − an = C/2n−2 which contains infinitely manyxk.
Consider the two intervals[an, (an + bn)/2] and[(an + bn)/2, bn] of lengthC/2n−1. At least
one of them still contains infinitely manyxk, sayIn+1 := [an+1, bn+1]. In this way we have
constructed a nested sequence of intervals which length go to 0. By Proposition 2.11, there
exists a uniquex ∈

⋂
n∈N In. We will show thatx is a subsequential limit of(xn) (and hence a

limit point). For, choosexnk
∈ Ik; this is possible sinceIk contains infinitely manyxm. Then,

ak ≤ xnk
≤ bk for all k ∈ N. Proposition 2.6 givesx = lim ak ≤ lim xnk

≤ lim bk = x; hence
lim xnk

= x.

Remark. The principle of nested intevals isequivalentto the order completeness ofR.
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Example 2.6 (a) xn = (−1)n−1 + 1
n
; set of limit points is{−1, 1}. First note that−1 =

limn→∞ x2n and1 = limn→∞ x2n+1 are subsequential limits of(xn). We show, for example,
that 1

3
is not a limit point. Indeed, forn ≥ 4, there exists a small neighborhood of1

3
which has

no intersection withU 1
4
(1) andU 1

4
(−1). Hence,1

3
is not a limit point.

(b) xn = n − 5
[n
5

]
, where[x] denotes the least integer less than or equal tox ([π] = [3] = 3,

[−2.8] = −3, [1/2] = 0). (xn) = (1, 2, 3, 4, 0, 1, 2, 3, 4, 0, . . .); the set of limit points is
{0, 1, 2, 3, 4}
(c) One can enumerate the rational numbers in(0, 1) in the following way.

1
2
, x1,

1
3
, 2

3
, x2, x3

1
4
, 2

4
, 3

4
, x4, x5, x6,

· · · · · ·
The set of limit points is the whole interval[0, 1] since in any neighborhood of any real number
there is a rational number, see Proposition 1.11 (b) 1.11 (b). Any rational number of(0, 1)

appears infinitely often in this sequence, namely asp
q

= 2p
2q

= 3p
3q

= · · · .
(d) xn = n has no limit point. Since(xn) is not bounded, Bolzano-Weierstraß fails to apply.

Definition 2.6 (a) Let(xn) be a bounded sequence andA its set of limit points. ThensupA is
called theupper limitof (xn) andinf A is called thelower limit of (xn). We write

lim
n→∞

xn, and = lim
n→∞

xn.

for the upper and lower limits of(xn), respectively.
(b) If (xn) is not bounded above, we writelim xn = +∞. If moreover+∞ is the only limit
point, lim xn = +∞, and we can also writelim xn = +∞. If (xn) is not bounded below,
lim xn = −∞.

Proposition 2.13 Let (xn) be a bounded sequence andA the set of limit points of(xn).
Thenlim xn and lim xn are also limit points of(xn).

Proof. Let x = lim xn. Let ε > 0. By the definition of the supremum ofA there existsx′ ∈ A
with

x− ε

2
< x′ < x.

Since x′ is a limit point, U ε
2
(x′) contains infinitely many elementsxk. By construction,

U ε
2
(x′) ⊆ Uε(x). Indeed,x ∈ U ε

2
(x′) implies|x− x′ | < ε

2
and therefore

|x− x | = |x− x′ + x′ − x | ≤ |x− x′ |+ | x′ − x | < ε

2
+
ε

2
= ε.

Hence,x is a limit point, too. The proof forlim xn is similar.

Proposition 2.14 Letb ∈ R be fixed. Suppose(xn) is a sequence which is bounded above, then

xn ≤ b for all but finitely manyn implies

lim
n→∞

xn ≤ b.
(2.6)
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Similarly, if (xn) is bounded below, then

xn ≥ b for all but finitely manyn implies

lim
n→∞

xn ≥ b.
(2.7)

Proof. We prove only the first part forlim xn. Proving statement forlim xn is similar.
Let t := lim xn. Suppose to the contrary thatt > b. Setε = (t − b)/2, thenUε(t) contains
infinitely manyxn (t is a limit point) which areall greater thanb; this contradictsxn ≤ b for
all but finitely manyn. Hencelim xn ≤ b.

Applying the first part tob = supn{xn} and noting thatinf A ≤ supA, we have

inf
n
{xn} ≤ lim

n→∞
xn ≤ lim

n→∞
xn ≤ sup

n
{xn}.

The next proposition is a converse statement to Proposition2.9.

Proposition 2.15 Let (xn) be a bounded sequence with a unique limit pointx. Then(xn)

converges tox.

Proof. Suppose to the contrary that(xn) diverges; that is, there exists someε > 0 such that
infinitely manyxn are outsideUε(x). We view these elements as a subsequence(yk) := (xnk

)

of (xn). Since(xn) is bounded, so is(yk). By Proposition 2.12 there exists a limit pointy of
(yk) which is in turn also a limit point of(xn). Sincey 6∈ Uε(x), y 6= x is a second limit point;
a contradiction! We conclude that(xn) converges tox.

Note thatt := lim xn is uniquely characterized by the following two properties.For everyε > 0

t− ε <xn, for infinitely manyn,

xn < t+ ε, for almost alln.

(See also homework 6.2) Let us consider the above examples.

Example 2.7 (a)xn = (−1)n−1 + 1/n; lim xn = −1, lim xn = 1.

(b) xn = n− 5
[n
5

]
, lim xn = 0, lim xn = 4.

(c) (xn) is the sequence of rational numbers of(0, 1); lim xn = 0, lim xn = 1.
(d) xn = n; lim xn = lim xn = +∞.

Proposition 2.16 If sn ≤ tn for all but finitely manyn, then

lim
n→∞

sn ≤ lim
n→∞

tn, lim
n→∞

sn ≤ lim
n→∞

tn.
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Proof. (a) We keep the notationss∗ andt∗ for the upper limits of(sn) and(tn), respectively. Set
s = lim sn andt = lim tn. Let ε > 0. By homework 6.3 (a)

s− ε ≤ sn for all but finitely manyn

=⇒
by assumption

s− ε ≤ sn ≤ tn for all but finitely manyn

=⇒
by Prp. 2.14

s− ε ≤ lim tn

=⇒
by first Remark in Subsection 1.1.7

sup{s− ε | ε > 0 } ≤ t

s ≤ t.

(b) The proof for the lower limit follows from (a) and− supE = inf(−E).

2.2 Cauchy Sequences

The aim of this section is to characterize convergent sequences without knowing their limits.

Definition 2.7 A sequence(xn) is said to be aCauchy sequenceif:

For everyε > 0 there exists a positive integern0 such that|xn − xm | < ε for all
m,n ≥ n0.

The definition makes sense in arbitrary metric spaces. The definition is equivalent to

∀ ε > 0 ∃n0 ∈ N ∀n ≥ n0 ∀ k ∈ N : |xn+k − xn | < ε.

Lemma 2.17 Every convergent sequence is a Cauchy sequence.

Proof. Let xn → x. To ε > 0 there isn0 ∈ N such thatn ≥ n0 impliesxn ∈ Uε/2(x). By
triangle inequality,m,n ≥ n0 implies

|xn − xm | ≤ |xn − x |+ |xm − x | ≤ ε/2 + ε/2 = ε.

Hence,(xn) is a Cauchy sequence.

Proposition 2.18 (Cauchy convergence criterion)A real sequence is convergent if and only
if it is a Cauchy sequence.

Proof. One direction is Lemma 2.17. We prove the other direction. Let (xn) be a Cauchy
sequence. First we show that(xn) is bounded. Toε = 1 there is a positive integern0 such
thatm,n ≥ n0 implies |xm − xn | < 1. In particular| xn − xn0 | < 1 for all n ≥ n0; hence
|xn | < 1 + |xn0 |. Setting

C = max{|x1 | , |x2 | , . . . , |xn0−1 | , |xn0 |+ 1},
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|xn | < C for all n.

By Proposition 2.12 there exists a limit pointx of (xn); and by Proposition 2.10 a subsequence
(xnk

) converging tox. We will show thatlimn→∞ xn = x. Let ε > 0. Sincexnk
→ x we find

k0 ∈ N such thatk ≥ k0 implies |xnk
− x | < ε/2. Since(xn) is a Cauchy sequence, there

existsn0 ∈ N such thatm,n ≥ n0 implies |xn − xm | < ε/2. Putn1 := max{n0, nk0} and
choosek1 with nk1 ≥ n1 ≥ nk0. Thenn ≥ n1 implies

|x− xn | ≤
∣∣∣ x− xnk1

∣∣∣+
∣∣∣ xnk1

− xn
∣∣∣ < 2 · ε/2 = ε.

Example 2.8 (a) xn =
∑n

k=1
1
k

= 1 + 1
2

+ 1
3

+ · · · + 1
n
. We show that(xn) is not a Cauchy

sequence. For, consider

x2m − xm =

2m∑

k=m+1

1

k
≥

2m∑

k=m+1

1

2m
= m · 1

2m
=

1

2
.

Hence, there is non0 such thatp, n ≥ n0 implies|xp − xn | < 1
2
.

(b) xn =

n∑

k=1

(−1)k+1

k
= 1− 1/2 + 1/3−+ · · ·+ (−1)n+11/n. Consider

xn+k − xn = (−1)n
[

1

n + 1
− 1

n+ 2
+

1

n + 3
− · · ·+ (−1)k+1 1

n+ k

]

= (−1)n
[(

1

n+ 1
− 1

n + 2

)
+

(
1

n + 3
− 1

n + 4

)
+ · · ·

+

{(
1

n+k−1
− 1

n+k

)
, k even

1
n+k

, k odd

Since all summands in parentheses are positive, we conclude

|xn+k − xn | =
(

1

n+ 1
− 1

n+ 2

)
+

(
1

n+ 3
− 1

n + 4

)
+ · · ·+

{(
1

n+k−1
− 1

n+k

)
, k even

1
n+k

, k odd

=
1

n + 1
−
[(

1

n+ 2
− 1

n+ 3

)
+ · · ·+

{
1

n+k
, k even

(
1

n+k−1
− 1

n+k

)
, k even

|xn+k − xn | <
1

n + 1
,

since all summands in parentheses are positive. Hence,(xn) is a Cauchy sequence and con-
verges.
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2.3 Series

Definition 2.8 Given a sequence(an), we associate with(an) a sequence(sn), where

sn =

n∑

k=1

ak = a1 + a2 + · · ·+ an.

For (sn) we also use the symbol

∞∑

k=1

ak, (2.8)

and we call it aninfinite seriesor just aseries. The numberssn are called thepartial sumsof
the series. If(sn) converges tos, we say that the seriesconverges, and write

∞∑

k=1

ak = s.

The numbers is called thesumof the series.

Remarks 2.1 (a) The sum of a series should be clearly understood asthe limit of the sequence
of partial sums; it is not simply obtained by addition.
(b) If (sn) diverges, the series is said to bedivergent.
(c) The symbol

∑∞
k=1 ak means both, the sequence of partial sums as well as the limit of this

sequence (if it exists). Sometimes we use series of the form
∑∞

k=k0
ak, k0 ∈ N. We simply

write
∑
ak if there is no ambiguity about the bounds of the indexk.

Example 2.9 (Example 2.8 continued)

(1)
∞∑

n=1

1

n
is divergent. This is theharmonic series.

(2)
∞∑

n=1

(−1)n+1 1

n
is convergent. It is an example of analternating series(the summands are

changing their signs, and the absolute value of the summandsform a decreasing to0 sequence).

(3)
∞∑

n=0

qn is called thegeometric series. It is convergent for| q | < 1 with
∑∞

0 qn = 1
1−q . This

is seen from
n∑

k=0

qk =
1− qn+1

1− q , see proof of Lemma 1.14, first formula withy = 1, x = q.

The series diverges for| q | ≥ 1. The general formula in case| q | < 1 is

∞∑

n=n0

cqn =
cqn0

1− q . (2.9)

2.3.1 Properties of Convergent Series

Lemma 2.19 (1) If
∑∞

n=1 an is convergent, then
∑∞

k=m ak is convergent for anym ∈ N.
(2) If

∑
an is convergent, then the sequencern :=

∑∞
k=n+1 ak tends to0 asn→∞.
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(3) If (an) is a sequence of nonnegative real numbers, then
∑
an converges if and only if the

partial sums are bounded.

Proof. (1). Suppose that
∑∞

n=1 an = s; we show that
∑∞

n=m ak = s− (a1 + a2 + · · ·+ am−1).
Indeed, let(sn) and(tn) denote thenth partial sums of

∑∞
k=1 ak and

∑∞
k=m ak, respectively.

Then forn > m one hastn = sn −
∑m−1

k=1 ak. Taking the limitn→∞ proves the claim.
We prove (2). Suppose that

∑∞
1 an converges tos. By (1),rn =

∑∞
k=n+1 ak is also a convergent

series for alln. We have

∞∑

k=1

ak =

n∑

k=1

ak +

∞∑

k=n+1

ak

=⇒ s = sn + rn

=⇒ rn = s− sn
=⇒ lim

n→∞
rn = s− s = 0.

(3) Supposean ≥ 0, thensn+1 = sn + an+1 ≥ sn. Hence,(sn) is an increasing sequence. By
Proposition 2.8,(sn) converges.
The other direction is trivial since every convergent sequence is bounded.

Proposition 2.20 (Cauchy criterion)
∑
an converges if and only if for everyε > 0 there is an

integern0 ∈ N such that

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε (2.10)

if m,n ≥ n0.

Proof. Clear from Proposition 2.18. Consider the sequence of partial sumssn =
∑n

k=1 ak and
note that forn ≥ m one has| sn − sm−1 | = |

∑n
k=m ak |.

Corollary 2.21 If
∑
an converges, then(an) converges to0.

Proof. Takem = n in (2.10); this yields| an | < ε. Hence(an) tends to0.

Proposition 2.22 (Comparison test)(a) If | an | ≤ Cbn for someC > 0 and for almost all
n ∈ N, and if

∑
bn converges, then

∑
an converges.

(b) If an ≥ Cdn ≥ 0 for someC > 0 and for almost alln, and if
∑
dn diverges, then

∑
an

diverges.
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Proof. (a) Supposen ≥ n1 implies | an | ≤ Cbn. Givenε > 0, there existsn0 ≥ n1 such that
m,n ≥ n0 implies

n∑

k=m

bk <
ε

C

by the Cauchy criterion. Hence

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤
n∑

k=m

| ak | ≤
n∑

k=m

Cbk < ε,

and (a) follows by the Cauchy criterion.
(b) follows from (a), for if

∑
an converges, so must

∑
dn.

2.3.2 Operations with Convergent Series

Definition 2.9 If
∑
an and

∑
bn are series, we define sums and differences as follows∑

an ±
∑
bn :=

∑
(an ± bn) andc

∑
an :=

∑
can, c ∈ R.

Let cn :=
∑n

k=1 akbn−k+1, then
∑
cn is called theCauchy productof

∑
an and

∑
bn.

If
∑
an and

∑
bn are convergent, it is easy to see that

∑∞
1 (an + bn) =

∑∞
1 an +

∑∞
1 bn and∑n

1 can = c
∑n

1 an.
Caution, the product series

∑
cn need not to be convergent. Indeed, letan := bn := (−1)n/

√
n.

One can show that
∑
an and

∑
bn are convergent (see Proposition 2.29 below), however,

∑
cn

is not convergent, whencn =
∑n

k=1 akbn−k+1. Proof: By the arithmetic-geometric mean in-
equality,| akbn−k+1 | = 1√

k(n+1−k)
≥ 2

n+1
. Hence,| cn | ≥

∑n
k=1

2
n+1

= 2n
n+1

. Sincecn doesn’t

converge to0 asn→∞,
∑∞

n=0 cn diverges by Corollary 2.21

2.3.3 Series of Nonnegative Numbers

Proposition 2.23 (Compression Theorem)Supposea1 ≥ a2 ≥ · · · ≥ 0. Then the series
∞∑

n=1

an converges if and only if the series

∞∑

k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · · (2.11)

converges.

Proof. By Lemma 2.19 (3) it suffices to consider boundedness of the partial sums. Let

sn = a1 + · · ·+ an,

tk = a1 + 2a2 + · · ·+ 2ka2k .
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Forn < 2k

sn ≤ a1 + (a2 + a3) + · · ·+ (a2k + · · ·+ a2k+1−1)

sn ≤ a1 + 2a2 + · · ·+ 2ka2k = tk. (2.12)

On the other hand, ifn > 2k,

sn ≥ a1 + a2 + (a3 + a4) + · · ·+ (a2k−1+1 + · · ·+ a2k)

sn ≥
1

2
a1 + a2 + 2a4 + · · ·+ 2k−1a2k

sn ≥
1

2
tk. (2.13)

By (2.12) and (2.13), the sequencessn andtk are either both bounded or both unbounded. This
completes the proof.

Example 2.10 (a)
∞∑

n=1

1

np
converges ifp > 1 and diverges ifp ≤ 1.

If p ≤ 0, divergence follows from Corollary 2.21. Ifp > 0 Proposition 2.23 is applicable, and
we are led to the series

∞∑

k=0

2k
1

2kp
=

∞∑

k=0

(
1

2p−1

)k
.

This is a geometric series witq =
1

2p−1
. It converges if and only if2p−1 > 1 if and only if

p > 1.
(b) If p > 1,

∞∑

n=2

1

n(logn)p
(2.14)

converges; ifp ≤ 1, the series diverges. “log n” denotes the logarithm to the basee.
If p < 0, 1

n(logn)p >
1
n

and divergence follows by comparison with the harmonic series. Now let
p > 0. By Lemma 1.23 (b),log n < log(n+ 1). Hence(n(logn)p) increases and1/(n(log n))p

decreases; we can apply Proposition 2.23 to (2.14). This leads us to the series

∞∑

k=1

2k · 1

2k(log 2k)p
=

∞∑

k=1

1

(k log 2)p
=

1

(log 2)p

∞∑

k=1

1

kp
,

and the assertion follows from example (a).

This procedure can evidently be continued. For instance
∞∑

n=3

1

n log n log log n
diverges, whereas

∞∑

n=3

1

n log n(log logn)2
converges.
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2.3.4 The Numbere

Leonhard Euler (Basel 1707 – St. Petersburg 1783) was one of the greatest mathematicians.
He made contributions to Number Theorie, Ordinary Differential Equations, Calculus of Varia-
tions, Astronomy, Mechanics. Fermat (1635) claimed that all numbers of the formfn = 22n

+1,
n ∈ N, are prime numbers. This is obviously true for the first5 numbers(3, 5, 17, 257, 65537).
Euler showed that641 | 232 + 1. In fact, it is open whether any other elementfn is a
prime number. Euler showed that the equationx3 + y3 = z3 has no solution in positive in-
tegersx, y, z. This is the special case of Fermat’s last theorem. It is known that the limit

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− logn

)
exists and gives a finite numberγ, the so called

Euler constant. It is not known whetherγ is rational or not. Further,Euler numbersEr play
a role in calculating the series

∑
n(−1)n 1

(2n+1)r . Soon, we will speak about the Euler formula
eix = cosx+ i sin x. More about live and work of famous mathematicians is to be found in
www-history.mcs.st-andrews.ac.uk/

We define

e :=
∞∑

n=0

1

n!
, (2.15)

where0! = 1! = 1 by definition. Since

sn = 1 + 1 +
1

1 · 2 +
1

1 · 2 · 3 + · · ·+ 1

1 · 2 · · ·n
< 1 + 1 +

1

2
+

1

22
+ · · ·+ 1

2n−1
< 3,

the series converges (by the comparing it with the geometricseries withq = 1
2
) and the defi-

nition makes sense. In fact, the series converges very rapidly and allows us to computee with
great accuracy. It is of interest to note thate can also defined by means of another limit process.
e is called theEuler number.

Proposition 2.24

e = lim
n→∞

(
1 +

1

n

)n
. (2.16)

Proof. Let

sn =

n∑

k=0

1

k!
, tn =

(
1 +

1

n

)n
.

By the binomial theorem,

tn = 1 + n
1

n
+
n(n− 1)

2!
· 1

n2
+
n(n− 1)(n− 2)

3!
· 1

n3
+ · · ·+ n(n− 1) · · ·1

n!
· 1

nn

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·

+
1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− n− 1

n

)

≤ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!

www-history.mcs.st-andrews.ac.uk/
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Hence,tn ≤ sn, so that by Proposition 2.16

lim
n→∞

tn ≤ lim
n→∞

sn = lim
n→∞

sn = e. (2.17)

Next if n ≥ m,

tn ≥ 1 + 1 +
1

2!

(
1− 1

n

)
+ · · ·+ 1

m!

(
1− 1

n

)
· · ·
(

1− m− 1

n

)
.

Let n→∞, keepingm fixed again by Proposition 2.16 we get

lim
n→∞

tn ≥ 1 + 1 +
1

2!
+ · · ·+ 1

m!
= sm.

Lettingm→∞, we finally get

e ≤ lim
n→∞

tn. (2.18)

The proposition follows from (2.17) and (2.18).

The rapidity with which the series
∑

1/n! converges can be estimated as follows.

e− sn =
1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

<
1

(n+ 1)!

[
1 +

1

n+ 1
+

1

(n+ 1)2
+ · · ·

]
=

1

(n+ 1)!
· 1

1− 1
n+1

=
1

n!n

so that

0 < e− sn <
1

n!n
. (2.19)

We use the preceding inequality to computee. Forn = 9 we find

s9 = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+

1

720
+

1

5040
+

1

40, 320
+

1

362, 880
= 2.718281526...

(2.20)

By (2.19)

e− s9 <
3.1

107

such that the first six digits ofe in (2.20) are correct.

Example 2.11

(a) lim
n→∞

(
1− 1

n

)n
= lim

n→∞

(
n− 1

n

)n
= lim

n→∞

1(
n
n−1

)n = lim
n→∞

1
(
1 + 1

n−1

)n−1 (
1 + 1

n−1

) =
1

e
.

(b) lim
n→∞

(
3n+ 1

3n− 1

)4n

= lim
n→∞

(
3n+ 1

3n

)4n

· lim
n→∞

(
3n

3n− 1

)4n

= lim
n→∞

((
1 +

1

3n

)3n
)4

3

· lim
n→∞

((
1 +

1

3n− 1

)3n
) 4

3

= e
8
3 .
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Proposition 2.25 e is irrational.

Proof. Supposee is rational, saye = p/q with positive integersp andq. By (2.19)

0 < q!(e− sq) <
1

q
. (2.21)

By our assumption,q!e is an integer. Since

q!sq = q!

(
1 + 1 +

1

2!
+ · · ·+ 1

q!

)

is also an integer, we see thatq!(e− sq) is an integer. Sinceq ≥ 1, (2.21) implies the existence
of an integer between0 and1 which is absurd.

2.3.5 The Root and the Ratio Tests

Theorem 2.26 (Root Test)Given
∑
an, putα = lim

n→∞
n
√
| an |.

Then

(a) if α < 1,
∑
an converges;

(b) if α > 1,
∑
an diverges;

(c) if α = 1, the test gives no information.

Proof. (a) If α < 1 chooseβ such thatα < β < 1, and an integern0 such that

n
√
| an | < β

for n ≥ n0 (suchn0 exists sinceα is the supremum of the limit set of( n
√
| an |)). That is,

n ≥ n0 implies
| an | < βn.

Since0 < β < 1,
∑
βn converges. Convergence of

∑
an now follows from the comparison

test.
(b) If α > 1 there is a subsequence(ank

) such thatnk

√
| ank
| → α.Hence| an | > 1 for infinitely

manyn, so that the necessary condition for convergence,an → 0, fails.

To prove (c) consider the series
∑ 1

n
and

∑ 1

n2
. For each of the seriesα = 1, but the first

diverges, the second converges.

Remark. (a)
∑
an converges, if there existsq < 1 such thatn

√
| an | ≤ q for almost alln.

(b)
∑
an diverges if| an | ≥ 1 for infinitely manyn.

Theorem 2.27 (Ratio Test)The series
∑
an

(a)converges if lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ < 1,

(b) diverges if

∣∣∣∣
an+1

an

∣∣∣∣ ≥ 1 for all but finitely manyn.
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In place of (b) one can also use the (weaker) statement

(b’)
∑
an diverges if lim

n→∞

∣∣∣∣
an+1

an

∣∣∣∣ > 1.

Indeed, if (b’) is satisfied, almost all elements of the sequence

∣∣∣∣
an+1

an

∣∣∣∣ are≥ 1.

Corollary 2.28 The series
∑
an

(a)converges if lim

∣∣∣∣
an+1

an

∣∣∣∣ < 1,

(b) diverges if lim

∣∣∣∣
an+1

an

∣∣∣∣ > 1.

Proof of Theorem 2.27. If condition (a) holds, we can findβ < 1 and an integerm such that
n ≥ m implies ∣∣∣∣

an+1

an

∣∣∣∣ < β.

In particular,

| am+1 | < β | am | ,
| am+2 | < β | am+1 | < β2 | am | ,

. . .

| am+p | < βp | am | .

That is,

| an | <
| am |
βm

βn

for n ≥ m, and (a) follows from the comparison test, since
∑
βn converges. If| an+1 | ≥ | an |

for n ≥ n0, it is seen that the conditionan → 0 does not hold, and (b) follows.

Remark 2.2 Homework 7.5 shows that in (b) “all but finitely many” cannot be replaced by the
weaker assumption “infinitely many.”

Example 2.12 (a) The series
∑∞

n=0 n
2/2n converges since, ifn ≥ 3,

∣∣∣∣
an+1

an

∣∣∣∣ =
(n+ 1)22n

2n+1n2
=

1

2

(
1 +

1

n

)2

≤ 1

2

(
1 +

1

3

)2

=
8

9
< 1.

(b) Consider the series

1

2
+ 1 +

1

8
+

1

4
+

1

32
+

1

16
+

1

128
+

1

64
+ · · ·

=
1

21
+

1

20
+

1

23
+

1

22
+

1

25
+

1

24
+ · · ·
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where lim
n→∞

an+1

an
=

1

8
, lim
n→∞

an+1

an
= 2, but lim n

√
an = 1

2
. Indeed,a2n = 1/22n−2 anda2n+1 =

1/22n+1 yields
a2n+1

a2n

=
1

8
,

a2n

a2n−1

= 2.

The root test indicates convergence; the ratio test does notapply.

(c) For
∑ 1

n
and

∑ 1

n2
both the ratio and the root test do not apply since both(an+1/an) and

( n
√
an) converge to1.

The ratio test is frequently easier to apply than the root test. However, the root test has wider
scope.

Remark 2.3 For any sequence(cn) of positive real numbers,

lim
n→∞

cn+1

cn
≤ lim

n→∞
n
√
cn ≤ lim

n→∞
n
√
cn ≤ lim

n→∞

cn+1

cn
.

For the proof, see [Rud76, 3.37 Theorem]. In particular, iflim
cn+1

cn
exists, thenlim n

√
cn also

exists and both limits coincide.

Proposition 2.29 (Leibniz criterion) Let
∑
bn be an alternating serie, that is

∑
bn =∑

(−1)n+1an with a decreasing sequence of positive numbersa1 ≥ a2 ≥ · · · ≥ 0. If lim an = 0

then
∑
bn converges.

Proof. The proof is quite the same as in Example 2.8 (b). We find for the partial sumssn of∑
bn

| sn − sm | ≤ am+1

if n ≥ m. Since (an) tends to0, the Cauchy criterion applies to(sn). Hence,
∑
bn is

convergent.

2.3.6 Absolute Convergence

The series
∑
an is said toconverge absolutelyif the series

∑
| an | converges.

Proposition 2.30 If
∑
an converges absolutely, then

∑
an converges.

Proof. The assertion follows from the inequality
∣∣∣∣∣

n∑

k=m

ak

∣∣∣∣∣ ≤
n∑

k=m

| ak |

plus the Cauchy criterion.
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Remarks 2.4 For series with positive terms, absolute convergence is thesame as convergence.
If
∑
an converges but

∑
| an | diverges, we say that

∑
an converges nonabsolutely. For in-

stance
∑

(−1)n+1/n converges nonabsolutely. The comparison test as well as theroot and
the ratio tests, is really a test for absolute convergence and cannot give any information about
nonabsolutely convergent series.
We shall see that we may operate with absolutely convergent series very much as with finite
sums. We may multiply them, we may change the order in which the additions are carried out
without effecting the sum of the series. But for nonabsolutely convergent sequences this is no
longer true and more care has to be taken when dealing with them.

Without proof we mention the fact that one can multiply absolutely convergent series; for the
proof, see [Rud76, Theorem 3.50].

Proposition 2.31 If
∑
an converges absolutely with

∞∑

n=0

an = A,
∑
bn converges,

∞∑

n=0

bn = B,

cn =
n∑

k=0

akbn−k, n ∈ Z+. Then
∞∑

n=0

cn = AB.

2.3.7 Decimal Expansion of Real Numbers

Proposition 2.32 (a) Let α be a real number with0 ≤ α < 1. Then there exists a sequence
(an), an ∈ {0, 1, 2, . . . , 9} such that

α =
∞∑

n=1

an 10−n. (2.22)

The sequence(an) is called adecimal expansionof α.
(b) Given a sequence(ak), ak ∈ {0, 1, . . . , 9}, then there exists a real numberα ∈ [0, 1] such
that

α =

∞∑

n=1

an 10−n.

Proof. (b) Comparison with the geometric series yields

∞∑

n=1

an10−n ≤ 9

∞∑

n=1

10−n =
9

10
· 1

1− 1/10
= 1.

Hence the series
∑∞

n=1 an10−n converges to someα ∈ [0, 1].
(a) Givenα ∈ [0, 1) we use induction to construct a sequence(an) with (2.22) and

sn ≤ α < sn + 10−n, where sn =

n∑

k=1

ak 10−k.

First, cut[0, 1] into 10 piecesIj := [j/10, (j + 1)/10), j = 0, . . . , 9, of equal length. Ifα ∈ Ij ,
puta1 := j. Then,

s1 =
a1

10
≤ α < s1 +

1

10
.
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Supposea1, . . . , an are already constructed and

sn ≤ α < sn + 10−n.

Consider the intervalsIj := [sn + j/10n+1, sn + (j + 1)/10n+1), j = 0, . . . , 9. There is exactly
onej such thatα ∈ Ij. Putan+1 := j, then

sn +
an+1

10n+1
≤ α < sn +

an+1 + 1

10n+1

sn+1 ≤ α < sn+1 + 10−n−1.

The induction step is complete. By construction|α− sn | < 10−n, that is,lim sn = α.

Remarks 2.5 (a) The proof shows that any real numberα ∈ [0, 1) can be approximated by
rational numbers.
(b) The construction avoids decimal expansion of the formα = . . . a9999 . . . , a < 9, and gives
insteadα = . . . (a+1)000 . . . . It gives a bijective correspondence between the real numbers of
the interval[0, 1) and the sequences(an), an ∈ {0, 1, . . . , 9}, not ending with nines. However,
the sequence(an) = (0, 1, 9, 9, · · · ) corresponds to the real number0.02.
(c) It is not difficult to see thatα ∈ [0, 1) is rational if and only if there exist positive integers
n0 andp such thatn ≥ n0 impliesan = an+p—the decimal expansion isperiodicfrom n0 on.

2.3.8 Complex Sequences and Series

Almost all notions and theorems carry over from real sequences to complex sequences. For
example

A sequence(zn) of complex numbersconverges toz if for every (real)ε > 0 there
exists a positive integern0 ∈ N such thatn ≥ n0 implies

| z − zn | < ε.

The following proposition shows that convergence of a complex sequence can be reduced to the
convergence of two real sequences.

Proposition 2.33 The complex sequence(zn) converges to some complex numberz if and only
if the real sequences( Re zn) converges toRe z and the real sequence( Im zn) converges to
Im z.

Proof. Using the (complex) limit lawlim(zn + c) = c + lim zn it is easy to see that we
can restrict ourselves to the casez = 0. Suppose firstzn → 0. Proposition 1.20 (d) gives
| Re zn | ≤ | zn |. HenceRe zn tends to0 asn → ∞. Similarly, | Im zn | ≤ | zn | and therefore
Im zn → 0.
Suppose nowxn := Re zn → 0 and yn := Im zn → 0 as n goes to infinity. Since
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| zn |2 = x2
n + y2

n, | zn |2 → 0 asn→∞; this implieszn → 0.

Since the complex fieldC is not an ordered field, all notions and propositions where the order
is involved do not make sense for complex series or they need modifications. The sandwich
theorem does not hold; there is no notion of monotonic sequences, upper and lower limits. But
still there are bounded sequences (| zn | ≤ C), limit points, subsequences, Cauchy sequences,
series, and absolute convergence. The following theorems are true for complex sequences, too:

Proposition/Lemma/Theorem 1, 2, 3, 9, 10, 12, 15, 17, 18

The Bolzano–Weierstraß Theorem for bounded complex sequences(zn) can be proved by con-
sidering the real and the imaginary sequences( Re zn) and( Im zn) separately.
The comparison test for series now reads:

(a) If | an | ≤ C | bn | for someC > 0 and for almost alln ∈ N, and if
∑
| bn |

converges, then
∑
an converges.

(b) If | an | ≥ C | dn | for someC > 0 and for almost alln, and if
∑
| dn | diverges,

then
∑
an diverges.

The Cauchy criterion, the root, and the ratio tests are true for complex series as well. Proposi-
tions 19, 20, 26, 27, 28, 30, 31 are true for complex series.

2.3.9 Power Series

Definition 2.10 Given a sequence(cn) of complex numbers, the series
∞∑

n=0

cn z
n (2.23)

is called apower series. The numberscn are called thecoefficientsof the series;z is a complex
number.

In general, the series will converge or diverge, depending on the choice ofz. More precisely,
with every power series there is associated a circle with center0, thecircle of convergence, such
that (2.23) converges ifz is in the interior of the circle and diverges ifz is in the exterior. The
radiusR of this disc of convergence is called theradius of convergence.
On the disc of convergence, a power series defines a function since it associates to eachz with
| z | < R a complex number, namely the sum of the numerical series

∑
n cnz

n. For example,∑∞
n=0 z

n defines the functionf(z) = 1
1−z for | z | < 1. If almost all coefficientscn are0, say

cn = 0 for all n ≥ m + 1, the power series is a finite sum and the corresponding function is a
polynomial:

∑∞
n=0 cnz

n =
∑m

n=0 cnz
n = c0 + c1z + c2z

2 + · · ·+ cmz
m.

Theorem 2.34 Given a power series
∑
cnz

n, put

α = lim
n→∞

n
√
| cn |, R =

1

α
. (2.24)

If α = 0, R = +∞; if α = +∞, R = 0. Then
∑
cnz

n converges if| z | < R, and diverges if
| z | > R.
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The behavior on the circle of convergence cannot be described so simple.
Proof. Putan = cnz

n and apply the root test:

lim
n→∞

n
√
| an | = | z | lim

n→∞
n
√
| cn | =

| z |
R
.

This gives convergence if| z | < R and divergence if| z | > R.

The nonnegative numberR is called theradius of convergence.

Example 2.13 (a) The series
∑m

n=0 cnz
m has cn = 0 for almost all n. Henceα =

limn→∞
n
√
| cn | = limn→∞ 0 = 0 andR = +∞.

(b) The series
∑
nnzn hasR = 0.

(c) The series
∑ zn

n!
hasR = +∞. (In this case the ratio test is easier to apply than the root

test. Indeed,

α = lim
n→∞

∣∣∣∣
cn+1

cn

∣∣∣∣ = lim
n→∞

n!

(n+ 1)!
= lim

n→∞

1

n+ 1
= 0,

and thereforeR = +∞. )
(d) The series

∑
zn hasR = 1. If | z | = 1 diverges since(zn) does not tend to0. This

generalizes the geometric series; formula (2.9) still holds if | q | < 1:

∞∑

n=2

2

(
i

3

)n
=

2(i/3)2

1− i/3
= −3 + i

15
.

(e) The series
∑
zn/n hasR = 1. It diverges ifz = 1. It converges for all otherz with | z | = 1

(without proof).
(f) The series

∑
zn/n2 hasR = 1. It converges for allz with | z | = 1 by the comparison test,

since| zn/n2 | = 1/n2.

2.3.10 Rearrangements

The generalized associative law for finite sums says that we can insert brackets without effecting
the sum, for example,((a1 + a2) + (a3 + a4)) = (a1 + (a2 + (a3 + a4))). We will see that a
similar statement holds for series:
Suppose that

∑
k ak is a converging series and

∑
l bl is a sum obtained from

∑
k ak by “inserting

brackets”, for example

b1 + b2 + b3 + · · · = (a1 + a2)︸ ︷︷ ︸
b1

+ (a3 + · · ·+ a10)︸ ︷︷ ︸
b2

+ (a11 + a12)︸ ︷︷ ︸
b3

+ · · ·

Then
∑

l bl converges and the sum is the same. If
∑

k ak diverges to+∞, the same is true
for
∑

l bl. However, divergence of
∑
ak does not imply divergence of

∑
bl in general, since

1 − 1 + 1 − 1 + 1 − 1 + · · · diverges but(1 − 1) + (1 − 1) + · · · converges. For the proof
let sn =

∑n
k=1 andtm =

∑m
l=1 bl. By construction,tm = snm for a suitable subsequence(snm)
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of the partial sums of
∑

k ak. Convergence (proper or improper) of(sn) implies convergence
(proper or improper) of any subsequence. Hence,

∑
l bl converges.

For finite sums, the generalized commutative law holds:

a1 + a2 + a3 + a4 = a2 + a4 + a1 + a3;

that is, any rearrangement of the summands does not effect the sum. We will see in Exam-
ple 2.14 below that this is not true for arbitrary series but for absolutely converging ones, (see
Proposition 2.36 below).

Definition 2.11 Letσ : N→ N be a bijective mapping, that is in the sequence(σ(1), σ(2), . . . )

every positive integer appears once and only once. Putting

a′n = aσ(n), (n = 1, 2, . . . ),

we say that
∑
a′n is arearrangementof

∑
an.

If (sn) and(s′n) are the partial sums of
∑
an and a rearrangement

∑
a′n of

∑
an, it is easily

seen that, in general, these two sequences consist of entirely different numbers. We are led to
the problem of determining under what conditions all rearrangements of a convergent series
will converge and whether the sums are necessarily the same.

Example 2.14 (a) Consider the convergent series

∞∑

n=1

(−1)n+1

n
= 1− 1

2
+

1

3
−+ · · · (2.25)

and one of its rearrangements

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · · . (2.26)

If s is the sum of (2.25) thens > 0 since
(

1− 1

2

)
+

(
1

3
− 1

4

)
+ · · · > 0.

We will show that (2.26) converges tos′ = s/2. Namely

s′ =
∑

a′n =

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · ·

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · ·

=
1

2

(
1− 1

2
+

1

3
− 1

4
+− · · ·

)
=

1

2
s

Sinces 6= 0, s′ 6= s. Hence, there exist rearrangements which converge; however to a different
limit.
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(b) Consider the following rearrangement of the series (2.25)

∑
a′n = 1− 1

2
+

1

3
− 1

4
+

+

(
1

5
+

1

7

)
− 1

6
+

+

(
1

9
+

1

11
+

1

13
+

1

15

)
− 1

8

+ · · ·

+

(
1

2n + 1
+

1

2n + 3
+ · · ·+ 1

2n+1 − 1

)
− 1

2n+ 2
+ · · ·

Since for every positive integern ≥ 10
(

1

2n + 1
+

1

2n + 3
+ · · ·+ 1

2n+1 − 1

)
− 1

2n+ 2
> 2n−1 · 1

2n+1
− 1

2n+ 2
>

1

4
− 1

2n+ 2
>

1

5

the rearranged series diverges to+∞.

Without proof (see [Rud76, 3.54 Theorem]) we remark the following surprising theorem. It
shows (together with the Proposition 2.36) that the absolute convergence of a series is necessary
and sufficient for every rearrangement to be convergent (to the same limit).

Proposition 2.35 Let
∑
an be a series of real numbers which converges, but not absolutely.

Suppose−∞ ≤ α ≤ β ≤ +∞. Then there exists a rearrangement
∑
a′n with partial sumss′n

such that
lim
n→∞

s′n = α, lim
n→∞

s′n = β.

Proposition 2.36 If
∑
an is a series of complex numbers which converges absolutely, then

every rearrangement of
∑
an converges, and they all converge to the same sum.

Proof. Let
∑
a′n be a rearrangement with partial sumss′n. Givenε > 0, by the Cauchy criterion

for the series
∑
| an | there existsn0 ∈ N such thatn ≥ m ≥ n0 implies

n∑

k=m

| ak | < ε. (2.27)

Now choosep such that the integers1, 2, . . . , n0 are all contained in the setσ(1), σ(2), . . . , σ(p).

{1, 2, . . . , n0} ⊆ {σ(1), σ(2), . . . , σ(p)}.

Then, ifn ≥ p, the numbersa1, a2, . . . , an0 will cancel in the differencesn − s′n, so that

| sn − s′n | =
∣∣∣∣∣

n∑

k=1

ak −
n∑

k=1

aσ(k)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

k=n0+1

±ak

∣∣∣∣∣ ≤
n∑

k=n0+1

| ak | < ε,

by (2.27). Hence(s′n) converges to the same sum as(sn).
The same argument shows that

∑
a′n also absolutely converges.



72 2 Sequences and Series

2.3.11 Products of Series

If we multiply two finite sumsa1 + a2 + · · · + an andb1 + b2 + · · · + bm by the distributive
law, we form all productsaibj put them into a sequencep0, p1, · · · , ps, s = mn, and add up
p0 +p1 +p2 + · · ·+ps. This method can be generalized to seriesa0 +a1 + · · · andb0 + b1 + · · · .
Surely, we can form all productsaibj , we can arrange them in a sequencep0, p1, p2, · · · and
form theproduct seriesp0 + p1 + · · · . For example, consider the table

a0b0 a0b1 a0b2 · · ·
a1b0 a1b1 a1b2 · · ·
a2b0 a2b1 a2b2 · · ·

...
...

...

p0 p1 p3 · · ·
p2 p4 p7 · · ·
p5 p8 p12 · · ·
...

...
...

and the diagonal enumeration of the products. The question is: under which conditions on
∑
an

and
∑
bn the product series converges and its sum does not depend on the arrangement of the

productsaibk.

Proposition 2.37 If both series
∑∞

k=0 ak and
∑∞

k=0 bk converge absolutely withA =
∑∞

k=0 ak
andB =

∑∞
k=0 bk, then any of their product series

∑
pk converges absolutely and

∑∞
k=0 pk =

AB.

Proof. For thenth partial sum of any product series
∑n

k=0 | pk | we have

| p0 |+ | p1 |+ · · ·+ | pn | ≤ (| a0 |+ · · ·+ | am |) · (| b0 |+ · · ·+ | bm |),

if m is sufficiently large. More than ever,

| p0 |+ | p1 |+ · · ·+ | pn | ≤
∞∑

k=0

| ak | ·
∞∑

k=0

| bk | .

That is, any series
∑∞

k=0 | pk | is bounded and hence convergent by Lemma 2.19 (c). By Propo-
sition 2.36all product series converge to the same sums =

∑∞
k=0 pk. Consider now the very

special product series
∑∞

k=1 qn with partial sums consisting of the sum of the elements in the
upper left square. Then

q1 + q2 + · · ·+ q(n+1)2 = (a0 + a1 + · · ·+ an)(b0 + · · ·+ bn).

converges tos = AB.

Arranging the elementsaibj as above in a diagonal array and summing up the elements on the
nth diagonalcn = a0bn + a1bn−1 + · · ·+ anb0, we obtain theCauchy product

∞∑

n=0

cn =
∞∑

n=0

(a0bn + a1bn−1 + · · ·+ anb0).

Corollary 2.38 If both series
∑∞

k=0 ak and
∑∞

k=0 bk converge absolutely withA =
∑∞

k=0 ak
andB =

∑∞
k=0 bk, their Cauchy product

∑∞
k=0 ck converges absolutely and

∑∞
k=0 ck = AB.



2.3 Series 73

Example 2.15 We compute the Cauchy product of two geometric series:

(1 + p+ p2 + · · · )(1 + q + q2 + · · · ) = 1 + (p+ q) + (p2 + pq + q2)+

+ (p3 + p2q + pq2 + q2) + · · ·

=
p− q
p− q +

p2 − q2

p− q +
p3 − q3

p− q + · · · = 1

p− q

∞∑

n=1

(pn − qn)

=
| p |<1,| q |<1

1

p− q
p

1− p −
q

1− q =
1

p− q
p(1− q)− q(1− p)

(1− p)(1− q) =
1

1− p ·
1

1− q .

Cauchy Product of Power Series

In case of power series the Cauchy product is appropriate since it is again a power series (which
is not the case for other types of product series). Indeed, the Cauchy product of

∑∞
k=0 akz

k and∑∞
k=0 bkz

k is given by the general element

n∑

k=0

akz
kbn−kz

n−k = zn
n∑

k=0

akbn−k,

such that ∞∑

k=0

akz
k ·

∞∑

k=0

bkz
k =

∞∑

n=0

(a0bn + · · ·+ anb0)z
n.

Corollary 2.39 Suppose that
∑

n anz
n and

∑
n bnz

n are power series with positive radius
of convergenceR1 andR2, respectively. LetR = min{R1, R2}. Then the Cauchy product∑∞

n=0 cnz
n, cn = a0bn + · · ·+ anb0, converges absolutely for| z | < R and

∞∑

n=0

anz
n ·

∞∑

n=0

bnz
n =

∞∑

n=0

cnz
n, | z | < R.

This follows from the previous corollary and the fact that both series converge absolutely for
| z | < R.

Example 2.16 (a)
∞∑

n=0

(n+ 1)zn =
1

(1− z)2
, | z | < 1.

Indeed, consider the Cauchy product of
∑∞

n=0 z
n = 1

1−z , | z | < 1 with itself. Since
an = bn = 1, cn =

∑n
k=0 akbn−k =

∑n
k=0 1 · 1 = n+ 1, the claim follows.

(b)

(z + z2)

∞∑

n=0

zn =

∞∑

n=0

(zn+1 + zn+2) =

∞∑

n=1

zn +

∞∑

n=2

zn =

= z + 2

∞∑

n=2

zn = z + 2z2 + 2z3 + 2z4 + · · · = z +
2z2

1− z =
z + z2

1− z .
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Chapter 3

Functions and Continuity

This chapter is devoted to another central notion in analysis—the notion of a continuous func-
tion. We will see that sums, product, quotients, and compositions of continuous functions are
continuous. If nothing is specified otherwiseD will denote a finite union of intervals.

Definition 3.1 LetD ⊂ R be a subset ofR. A functionis a mapf : D → R.
(a) The setD is called thedomainof f ; we writeD = D(f).
(b) If A ⊆ D, f(A) := {f(x) | x ∈ A} is called theimageof A underf .
The functionf↾A : A→ R given byf↾A(a) = f(a), a ∈ A, is called therestrictionof f toA.
(c) If B ⊂ R, we callf−1(B) := {x ∈ D | f(x) ∈ B} thepreimageof B underf .
(d) Thegraphof f is the setgraph(f) := {(x, f(x)) | x ∈ D}.

Later we will consider functions in a wider sense: From the complex numbers into complex
numbers and fromFn intoFm whereF = R orF = C.

We say that a functionf : D → R is bounded, if f(D) ⊂ R is a bounded set of real numbers,
i. e. there is aC > 0 such that| f(x) | ≤ C for all x ∈ D. We say thatf is bounded above
(resp.bounded below) if there existsC ∈ R such thatf(x) < C (resp.f(x) > C) for all x in
the domain off .

Example 3.1 (a) Power series (with radius of convergenceR > 0), polynomials and rational
functions are the most important examples of functions.
Let c ∈ R. Thenf(x) = c, f : R→ R, is called theconstantfunction.

(b) Properties of the functions change drastically if we change the domain or the image set.
Let f : R → R, g : R → R+, k : R+ → R, h : R+ → R+ function given byx 7→ x2.
g is surjective,k is injective,h is bijective,f is neither injective nor surjective. Obviously,
f↾R+ = k andg↾R+ = h.

(c) Let f(x) =
∑∞

n=0 x
n, f : (−1, 1) → R and h(x) = 1

1−x , h : R \ {1} → R. Then
h↾(−1, 1) = f .

75
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c

x

y

x

y

f(x)=x

x

y

f(x)=|x|

The graphs of the constant, the identity, and absolute valuefunctions.

3.1 Limits of a Function

Definition 3.2 (ε-δ-definition) Let (a, b) a finite or infinite interval andx0 ∈ (a, b). Let
f : (a, b) \ {x0} → R be a real-valued function. We callA ∈ R the limit of f in x0 (“The
limit of f(x) isA asx approachesx0”; “ f approachesA nearx0”) if the following is satisfied

For anyε > 0 there existsδ > 0 such thatx ∈ (a, b) and0 < |x− x0 | < δ imply
| f(x)− A | < ε.

We write

lim
x→x0

f(x) = A.

Roughly speaking, ifx is close tox0, f(x) must be closed toA.

x+δx- δ

f(x)

εf(x)-

εf(x)+

x

Using quantifierslim
x→x0

f(x) = A reads as

∀ ε > 0 ∃ δ > 0 ∀x ∈ (a, b) : 0 < | x− x0 | < δ =⇒ | f(x)− A | < ε.

Note that the formal negation oflim
x→x0

f(x) = A is

∃ ε > 0 ∀ δ > 0 ∃x ∈ (a, b) : 0 < |x− x0 | < δ and | f(x)−A | ≥ ε.
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Proposition 3.1 (sequences definition)Let f andx0 be as above. Thenlim
x→x0

f(x) = A if and

only if for every sequence(xn) with xn ∈ (a, b), xn 6= x0 for all n, and lim
n→∞

xn = x0 we have

lim
n→∞

f(xn) = A.

Proof. Supposelimx→x0 f(x) = A, andxn → x0 wherexn 6= x0 for all n. Givenε > 0 we find
δ > 0 such that| f(x)−A | < ε if 0 < |x− x0 | < δ. Sincexn → x0, there is a positive integer
n0 such thatn ≥ n0 implies|xn − x0 | < δ. Thereforen ≥ n0 implies| f(xn)− A | < ε. That
is, limn→∞ f(xn) = A.
Suppose to the contrary that the condition of the proposition is fulfilled but limx→x0 f(x) 6= A.
Then there is someε > 0 such that for allδ = 1/n, n ∈ N, there is anxn ∈ (a, b) such that
0 < |xn − x0 | < 1/n, but | f(xn)− A | ≥ ε. We have constructed a sequence(xn), xn 6= x0

andxn → x0 asn → ∞ such thatlimn→∞ f(xn) 6= A which contradicts our assumption.
Hence lim

x→x0

f(x) = A.

Example. limx→1 x + 3 = 4. Indeed, givenε > 0 chooseδ = ε. Then|x− 1 | < δ implies
| (x+ 3)− 4 | < δ = ε.

3.1.1 One-sided Limits, Infinite Limits, and Limits at Infini ty

Definition 3.3 (a) We are writing

lim
x→x0+0

f(x) = A

if for all sequences(xn) with xn > x0 and lim
n→∞

xn = x0, we havelim
n→∞

f(xn) = A. Sometimes

we use the notationf(x0 + 0) in place of lim
x→x0+0

f(x). We callf(x0 + 0) the right-hand limit

of f atx0 or we say “A is the limit off asx approachesx0 from above (from the right).”
Similarly one defines theleft-hand limitof f atx0, lim

x→x0−0
f(x) = A with xn < x0 in place of

xn > x0. Sometimes we use the notationf(x0 − 0).
(b) We are writing

lim
x→+∞

f(x) = A

if for all sequences(xn) with lim
n→∞

xn = +∞ we have lim
n→∞

f(xn) = A. Sometimes we use the

notationf(+∞). In a similar way we definelim
x→−∞

f(x) = A.

(c) Finally, the notions of (a), (b), and Definition 3.2 stillmake sense in caseA = +∞ and
A = −∞. For example,

lim
x→x0−0

f(x) = −∞

if for all sequences(xn) with xn < x0 and lim
n→∞

xn = x0 we have lim
n→∞

f(xn) = −∞.

Remark 3.1 All notions in the above definition can be given inε-δ or ε-D or E-δ or E-D
languages using inequalities. For example,lim

x→x0−0
f(x) = −∞ if and only if

∀E > 0 ∃ δ > 0 ∀x ∈ D(f) : 0 < x0 − x < δ =⇒ f(x) < −E.
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For example, we show thatlimx→0−0
1
x

= −∞. ToE > 0 chooseδ = 1
E

. Then0 < −x < δ =
1
E

implies0 < E < − 1
x

and hencef(x) < −E. This proves the claim.
Similarly, lim

x→+∞
f(x) = +∞ if and only if

∀E > 0 ∃D > 0 ∀x ∈ D(f) : x > D =⇒ f(x) > E.

The proves of equivalence ofε-δ definitions and sequence definitions are along the lines of
Proposition 3.1.
For example,limx→+∞ x2 = +∞. ToE > 0 chooseD =

√
E. Thenx > D impliesx >

√
E;

thusx2 > E.

Example 3.2 (a) lim
x→+∞

1

x
= 0. For, letε > 0; chooseD = 1/ε. Thenx > D = 1/ε implies

0 < 1/x < ε. This proves the claim.
(b) Consider the entier functionf(x) = [x], defined in
Example 2.6 (b). Ifn ∈ Z, lim

x→n−0
f(x) = n − 1 whereas

lim
x→n+0

f(x) = n.

Proof. We use theε-δ definition of the one-sided limits
to prove the first claim. Letε > 0. Chooseδ = 1

2
then

0 < n − x < 1
2

implies n − 1
2
< x < n and therefore

f(x) = n − 1. In particular| f(x)− (n− 1) | = 0 < ε.
Similarly one proves lim

x→n+0
f(x) = n.

x

y

f(x)=[x]

n

n-1

n

Since the one-sided limits are different,lim
x→n

f(x) does not exist.

Definition 3.4 Suppose we are given two functionsf andg, both defined on(a, b) \ {x0}. By
f + g we mean the function which assigns to each pointx 6= x0 of (a, b) the numberf(x) +

g(x). Similarly, we define the differencef − g, the productfg, and the quotientf/g, with the
understanding that the quotient is defined only at those pointsx at whichg(x) 6= 0.

Proposition 3.2 Suppose thatf andg are functions defined on(a, b) \ {x0}, a < x0 < b, and
limx→x0 f(x) = A, limx→x0 g(x) = B, α, β ∈ R. Then
(a) lim

x→x0

f(x) = A′ impliesA′ = A.

(b) lim
x→x0

(αf + βg)(x) = αA+ βB;

(c) lim
x→x0

(fg)(x) = AB;

(d) lim
x→x0

f

g
(x) =

A

B
, if B 6= 0.

(e) lim
x→x0

| f(x) | = |A |.

Proof. In view of Proposition 3.1, all these assertions follow immediately from the analogous
properties of sequences, see Proposition 2.3. As an example, we show (c). Let(xn) , xn 6= x0,
be a sequence tending tox0. By assumption,limn→∞ f(xn) = A and limn→∞ g(xn) = B.
By the Propostition 2.3limn→∞ f(xn)g(xn) = AB, that is, limn→∞(fg)(xn) = AB. By
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Proposition 3.1,limx→x0 fg(x) = AB.

Remark 3.2 The proposition remains true if we replace (at the same time in all places)x→ x0

by x→ x0 + 0, x→ x0 − 0, x→ +∞, orx→ −∞. Moreover we can replaceA orB by +∞
or by−∞ provided the right members of (b), (c), (d) and (e) are defined.
Note that+∞+ (−∞), 0 · ∞,∞/∞, andA/0 are not defined.
Theextended real number systemconsists of the real fieldR and two symbols,+∞ and−∞.
We preserve the original order inR and define

−∞ < x < +∞

for everyx ∈ R.
It is the clear that+∞ is an upper bound of every subset of the extended real number system,
and every nonempty subset has a least upper bound. If, for example,E is a set of real numbers
which is not bounded above inR, thensupE = +∞ in the extended real system. Exactly the
same remarks apply to lower bounds.
The extended real system does not form a field, but it is customary to make the following
conventions:

(a) If x is real then

x+∞ = +∞, x−∞ = −∞, x

+∞ =
x

−∞ = 0.

(b) If x > 0 thenx · (+∞) = +∞ andx · (−∞) = −∞.
(c) If x < 0 thenx · (+∞) = −∞ andx · (−∞) = +∞.

When it is desired to make the distinction between the real numbers on the one hand and the
symbols+∞ and−∞ on the other hand quite explicit, the real numbers are calledfinite.
In Homework 9.2 (a) and (b) you are invited to give explicit proves in two special cases.

Example 3.3 (a) Letp(x) andq(x) be polynomials anda ∈ R. Then

lim
x→a

p(x) = p(a).

This immediately follows fromlimx→a x = a, limx→a c = c and Proposition 3.2. Indeed, by (b)
and (c), forp(x) = 3x3−4x+7 we havelimx→a(3x

2−4x+7) = 3 (limx→a x)
3−4 limx→a x+

7 = 3a2 − 4a + 7 = p(a). This works for arbitrary polynomials . Suppose moreover that
q(a) 6= 0. Then by (d),

lim
x→a

p(x)

q(x)
=
p(a)

q(a)
.

Hence, the limit of a rational functionf(x) asx approaches a pointa of the domain off is
f(a).
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(b) Let f(x) = p(x)
q(x)

be a rational function with polynomialsp(x) =
∑r

k=0 akx
k andq(x) =∑s

k=0 bkx
k with real coefficientsak andbk and of degreer ands, respectively. Then

lim
x→+∞

f(x) =





0, if r < s,
ar

bs
, if r = s,

+∞, if r > s and ar

bs
> 0,

−∞, if r > s and ar

bs
< 0.

The first two statements (r ≥ s) follow from Example 3.2 (b) together with Proposition 3.2.
Namely,akxk−r → 0 asx → +∞ provided0 ≤ k < r. The statements forr > s follow from
xr−s → +∞ asx→ +∞ and the above remark.
Note that

lim
x→−∞

f(x) = (−1)r+s lim
x→+∞

f(x)

since

p(−x)
q(−x) =

(−1)rarx
r + . . .

(−1)sbsxs + . . .
= (−1)r+s

arx
r + . . .

bsxs + . . .
.

3.2 Continuous Functions

Definition 3.5 Let f be a function andx0 ∈ D(f). We say thatf is continuous atx0 if

∀ ε > 0 ∃ δ > 0 ∀x ∈ D(f) : |x− x0 | < δ =⇒ | f(x)− f(x0) | < ε. (3.1)

We say thatf is continuous inA ⊂ D(f) if f is continuous at all pointsx0 ∈ A.

Proposition 3.1 shows that the above definition of continuity in x0 is equivalent to: For all
sequences(xn), xn ∈ D(f), with lim

n→∞
xn = x0, lim

n→∞
f(xn) = f(x0). In other words,f is

continuous atx0 if lim
x→x0

f(x) = f(x0).

Example 3.4 (a) In example 3.2 we have seen that every polynomial is continuous inR and
every rational functionsf is continuous in their domainD(f).
f(x) = |x | is continuous inR.
(b) Continuity is alocal property: If two functionsf, g : D → R coincide in a neighborhood
Uε(x0) ⊂ D of some pointx0, thenf is continuous atx0 if and only if g is continuous atx0.
(c) f(x) = [x] is continuous inR \ Z. If x0 is not an integer, thenn < x0 < n + 1 for some
n ∈ N andf(x) = n coincides with a constant function in a neighborhoodx ∈ Uε(x0). By (b),
f is continuous atx0. If x0 = n ∈ Z, limx→n[x] does not exist; hencef is not continuous atn.

(d) f(x) =
x2 − 1

x− 1
if x 6= 1 andf(1) = 1. Thenf is not continuous atx0 = 1 since

lim
x→1

x2 − 1

x− 1
= lim

x→1
(x+ 1) = 2 6= 1 = f(1).
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There are two reasons for a function not being continuous atx0. First, limx→x0 f(x) does not
exist. Secondly,f has a limit atx0 but limx→x0 f(x) 6= f(x0).

Proposition 3.3 Supposef, g : D → R are continuous atx0 ∈ D. Thenf + g andfg are also
continuous atx0. If g(x0) 6= 0, thenf/g is continuous atx0.

The proof is obvious from Proposition 3.2.
The setC(D) of continuous function onD ⊂ R form a commutative algebra with1.

Proposition 3.4 Let f : D → R and g : E → R functions withf(D) ⊂ E. Supposef is
continuous ata ∈ D, and g is continuous atb = f(a) ∈ E. Then the composite function
g◦f : D → R is continuous ata.

Proof. Let (xn) be a sequence withxn ∈ D and limn→∞ xn = a. Sincef is continuous
at a, limn→∞ f(xn) = b. Since g is continuous atb, limn→∞ g(f(xn)) = g(b); hence
g◦f(xn)→ g◦f(a). This completes the proof.

Example 3.5 f(x) = 1
x

is continuous forx 6= 0, g(x) = sin x is continuous (see below), hence,
(g◦f)(x) = sin 1

x
is continuous onR \ {0}.

3.2.1 The Intermediate Value Theorem

In this paragraph,[a, b] ⊂ R is a closed, bounded interval,a, b ∈ R.
The intermediate value theorem is the basis for several existence theorems in analysis. It is
again equivalent to the order completeness ofR.

Theorem 3.5 (Intermediate Value Theorem)Letf : [a, b]→ R be a continuous function and
γ a real number betweenf(a) andf(b). Then there existsc ∈ [a, b] such thatf(c) = γ.

ba

γ

c

The statement is clear from the graphical presentation. Never-
theless, it needs a proof since pictures do not prove anything.
The statement is wrong for rational numbers. For example, let
D = {x ∈ Q | 1 ≤ x ≤ 2} andf(x) = x2− 2. Thenf(1) = −1

andf(2) = 2 but there is nop ∈ D with f(p) = 0 since2 has no
rational square root.

Proof. Without loss of generality supposef(a) ≤ f(b). Starting with[a1, b1] = [a, b], we suc-
cessively construct a nested sequence of intervals[an, bn] such thatf(an) ≤ γ ≤ f(bn). As in
the proof of Proposition 2.12, the[an, bn] is one of the two halfintervals[an−1, m] and[m, bn−1]

wherem = (an−1 + bn−1)/2 is the midpoint of the(n − 1)st interval. By Proposition 2.11 the
monotonic sequences(an) and(bn) both converge to a common pointc. Sincef is continuous,

lim
n→∞

f(an) = f( lim
n→∞

an) = f(c) = f( lim
n→∞

bn) = lim
n→∞

f(bn).

By Proposition 2.14,f(an) ≤ γ ≤ f(bn) implies

lim
n→∞

f(an) ≤ γ ≤ lim
n→∞

f(bn);
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Hence,γ = f(c).

Example 3.6 (a) We again show the existence of thenth root of a positive real numbera > 0,
n ∈ N. By Example 3.2, the polynomialp(x) = xn − a is continuous inR. We findp(0) =

−a < 0 and by Bernoulli’s inequality

p(1 + a) = (1 + a)n − a ≥ 1 + (n− 1)a ≥ 1 > 0.

Theorem 3.5 shows thatp has a root in the interval(0, 1 + a).
(b) A polynomialp of odd degree with real coefficients has a real zero. Namely, by Example 3.3,
if the leading coefficientar of p is positive, lim

x→−∞
p(x) = −∞ and lim

x→∞
p(x) = +∞. Hence

there area andb with a < b andp(a) < 0 < p(b). Therefore, there is ac ∈ (a, b) such that
p(c) = 0.

There are polynomials of even degree having no real zeros. For examplef(x) = x2k + 1.

Remark 3.3 Theorem 3.5 is not true for continuous functionsf : Q → R. For example,
f(x) = x2 − 2 is continuous,f(0) = −2 < 0 < 2 = f(2). However, there is nor ∈ Q
with f(r) = 0.

3.2.2 Continuous Functions on Bounded and Closed Intervals—The The-
orem about Maximum and Minimum

We say thatf : [a, b] → R is continuous, iff is continuous on(a, b) andf(a + 0) = f(a) and
f(b− 0) = f(b).

Theorem 3.6 (Theorem about Maximum and Minimum) Let f : [a, b] → R be continuous.
Thenf is bounded and attains its maximum and its minimum, that is, there existsC > 0 with
| f(x) | ≤ C for all x ∈ [a, b] and there existp, q ∈ [a, b] with sup

a≤x≤b
f(x) = max

a≤x≤b
f(x) = f(p)

and inf
a≤x≤b

f(x) = min
a≤x≤b

f(x) = f(q).

Remarks 3.4 (a) The theorem is not true in case of open, half-open or infinite intervals. For
example,f : (0, 1]→ R, f(x) = 1

x
is continuous but not bounded. The functionf : (0, 1)→ R,

f(x) = x is continuous and bounded. However, it doesn’t attain maximum and minimum.
Finally, f(x) = x2 onR+ is continuous but not bounded.
(b) PutM := max

x∈K
f(x) andm := min

x∈K
f(x). By the Theorem about maximum and minimum

and the intermediate value theorem, for allγ ∈ R with m ≤ γ ≤M there existsc ∈ [a, b] such
thatf(c) = γ; that is,f attains all values betweenm andM .

Proof. We give the proof in case of the maximum. Replacingf by−f yields the proof for the
minimum. Let

A = sup
a≤x≤b

f(x) ∈ R ∪ {+∞}.
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(Note thatA = +∞ is equivalent tof is not bounded above.) Then there exists a sequence
(xn) ∈ [a, b] such thatlimn→∞ f(xn) = A. Since(xn) is bounded, by the Theoremm of
Weierstraß there exists a convergent subsequence(xnk

) with p = lim
k
xnk

anda ≤ p ≤ b. Since

f is continuous,

A = lim
k→∞

f (xnk
) = f(p).

In particular,A is a finite real number; that is,f is bounded above byA and f attains its
maximumA at pointp ∈ [a, b].

3.3 Uniform Continuity

LetD be a finite or infinite interval.

Definition 3.6 A function f : D → R is calleduniformly continuousif for every ε > 0 there
exists aδ > 0 such that for allx, x′ ∈ D |x− x′ | < δ implies| f(x)− f(x′) | < ε.

f is uniformly continuous on[a, b] if and only if

∀ ε > 0 ∃ δ > 0 ∀x, y ∈ [a, b] : |x− y | < δ =⇒ | f(x)− f(y) | < ε. (3.2)

Remark 3.5 If f is uniformly continuous onD then f is continuous onD. However, the
converse direction is not true.
Consider, for example,f : (0, 1)→ R, f(x) = 1

x
which is continuous. Suppose to the contrary

thatf is uniformly continuous. Then toε = 1 there existsδ > 0 with (3.2). By the Archimedian
property there existsn ∈ N such that1

2n
< δ. Considerxn = 1

n
andyn = 1

2n
. Then|xn − yn | =

1
2n
< δ. However,

| f(xn)− f(yn) | = 2n− n = n ≥ 1.

A contradiction! Hence,f is not uniformly continuous on(0, 1).

Let us consider the differences between the concepts of continuity and uniform continuity. First,
uniform continuity is a property of a function on a set, whereas continuity can be defined in a
single point. To ask whether or not a given function is uniformly continuous at a certain point is
meaningless. Secondly, iff is continuous onD, then it is possible to find, for eachε > 0 and for
each pointx0 ∈ D, a numberδ = δ(x0, ε) > 0 having the property specified in Definition 3.5.
Thisδ depends onε andonx0. If f is, however, uniformly continuous onX, then it is possible,
for eachε > 0 to find oneδ = δ(ε) > 0 which will do for all possible pointsx0 of X.
That the two concepts are equivalent on bounded and closed intervals follows from the next
proposition.

Proposition 3.7 Letf : [a, b]→ R be a continuous function on a bounded and closed interval.
Thenf is uniformly continuous on[a, b].
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Proof. Suppose to the contrary thatf is not uniformly continuous. Then there existsε0 > 0

without matchingδ > 0; for every positive integern ∈ N there exists a pair of pointsxn, x′n
with |xn − x′n | < 1/n but | f(xn)− f(x′n) | ≥ ε0. Since[a, b] is bounded and closed,(xn) has
a subsequence converging to some pointp ∈ [a, b]. Since| xn − x′n | < 1/n, the sequence(x′n)
also converges top. Hence

lim
k→∞

(
f(xnk

)− f(x′nk
)
)

= f(p)− f(p) = 0

which contradicts
∣∣ f(xnk

)− f(x′nk
)
∣∣ ≥ ε0 for all k.

There exists an example of aboundedcontinuous functionf : [0, 1) → R which is not uni-
formly continuous, see [Kön90, p. 91].

Discontinuities

If x is a point in the domain of a functionf at whichf is not continuous, we sayf is dis-
continuousatx or f has adiscontinuityatx. It is customary to divide discontinuities into two
types.

Definition 3.7 Let f : (a, b) → R be a function which is discontinuous at a pointx0. If the
one-sided limitslimx→x0+0 f(x) andlimx→x0−0 f(x) exist, thenf is said to have asimpledis-
continuity or a discontinuity of thefirst kind. Otherwise the discontinuity is said to be of the
second kind.

Example 3.7 (a) f(x) = sign(x) is continuous onR \ {0} since it is locally constant. More-
over,f(0 + 0) = 1 andf(0− 0) = −1. Hence,sign(x) has a simple discontinuity atx0 = 0.
(b) Definef(x) = 0 if x is rational, andf(x) = 1 if x is irrational. Thenf has a discontinuity
of the second kind at every pointx since neitherf(x+ 0) norf(x− 0) exists.

(c) Define

f(x) =

{
sin 1

x
, if x 6= 0;

0, if x = 0.

Consider the two sequences

xn =
1

π
2

+ nπ
and yn =

1

nπ
,

Then both sequences(xn) and (yn) approach0 from above butlimn→∞ f(xn) = 1 and
limn→∞ f(yn) = 0; hencef(0 + 0) does not exist. Thereforef has a discontinuity of the
second kind atx = 0. We have not yet shown thatsin x is a continuous function. This will be
done in Section 3.5.2.
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3.4 Monotonic Functions

Definition 3.8 Let f be a real function on the interval(a, b). Thenf is said to bemonotonically
increasingon(a, b) if a < x < y < b impliesf(x) ≤ f(y). If the last inequality is reversed, we
obtain the definition of amonotonically decreasingfunction. The class ofmonotonic functions
consists of both the increasing and the decreasing functions.
If a < x < y < b impliesf(x) < f(y), the function is said to bestrictly increasing. Similarly,
strictly decreasingfunctions are defined.

Theorem 3.8 Letf be a monotonically increasing function on(a, b). Then the one-sided limits
f(x+ 0) andf(x− 0) exist at every pointx of (a, b). More precisely,

sup
t∈(a,x)

f(t) = f(x− 0) ≤ f(x) ≤ f(x+ 0) = inf
t∈(x,b)

f(t). (3.3)

Furthermore, ifa < x < y < b, then

f(x+ 0) ≤ f(y − 0). (3.4)

Analogous results evidently hold for monotonically decreasing functions.

Proof. See Appendix B to this chapter.

Proposition 3.9 Let f : [a, b] → R be a strictly monotonically increasing continuous function
andA = f(a) andB = f(b). Thenf maps[a, b] bijectively onto[A,B] and the inverse function

f−1 : [A,B]→ R
is again strictly monotonically increasing and continuous.

Note that the inverse functionf−1 : [A,B] → [a, b] is defined byf(y0) = x0, y0 ∈ [A,B],
wherex0 is the unique element of[a, b] with f(x0) = y0. However, we can think off−1 as a
function intoR. A similar statement is true for strictly decreasing functions.
Proof. By Remark 3.4,f maps[a, b] onto the whole closed interval[A,B] (intermediate value
theorem). Sincex < y implies f(x) < f(y), f is injective and hence bijective. Hence, the
inverse mappingf−1 : [A,B] → [a, b] exists and is again strictly increasing (u < v implies
f−1(u) = x < y = f−1(v) otherwise,x ≥ y impliesu ≥ v).
We show thatg = f−1 is continuous. Suppose(un) is a sequence in[A,B] with un → u and
un = f(xn) andu = f(x). We have to show that(xn) converges tox. Suppose to the contrary
that there existsε0 > 0 such that|xn − x | ≥ ε0 for infinitely manyn. Since(xn) ⊆ [a, b] is
bounded, there exists a converging subsequence(xnk

), say,xnk
→ c ask → ∞. The above

inequality is true for the limitc, too, that is| c− x | ≥ ε0. By continuity off , xnk
→ c implies

f(xnk
) → f(c). That isunk

→ f(c). Sinceun → u = f(x) and the limit of a converging
sequence is unique,f(c) = f(x). Sincef is bijective,x = c; this contradicts| c− x | ≥ ε0.
Hence,g is continuous atu.
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Example 3.8 The functionf : R+ → R+, f(x) = xn, is continuous and strictly increasing.
Hencex = g(y) = n

√
y is continuous, too. This gives an alternative proof of homework 5.5.

3.5 Exponential, Trigonometric, and Hyperbolic Functions
and their Inverses

3.5.1 Exponential and Logarithm Functions

In this section we are dealing with the exponential functionwhich is one of the most important
in analysis. We use the exponential series to define the function. We will see that this definition
is consistent with the definitionex for rationalx ∈ Q as defined in Chapter 1.

Definition 3.9 For z ∈ C put

E(z) =

∞∑

n=0

zn

n!
= 1 + z +

z2

2
+
z3

6
+ · · · . (3.5)

Note thatE(0) = 1 andE(1) = e by the definition at page 61. The radius of convergence of
the exponential series (3.5) isR = +∞, i. e. the series converges absolutely for allz ∈ C, see
Example 2.13 (c).
Applying Proposition 2.31 (Cauchy product) on multiplication of absolutely convergent series,
we obtain

E(z)E(w) =

∞∑

n=0

zn

n!

∞∑

m=0

wm

m!
=

∞∑

n=0

n∑

k=0

zk wn−k

k! (n− k)!

=

∞∑

n=0

1

n!

n∑

k=0

(
n

k

)
zkwn−k =

∞∑

n=0

(z + w)n

n!
,

which gives us the important addition formula

E(z + w) = E(z)E(w), z, w ∈ C. (3.6)

One consequence is that

E(z)E(−z) = E(0) = 1, z ∈ C. (3.7)

This shows thatE(z) 6= 0 for all z. By (3.5),E(x) > 0 if x > 0; hence (3.7) showsE(x) > 0

for all realx.
Iteration of (3.6) gives

E(z1 + · · ·+ zn) = E(z1) · · ·E(zn). (3.8)

Let us takez1 = · · · = zn = 1. SinceE(1) = e by (2.15), we obtain

E(n) = en, n ∈ N. (3.9)



3.5 Exponential, Trigonometric, and Hyperbolic Functionsand their Inverses 87

If p = m/n, wherem,n are positive integers, then

E(p)n = E(pn) = E(m) = em, (3.10)

so that

E(p) = ep, p ∈ Q+. (3.11)

It follows from (3.7) thatE(−p) = e−p if p is positive and rational. Thus (3.11) holds for all
rationalp. This justifies the redefinition

ex := E(x), x ∈ C.
The notationexp(x) is often used in place ofex.

Proposition 3.10 We can estimate the remainder termrn :=
∑∞

k=n z
k/k! as follows

| rn(z) | ≤
2 | z |n
n!

if | z | ≤ n+ 1

2
. (3.12)

Proof. We have

| rn(z) | ≤
∞∑

k=n

∣∣∣∣
zk

k!

∣∣∣∣ =
| z |n
n!

(
1 +

| z |
n+ 1

+
| z |2

(n + 1)(n+ 2)
+ · · ·+ | z |k

(n+ 1) · · · (n + k)
+ · · ·

)

≤ | z |
n

n!

(
1 +

| z |
n + 1

+
| z |2

(n+ 1)2
+ · · ·+ | z |k

(n+ 1)k
+ · · ·

)
.

| z | ≤ (n+ 1)/2 implies,

| rn(z) | ≤
| z |n
n!

(
1 +

1

2
+

1

4
+ · · ·+ 1

2k
+ · · ·

)
≤ 2 | z |n

n!
.

Example 3.9 (a) Insertingn = 1 gives

|E(z)− 1 | = | r1(z) | ≤ 2 | z | , | z | ≤ 1.

In particular,E(z) is continuous atz0 = 0. Indeed, toε > 0 chooseδ = ε/2 then | z | < δ

implies|E(z)− 1 | ≤ 2 | z | ≤ ε; hencelim
z→0

E(z) = E(0) = 1 andE is continuous at0.

(b) Insertingn = 2 gives

| ez − 1− z | = | r2(z) | ≤ | z |2 , | z | ≤ 3

2
.

This implies ∣∣∣∣
ez − 1

z
− 1

∣∣∣∣ ≤ | z | , | z | < 3

2
.

The sandwich theorem giveslim
z→0

ez−1
z

= 1.
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By (3.5), limx→∞E(x) = +∞; hence (3.7) shows thatlimx→−∞E(x) = 0. By (3.5),
0 < x < y implies thatE(x) < E(y); by (3.7), it follows thatE(−y) < E(−x); hence,E
is strictly increasing on the whole real axis.
The addition formula also shows that

lim
h→0

(E(z + h)−E(z)) = E(z) lim
h→0

(E(h)− 1) = E(z) · 0 = 0, (3.13)

wherelimh→0E(h) = 1 directly follows from Example 3.9. Hence,E(z) is continuous for all
z.

Proposition 3.11 Let ex be defined onR by the power series(3.5). Then

(a) ex is continuous for allx.
(b) ex is a strictly increasing function andex > 0.
(c) ex+y = exey.
(d) lim

x→+∞
ex = +∞, lim

x→−∞
ex = 0.

(e) lim
x→+∞

xn

ex
= 0 for everyn ∈ N.

Proof. We have already proved (a) to (d); (3.5) shows that

ex >
xn+1

(n+ 1)!

for x > 0, so that
xn

ex
<

(n+ 1)!

x
,

and (e) follows. Part (e) shows thatex tends faster to+∞ than any power ofx, asx → +∞.

Sinceex, x ∈ R, is a strictly increasing continuous function, by Proposition 3.9ex has an strictly
increasing continuous inverse functionlog y, log : (0,+∞) → R. The functionlog is defined
by

elog y = y, y > 0, (3.14)

or, equivalently, by

log(ex) = x, x ∈ R. (3.15)

Writing u = ex andv = ey, (3.6) gives

log(uv) = log(exey) = log(ex+y) = x+ y,

such that

log(uv) = log u+ log v, u > 0, v > 0. (3.16)
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This shows thatlog has the familiar property which makes the logarithm useful for computa-
tions. Another customary notation forlog x is lnx. Proposition 3.11 shows that

lim
x→+∞

log x = +∞, lim
x→0+0

log x = −∞.

We summarize what we have proved so far.

Proposition 3.12 Let the logarithmlog : (0,+∞)→ R be the inverse function to the exponen-
tial functionex. Then

(a) log is continuous on(0,+∞).
(b) log is strictly increasing.
(c) log(uv) = log u+ log v for u, v > 0.
(d) lim

x→+∞
log x = +∞, lim

x→0+0
log x = −∞.

It is seen from (3.14) that

x = elog x =⇒ xn = en log x (3.17)

if x > 0 andn is an integer. Similarly, ifm is a positive integer, we have

x
1
m = e

log x
m (3.18)

Combining (3.17) and (3.18), we obtain

xα = eα log x. (3.19)

for any rationalα. We now definexα for any realα andx > 0, by (3.19). In the same way, we
redefine the exponential function

ax = ex log a, a > 0, x ∈ R.
It turns out that in casea 6= 1, f(x) = ax is strict monotonic and continuous sinceex is so.
Hence,f has a stict monotonic continuous inverse functionloga : (0,+∞)→ R defined by

loga(a
x) = x, x ∈ R, aloga x = x, x > 0.

3.5.2 Trigonometric Functions and their Inverses

Sine
Cosine

 

Simple Trig Functions

–1

–0.5

0.5

1

–6 –4 –2 2 4 6

In this section we redefine the trigonometric functions using
the exponential functionez. We will see that the new defini-
tions coincide with the old ones.

Definition 3.10 For z ∈ C define

cos z =
1

2

(
ei z + e−i z

)
, sin z =

1

2i

(
ei z − e−i z

)
(3.20)

such that

ei z = cos z + i sin z (Euler formula) (3.21)
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Proposition 3.13 (a) The functionssin z andcos z can be written as power series which con-
verge absolutely for allz ∈ C:

cos z =

∞∑

n=0

(−1)n

(2n)!
z2n = 1− 1

2
z2 +

1

4!
z4 − 1

6!
z6 +− · · ·

sin z =

∞∑

n=0

(−1)n

(2n+ 1)!
z2n+1 = z − 1

3!
z3 +

1

5!
z5 −+ · · · .

(3.22)

(b) sin x andcosx are real valued and continuous onR, wherecosx is an even andsin x is an
odd function, i. e.cos(−x) = cosx, sin(−x) = − sin x. We have

sin2 x+ cos2 x = 1; (3.23)

cos(x+ y) = cosx cos y − sin x sin y;

sin(x+ y) = sin x cos y + cosx sin y.
(3.24)

Proof. (a) Insertingiz into (3.5) in place ofz and using(in) = (i,−1,−i, 1, i,−1, . . . ), we have

ei z =
∞∑

n=0

in
zn

n!
=

∞∑

k=0

(−1)k
z2k

(2k)!
+ i

∞∑

k=0

(−1)k
z2k+1

(2k + 1)!
.

Inserting−iz into (3.5) in place ofz we have

e−i z =
∞∑

n=0

in
zn

n!
=

∞∑

k=0

(−1)k
z2k

(2k)!
− i

∞∑

k=0

(−1)k
z2k+1

(2k + 1)!
.

Inserting this into (3.20) proves (a).
(b) Since the exponential function is continuous onC, sin z andcos z are also continuous onC. In particular, their restrictions toR are continuous. Now letx ∈ R, theni x = −i x. By
Homework 11.3 and (3.20) we obtain

cosx =
1

2

(
eix + ei x

)
=

1

2

(
eix + ei x

)
=

1

2

(
ei x + ei x

)
= Re

(
ei x
)

and similarly
sin x = Im

(
ei x
)
.

Hence,sin x andcosx are real for realx.

1

e i

i

cos x0

xi sin
x

For x ∈ R we have
∣∣ ei x

∣∣ = 1. Namely by (3.7) and
Homework 11.3

∣∣ eix
∣∣2 = eix eix = eixe−ix = e0 = 1,

so that forx ∈ R
∣∣ ei x

∣∣ = 1. (3.25)

On the other hand, the Euler formula and the fact that
cosx andsin x are real give

1 =
∣∣ ei x

∣∣ = | cosx+ i sin x | = cos2 x+ sin2 x.
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Hence,eix = cosx + i sin x is a point on the unit circle in the complex plane, andcosx and
sin x are its coordinates. This establishes the equivalence between the old definition ofcosx as
the length of the adjacent side in a rectangular triangle with hypothenuse1 and anglex180◦

π
and

the power series definition ofcosx. The only missing link is: the length of the arc from1 to eix

is x.
It follows directly from the definition thatcos(−z) = cos z and sin(−z) = − sin z for all
z ∈ C. The addition laws forsin x and cosx follow from (3.6) applied toei (x+y). This
completes the proof of (b).

Lemma 3.14 There exists a unique numberτ ∈ (0, 2) such thatcos τ = 0. We define the
numberπ by

π = 2τ. (3.26)

The proof is based on the following Lemma.

Lemma 3.15

(a) 0 < x <
√

6 implies x− x3

6
< sin x < x. (3.27)

(b) 0 < x <
√

2 implies 0 < cosx, (3.28)

0 < sin x < x <
sin x

cosx
, (3.29)

cos2 x <
1

1 + x2
. (3.30)

(c) cosx is strictly decreasing on[0, π]; whereassin x is strictly increasing on[−π/2, π/2].

In particular, the sandwich theorem applied to statement (a), 1 − x2

6
< sinx

x
< 1 asx → 0 + 0

giveslimx→0+0
sinx
x

= 1. Sincesinx
x

is an even function, this implieslimx→0
sinx
x

= 1.
The proof of the lemma is in the Appendix B to this chapter.
Proof of Lemma 3.14. cos 0 = 1. By the Lemma 3.15,cos2 1 < 1/2. By the double angle
formula for cosine,cos 2 = 2 cos2 1 − 1 < 0. By continuity ofcos x and Theorem 3.5,cos has
a zeroτ in the interval(0, 2).
By addition laws,

cosx− cos y = −2 sin

(
x+ y

2

)
sin

(
x− y

2

)
.

So that by Lemma 3.150 < x < y < 2 implies0 < sin((x + y)/2) andsin((x − y)/2) < 0;
thereforecos x > cos y. Hence,cos x is strictly decreasing on(0, 2). The zeroτ is therefore
unique.
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By definition,cos
(
π
2

)
= 0; and (3.23) showssin(π/2) = ±1. By (3.27),sin π/2 = 1. Thus

eiπ/2 = i, and the addition formula forez gives

eπ i = −1, e2π i = 1; (3.31)

hence,

ez+2π i = ez, z ∈ C. (3.32)

Proposition 3.16 (a)The functionez is periodic with period2πi.
We haveeix = 1, x ∈ R, if and only ifx = 2kπ, k ∈ Z.
(b) The functionssin z andcos z are periodic with period2π.
The real zeros of the sine and cosine functions are{kπ | k ∈ Z} and{π/2 + kπ | k ∈ Z},
respectively.

Proof. We have already proved (a). (b) follows from (a) and (3.20).

Tangent and Cotangent Functions
Tangent
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Cotangent
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Forx 6= π/2 + kπ, k ∈ Z, define

tanx =
sin x

cosx
. (3.33)

Forx 6= kπ, k ∈ Z, define

cot x =
cos x

sin x
. (3.34)

Lemma 3.17 (a) tan x is continuous atx ∈ R \ {π/2+ kπ | k ∈ Z}, andtan(x+ π) = tan x;
(b) lim

x→π
2
−0

tanx = +∞, lim
x→π

2
+0

tan x = −∞;

(c) tan x is strictly increasing on(−π/2, π/2);
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Proof. (a) is clear by Proposition 3.3 sincesin x andcos x are continuous. We show only (c) and
let (b) as an exercise. Let0 < x < y < π/2. Then0 < sin x < sin y andcosx > cos y > 0.
Therefore

tan x =
sin x

cosx
<

sin y

cos y
= tan y.

Hence,tan is strictly increasing on(0, π/2). Sincetan(−x) = − tan(x), tan is strictly
increasing on the whole interval(−π/2, π/2).

Similarly as Lemma 3.17 one proves the next lemma.

Lemma 3.18 (a) cot x is continuous atx ∈ R \ {kπ | k ∈ Z}, andcot(x+ π) = cot x;
(b) lim

x→0−0
cot x = −∞, lim

x→0+0
cot x = +∞;

(c) cot x is strictly decreasing on(0, π).

Inverse Trigonometric Functions

We have seen in Lemma 3.15 thatcosx is strictly decreasing on[0, π] andsin x is strictly in-
creasing on[−π/2, π/2]. Obviously, the images arecos[0, π] = sin[−π/2, π/2] = [−1, 1].
Using Proposition 3.9 we obtain that the inverse functions exists and they are monotonic and
continuous.

arccos
arcsin

 

Arcosine and Arcsine
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Proposition 3.19 (and Definition) There exists the in-
verse function tocos

arccos : [−1, 1]→ [0, π] (3.35)

given byarccos(cosx) = x, x ∈ [0, π] or cos(arccos y) =

y, y ∈ [−1, 1]. The functionarccosx is strictly decreas-
ing and continuous.
There exists the inverse function tosin

arcsin : [−1, 1]→ [−π/2, π/2] (3.36)

given by arcsin(sin x) = x, x ∈ [−π/2, π/2] or
sin(arcsin y) = y, y ∈ [−1, 1]. The functionarcsin x

is strictly increasing and continuous.

Note thatarcsin x + arccos x = π/2 if x ∈ [−1, 1]. Indeed, lety = arcsin x; thenx = sin y =

cos(π/2 − y). Sincey ∈ [0, π], π/2 − y ∈ [−π/2, π/2], and we havearccosx = π/2 − y.
Thereforey + arccosx = π/2.
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arctan
arccot

 

Arctangent and Arccotangent
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By Lemma 3.17,tan x is strictly increasing on
(−π/2, π/2). Therefore, there exists the inverse
function on the imagetan(−π/2, π/2) = R.

Proposition 3.20 (and Definition) There
exists the inverse function totan

arctan: R→ (−π/2, π/2) (3.37)

given byarctan(tanx) = x, x ∈ (−π/2, π/2)

or tan(arctan y) = y, y ∈ R. The function
arctan x is strictly increasing and continuous.
There exists the inverse function tocot x

arccot : R→ (0, π) (3.38)

given byarccot (cotx) = x, x ∈ (0, π) or
cot(arccot y) = y, y ∈ R. The function
arccot x is strictly decreasing and continuous.

3.5.3 Hyperbolic Functions and their Inverses

cosh
sinh

 

Hyperbolic Cosine and Sine
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The functions

sinh x =
ex − e−x

2
, (3.39)

cosh x =
ex + e−x

2
, (3.40)

tanhx =
ex − e−x

ex + e−x
=

sinh x

cosh x
(3.41)

cothx =
ex + e−x

ex − e−x
=

cosh x

sinh x
(3.42)

are calledhyperbolic sine, hyperbolic cosine, hyper-
bolic tangent, andhyperbolic cotangent, respectively.
There are many analogies between these functions and
their ordinary trigonometric counterparts.
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Hyperbolic Tangent

–1

–0.5

0

0.5

1

–3 –2 –1 1 2 3

Hyperbolic Cotangent

–3

–2

–1

1

2

3

y

–3 –2 –1 1 2 3

x

The functionssinh x and tanh x are strictly increasing withsinh(R) = R and tanh(R) =

(−1, 1). Hence, their inverse functions are defined onR and on(−1, 1), respectively, and are
also strictly increasing and continuous. The function

arsinh : R→ R (3.43)

is given byarsinh (sinh(x)) = x, x ∈ R or sinh(arsinh (y)) = y, y ∈ R.
The function

artanh : (−1, 1)→ R (3.44)

is defined byartanh (tanh(x)) = x, x ∈ R or tanh(artanh (y)) = y, y ∈ (−1, 1).
The functioncosh is strictly increasing on the half lineR+ with cosh(R+) = [1,∞). Hence,
the inverse function is defined on[1,∞) taking values inR+. It is also strictly increasing and
continuous.

arcosh : [1,∞)→ R+ (3.45)

is defined viaarcosh (cosh(x)) = x, x ≥ 0 or by cosh(arcosh (y)) = y, y ≥ 1.
The functioncoth is strictly decreasing on thex < 0 and onx > 0 with coth(R \ 0) =R \ [−1, 1]. Hence, the inverse function is defined onR \ [−1, 1] taking values inR \ 0. It is
also strictly decreasing and continuous.

arcoth : R \ [−1, 1]→ R (3.46)

is defined viaarcoth (coth(x)) = x, x 6= 0 or bycoth(arcoth (y)) = y, y < −1 or y > 1.

3.6 Appendix B

3.6.1 Monotonic Functions have One-Sided Limits

Proof of Theorem 3.8. By hypothesis, the set{f(t) | a < t < x} is bounded above byf(x),
and therefore has a least upper bound which we shall denote byA. EvidentlyA ≤ f(x). We
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have to show thatA = f(x− 0).
Let ε > 0 be given. It follows from the definition ofA as a least upper bound that there exists
δ > 0 such thata < x− δ < x and

A− ε < f(x− δ) ≤ A. (3.47)

Sincef is monotonic, we have

f(x− δ) < f(t) ≤ A, if x− δ < t < x. (3.48)

Combining (3.47) and (3.48), we see that

| f(t)−A | < ε if x− δ < t < x.

Hencef(x− 0) = A.
The second half of (3.3) is proved in precisely the same way. Next, if a < x < y < b, we see
from (3.3) that

f(x+ 0) = inf
x<t<b

f(t) = inf
x<t<y

f(t). (3.49)

The last equality is obtained by applying (3.3) to(a, y) instead of(a, b). Similarly,

f(y − 0) = sup
a<t<y

f(t) = sup
x<t<y

f(t). (3.50)

Comparison of the (3.49) and (3.50) gives (3.4).

3.6.2 Proofs forsin x and cos x inequalities

Proofof Lemma 3.15. (a) By (3.22)

cosx =

(
1− 1

2!
x2

)
+ x4

(
1

4!
− 1

6!
x2

)
+ · · · .

0 < x <
√

2 implies1− x2/2 > 0 and, moreover1/(2n)!− x2/(2n + 2)! > 0 for all n ∈ N;
henceC(x) > 0.
By (3.22),

sin x = x

(
1− 1

3!
x2

)
+ x5

(
1

5!
− 1

7!
x2

)
+ · · · .

Now,

1− 1

3!
x2 > 0 ⇐⇒ x <

√
6,

1

5!
− 1

7!
x2 > 0 ⇐⇒ x <

√
42, . . . .

Hence,S(x) > 0 if 0 < x <
√

6. This gives (3.27). Similarly,

x− sin x = x3

(
1

3!
− 1

5!
x2

)
+ x7

(
1

7!
− 1

9!
x2

)
+ · · · ,
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and we obtainsin x < x if 0 < x <
√

20. Finally we have to check whethersin x− x cosx > 0;
equivalently

0
?
< x3

(
1

2!
− 1

3!

)
− x5

(
1

4!
− 1

5!

)
+ x7

(
1

6!
− 1

7!

)
−+ · · ·

0
?
< x3

(
2

3!
− x2 4

5!

)
+ x7

(
6

7!
− x2 8

9!

)
+ · · ·

Now
√

10 > x > 0 implies
2n

(2n + 1)!
− 2n+ 2

(2n+ 3)!
x2 > 0

for all n ∈ N. This completes the proof of (a)
(b) Using (3.23), we get

0 < x cos x < sin x =⇒ 0 < x2 cos2 x < sin2 x

=⇒ x2 cos2 x+ cos2 x < 1 =⇒ cos2 x <
1

1 + x2
.

(c) In the proof of Lemma 3.14 we have seen thatcosx is strictly decreasing in(0, π/2). By
(3.23),sin x =

√
1− cos2 x is strictly increasing. Sincesin x is an odd function,sin x is strictly

increasing on[−π/2, π/2]. Sincecosx = − sin(x − π/2), the statement forcosx follows.

3.6.3 Estimates forπ

Proposition 3.21 For real x we have

cosx =

n∑

k=0

(−1)k
x2k

(2k)!
+ r2n+2(x) (3.51)

sin x =
n∑

k=0

(−1)k
x2k+1

(2k + 1)!
+ r2n+3(x), (3.52)

where

| r2n+2(x) | ≤
| x |2n+2

(2n+ 2)!
if | x | ≤ 2n+ 3, (3.53)

| r2n+3(x) | ≤
| x |2n+3

(2n+ 3)!
if | x | ≤ 2n+ 4. (3.54)

Proof. Let

r2n+2(x) = ± x2n+2

(2n + 2)!

(
1− x2

(2n+ 3)(2n+ 4)
± · · ·

)
.

Put

ak :=
x2k

(2n+ 3)(2n+ 4) · · · (2n+ 2(k + 1))
.
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Then we have, by definition

r2n+2(x) = ± x2n+2

(2n + 2)!
(1− a1 + a2 −+ · · · ) .

Since

ak = ak−1
x2

(2n+ 2k + 1)(2n+ 2k + 2)
,

|x | ≤ 2n+ 3 implies

1 > a1 > a2 > · · · > 0

and finally as in the proof of the Leibniz criterion

0 ≤ 1− a1 + a2 − a3 +− · · · ≤ 1.

Hence,| r2n+2(x) | ≤ | x |2n+2 /(2n + 2)!. The estimate for the remainder of the sine series is
similar.

This is an application of Proposition 3.21. For numerical calculations it is convenient to use the
following order of operations

cosx =

(
· · ·
((( −x2

2n(2n− 1)
+ 1

) −x2

(2n− 2)(2n− 3)
+ 1

) −x2

(2n− 4)(2n− 5)
+ 1

)
· · ·

· · ·
) −x2

2
+ 1 + r2n+2(x).

First we computecos 1.5 andcos 1.6. Choosingn = 7 we obtain

cosx =

((((((−x2

182
+ 1

) −x2

132
+ 1

) −x2

90
+ 1

) −x2

56
+ 1

) −x2

30
+ 1

) −x2

12
+ 1

) −x2

2
+

+ 1 + r16(x).

By Proposition 3.21

| r16(x) | ≤
|x |16
16!

≤ 0.9 · 10−10 if |x | ≤ 1.6.

The calculations give

cos 1.5 = 0.07073720163± 20 · 10−11 > 0, cos 1.6 = −0.02919952239± 20 · 10−11 < 0.

By the itermediate value theorem,1.5 < π/2 < 1.6.
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1.5  1.6

cos 1.5

cos 1.6

a

Now we computecos x for two values ofx which are close to
the linear interpolation

a = 1.5 + 0.1
cos 1.5

cos 1.5− cos 1.6
= 1.57078 . . .

cos 1.5707 = 0.000096326273± 20 · 10−11 > 0,

cos 1.5708 = −0.00000367326± 20 · 10−11 < 0.

Hence,1.5707 < π/2 < 1.5708.
The next linear interpolation gives

b = 1.5707 + 0.00001
cos 1.5707

cos 1.707− cos 1.708
= 1.570796326 . . .

cos 1.570796326 = 0.00000000073± 20 · 10−11 > 0,

cos 1.570796327 = −0.00000000027± 20 · 10−11 < 0.

Therefore1.570796326 < π/2 < 1.570796327 so that

π = 3.141592653± 10−9.
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Chapter 4

Differentiation

4.1 The Derivative of a Function

We define the derivative of a function and prove the main properties like product, quotient and
chain rule. We relate the derivative of a function with the derivative of its inverse function. We
prove the mean value theorem and consider local extrema. Taylor’s theorem will be formulated.

Definition 4.1 Let f : (a, b)→ R be a function andx0 ∈ (a, b). If the limit

lim
x→x0

f(x)− f(x0)

x− x0

(4.1)

exists, we callf differentiableatx0. The limit is denoted byf ′(x0). We sayf is differentiable
if f is differentiable at every pointx ∈ (a, b). We thus have associated to every functionf a
functionf ′ whose domain is the set of pointsx0 where the limit (4.1) exists;f ′ is called the
derivativeof f .

Sometimes the Leibniz notation is used to denote the derivative of f

f ′(x0) =
df(x0)

dx
=

d

dx
f(x0).

Remarks 4.1 (a) Replacingx− x0 by h , we see thatf ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

(b) The limits

lim
h→0−0

f(x0 + h)− f(x0)

h
, lim

h→0+0

f(x0 + h)− f(x0)

h

are calledleft-hand and right-hand derivatives off in x0, respectively. In particular for
f : [a, b]→ R, we can consider the right-hand derivative ata and the left-hand derivative atb.

Example 4.1 (a) Forf(x) = c the constant function

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

c− c
x− x0

= 0.

(b) Forf(x) = x,

f ′(x0) = lim
x→x0

x− x0

x− x0

= 1.

101
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(c) The slope of the tangent line. Given a functionf : (a, b)→ R which is differentiable atx0.
Thenf ′(x0) is the slope of the tangent line to the graph off through the point(x0, f(x0)).

x1

x1

x0

y

x
x0

f(

f(

)

)

α1

The slope of the secant line through(x0, f(x0)) and
(x1, f(x1)) is

m = tanα1 =
f(x1)− f(x0)

x1 − x0
.

One can see: Ifx1 approachesx0, the secant line through
(x0, f(x0)) and (x1, f(x1)) approaches the tangent line
through(x0, f(x0)). Hence, the slope of the tangent line
is the limit of the slopes of the secant lines ifx approaches
x0:

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
.

Proposition 4.1 If f is differentiable atx0 ∈ (a, b), thenf is continuous atx0.

Proof. By Proposition 3.2 we have

lim
x→x0

(f(x)− f(x0)) = lim
x→x0

f(x)− f(x0)

x− x0
(x− x0) = f ′(x0) lim

x→x0

(x− x0) = f ′(x0) · 0 = 0.

The converse of this proposition is not true. For examplef(x) = |x | is continuous inR but

differentiable inR \ {0} since lim
h→0+0

|h |
h

= 1 whereas lim
h→0−0

|h |
h

= −1. Later we will become

aquainted with a function which is continuous on the whole line without being differentiable at
any point!

Proposition 4.2 Letf : (r, s)→ R be a function anda ∈ (r, s). Thenf is differentiable ata if
and only if there exists a numberc ∈ R and a functionϕ defined in a neighborhood ofa such
that

f(x) = f(a) + (x− a)c+ ϕ(x), (4.2)

where

lim
x→a

ϕ(x)

x− a = 0. (4.3)

In this casef ′(a) = c.

The proposition says that a functionf differentiable ata can be approximated by a linear func-
tion, in our case by

y = f(a) + (x− a)f ′(a).

The graph of this linear function is the tangent line to the graph off at the point(a, f(a)). Later
we will use this point of view to define differentiability of functionsf : Rn → Rm.
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Proof. Suppose firstf satisfies (4.2) and (4.3). Then

lim
x→a

f(x)− f(a)

x− a = lim
x→a

(
c+

ϕ(x)

x− a

)
= c.

Hence,f is differentiable ata with f ′(a) = c.
Now, letf be differentiable ata with f ′(a) = c. Putϕ(x) = f(x)− f(a)− (x− a)f ′(a). Then

lim
x→a

ϕ(x)

x− a = lim
x→a

f(x)− f(a)

x− a − f ′(a) = 0.

f( ) α

x

x0

0

0

y

x
x0

y

Q

P

(x,y)P

Let us compute the linear function whose graph
is the tangent line through(x0, f(x0)). Con-
sider the rectangular trianglePP0Q0. By Ex-
ample 4.1 (c) we have

f ′(x0) = tanα =
y − y0

x− x0

,

such that the tangent line has the equation

y = g(x) = f(x0) + f ′(x0)(x− x0).

This function is called thelinearization off at x0. It is also the Taylor polynomial of degree1
of f atx0, see Section4.5 below.

Proposition 4.3 Supposef and g are defined on(a, b) and are differentible at a pointx ∈
(a, b). Thenf + g, fg, andf/g are differentiable atx and

(a) (f + g)′(x) = f ′(x) + g′(x);
(b) (fg)′(x) = f ′(x)g(x) + f(x)g′(x);

(c)
(
f
g

)′
(x) = f ′(x)g(x)−f(x)g′(x)

g(x)2
.

In (c), we assume thatg(x) 6= 0.

Proof. (a) Since

(f + g)(x+ h)− (f + g)(x)

h
=
f(x+ h)− f(x)

h
+
g(x+ h)− g(x)

h
,

the claim follows from Proposition 3.2.
Let h = fg andt be variable. Then

h(t)− h(x) = f(t)(g(t)− g(x)) + g(x)(f(t)− f(x))

h(t)− h(x)
t− x = f(t)

g(t)− g(x)
t− x + g(x)

f(t)− f(x)

t− x .
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Noting thatf(t)→ f(x) ast→ x, (b) follows.
Next leth = f/g. Then

h(t)− h(x)
t− x =

f(t)
g(t)
− f(x)

g(x)

t− x =
f(t)g(x)− f(x)g(t)

g(x)g(t)(t− x)

=
1

g(t)g(x)

f(t)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(t)

t− x

=
1

g(t)g(x)

(
g(x)

f(t)− f(x)

t− x − f(x)
g(t)− g(x)
t− x

)
.

Letting t→ x, and applying Propositions 3.2 and 4.1, we obtain (c).

Example 4.2 (a) f(x) = xn, n ∈ Z. We will provef ′(x) = nxn−1 by induction onn ∈ N.
The casesn = 0, 1 are OK by Example 4.1. Suppose the statement is true for some fixedn. We
will show that(xn+1)′ = (n+ 1)xn.
By the product rule and the induction hypothesis

(xn+1)′ = (xn · x)′ = (xn)′x+ xn(x′) = nxn−1 x+ xn = (n+ 1)xn.

This proves the claim for positive integersn. For negativen considerf(x) = 1/x−n and use
the quotient rule.
(b) (ex)′ = ex.

(ex)′ = lim
h→0

ex+h − ex

h
= lim

h→0

exeh − ex

h
= ex lim

h→0

eh − 1

h
= ex; (4.4)

the last equation simply follows from Example 3.9 (b)
(c) (sin x)′ = cos x, (cos x)′ = − sin x. Usingsin(x+ y)− sin(x− y) = 2 cos (x) sin (y) we
have

(sin x)′ = lim
h→0

sin(x+ h)− sin x

h
= lim

h→0

2 cos 2x+h
2

sin h
2

h

= lim
h→0

cos

(
x+

h

2

)
lim
h→0

sin h
2

h
2

.

Sincecosx is continuous andlim
h→0

sinh

h
= 1 (by the argument after Lemma 3.15), we obtain

(sin x)′ = cosx. The proof forcosx is analogous.

(d) (tanx)′ =
1

cos2 x
. Using the quotiont rule for the functiontan x = sin x/ cosx we have

(tanx)′ =
(sin x)′ cosx− sin x(cos x)′

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
.

The next proposition deals with composite functions and is probably the most important state-
ment about derivatives.
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Proposition 4.4 (Chain rule) Let g : (α, β) → R be differentiable atx0 ∈ (α, β) and let
f : (a, b) → R be differentiable aty0 = g(x0) ∈ (a, b). Thenh = f ◦g is differentiable at
x0, and

h′(x0) = f ′(y0)g
′(x0). (4.5)

Proof. We have

f(g(x))− f(g(x0))

x− x0
=
f(g(x))− f(g(x0))

g(x)− g(x0)

g(x)− g(x0)

x− x0

−→
x→x0

lim
y→y0

f(y)− f(y0)

y − y0
· g′(x0) = f ′(y0)g

′(x0).

Here we used thaty = g(x) tends toy0 = g(x0) asx→ x0, sinceg is continuous atx0.

Proposition 4.5 Let f : (a, b) → R be strictly monotonic and continuous. Supposef is differ-
entiable atx. Then the inverse functiong = f−1 : f((a, b)) → R is differentiable aty = f(x)

with

g′(y) =
1

f ′(x)
=

1

f ′(g(y))
. (4.6)

Proof. Let (yn) ⊂ f((a, b)) be a sequence withyn → y andyn 6= y for all n. Putxn = g(yn).
Sinceg is continuous (by Corollary 3.9),limn→∞ xn = x. Sinceg is injective,xn 6= x for all n.
We have

lim
n→∞

g(yn)− g(y)
yn − y

= lim
n→∞

xn − x
f(xn)− f(x)

= lim
n→∞

1
f(xn)−f(x)

xn−x
=

1

f ′(x)
.

Henceg′(y) = 1/f ′(x) = 1/f ′(g(y)).

We give some applications of the last two propositions.

Example 4.3 (a) Letf : R → R be differentiable; defineF : R → R by F (x) := f(ax + b)

with somea, b ∈ R. Then
F ′(x) = af ′(ax+ b).

(b) In what followsf is the original function (with known derivative) andg is the inverse
function tof . We fix the notiony = f(x) andx = g(y).
log : R+ \ {0} → R is the inverse function tof(x) = ex. By the above proposition

(log y)′ =
1

(ex)′
=

1

ex
=

1

y
.

(c) xα = eα log x. Hence,(xα)′ = (eα log x)′ = eα log xα
1

x
= αxα−1.

(d) Supposef > 0 andg = log f . Theng′ = f ′ 1

f
; hencef ′ = f g′.
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(e)arcsin : [−1, 1]→ R is the inverse function toy = f(x) = sin x. If x ∈ (−1, 1) then

(arcsin(y))′ =
1

(sin x)′
=

1

cos x
.

Sincey ∈ [−1, 1] implies x = arcsin y ∈ [−π/2, π/2], cosx ≥ 0. Therefore,cos x =√
1− sin2 x =

√
1− y2. Hence

(arcsin y)′ =
1√

1− y2
, −1 < y < 1.

Note that the derivative is not defined at the endpointsy = −1 andy = 1.
(f)

(arctan y)′ =
1

(tan x)′
=

1
1

cos2 x

= cos2 x.

Sincey = tanx we have

y2 = tan2 x =
sin2 x

cos2 x
=

1− cos2 x

cos2 x
=

1

cos2 x
− 1

cos2 x =
1

1 + y2

(arctan y)′ =
1

1 + y2
.
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4.2 The Derivatives of Elementary Functions

function derivative

const. 0

xn (n ∈ N) nxn−1

xα (α ∈ R, x > 0) αxα−1

ex ex

ax, (a > 0) ax log a

log x
1

x

loga x
1

x log a

sin x cosx

cosx − sin x

tanx
1

cos2 x

cotx − 1

sin2 x

sinh x cosh x

cosh x sinh x

tanhx
1

cosh2 x

cothx − 1

sinh2 x

arcsin x
1√

1− x2

arccosx − 1√
1− x2

arctanx
1

1 + x2

arccotx − 1

1 + x2

arsinh x
1√

x2 + 1

arcosh x
1√

x2 − 1

artanhx
1

1− x2

arcothx
1

1− x2
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4.2.1 Derivatives of Higher Order

Let f : D → R be differentiable. If the derivativef ′ : D → R is differentiable atx ∈ D, then

d2f(x)

dx2
= f ′′(x) = (f ′)′(x)

is called thesecond derivativeof f atx. Similarly, one defines inductively higher order deriva-
tives. Continuing in this manner, we obtain functions

f, f ′, f ′′, f (3), . . . , f (k)

each of which is the derivative of the preceding one.f (n) is called thenth derivativeof f or the
derivative of ordern of f . We also use the Leibniz notation

f (k)(x) =
dkf(x)

dxk
=

(
d

dx

)k
f(x).

Definition 4.2 Let D ⊂ R andk ∈ N a positive integer. We denote byCk(D) the set of all
functionsf : D → R such thatf (k)(x) exists for allx ∈ D andf (k)(x) is continuous. Obviously
C(D) ⊃ C1(D) ⊃ C2(D) ⊃ · · · . Further, we set

C∞(D) =
⋂

k∈NCk(D) = {f : D → R | f (k)(x) exists ∀ k ∈ N, x ∈ D}. (4.7)

f ∈ Ck(D) is calledk times continuously differentiable. C(D) = C0(D) is the vector space of
continuous functions onD.

Using induction overn, one proves the following proposition.

Proposition 4.6 (Leibniz formula) Let f andg ben times differentiable. Thenfg is n times
differentiable with

(f(x)g(x))(n) =
n∑

k=0

(
n

k

)
f (k)(x)g(n−k)(x). (4.8)

4.3 Local Extrema and the Mean Value Theorem

Many properties of a functionf like monotony, convexity, and existence of local extrema can
be studied using the derivativef ′. From estimates forf ′ we obtain estimates for the growth of
f .

Definition 4.3 Let f : [a, b]→ R be a function. We say thatf has alocal maximumat the point
ξ, ξ ∈ (a, b), if there existsδ > 0 such thatf(x) ≤ f(ξ) for all x ∈ [a, b] with |x− ξ | < δ.
Local minimaare defined likewise.

We say thatξ is a local extremumif it is either a local maximum or a local minimum.
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Proposition 4.7 Let f be defined on[a, b]. If f has a local extremum at a pointξ ∈ (a, b), and
if f ′(ξ) exists, thenf ′(ξ) = 0.

Proof. Supposef has a local maximum atξ. According with the definition chooseδ > 0 such
that

a < ξ − δ < ξ < ξ + δ < b.

If ξ − δ < x < ξ, then
f(x)− f(ξ)

x− ξ ≥ 0.

Lettingx→ ξ, we see thatf ′(ξ) ≥ 0.
If ξ < x < ξ + δ, then

f(x)− f(ξ)

x− ξ ≤ 0.

Lettingx→ ξ, we see thatf ′(ξ) ≤ 0. Hence,f ′(ξ) = 0.

Remarks 4.2 (a) f ′(x) = 0 is a necessary but not a sufficient condition for a local extremum
in x. For examplef(x) = x3 hasf ′(x) = 0, butx3 has no local extremum.
(b) If f attains its local extrema at the boundary, likef(x) = x on [0, 1], we do not have
f ′(ξ) = 0.

Theorem 4.8 (Rolle’s Theorem)Let f : [a, b] → R be continuous withf(a) = f(b) and letf
be differentiable in(a, b). Then there exists a pointξ ∈ (a, b) with f ′(ξ) = 0.

In particular, between two zeros of a differentiable function there is a zero of its derivative.
Proof. If f is the constant function, the theorem is trivial sincef ′(x) ≡ 0 on (a, b). Other-
wise, there existsx0 ∈ (a, b) such thatf(x0) > f(a) or f(x0) < f(a). Thenf attains its
maximum or minimum, respectively, at a pointξ ∈ (a, b). By Proposition 4.7,f ′(ξ) = 0.

Theorem 4.9 (Mean Value Theorem)Let f : [a, b] → R be continuous and differentiable in
(a, b). Then there exists a pointξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a (4.9)

a bξ

Geometrically, the mean value theorem states that there exists
a tangent line through some point(ξ, f(ξ)) which is parallel
to the secant lineAB, A = (a, f(a)),B = (b, f(b)).
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Theorem 4.10 (Generalized Mean Value Theorem)Let f andg be continuous functions on
[a, b] which are differentiable on(a, b). Then there exists a pointξ ∈ (a, b) such that

(f(b)− f(a))g′(ξ) = (g(b)− g(a))f ′(ξ).

Proof. Put

h(t) = (f(b)− f(a))g(t)− (g(b)− g(a))f(t).

Thenh is continuous in[a, b] and differentiable in(a, b) and

h(a) = f(b)g(a)− f(a)g(b) = h(b).

Rolle’s theorem shows that there existsξ ∈ (a, b) such that

h′(ξ) = f(b)− f(a))h′(ξ)− (g(b)− g(a))f ′(ξ) = 0.

The theorem follows.
In case thatg′ is nonzero on(a, b) andg(b)−g(a) 6= 0, the generalized MVT states the existence
of someξ ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a) =
f ′(ξ)

g′(ξ)
.

This is in particular true forg(x) = x andg′ = 1 which gives the assertion of the Mean Value
Theorem.

Remark 4.3 Note that the MVT fails iff is complex-valued, continuous on[a, b], and differen-
tiable on(a, b). Indeed,f(x) = eix on [0, 2π] is a counter example.f is continuous on[0, 2π],
differentiable on(0, 2π) andf(0) = f(2π) = 1. However, there is noξ ∈ (0, 2π) such that
0 = f(2π)−f(0)

2π
= f ′(ξ) = ieiξ since the exponential function has no zero, see (3.7) (ez · e−z = 1)

in Subsection 3.5.1.

Corollary 4.11 Supposef is differentiable on(a, b).

If f ′(x) ≥ 0 for all x ∈ (a, b), thenf in monotonically increasing.
If f ′(x) = 0 for all x ∈ (a, b), thenf is constant.
If f ′(x) ≤ 0 for all x in (a, b), thenf is monotonically decreasing.

Proof. All conclusions can be read off from the equality

f(x)− f(t) = (x− t)f ′(ξ)

which is valid for each pairx, t, a < t < x < b and for someξ ∈ (t, x).
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4.3.1 Local Extrema and Convexity

Proposition 4.12 Let f : (a, b) → R be differentiable and supposef ′′(ξ) exists at a point
ξ ∈ (a, b). If

f ′(ξ) = 0 and f ′′(ξ) > 0,

thenf has a local minimum atξ. Similarly, if

f ′(ξ) = 0 and f ′′(ξ) < 0,

f has a local maximum atξ.

Remark 4.4 The condition of Proposition 4.12 is sufficient but not necessary for the existence
of a local extremum. For example,f(x) = x4 has a local minimum atx = 0, butf ′′(0) = 0.

Proof. We consider the casef ′′(ξ) > 0; the proof of the other case is analogous. Since

f ′′(ξ) = lim
x→ξ

f ′(x)− f ′(ξ)

x− ξ > 0.

By Homework 10.4 there existsδ > 0 such that

f ′(x)− f ′(ξ)

x− ξ >
| f ′′(ξ) |

2
> 0, for all x with 0 < | x− ξ | < δ.

Sincef ′(ξ) = 0 it follows that

f ′(x) < 0 if ξ − δ < x < ξ,

f ′(x) > 0 if ξ < x < ξ + δ.

Hence, by Corollary 4.11,f is decreasing in(ξ − δ, ξ) and increasing in(ξ, ξ + δ). Therefore,
f has a local minimum atξ.

λ )yx y

f( )

x+(1-λ

f(x)+(1-λ λ )f(y)

x+(1- λ )yλ

Definition 4.4 A function f : (a, b) → R is
said to beconvexif for all x, y ∈ (a, b) and all
λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

(4.10)

A functionf is said to beconcaveif −f is con-
vex.

Proposition 4.13 (a) Convex functions are continuous.
(b) Supposef : (a, b)→ R is twice differentiable. Thenf is convex if and only iff ′′(x) ≥ 0 for
all x ∈ (a, b).

Proof. The proof is in Appendix C to this chapter.
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4.4 L’Hospital’s Rule

Theorem 4.14 (L’Hospital’s Rule) Supposef andg are differentiable in(a, b) andg(x) 6= 0

for all x ∈ (a, b), where−∞ ≤ a < b ≤ +∞. Suppose

lim
x→a+0

f ′(x)

g′(x)
= A. (4.11)

If

(a) lim
x→a+0

f(x) = lim
x→a+0

g(x) = 0 or (4.12)

(b) lim
x→a+0

f(x) = lim
x→a+0

g(x) = +∞, (4.13)

then

lim
x→a+0

f(x)

g(x)
= A. (4.14)

The analogous statements are of course also true ifx→ b− 0, or if g(x)→ −∞.

Proof. First we consider the case of finitea ∈ R. (a) One can extend the definition off and
g via f(a) = g(a) = 0. Thenf andg are continuous ata. By the generalized mean value
theorem, for everyx ∈ (a, b) there exists aξ ∈ (a, x) such that

f(x)− f(a)

g(x)− g(a) =
f(x)

g(x)
=
f ′(ξ)

g′(ξ)
.

If x approachesa thenξ also approachesa, and (a) follows.
(b) Now letf(a+ 0) = g(a+ 0) = +∞. Givenε > 0 chooseδ > 0 such that

∣∣∣∣
f ′(t)

g′(t)
− A

∣∣∣∣ < ε

if t ∈ (a, a+ δ). By the generalized mean value theorem for anyx, y ∈ (a, a+ δ) with x 6= y,
∣∣∣∣
f(x)− f(y)

g(x)− g(y) − A
∣∣∣∣ < ε.

We have
f(x)

g(x)
=
f(x)− f(y)

g(x)− g(y)
1− g(y)

g(x)

1− f(y)
f(x)

.

The right factor tends to1 asx approachesa, in particular there existsδ1 > 0 with δ1 < δ such
thatx ∈ (a, a + δ1) implies ∣∣∣∣

f(x)

g(x)
− f(x)− f(y)

g(x)− g(y)

∣∣∣∣ < ε.

Further, the triangle inequality gives
∣∣∣∣
f(x)

g(x)
− A

∣∣∣∣ < 2ε.
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This proves (b).
The casex → +∞ can be reduced to the limit processy → 0 + 0 using the substitution
y = 1/x.

L’Hospital’s rule applies also applies in the casesA = +∞ andA = −∞.

Example 4.4 (a) lim
x→0

sin x

x
= lim

x→0

cosx

1
= 1.

(b) lim
x→0+0

√
x

1− cosx
= lim

x→0+0

1
2
√
x

sin x
= lim

x→0+0

1

2
√
x sin x

= +∞.

(c)

lim
x→0+0

x log x = lim
x→0+0

log x
1
x

= lim
x→0+0

1
x

− 1
x2

= lim
x→0+0

−x = 0.

Remark 4.5 It is easy to transform other indefinite expressions to
0

0
or
∞
∞ of l’Hospital’s rule.

0 · ∞ : f · g =
f
1
g

∞−∞ : f − g =

1
g
− 1

f

1
fg

;

00 : f g = eg log f .

Similarly, expressions of the form1∞ and∞0 can be transformed.

4.5 Taylor’s Theorem

The aim of this section is to show hown times differentiable functions can be approximated by
polynomials of degreen.
First consider a polynomialp(x) = anx

n + · · ·+ a1x+ a0. We compute

p′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1,

p′′(x) = n(n− 1)anx
n−2 + (n− 1)(n− 2)an−1x

n−2 + · · ·+ 2a2,

...

p(n)(x) = n! an.

Insertingx = 0 givesp(0) = a0, p′(0) = a1, p′′(0) = 2a2,. . . ,p(n)(0) = n!an. Hence,

p(x) = p(0) +
p′′(0)

1!
x+

p′′(0)

2!
x2 + · · ·+ p(n)(0)

n!
xn. (4.15)

Now, fix a ∈ R and letq(x) = p(x+ a). Sinceq(k)(0) = p(k)(a), (4.15) gives

p(x+ a) = q(x) =
n∑

k=0

q(k)(0)

k!
xk,

p(x+ a) =
n∑

k=0

p(k)(a)

k!
xk.
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Replacing in the above equationx+ a by x yields

p(x) =

n∑

k=0

p(k)(a)

k!
(x− a)k. (4.16)

Theorem 4.15 (Taylor’s Theorem) Supposef is a real function on[r, s], n ∈ N, f (n) is con-
tinuous on[r, s], f (n+1)(t) exists for allt ∈ (r, s). Let a andx be distinct points of[r, s] and
define

Pn(x) =

n∑

k=0

f (k)(a)

k!
(x− a)k. (4.17)

Then there exists a pointξ betweenx anda such that

f(x) = Pn(x) +
f (n+1)(ξ)

(n + 1)!
(x− a)n+1. (4.18)

Forn = 0, this is just the mean value theorem.Pn(x) is called thenth Taylor polynomial off
at x = a, and the second summand of (4.18)

Rn+1(x, a) =
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1

is called theLagrangian remainder term.
In general, the theorem shows thatf can be approximated by a polynomial of degreen, and that
(4.18) allows to estimate the error, if we know the bounds of

∣∣ f (n+1)(x)
∣∣.

Proof. Considera andx to be fixed; letM be the number defined by

f(x) = Pn(x) +M(x− a)n+1

and put

g(t) = f(t)− Pn(t)−M(t− a)n+1, for r ≤ t ≤ s. (4.19)

We have to show that(n+1)!M = f (n+1)(ξ) for someξ betweena andx. By (4.17) and (4.19),

g(n+1)(t) = f (n+1)(t)− (n+ 1)!M, for r < t < s. (4.20)

Hence the proof will be complete if we can show thatg(n+1)(ξ) = 0 for someξ betweena and
x.
SinceP (k)

n (a) = f (k)(a) for k = 0, 1, . . . , n, we have

g(a) = g′(a) = · · · = g(n)(a) = 0.

Our choice ofM shows thatg(x) = 0, so thatg′(ξ1) = 0 for someξ1 betweena andx, by
Rolle’s theorem. Sinceg′(a) = 0 we conclude similarly thatg′′(ξ2) = 0 for someξ2 between
a andξ1. After n + 1 steps we arrive at the conclusion thatg(n+1)(ξn+1) = 0 for someξn+1

betweena andξn, that is, betweena andx.
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Definition 4.5 Suppose thatf is a real function defined on[r, s] such thatf (n)(t) exists for all
t ∈ (r, s) and alln ∈ N. Let x anda points of[r, s]. Then

Tf (x) =
∞∑

k=0

f (k)(a)

k!
(x− a)k (4.21)

is called theTaylor seriesof f ata.

Remarks 4.6 (a) The radiusr of convergence of a Taylor series can be0.
(b) If Tf converges, it may happen thatTf (x) 6= f(x). If Tf(x) at a pointa converges tof(x)

in a certain neighborhoodUr(a), r > 0, f is called to beanalyticata.

Example 4.5 We give an example for (b). Definef : R→ R via

f(x) =

{
e−1/x2

, if x 6= 0,

0, if x = 0.

We will show thatf ∈ C∞(R) with f (k)(0) = 0. For we will prove by induction onn that there
exists a polynomialpn such that

f (n)(x) = pn

(
1

x

)
e−1/x2

, x 6= 0

andf (n)(0) = 0. Forn = 0 the statement is clear takingp0(x) ≡ 1. Suppose the statement is
true forn. First, letx 6= 0 then

f (n+1)(x) =

(
pn

(
1

x

)
e−1/x2

)′
=

(
− 1

x2
p′n

(
1

x

)
+

2

x3
pn

(
1

x

))
e−1/x2

.

Choosepn+1(t) = −p′n(t)t2 + 2pn(t)t
3.

Secondly,

f (n+1)(0) = lim
h→0

f (n)(h)− f (n)(0)

h
= lim

h→0

pn
(

1
h

)
e−1/h2

h
= lim

x→±∞
xpn(x)e

−x2

= 0,

where we used Proposition 2.7 in the last equality.
HenceTf ≡ 0 at0—the Taylor series is identically0—andTf(x) does not converge tof(x) in
a neigborhood of0.

4.5.1 Examples of Taylor Series

(a) Power series coincide with their Taylor series.

ex =

∞∑

n=0

xn

n!
, x ∈ R, ∞∑

n=0

xn =
1

1− x, x ∈ (−1, 1).

(b) f(x) = log(1 + x), see Homework 13.4.



116 4 Differentiation

(c) f(x) = (1 + x)α, α ∈ R, a = 0. We have

f (k)(x) = α(α−1) · · · (α−k+1)(1+x)α−k, in particular f (k)(0) = α(α−1) · · · (α−k+1).

Therefore,

(1 + x)α =

n∑

k=1

α(α− 1) · · · (α− k + 1)

k!
xk +Rn(x) (4.22)

The quotient test shows that the corresponding power seriesconverges for| x | < 1. Consider
the Lagrangian remainder term with0 < ξ < x < 1 andn + 1 > α. Then

|Rn+1(x) | =
∣∣∣∣
(

α

n + 1

)
(1 + ξ)α−n−1xn+1

∣∣∣∣ ≤
∣∣∣∣
(

α

n+ 1

)
xn+1

∣∣∣∣ ≤
∣∣∣∣
(

α

n+ 1

) ∣∣∣∣ −→ 0

asn→∞. Hence,

(1 + x)α =

∞∑

n=0

(
α

n

)
xn, 0 < x < 1. (4.23)

(4.23) is called thebinomial series. Its radius of convergence isR = 1. Looking at other forms
of the remainder term gives that (4.23) holds for−1 < x < 1.
(d) y = f(x) = arctanx. Sincey′ = 1/(1 + x2) andy′′ = −2x/(1 + x2)2 we see that

y′(1 + x2) = 1.

Differentiating thisn times and using Leibniz’s formula, Proposition 4.6 we have

n∑

k=0

(y′)(k)(1 + x2)(n−k)
(
n

k

)
= 0.

=⇒
(
n

n

)
y(n+1) (1 + x2) +

(
n

n− 1

)
y(n) 2x+

(
n

n− 2

)
y(n−1) 2 = 0;

x = 0 : y(n+1) + n(n− 1)y(n−1) = 0.

This yields

y(n)(0) =

{
0, if n = 2k,

(−1)k(2k)!, if n = 2k + 1.

Therefore,

arctanx =

n∑

k=0

(−1)k

2k + 1
x2k+1 +R2n+2(x). (4.24)

One can prove that−1 < x ≤ 1 impliesR2n+2(x)→ 0 asn→∞. In particular,x = 1 gives

π

4
= 1− 1

3
+

1

5
−+ · · · .
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4.6 Appendix C

Corollary 4.16 (to the mean value theorem)Let f : R→ R be a differentiable function with

f ′(x) = cf(x) for all x ∈ R, (4.25)

wherec ∈ R is a fixed number. LetA = f(0). Then

f(x) = Aecx for all x ∈ R. (4.26)

Proof. ConsiderF (x) = f(x)e−cx. Using the product rule for derivatives and (4.25) we obtain

F ′(x) = f ′(x)e−cx + f(x)(−c)e−cx = (f ′(x)− cf ′(x)) e−cx = 0.

By Corollary 4.11,F (x) is constant. SinceF (0) = f(0) = A, F (x) = A for all x ∈ R; the
statement follows.

The Continuity of derivatives

We have seen that there exist derivativesf ′ which are not continuous at some point. However,
not every function is a derivative. In particular, derivatives which exist at every point of an inter-
val have one important property: The intermediate value theorem holds. The precise statement
follows.

Proposition 4.17 Supposef is differentiable on[a, b] and supposef ′(a) < λ < f ′(b). Then
there is a pointx ∈ (a, b) such thatf ′(x) = λ.

Proof. Putg(t) = f(t) − λt. Theng is differentiable andg′(a) < 0. Therefore,g(t1) < g(a)

for somet1 ∈ (a, b). Similarly, g′(b) > 0, so thatg(t2) < g(b) for somet2 ∈ (a, b). Hence,
g attains its minimum in theopeninterval(a, b) in some pointx ∈ (a, b). By Proposition 4.7,
g′(x) = 0. Hence,f ′(x) = λ.

Corollary 4.18 If f is differentiable on[a, b], thenf ′ cannot have discontinuities of the first
kind.

Proof of Proposition 4.13. (a) Suppose first thatf ′′ ≥ 0 for all x. By Corollary 4.11,f ′ is
increasing. Leta < x < y < b andλ ∈ [0, 1]. Putt = λx+ (1− λ)y. Thenx < t < y and by
the mean value theorem there existξ1 ∈ (x, t) andξ2 ∈ (t, y) such that

f(t)− f(x)

t− x = f ′(ξ1) ≤ f ′(ξ2) =
f(y)− f(t)

y − t .

Sincet− x = (1− λ)(y − x) andy − t = λ(y − x) it follows that

f(t)− f(x)

1− λ ≤ f(y)− f(t)

λ

=⇒ f(t) ≤ λf(x) + (1− λ)f(y).
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Hence,f is convex.
(b) Let f : (a, b) → R be convex and twice differentiable. Suppose to the contraryf ′′(x0) < 0

for somex0 ∈ (a, b). Let c = f ′(x0); put

ϕ(x) = f(x)− (x− x0)c.

Thenϕ : (a, b) → R is twice differentiable withϕ′(x0) = 0 andϕ′′(x0) < 0. Hence, by
Proposition 4.12,ϕ has a local maximum inx0. By definition, there is aδ > 0 such that
Uδ(x0) ⊂ (a, b) and

ϕ(x0 − δ) < ϕ(x0), ϕ(x0 + δ) < ϕ(x0).

It follows that

f(x0) = ϕ(x0) >
1

2
(ϕ(x0 − δ) + ϕ(x0 + δ)) =

1

2
(f(x0 − δ) + f(x0 + δ)) .

This contradicts the convexity off if we setx = x0 − δ, y = x0 + δ, andλ = 1/2.



Chapter 5

Integration

In the first section of this chapter derivatives will not appear! Roughly speaking, integration
generalizes “addition”. The formuladistance = velocity × time is only valid for constant
velocity. The right formula iss =

∫ t1
t0
v(t) dt. We need integrals to compute length of curves,

areas of surfaces, and volumes.
The study of integrals requires a long preparation, but oncethis preliminary work has been
completed, integrals will be an invaluable tool for creating new functions, and the derivative
will reappear more powerful than ever. The relation betweenthe integral and derivatives is
given in the Fundamental Theorem of Calculus.

a b

What’s  the area ??

The integral formalizes a simple intuitive concept—that of
area. It is not a surprise that to learn the definition of an intu-
itive concept can present great difficulties—“area” is certainly
not an exception.

5.1 The Riemann–Stieltjes Integral

In this section we will only define the area of some very special regions—those which are
bounded by the horizontal axis, the vertical lines through(a, 0) and(b, 0) and the graph of a
functionf such thatf(x) ≥ 0 for all x in [a, b]. If f is negative on a subinterval of[a, b], the
integral will represent the difference of the areas above and below thex-axis.
All intervals [a, b] are finite intervals.

Definition 5.1 Let [a, b] be an interval. By apartition of [a, b] we mean a finite set of points
x0, x1, . . . , xn, where

a = x0 ≤ x1 ≤ · · · ≤ xn = b.

We write

∆xi = xi − xi−1, i = 1, . . . , n.

119
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Now supposef is a bounded real function defined on[a, b]. Corresponding to each partitionP
of [a, b] we put

x
1

x=
0

a x
2

x=
3 b

Mi = sup{f(x) | x ∈ [xi−1, xi]} (5.1)

mi = inf{f(x) | x ∈ [xi−1, xi]} (5.2)

U(P, f) =
n∑

i=1

Mi∆xi, L(P, f) =
n∑

i=1

mi∆xi, (5.3)

and finally

∫ b

a

f dx = inf U(P, f), (5.4)

∫ b

a

f dx = supL(P, f), (5.5)

where the infimum and supremum are taken over all partitionsP of [a, b]. The left members of
(5.4) and (5.5) are called theupperandlower Riemann integralsof f over[a, b], respectively.
If the upper and lower integrals are equal, we say thatf Riemann-integrable on[a, b] and we
write f ∈ R (that isR denotes the Riemann-integrable functions), and we denote the common
value of (5.4) and (5.5) by

∫ b

a

f dx or by
∫ b

a

f(x) dx. (5.6)

This is theRiemann integralof f over[a, b].

Sincef is bounded, there exist two numbersm andM such thatm ≤ f(x) ≤ M for all
x ∈ [a, b]. Hence for every partitionP

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a),

so that the numbersL(P, f) andU(P, f) form a bounded set. This shows that the upper and the
lower integrals are defined foreverybounded functionf . The question of their equality, and
hence the question of the integrability off , is a more delicate one. Instead of investigating it
separately for the Riemann integral, we shall immediately consider a more general situation.

Definition 5.2 Let α be a monotonically increasing function on[a, b] (sinceα(a) andα(b) are
finite, it follows thatα is bounded on[a, b]). Corresponding to each partitionP of [a, b], we
write

∆αi = α(xi)− α(xi−1).

It is clear that∆αi ≥ 0. For any real functionf which is bounded on[a, b] we put

U(P, f, α) =

n∑

i=1

Mi∆αi, (5.7)

L(P, f, α) =
n∑

i=1

mi∆αi, (5.8)
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whereMi andmi have the same meaning as in Definition 5.1, and we define

∫ b

a

f dα = inf U(P, f, α), (5.9)

∫ b

a

f dα = supU(P, f, α), (5.10)

where the infimum and the supremum are taken over all partitionsP .
If the left members of (5.9) and (5.10) are equal, we denote their common value by

∫ b

a

f dα or sometimes by
∫ b

a

f(x) dα(x). (5.11)

This is theRiemann–Stieltjes integral(or simply theStieltjes integral) of f with respect toα,
over [a, b]. If (5.11) exists, we say thatf is integrable with respect toα in the Riemann sense,
and writef ∈ R(α).

By takingα(x) = x, the Riemann integral is seen to be a special case of the Riemann–Stieltjes
integral. Let us mention explicitely, that in the general case,α need not even be continuous.
We shall now investigate the existence of the integral (5.11). Without saying so every time,f
will be assumed real and bounded, andα increasing on[a, b].

Definition 5.3 We say that a partitionP ∗ is a refinementof the partitionP if P ∗ ⊃ P (that
is, every point ofP is a point ofP ∗). Given two partitions,P1 andP2, we say thatP ∗ is their
common refinementif P ∗ = P1 ∪ P2.

Lemma 5.1 If P ∗ is a refinement ofP , then

L(P, f, α) ≤ L(P ∗, f, α) and U(P, f, α) ≥ U(P ∗, f, α). (5.12)

Proof. We only prove the first inequality of (5.12); the proof of thesecond one is analogous.
Suppose first thatP ∗ contains just one point more thanP . Let this extra point bex∗, and
supposexi−1 ≤ x∗ < xi, wherexi−1 andxi are two consecutive points ofP . Put

w1 = inf{f(x) | x ∈ [xi−1, x
∗]}, w2 = inf{f(x) | x ∈ [x∗, xi]}.

Clearly,w1 ≥ mi andw2 ≥ mi (sinceinfM ≥ infN if M ⊂ N , see homework 1.4 (b)),
where, as before,mi = inf{f(x) | x ∈ [xi−1, xi]}. Hence

L(P ∗, f, α)− L(P, f, α) = w1(α(x∗)− α(xi−1)) + w2(α(xi)− α(x∗))−mi(α(xi)− α(xi−1))

= (w1 −mi)(α(x∗)− α(xi−1)) + (w2 −mi)(α(xi)− α(x∗)) ≥ 0.

If P ∗ containsk points more thanP , we repeat this reasoningk times, and arrive at (5.12).
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Proposition 5.2 ∫ b

a

f dα ≤
∫ b

a

f dα.

Proof. LetP ∗ be the common refinement of two partitionsP1 andP2. By Lemma 5.1

L(P1, f, α) ≤ L(P ∗, f, α) ≤ U(P ∗, f, α) ≤ U(P2, f, α).

Hence

L(P1, f, α) ≤ U(P2, f, α). (5.13)

If P2 is fixed and the supremum is taken over allP1, (5.13) gives
∫ b

a

f dα ≤ U(P2, f, α). (5.14)

The proposition follows by taking the infimum over allP2 in (5.14).

Proposition 5.3 (Riemann Criterion) f ∈ R(α) on [a, b] if and only if for everyε > 0 there
exists a partitionP such that

U(P, f, α)− L(P, f, α) < ε. (RC)

Proof. For everyP we have

L(P, f, α) ≤
∫ b

a

f dα ≤
∫ b

a

f dα ≤ U(P, f, α).

Thus (RC) implies

0 ≤
∫ b

a

f dα−
∫ b

a

f dα < ε.

since the above inequality can be satisfied for everyε > 0, we have

∫ b

a

f dα =

∫ b

a

f dα,

that isf ∈ R(α).
Conversely, supposef ∈ R(α), and letε > 0 be given. Then there exist partitionsP1 andP2

such that

U(P2, f, α)−
∫ b

a

f dα <
ε

2
,

∫ b

a

f dα− L(P1, f, α) <
ε

2
. (5.15)

We chooseP to be the common refinement ofP1 andP2. Then Lemma 5.1, together with
(5.15), shows that

U(P, f, α) ≤ U(P2, f, α) <

∫ b

a

f dα +
ε

2
< L(P1, f, α) + ε ≤ L(P, f, α) + ε,
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so that (RC) holds for this partitionP .

Proposition 5.3 furnishes a convenient criterion for integrability. Before we apply it, we state
some closely related facts.

Lemma 5.4 (a) If (RC) holds forP and someε, then(RC) holds with the sameε for every
refinement ofP .
(b) If (RC)holds forP = {x0, . . . , xn} and ifsi, ti are arbitrary points in[xi−1, xi], then

n∑

i=1

| f(si)− f(ti) |∆αi < ε.

(c) If f ∈ R(α) and (RC)holds as in(b), then
∣∣∣∣∣

n∑

i=1

f(ti)∆αi −
∫ b

a

f dα

∣∣∣∣∣ < ε.

Proof. Lemma 5.1 implies (a). Under the assumptions made in (b), both f(si) andf(ti) lie in
[mi,Mi], so that| f(si)− f(ti) | ≤Mi −mi. Thus

n∑

i=1

| f(ti)− f(si) |∆αi ≤ U(P, f, α)− L(P, f, α),

which proves (b). The obvious inequalities

L(P, f, α) ≤
∑

i

f(ti)∆αi ≤ U(P, f, α)

and

L(P, f, α) ≤
∫ b

a

f dα ≤ U(P, f, α)

prove (c).

Theorem 5.5 If f is continuous on[a, b] thenf ∈ R(α) on [a, b].

Proof. Let ε > 0 be given. Chooseη > 0 so that

(α(b)− α(a))η < ε.

Sincef is uniformly continuous on[a, b] (Proposition 3.7), there exists aδ > 0 such that

| f(x)− f(t) | < η (5.16)

if x, t ∈ [a, b] and|x− t | < δ. If P is any partition of[a, b] such that∆xi < δ for all i, then
(5.16) implies that

Mi −mi ≤ η, i = 1, . . . , n (5.17)
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and therefore

U(P, f, α)− L(P, f, α) =

n∑

i=1

(Mi −mi)∆αi ≤ η

n∑

i=1

∆αi = η(α(b)− α(a)) < ε.

By Proposition 5.3,f ∈ R(α).

Example 5.1 (a) The proof of Theorem 5.5 together with Lemma 5.4 shows that
∣∣∣∣∣

n∑

i=1

f(ti)∆αi −
∫ b

a

f dα

∣∣∣∣∣ < ε

if ∆xi < δ.
We computeI =

∫ b
a

sin x dx. Let ε > 0. Sincesin x is continuous,f ∈ R. There existsδ > 0

such that|x− t | < δ implies

| sin x− sin t | < ε

b− a. (5.18)

In this case (RC) is satisfied and consequently
∣∣∣∣∣

n∑

i=1

sin(ti)∆xi −
∫ b

a

sin x dx

∣∣∣∣∣ < ε

for every partitionP with ∆xi < δ, i = 1, . . . , n.

For we choose an equidistant partition of[a, b], xi = a + (b − a)i/n, i = 0, . . . , n. Then

h = ∆xi = (b− a)/n and the condition (5.18) is satisfied providedn >
(b− a)2

ε
. We have, by

addition the formulacos(x− y)− cos(x+ y) = 2 sin x sin y

n∑

i=1

sin xi ∆xi =
n∑

i=1

sin(a+ ih)h =
h

2 sinh/2

n∑

i=1

2 sinh/2 sin(a+ ih)

=
h

2 sinh/2

n∑

i=1

(cos(a+ (i− 1/2)h)− cos(a+ (i+ 1/2)h))

=
h

2 sinh/2
(cos(a + h/2)− cos(a+ (n+ 1/2)h))

=
h/2

sinh/2
(cos(a+ h/2)− cos(b+ h/2)))

Sincelimh→0 sin h/h = 1 andcos x is continuous, we find that the above expression tends to
cos a− cos b. Hence

∫ b
a

sin x dx = cos a− cos b.
(b) Forx ∈ [a, b] define

f(x) =

{
1, x ∈ Q,
0, x 6∈ Q.

We will show f 6∈ R. Let P be any partition of[a, b]. Since any interval contains rational
as well as irrational points,mi = 0 andMi = 1 for all i. HenceL(P, f) = 0 whereas
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U(P, f) =
∑n

i=1 ∆xi = b − a. We conclude that the upper and lower Riemann integrals don’t
coincide;f 6∈ R. A similar reasoning showsf 6∈ R(α) if α(b) > α(a) sinceL(P, f, α) = 0 <

U(P, f, α) = α(b)− α(a).

Proposition 5.6 If f is monotonic on[a, b], andα is continuous on[a, b], thenf ∈ R(α).

Proof.

(x)α

x x2
b

n-1
a x

1

Let ε > 0 be given. For any positive
integern, choose a partition such that

∆αi =
α(b)− α(a)

n
, i = 1, . . . , n.

This is possible by the intermediate
value theorem (Theorem 3.5) sinceα
is continuous.

We suppose thatf is monotonically increasing (the proof is analogous in the other case). Then

Mi = f(xi), mi = f(xi−1), i = 1, . . . , n,

so that

U(P, f, α)− L(P, f, α) =
α(b)− α(a)

n

n∑

i=1

(f(xi)− f(xi−1))

=
α(b)− α(a)

n
(f(b)− f(a)) < ε

if n is taken large enough. By Proposition 5.3,f ∈ R(α).

Without proofs which can be found in [Rud76, pp. 126 –128] we note the following facts.

Proposition 5.7 If f is bounded on[a, b], f has finitely many points of discontinuity on[a, b],
andα is continuous at every point at whichf is discontinuous. Thenf ∈ R(α).

Proof. We give an idea of the proof in case of the Riemann integral (α(x) = x) and one single
discontinuity atc, a < c < b. For, letε > 0 be given andm ≤ f(x) ≤ M for all x ∈ [a, b] and
putC = M −m. First choose pointa′ andb′ with a < a′ < c < b′ < b andC(b′ − a′) < ε.
Let fj , j = 1, 2, denote the restriction off to the subintervalsI1 = [a, a′] andI2 = [b, b′],
respectively. Sincefj is continuous onIj, fj ∈ R over Ij and therefore, by the Riemann
criterion, there exist partitionsPj , j = 1, 2, of Ij such thatU(Pj , fj)− L(Pj , fj) < ε, j = 1, 2.
Let P = P1 ∪ P2 be a partition of[a, b]. Then

U(P, f)− L(P, f) = U(P1, f1)− L(P1, f) + U(P2, f)− L(P2, f) + (M0 −m0)(b
′ − a′)

≤ ε+ ε+ C(b′ − a′) < 3ε,
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whereM0 andm0 are the supremum and infimum off(x) on [a′, b′]. The Riemann criterion is
satisfied forf on [a, b], f ∈ R.

Proposition 5.8 If f ∈ R(α) on [a, b], m ≤ f(x) ≤ M , ϕ is continuous on[m,M ], and
h(x) = ϕ(f(x)) on [a, b]. Thenh ∈ R(α) on [a, b].

Remark 5.1 (a) A bounded functionf is Riemann-integrable on[a, b] if and only if f is con-
tinuous almost everywhere on[a, b]. (The proof of this fact can be found in [Rud76, Theo-
rem 11.33]).
“Almost everywhere” means that the discontinuities form a set of (Lebesgue) measure0. A set
M ⊂ R has measure0 if for givenε > 0 there exist intervalsIn, n ∈ N such thatM ⊂ ⋃n∈N In
and

∑
n∈N | In | < ε. Here,| I | denotes the length of the interval. Examples of sets of measure

0 are finite sets, countable sets, and the Cantor set (which is uncountable).
(b) Note that such a “chaotic” function (at point0) as

f(x) =

{
cos 1

x
, x 6= 0,

0, x = 0,

is integrable on[−π, π] since there is only one single discontinuity at0.

5.1.1 Properties of the Integral

Proposition 5.9 (a) If f1, f2 ∈ R(α) on [a, b] then f1 + f2 ∈ R(α), cf ∈ R(α) for every
constantc and

∫ b

a

(f1 + f2) dα =

∫ b

a

f1 dα +

∫ b

a

f2 dα,

∫ b

a

cf dα = c

∫ b

a

f dα.

(b) If f1, f2 ∈ R(α) andf1(x) ≤ f2(x) on [a, b], then

∫ b

a

f1 dα ≤
∫ b

a

f2 dα.

(c) If f ∈ R(α) on [a, b] and ifa < c < b, thenf ∈ R(α) on [a, c] and on[c, b], and

∫ b

a

f dα =

∫ c

a

f dα +

∫ b

c

f dα.

(d) If f ∈ R(α) on [a, b] and| f(x) | ≤M on [a, b], then
∣∣∣∣
∫ b

a

f dα

∣∣∣∣ ≤ M(α(b)− α(a)).

(e) If f ∈ R(α1) andf ∈ R(α2), thenf ∈ R(α1 + α2) and

∫ b

a

fd(α1 + α2) =

∫ b

a

fdα1 +

∫ b

a

fdα2;
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if f ∈ R(α) andc is a positive constant, thenf ∈ R(cα) and
∫ b

a

fd(cα) = c

∫ b

a

f dα.

Proof. If f = f1 + f2 andP is any partition of[a, b], we have

L(P, f1, α) + L(P, f2, α) ≤ L(P, f, α) ≤ U(P, f, α) ≤ U(P, f1, α) + U(P, f2, α) (5.19)

sinceinf
Ii
f1 + inf

Ii
f2 ≤ inf

Ii
(f1 + f2) andsup

Ii

f1 + sup
Ii

f2 ≥ sup
Ii

(f1 + f2).

If f1 ∈ R(α) andf2 ∈ R(α), let ε > 0 be given. There are partitonsPj, j = 1, 2, such that

U(Pj , fj , α)− L(Pj, fj , α) < ε.

These inequalities persist ifP1 andP2 are replaced by their common refinementP . Then (5.19)
implies

U(P, f, α)− L(P, f, α) < 2ε

which proves thatf ∈ R(α). With the sameP we have

U(P, fj, α) <

∫ b

a

fj dα + ε, j = 1, 2;

sinceL(P, f, α) <
∫ b
a
f dα < U(P, f, α); hence (5.19) implies
∫ b

a

f dα ≤ U(P, f, α) <

∫ b

a

f1 dα +

∫ b

a

f2 dα + 2ε.

Sinceε was arbitrary, we conclude that
∫ b

a

f dα ≤
∫ b

a

f1 dα +

∫ b

a

f2 dα. (5.20)

If we replacef1 andf2 in (5.20) by−f1 and−f2, respectively, the inequality is reversed, and
the equality is proved.
(b) Putf = f2−f1. It suffices to prove that

∫ b
a
f dα ≥ 0. For every partitionP we havemi ≥ 0

sincef ≥ 0. Hence ∫ b

a

f dα ≥ L(P, f, α) =
n∑

i=1

mi∆αi ≥ 0

since in addition∆αi = α(xi)− α(xi−1) ≥ 0 (α is increasing).
The proofs of the other assertions are so similar that we omitthe details. In part (c) the point is
that (by passing to refinements) we may restrict ourselves topartitions which contain the point
c, in approximating

∫ b
a
f dα, cf. Homework 14.5.

Note that in (c),f ∈ R(α) on [a, c] and on[c, b] in general does not imply thatf ∈ R(α) on
[a, b]. For example consider the interval[−1, 1] with

f(x) = α(x) =

{
0, −1 ≤ x < 0,

1, 0 ≤ x ≤ 1.
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Then
∫ 1

0
f dα = 0. The integral vanishes sinceα is constant on[0, 1]. However,f 6∈ R(α) on

[−1, 1] since for any partitionP including the point0, we haveU(P, f, α) = 1 andL(P, f, α) =

0.

Proposition 5.10 If f, g ∈ R(α) on [a, b], then
(a)fg ∈ R(α);

(b) | f | ∈ R(α) and

∣∣∣∣
∫ b

a

f dα

∣∣∣∣ ≤
∫ b

a

| f | dα.

Proof. If we takeϕ(t) = t2, Proposition 5.8 shows thatf 2 ∈ R(α) if f ∈ R(α). The identity

4fg = (f + g)2 − (f − g)2

completes the proof of (a).
If we takeϕ(t) = | t |, Proposition 5.8 shows that| f | ∈ R(α). Choosec = ±1 so that
c
∫
f dα ≥ 0. Then

∣∣∣∣
∫
f dα

∣∣∣∣ = c

∫
f dα =

∫
cf dα ≤

∫
| f | dα,

since±f ≤ | f |.

The unit step functionor Heaviside functionH(x) is defined byH(x) = 0 if x < 0 and
H(x) = 1 if x ≥ 0.

Example 5.2 (a) If a < s < b, f is bounded on[a, b], f is continuous ats, andα(x) = H(x−s),
then ∫ b

a

f dα = f(s).

For the proof, consider the partitionP with n = 3; a = x0 < x1 < s = x2 < x3 = b. Then
∆α1 = ∆α3 = 0, ∆α2 = 1, and

U(P, f, α) = M2, L(P, f, α) = m2.

Sincef is continuous ats, we see thatM2 andm2 converge tof(s) asx→ s.

(b) Supposecn ≥ 0 for all n = 1, . . . , N and(sn), n = 1, . . . , N , is a strictly increasing finite
sequence of distinct points in(a, b). Further,α(x) =

∑N
n=1 cnH(x− sn). Then

∫ b

a

f dα =
N∑

n=1

cnf(sn).

This follows from (a) and Proposition 5.9 (e).
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Proposition 5.11 Supposecn ≥ 0 for all positive integers
n ∈ N,

∑∞
n=1 cn converges,(sn) is a strictly increasing se-

quence of distinct points in(a, b), and

α(x) =

∞∑

n=1

cnH(x− sn). (5.21)

Letf be continuous on[a, b]. Then

∫ b

a

f dα =

∞∑

n=1

cnf(sn). (5.22)

s s s s1 2 3 4

3

1c

2c

c

Proof. The comparison test shows that the series (5.21) convergesfor everyx. Its sumα is
evidently an increasing function withα(a) = 0 andα(b) =

∑
cn. Let ε > 0 be given, choose

N so that ∞∑

n=N+1

cn < ε.

Put

α1(x) =
N∑

n=1

cnH(x− sn), α2(x) =
∞∑

n=N+1

cnH(x− sn).

By Proposition 5.9 and Example 5.2

∫ b

a

f dα1 =

N∑

n=1

cnf(sn).

Sinceα2(b)− α2(a) < ε, by Proposition 5.9 (d),
∣∣∣∣
∫ b

a

f dα2

∣∣∣∣ ≤Mε,

whereM = sup | f(x) |. Sinceα = α1 + α2 it follows that
∣∣∣∣∣

∫ b

a

f dα−
N∑

n=1

cnf(sn)

∣∣∣∣∣ ≤Mε.

If we letN →∞ we obtain (5.22).

Proposition 5.12 Assume thatα is increasing andα′ ∈ R on [a, b]. Let f be a bounded real
function on[a, b].
Thenf ∈ R(α) if and only iffα′ ∈ R. In that case

∫ b

a

f dα =

∫ b

a

f(x)α′(x) dx. (5.23)

The statement remains true ifα is continuous on[a, b] and differentiable up to finitely many
pointsc1, c2, . . . , cn.
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Proof. Let ε > 0 be given and apply the Riemann criterion Proposition 5.3 toα′: There is a
partitionP = {x0, . . . , xn} of [a, b] such that

U(P, α′)− L(P, α′) < ε. (5.24)

The mean value theorem furnishes pointsti ∈ [xi−1, xi] such that

∆αi = α(xi)− α(xi−1) = α′(ti)(xi − xi−1) = α′(ti)∆xi, for i = 1, . . . , n.

If si ∈ [xi−1, xi], then
n∑

i=1

|α′(si)− α′(ti) |∆xi < ε (5.25)

by (5.24) and Lemma 5.4 (b). PutM = sup | f(x) |. Since
n∑

i=1

f(si)∆αi =

n∑

i=1

f(si)α
′(ti)∆xi

it follows from (5.25) that
∣∣∣∣∣

n∑

i=1

f(si)∆αi −
n∑

i=1

f(si)α
′(si)∆xi

∣∣∣∣∣ ≤Mε. (5.26)

In particular,
n∑

i=1

f(si)∆αi ≤ U(P, fα′) +Mε,

for all choices ofsi ∈ [xi−1, xi], so that

U(P, f, α) ≤ U(P, fα′) +Mε.

The same argument leads from (5.26) to

U(P, fα′) ≤ U(P, f, α) +Mε.

Thus

|U(P, f, α)− U(P, fα) | ≤Mε. (5.27)

Now (5.25) remains true ifP is replaced by any refinement. Hence (5.26) also remains true.
We conclude that ∣∣∣∣∣

∫ b

a

f dα−
∫ b

a

f(x)α′(x) dx

∣∣∣∣∣ ≤Mε.

But ε is arbitrary. Hence ∫ b

a

f dα =

∫ b

a

f(x)α′(x) dx,

for anyboundedf . The equality for the lower integrals follows from (5.26) inexactly the same
way. The proposition follows.

We now summarize the two cases.
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Proposition 5.13 Let f be continuous on[a, b]. Except for finitely many pointsc0, c1, . . . , cn
with c0 = a and cn = b there existsα′(x) which is continuous and bounded on
[a, b] \ {c0, . . . , cn}.
Thenf ∈ R(α) and

∫ b

a

f dα =

∫ b

a

f(x)α′(x) dx+
n−1∑

i=1

f(ci)(α(ci + 0)− α(ci − 0))+

f(a)(α(a+ 0)− α(a)) + f(b)(α(b)− α(b− 0)).

Proof (Sketch of proof). (a) Note thatA+
i = α(ci + 0) − α(ci) andA−

i = α(ci) − α(ci − 0)

exist by Theorem 3.8. Define

α1(x) =

n−1∑

i=0

A+
i H(x− ci) +

k∑

i=1

−A−
i H(ci − x).

(b) Thenα2 = α− α1 is continuous.
(c) Sinceα1 is piecewise constant,α′

1(x) = 0 for x 6= ck. Henceα′
2(x) = α′(x). for x 6= ci.

Applying Proposition 5.12 gives

∫ b

a

fdα2 =

∫ b

a

fα′
2 dx =

∫ b

a

fα′ dx.

Further, ∫ b

a

f dα =

∫ b

a

fd(α1 + α2) =

∫ b

a

fα′ dx+

∫ b

a

fdα1.

By Proposition 5.11
∫ b

a

fdα1 =

n∑

i=1

A+
i f(ci)−

n−1∑

i=1

A−
i (−f(ci)).

Example 5.3 (a) The Fundamental Theorem of Calculus, see Theorem 5.15 yields

∫ 2

0

x dx3 =

∫ 2

0

x · 3x2 dx = 3
x4

4

∣∣∣∣
2

0

= 12.

(b) f(x) = x2.

α(x) =





x, 0 ≤ x < 1,

7, x = 1,

x2 + 10, 1 < x < 2,

64, x = 2.
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∫ 2

0

f dα =

∫ 2

0

fα′ dx+ f(1)(α(1 + 0)− α(1− 0)) + f(2)(α(2)− α(2− 0))

=

∫ 1

0

x2 · 1 dx+

∫ 2

1

x2 · 2x dx+ 1(11− 1) + 4(64− 14)

=
x3

3

∣∣∣∣
1

0

+
x4

2

∣∣∣∣
2

1

+ 10 + 200 =
1

3
+ 8− 1

2
+ 210 = 217

5

6
.

Remark 5.2 The three preceding proposition show the flexibility of the Stieltjes process of
integration. Ifα is a pure step function, the integral reduces to an infinite series. If α has
an initegrable derivative, the integral reduces to the ordinary Riemann integral. This makes it
possible to study series and integral simultaneously, rather than separately.

5.2 Integration and Differentiation

We shall see that integration and differentiation are, in a certain sense, inverse operations.

Theorem 5.14 Let f ∈ R on [a, b]. For a ≤ x ≤ b put

F (x) =

∫ x

a

f(t) dt.

ThenF is continuous on[a, b]; furthermore, iff is continuous atx0 ∈ [a, b] thenF is differen-
tiable atx0 and

F ′(x0) = f(x0).

Proof. Sincef ∈ R, f is bounded. Suppose| f(t) | ≤M on [a, b]. If a ≤ x < y ≤ b, then

|F (y)− F (x) | =
∣∣∣∣
∫ y

x

f(t) dt

∣∣∣∣ ≤M(y − x),

by Proposition 5.9 (c) and (d). Givenε > 0, we see that

|F (y)− F (x) | < ε,

provided that| y − x | < ε/M . This proves continuity (and, in fact, uniform continuity)of F .
Now suppose thatf is continuous atx0. Givenε > 0, chooseδ > 0 such that

| f(t)− f(x0) | < ε

if | t− x0 | < δ, t ∈ [a, b]. Hence, if

x0 − δ < s ≤ x0 ≤ t < x0 + δ, and a ≤ s < t ≤ b,

we have by Proposition 5.9 (d) as before
∣∣∣∣
F (t)− F (s)

t− s − f(x0)

∣∣∣∣ =
∣∣∣∣

1

t− s

∫ t

s

f(r) dr − 1

t− s

∫ t

s

f(x0) dr

∣∣∣∣

=
1

t− s

∣∣∣∣
∫ t

s

(f(u)− f(x0)) du

∣∣∣∣ < ε.
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This in particular holds fors = x0, that is
∣∣∣∣
F (t)− F (x0)

t− x0
− f(x0)

∣∣∣∣ < ε.

It follows thatF ′(x0) = f(x0).

Definition 5.4 A functionF : [a, b]→ R is called anantiderivativeor aprimitiveof a function
f : [a, b]→ R if F is differentiable andF ′ = f .

Remarks 5.3 (a) There exist functionsf not having an antiderivative, for example the Heav-
iside functionH(x) has a simple discontinuity at0; but by Corollary 4.18 derivatives cannot
have simple discontinuities.
(b) The antiderivativeF of a functionf (if it exists) is unique up to an additive constant. More
precisely, ifF is a antiderivative on[a, b], thenF1(x) = F (x) + c is also a antiderivative off .
If F andG are antiderivatives off on [a, b], then there is a constantc so thatF (x)−G(x) = c.
The first part is obvious sinceF ′

1(x) = F ′(x)+ c′ = f(x). SupposeF andG are antiderivatives
of f . PutH(x) = F (x)−G(x); thenH ′(x) = 0 andH(x) is constant by Corollary 4.11.

Notation for the antiderivative:

F (x) =

∫
f(x) dx =

∫
f dx.

The functionf is called theintegrand. Integration and differentiation are inverse to each other:

d

dx

∫
f(x) dx = f(x),

∫
f ′(x) dx = f(x).

Theorem 5.15 (Fundamental Theorem of Calculus)Letf : [a, b]→ R be continuous.(a) If

F (x) =

∫ x

a

f(t) dt.

ThenF (x) is an antiderivative off(x) on [a, b].
(b) If G(x) is an antiderivative off(x) then

∫ b

a

f(t) dt = G(b)−G(a).

Proof. (a) By Theorem 5.14F (x) =
∫ x
a
f(x) dx is differentiable at any pointx0 ∈ [a, b] with

F ′(x) = f(x).
(b) By the above remark, the antiderivative is unique up to a constant, henceF (x)−G(x) = C.
SinceF (a) =

∫ a
a
f(x) dx = 0 we obtain

G(b)−G(a) = (F (b)− C)− (F (a)− C) = F (b)− F (a) = F (b) =

∫ b

a

f(x) dx.
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Note that the FTC is also true iff ∈ R andG is an antiderivative off on [a, b]. Indeed, letε > 0

be given. By the Riemann criterion, Proposition 5.3 there exists a partitionP = {x0, . . . , xn}
of [a, b] such thatU(P, f) − L(P, f) < ε. By the mean value theorem, there exist points
ti ∈ [xi−1, xi] such that

F (xi)− F (xi−1) = f(ti)(xi − xi−1), i = 1, . . . , n.

Thus

F (b)− F (a) =
n∑

i=1

f(ti)∆xi.

It follows from Lemma 5.4 (c) and the above equation that
∣∣∣∣∣

n∑

i=1

f(ti)∆xi −
∫ b

a

f(x) dx

∣∣∣∣∣ =

∣∣∣∣F (b)− F (a)−
∫ b

a

f(x) dx

∣∣∣∣ < ε.

Sinceε > 0 was arbitrary, the proof is complete.

5.2.1 Table of Antiderivatives

By differentiating the right hand side one gets the left handside of the table.

function domain antiderivative

xα α ∈ R \ {−1}, x > 0
1

α + 1
xα+1

1

x
x < 0 or x > 0 log | x |

ex R ex

ax a > 0, a 6= 1, x ∈ R ax

log a

sin x R − cosx

cosx R sin x

1

sin2 x
R \ {kπ | k ∈ Z} − cot x

1

cos2 x
R \

{π
2

+ kπ | k ∈ Z} tanx

1

1 + x2
R arctan x

1√
1 + x2

R arsinh x = log(x+
√
x2 + 1)

1√
1− x2

−1 < x < 1 arcsin x

1√
x2 − 1

x < −1 or x > 1 log(x+
√
x2 − 1)
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5.2.2 Integration Rules

The aim of this subsection is to calculate antiderivatives of composed functions using antideriva-
tives of (already known) simpler functions.
Notation:

f(x)|ba := f(b)− f(a).

Proposition 5.16 (a)Letf andg be functions with antiderivativesF andG, respectively. Then
af(x) + bg(x), a, b ∈ R, has the antiderivativeaF (x) + bG(x).

∫
(af + bg) dx = a

∫
f dx+ b

∫
g dx (Linearity.)

(b) If f andg are differentiable, andf(x)g′(x) has a antiderivative thenf ′(x)g(x) has a an-
tiderivative, too:

∫
f ′g dx = fg −

∫
fg′ dx, (Integration by parts.) (5.28)

If f andg are continuously differentiable on[a, b] then

∫ b

a

f ′g dx = f(x)g(x)|ba −
∫ b

a

fg′ dx. (5.29)

(c) If ϕ : D → R is continuously differentiable withϕ(D) ⊂ I, andf : I → R has a antideriva-
tiveF , then

∫
f(ϕ(x))ϕ′(x) dx = F (ϕ(x)), (Change of variable.) (5.30)

If ϕ : [a, b] → R is continuously differentiable withϕ([a, b]) ⊂ I andf : I → R is continuous,
then

∫ b

a

f(ϕ(t))ϕ′(t) dt =

∫ ϕ(b)

ϕ(a)

f(x) dx.

Proof. Since differentiation is linear, (a) follows.
(b) Differentiating the right hand side, we obtain

d

dx
(fg −

∫
fg′ dx) = f ′g + fg′ − fg′ = f ′g

which proves the statement.
(c) By the chain ruleF (ϕ(x)) is differentiable with

d

dx
F (ϕ(x)) = F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x),

and (c) follows.
The statements about the Riemann integrals follow from the statements about antiderivatives
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using the fundamental theorem of calculus. For example, we show the second part of (c). By
the above part,F (ϕ(t)) is an antiderivative off(ϕ(t))ϕ′(t). By the FTC we have

∫ b

a

f(ϕ(t))ϕ′(t) dt = F (ϕ(t))|ba = F (ϕ(b))− F (ϕ(a)).

On the other hand, again by the FTC,

∫ ϕ(b)

ϕ(a)

f(x) dx = F (x)|ϕ(b)
ϕ(a) = F (ϕ(b))− F (ϕ(a)).

This completes the proof of (c).

Corollary 5.17 SupposeF is the antiderivative off .
∫
f(ax+ b) dx =

1

a
F (ax+ b), a 6= 0; (5.31)

∫
g′(x)

g(x)
dx = log | g(x) | , (g differentiable andg(x) 6= 0). (5.32)

Example 5.4 (a) The antiderivative of a polymnomial. Ifp(x) =
∑n

k=0 akx
k, then

∫
p(x) dx =∑n

k=0
ak

k+1
xk+1.

(b) Putf ′(x) = ex andg(x) = x, thenf(x) = ex andg′(x) = 1 and we obtain
∫
xex dx = xex −

∫
1 · ex dx = ex(x− 1).

(c) I = (0,∞).
∫

log x dx =
∫

1 · log x dx = x log x−
∫
x 1
x

dx = x log x− x.
(d)

∫
arctanx dx =

∫
1 · arctan x dx = x arctanx−

∫
x

1

1 + x2
dx

= x arctan x− 1

2

∫
(1 + x2)′

1 + x2
dx = x arctan x− 1

2
log(1 + x2).

In the last equation we made use of (5.32).
(e) Recurrent computation of integrals.

In :=

∫
dx

(1 + x2)n
, n ∈ N.

I1 = arctanx.

In =

∫
(1 + x2)− x2

(1 + x2)n
= In−1 −

∫
x2 dx

(1 + x2)n
.

Putu = x, v′ =
x

(1 + x2)n
. ThenU ′ = 1 and

v =

∫
x dx

(1 + x2)n
=

1

2

(1 + x2)1−n

1− n .
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Hence,

In = In−1 −
1

2

x(1 + x2)1−n

1− n − 1

2(1− n)

∫
(1 + x2)1−n dx

In =
x

(2n− 2)(1 + x2)n−1
+

2n− 3

2n− 2
In−1.

In particular,I2 = x
2(1+x2)

+ 1
2
arctanx andI3 = x

4(1+x2)2
+ 3

4
I2.

Proposition 5.18 (Mean Value Theorem of Integration)Let f, ϕ : [a, b] → R be continuous
functions andϕ ≥ 0. Then there existsξ ∈ [a, b] such that

∫ b

a

f(x)ϕ(x) dx = f(ξ)

∫ b

a

ϕ(x) dx. (5.33)

In particular, in caseϕ = 1 we have
∫ b

a

f(x) dx = f(ξ)(b− a)

for someξ ∈ [a, b].

Proof. Putm = inf{f(x) | x ∈ [a, b]} andM = sup{f(x) | x ∈ [a, b]}. Sinceϕ ≥ 0 we obtain
mϕ(x) ≤ f(x)ϕ(x) ≤Mϕ(x). By Proposition 5.9 (a) and (b) we have

m

∫ b

a

ϕ(x) dx ≤
∫ b

a

f(x)ϕ(x) dx ≤M

∫ b

a

ϕ(x) dx.

Hence there is aµ ∈ [m,M ] such that
∫ b

a

f(x)ϕ(x) dx = µ

∫ b

a

ϕ(x) dx.

Sincef is continuous on[a, b] the intermediate value theorem Theorem 3.5 ensures that there
is aξ with µ = f(ξ). The claim follows.

Example 5.5 The trapezoid rule. Letf : [0, 1]→ R be twice continuously differentiable. Then
there existsξ ∈ [0, 1] such that

∫ 1

0

f(x) dx =
1

2
(f(0) + f(1))− 1

12
f ′′(ξ). (5.34)

Proof. Letϕ(x) = 1
2
x(1−x) such thatϕ(x) ≥ 0 for x ∈ [0, 1], ϕ′(x) = 1

2
−x, andϕ′′(x) = −1.

Using integration by parts twice as well as Theorem 5.18 we find
∫ 1

0

f(x) dx = −
∫ 1

0

ϕ′′(x)f(x) dx = −ϕ′(x)f(x)|10 +

∫ 1

0

ϕ′(x)f ′(x) dx

=
1

2
(f(0) + f(1)) + ϕ(x)f ′(x)|10 −

∫ 1

0

ϕ(x)f ′′(x) dx

=
1

2
(f(0) + f(1))− f ′′(ξ)

∫ 1

0

ϕ(x) dx

=
1

2
(f(0) + f(1))− 1

12
f ′′(ξ).
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Indeed,
∫ 1

0

(
1
2
x− 1

2
x2
)

dx = 1
4
x2 − 1

6
x3
∣∣1
0

= 1
4
− 1

6
= 1

12
.

5.2.3 Integration of Rational Functions

We will give a useful method to compute antiderivatives of anarbitrary rational function.
Consider a rational functionp/q wherep andq are polinomials. We will assume thatdeg p <

deg q; for otherwise we can expressp/q as a polynomial function plus a rational function which
is of this form, for eample

x2

x− 1
= x+ 1 +

1

x− 1
.

Polynomials

We need some preliminary facts on polynomials which are stated here without proof. Recall
that a non-zero constant polynomial has degree zero,deg c = 0 if c 6= 0. By definition, the zero
polynomial has degree−∞, deg 0 = −∞.

Theorem 5.19 (Fundamental Theorem of Algebra)Every polynomialp of positive degree
with complex coefficients has a complex root, i. e. there exists a complex numberz such that
p(z) = 0.

Lemma 5.20 (Long Division) Letp andq be polynomials, then there exist unique polynomials
r ands such that

p = qs+ r, deg r < deg q.

Lemma 5.21 Let p be a complex polynomial of degreen ≥ 1 and leading coefficientan. Then
there existn uniquely determined numbersz1, . . . , zn (which may be equal) such that

p(z) = an(z − z1)(z − z2) · · · (z − zn).

Proof. We use induction overn and the two preceding statements. In casen = 1 the linear
polynomialp(z) = az + b can be written in the desired form

p(z) = a

(
z − −b

a

)
with the unique root z1 = − b

a
.

Suppose the statement is true for all polynomials of degreen− 1. We will show it for degreen
polynomials. For, letzn be a complex root ofpwhich exists by Theorem 5.19;p(zn) = 0. Using
long division ofp by the linear polynomialq(z) = z−zn we obtain a quotient polynomialp1(z)

and a remainder polynomialr(z) of degree0 (a constant polynomial) such that

p(z) = (z − zn)p1(z) + r(z).

Insertingz = zn givesp(zn) = 0 = r(zn); hence the constantr vanishes and we have

p(z) = (z − zn)p1(z)
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with a polynomialp1(z) of degreen− 1. Applying the induction hypothesis top1 the statement
follows.

A root α of p is said to be aroot of multiplicityk, k ∈ N, if α appears exactlyk times among
the zerosz1, z2, . . . , zn. In that case(z − α)k dividesp(z) but (z − α)k+1 not.
If p is a real polynomial, i. e. a polynomial with real coefficients, andα is a root of multiplicity
k of p thenα is also a root of multiplicityk of p. Indeed, taking the complex conjugation of the
equation

p(z) = (z − α)kq(z)

we have sincep(z) = p(z) = p(z)

p(z) = (z − α)kq(z) =⇒
z:=z

p(z) = (z − α)kq(z).

Note that the product of the two complex linear factorsz − α andz − α yield a real quadratic
factor

(z − α)(z − α) = z2 − (α + α)z + αα = z2 − 2 Reα + |α |2 .

Using this fact, the real version of Lemma 5.21 is as follows.

Lemma 5.22 Let q be a real polynomial of degreen with leading coefficientan. Then there
exist real numbersαi, βj , γj and multiplicitiesri, sj ∈ N, i = 1, . . . , k, j = 1, . . . , l such that

q(x) = an

k∏

i=1

(x− αi)ri
l∏

j=1

(x2 − 2βjx+ γj)
sj .

We assume that the quadratic factors cannot be factored further; this means

β2
j − γj < 0, j = 1, . . . , l.

Of course,deg q =
∑

i ri +
∑

j 2sj = n.

Example 5.6 (a) x4 − 4 = (x2 + 2)(x2 − 2) = (x −
√

2)(x +
√

2)(x − i
√

2)(x + i
√

2) =

(x−
√

2)(x+
√

2)(x2 + 2)

(b) x3 + x− 2. One can guess the first zerox1 = 1. Using long division one gets

x3 +x −2 = (x− 1)(x2 + x+ 2)

−(x3 −x2)

x2 +x −2

−(x2 −x )

2x −2

−(2x −2)

0

There are no further real zeros ofx2 + x+ 2.
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5.2.4 Partial Fraction Decomposition

Proposition 5.23 Let p(x) andq(x) be real polynomials withdeg p < deg q. There exist real
numbersAir, Bjs, andCjs such that

p(x)

q(x)
=

k∑

i=1

(
ri∑

r=1

Air
(x− αi)r

)
+

l∑

j=1

(
sj∑

s=1

Bjsx+ Cjs
(x2 − 2βjx+ γj)s

)
(5.35)

where theαi, βj , γj, ri, andsj have the same meaning as in Lemma 5.22.

Example 5.7 (a) Compute
∫
f(x) dx =

∫
x4

x3 − 1
dx. We use long division to obtain a ratio-

nal functionp/q with deg p < deg q, f(x) = x+ x
x3−1

. To obtain the partial fraction decompo-
sition (PFD), we need the factorization of the denominator polynomialq(x) = x3 − 1. One can
guess the first real zerox1 = 1 and divideq by x− 1; q(x) = (x− 1)(x2 + x+ 1).
The PFD then reads

x

x3 − 1
=

a

x− 1
+

bx+ c

x2 + x+ 1
.

We have to determinea, b, c. Multiplication byx3 − 1 gives

0 · x2 + 1 · x+ 0 = a(x2 + x+ 1) + (bx+ c)(x− 1) = (a+ b)x2 + (a− b+ c)x+ a− c.

The two polynomials on the left and on the right must coincide, that is, there coefficients must
be equal:

0 = a− c, 1 = a− b+ c, 0 = a+ b;

which givesa = −b = c = 1
3
. Hence,

x

x3 − 1
=

1

3

1

x− 1
− 1

3

x− 1

x2 + x+ 1
.

We can integrate the first two terms but we have to rewrite the last one

x− 1

x2 + x+ 1
=

1

2

2x+ 1

x2 + x+ 1
− 3

2

1
(
x+ 1

2

)2
+ 3

4

.

Recall that
∫

2x− 2β

x2 − 2βx+ γ
dx = log

∣∣ x2 − 2βx+ γ
∣∣ ,

∫
dx

(x+ b)2 + a2
=

1

a
arctan

x+ b

a
.

Therefore,
∫

x4

x3 − 1
dx =

1

2
x2 +

1

2
log |x− 1 | − 1

6
log(x2 + x+ 1) +

1√
3

arctan
2x+ 1√

3
.

(b) If q(x) = (x−1)3(x+2)(x2+2)2(x2 +1) andp(x) is any polynomial withdeg p < deg q =

10, then the partial fraction decomposition reads as

p(x)

q(x)
=

A11

x− 1
+

A12

(x− 1)2
+

A13

(x− 1)3
+

A21

x+ 2
+
B11x+ C11

x2 + 2
+
B12x+ C12

(x2 + 2)2
+
B21 + C21

x2 + 1
.

(5.36)
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Suppose now thatp(x) ≡ 1. One can immediately computeA13 andA21. Multiplying (5.36)
by (x− 1)3 yields

1

(x+ 2)(x2 + 2)2(x2 + 1)
= A13 + (x− 1)p1(x)

with a rational functionp1 not having(x − 1) in the denominator. Insertingx = 1 gives
A13 = 1

32·3·2 = 1
54

. Similarly,

A21 =
1

(x− 1)3(x2 + 2)2(x2 + 1)

∣∣∣∣
x=−2

=
1

(−3)3 · 6 · 5 .

5.2.5 Other Classes of Elementary Integrable Functions

An elementary functionis the compositions of rational, exponential, trigonometric functions
and their inverse functions, for example

f(x) =
esin(

√
x−1)

x+ log x
.

A function is calledelementary integrableif it has an elementary antiderivative. Rational func-
tions are elementary integrable. “Most” functions are not elementary integrable as

e−x
2

,
ex

x
,

1

log x
,

sin x

x
.

They define “new” functions

W (x) :=

∫ x

0

e−
t2

2 dt, (Gaussian integral),

li(x) :=

∫ x

0

dt

log t
(integral logarithm)

F(ϕ, k) :=

∫ ϕ

0

dx√
1− k2 sin2 x

(elliptic integral of the first kind),

E(ϕ, k) :=

∫ ϕ

0

√
1− k2 sin2 x dx (elliptic integral of the second kind).

∫
R(cos x, sin x) dx

LetR(u, v) be a rational function in two variablesu andv, that isR(u, v) = p(u,v)
q(u,v)

with polino-

mialsp andq in two variables. We substitutet = tan
x

2
. Then

sin x =
2t

1 + t2
, cos x =

1− t2
1 + t2

, dx =
2dt

1 + t2
.

Hence ∫
R(cosx, sin x) dx =

∫
R

(
1− t2
1 + t2

,
2t

1 + t2

)
2dt

1 + t2
=

∫
R1(t) dt

with another rational functionR1(t).
There are 3 special cases where another substitution is apropriate.
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(a) R(−u, v) = −R(u, v), R is odd inu. Substitutet = sin x.

(b) R(u,−v) = −R(u, v), R is odd inv. Substitutet = cosx.

(c) R(−u,−v) = R(u, v). Substitutet = tan x.

Example 5.8 (1)
∫

sin3 x dx. Here,R(u, v) = v3 is an odd function inv, such that (b) applies;

t = cos x, dt = − sin x dx, sin2 x = 1− cos2 x = 1− t2. This yields
∫

sin3 x dx = −
∫

sin2 x · (− sin x dx) = −
∫

(1− t2) dt = −t+
t3

3
+ const.

= − cos x+
cos3

3
+ const. .

(2)
∫

tanx dx. Here,R(u, v) = v
u
. All (a), (b), and (c) apply to this situation. For example, let

t = sin x. Thencos2 x = 1− t2, dt = cosx dx and

∫
tanx dx =

∫
sin x · cosx dx

cos2 x
=

∫
t dt

1− t2 = −1

2

∫
d(1− t2)

1− t2 =

= −1

2
log(1− t2) = − log | cosx | .

∫
R(x, n

√
ax + b) dx

The substitution
t =

n
√
ax+ b

yieldsx = (tn − b)/a, dx = ntn−1 dt/a, and therefore
∫
R(x,

n
√
ax+ b) dx =

n

a

∫
R

(
tn − b
a

, t

)
tn−1 dt.

∫
R(x,

√
ax2 + 2bx + c) dx

Using the method of complete squares the above integral can be written in one of the three basic
forms ∫

R(t,
√
t2 + 1) dt,

∫
R(t,
√
t2 − 1) dt,

∫
R(t,
√

1− t2) dt.

Further substitutions

t = sinh u,
√
t2 + 1 = cosh u, dt = cosh u du,

t = ± cosh u,
√
t2 − 1 = sinh u, dt = ± sinh u du,

t = ± cos u,
√

1− t2 = sin u, dt = ∓ sin u du

reduce the integral to already known integrals.



5.3 Improper Integrals 143

Example 5.9 ComputeI =

∫
dx√

x2 + 6x+ 5
. Hint: t =

√
x2 + 6x+ 5− x.

Then(x+ t)2 = x2 +2tx+ t2 = x2 +6x+5 such thatt2 +2tx = 6x+5 and thereforex = t2−5
6−2t

and

dx =
2t(6− 2t) + 2(t2 − 5)

(6− 2t)2
dt =

−2t2 + 12t− 10

(6− 2t)2
dt.

Hence, usingt+ x = t+ t2−5
6−2t

= −t2+6t−5
6−2t

,

I =

∫
(−2t2 + 12t− 10) dt

(6− 2t)2

1

t+ x
=

∫
2(6− 2t)(−t2 + 6t− 5)

(−t2 + 6t− 5)(6− 2t)2
dt

= 2

∫
dt

6− 2t
= − log | 6− 2t |+ const. = log

∣∣∣ 6− 2
√
x2 + 6x+ 5 + 2x

∣∣∣ + const.

5.3 Improper Integrals

The notion of the Riemann integral defined so far is apparently too tight for some applications:
we can integrate only over finite intervals and the functionsare necessarily bounded. If the
integration interval is unbounded or the function to integrate is unbounded we speak about
improperintegrals. We consider three cases: one limit of the integral is infinite; the function is
not defined at one of the end pointsa or b of the interval; botha andb are critical points (either
infinity or the function is not defined there).

5.3.1 Integrals on unbounded intervals

Definition 5.5 Supposef ∈ R on [a, b] for all b > a wherea is fixed. Define

∫ ∞

a

f(x) dx = lim
b→+∞

∫ b

a

f(x) dx (5.37)

if this limit exists (and is finite). In that case, we say that the integral on the leftconverges. If it
also converges iff has been replaced by| f |, it is said toconverge absolutely.

If an integral converges absolutely, then it converges, seeExample 5.11 below, where

∣∣∣∣
∫ ∞

a

f dx

∣∣∣∣ ≤
∫ ∞

a

| f | dx.

Similarly, one defines
∫ b

−∞
f(x) dx. Moreover,

∫ ∞

−∞
f dx :=

∫ 0

−∞
f dx+

∫ ∞

0

f dx

if both integrals on the right side converge.



144 5 Integration

Example 5.10 (a) The integral
∫ ∞

1

dx

xs
converges fors > 1 and diverges for0 < s ≤ 1.

Indeed,
∫ R

1

dx

xs
=

1

1− s ·
1

xs−1

∣∣∣∣
R

1

=
1

s− 1

(
1− 1

Rs−1

)
.

Since

lim
R→+∞

1

Rs−1
=

{
0, if s > 1,

+∞, if 0 < s < 1,

it follows that ∫ ∞

0

dx

xs
=

1

s− 1
, if s > 1.

(b) ∫ R

0

e−x dx = −e−x
∣∣R
0

= 1− 1

eR
.

Hence
∫ ∞

0

e−x dx = 1.

Proposition 5.24 (Cauchy criterion) The improper integral
∫ ∞

a

f dx converges if and only if

for everyε > 0 there exists someb > a such that for allc, d > b
∣∣∣∣
∫ d

c

f dx

∣∣∣∣ < ε.

Proof. The followingCauchy criterion for limits of functionsis easily proved using sequences:

The limit lim
x→∞

F (x) exists if and only if

∀ ε > 0 ∃R > 0 ∀x, y > R : |F (x)− F (y) | < ε. (5.38)

Indeed, suppose that(xn) is any sequence converging to+∞ as n → ∞. We will show
that (F (xn)) converges if (5.38) is satisfied. Letε > 0. By assumption, there existsR > 0

with the above property. Sincexn −→
n→∞

+∞ there existsn0 ∈ N such thatn ≥ n0 implies

xn > R. Hence,|F (xn)− F (xm) | < ε asm,n ≥ n0. Thus,(F (xn)) is a Cauchy sequence and
therefore convergent. This proves one direction of the above criterion. The inverse direction is
even simpler: Suppose thatlim

x→+∞
F (x) = A exists (and is finite!). We will show that the above

criterion is satisfied.Letε > 0. By definition of the limit there existsR > 0 such thatx, y > R

imply |F (x)−A | < ε/2 and|F (y)− A | < ε/2. By the triangle inequality,

|F (x)− F (y) | = |F (x)−A− (F (y)− A) | ≤ |F (x)− A |+ |F (y)−A | < ε

2
+
ε

2
= ε,

asx, y > R which completes the proof of this Cauchy criterion.

Applying this criterion to the functionF (t) =
∫ t
a
f dx noting that|F (d)− F (c) | =

∣∣∣
∫ d
c
f dx

∣∣∣,
the limit limt→∞ F (t) exists.
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Example 5.11 (a) If
∫∞
a
f dx converges absolutely, then

∫∞
a
f dx converges. Indeed, letε > 0

and
∫∞
a
| f | dx converges. By the Cauchy Criterion for the later integral and by the triangle

inequality, Proposition 5.10, there existsb > 0 such that for allc, d > b
∣∣∣∣
∫ d

c

f dx

∣∣∣∣ ≤
∫ d

c

| f | dx < ε. (5.39)

Hence, the Cauchy criterion is satisfied forf if it holds for | f |. Thus,
∫∞
a
f dx converges.

(b)
∫∞
1

sinx
x

dx. Partial integration withu = 1
x

andv′ = sin x yieldsu′ = − 1
x2 , v = − cos x and

∫ d

c

sin x

x
dx = −1

x
cosx

∣∣∣∣
d

c

−
∫ d

c

cosx

x2
dx

∣∣∣∣
∫ d

c

sin x

x
dx

∣∣∣∣ ≤
∣∣∣∣−

1

d
cos d+

1

c
cos c

∣∣∣∣+
∣∣∣∣
∫ d

c

dx

x2

∣∣∣∣

≤ 1

c
+

1

d
+

∣∣∣∣
1

d
− 1

c

∣∣∣∣ ≤ 2

(
1

c
+

1

d

)
< ε

if c andd are sufficiently large. Hence,
∫∞
1

sinx
x

dx converges.
The integral does not converge absolutely. For non-negative integersn ∈ Z+ we have

∫ (n+1)π

nπ

∣∣∣∣
sin x

x

∣∣∣∣ dx ≥ 1

(n+ 1)π

∫ (n+1)π

nπ

| sin x | dx =
2

(n + 1)π
;

hence ∫ (n+1)π

1

∣∣∣∣
sin x

x

∣∣∣∣ dx ≥ 2

π

n∑

k=1

1

k + 1
.

Since the harmonic series diverges, so does the integral
∫∞
π

∣∣ sinx
x

∣∣ dx.

Proposition 5.25 Supposef ∈ R is nonnegative,f ≥ 0. Then
∫∞
a
f dx converges if there

existsC > 0 such that
∫ b

a

f dx < C, for all b > a.

The proof is similar to the proof of Lemma 2.19 (c); we omit it.Analogous propositions are true
for integrals

∫ a
−∞ f dx.

Proposition 5.26 (Integral criterion for series) Assume thatf ∈ R is nonnegativef ≥ 0 and
decreasing on[1,+∞). Then

∫∞
1
f dx converges if and only if the series

∑∞
n=1 f(n) converges.

Proof. Sincef(n) ≤ f(x) ≤ f(n− 1) for n− 1 ≤ x ≤ n,

f(n) ≤
∫ n

n−1

f dx ≤ f(n− 1).

Summation overn = 2, 3, . . . , N yields

N∑

n=2

f(n) ≤
∫ N

1

f dx ≤
N−1∑

n=1

f(n).
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If
∫∞
1
f dx converges the series

∑∞
n=1 f(n) is bounded and therefore convergent.

Conversely, if
∑∞

n=1 f(n) converges, the integral
∫ R
1
f dx ≤ ∑∞

n=1 f(n) is bounded as
R→∞, hence convergent by Proposition 5.25.

Example 5.12
∑∞

n=2
1

n(logn)α converges if and only if
∫∞
2

dx
x(log x)α converges. The substitution

y = log x, dy = dx
x

gives ∫ ∞

2

dx

x(log x)α
=

∫ ∞

log 2

dy

yα

which converges if and only ifα > 1 (see Example 5.10).

5.3.2 Integrals of Unbounded Functions

Definition 5.6 Supposef is a real function on[a, b) andf ∈ R on [a, t] for everyt, a < t < b.
Define ∫ b

a

f dx = lim
t→b−0

∫ t

a

f dx

if the limit on the right exists. Similarly, one defines

∫ b

a

f dx = lim
t→a+0

∫ b

t

f dx

if f is unbounded ata and integrable on[t, b] for all t with a < t < b.

In both cases we say that
∫ b
a
f dx converges.

Example 5.13 (a)

∫ 1

0

dx√
1− x2

= lim
t→1−0

∫ t

0

dx√
1− x2

= lim
t→1−0

arcsin x|t0 = lim
t→1−0

arcsin t = arcsin 1 =
π

2
.

(b)

∫ 1

0

dx

xα
= lim

t→0+0

∫ 1

t

dx

xα
= lim

t→0+0

{
1

1−αx
1−α∣∣1

t
, α 6= 1

log x|1t , α = 1
=

{
1

1−α , α < 1,

+∞, α ≥ 1.

Remarks 5.4 (a) The analogous statements to Proposition 5.24 and Proposition 5.25 are true
for improper integrals

∫ b
a
f dx.

For example,
∫ 1

0
dx

x(1−x) diverges since both improper integrals
∫ 1

2
0
f dx and

∫ 1
1
2
f dx diverge,

∫ 1

0
dx√

x(1−x) diverges since it diverges atx = 1, finally I =
∫ 1

0
dx√
x(1−x)

converges. Indeed, the

substitutionx = sin2 t givesI = π.
(b) If f is unbounded both ata and atb we define the improper integral

∫ b

a

f dx =

∫ c

a

f dx+

∫ b

c

f dx
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if c is betweena andb and both improper integrals on the right side exist.
(c) Also, if f is unbounded ata define

∫ ∞

a

f dx =

∫ b

a

f dx+

∫ ∞

b

f dx

if the two improper integrals on the right side exist.
(d) If f is unbounded in the interior of the interval[a, b], say atc, we define the improper integral

∫ b

a

f dx =

∫ c

a

f dx+

∫ b

c

f dx

if the two improper integrals on the right side exist. For example,
∫ 1

−1

dx√
|x |

=

∫ 0

−1

dx√
|x |

+

∫ 1

0

dx√
| x |

= lim
t→0−0

∫ t

−1

dx√
|x |

+ lim
t→0+0

∫ 1

t

dx√
|x |

= lim
t→0−0

−2
√
−x
∣∣t
−1

+ lim
t→0+0

2
√
x
∣∣1
t

= 4.

5.3.3 The Gamma function

Forx > 0 set

Γ(x) =

∫ ∞

0

tx−1e−t dt. (5.40)

By Example 5.13,Γ1(x) =
∫ 1

0
tx−1e−t dt converges since for everyt > 0

tx−1e−t ≤ 1

t1−x
.

By Example 5.10,Γ2(x) =
∫∞
1
tx−1e−t dt converges since for everyt ≥ t0

tx−1e−t ≤ 1

t2
.

Note thatlimt→∞ tx+1e−t = 0 by Proposition 3.11. Hence,Γ(x) is defined for everyx > 0.

Proposition 5.27 For every positivex

xΓ(x) = Γ(x+ 1). (5.41)

In particular, forn ∈ N we haveΓ(n+ 1) = n!.

Proof. Using integration by parts,
∫ R

ε

txe−t dt = −txe−t
∣∣R
ε

+ x

∫ R

ε

tx−1e−t dt.

Taking the limitsε→ 0 + 0 andR→ +∞ one hasΓ(x+ 1) = xΓ(x). Since by Example 5.10

Γ(1) =

∫ ∞

0

e−t dt = 1,
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it follows from (5.41) that

Γ(n+ 1) = nΓ(n) = · · · = n(n− 1)(n− 2) · · ·Γ(1) = n!

The Gamma function interpolates the factorial functionn! which is defined only for positive
integersn. However, this property alone is not sufficient for a complete characterization of the
Gamma function. We need another property. This will be done more in detail in the appendix
to this chapter.

5.4 Integration of Vector-Valued Functions

A mappingγ : [a, b]→ Rk, γ(t) = (γ1(t), . . . , γk(t)) is said to be continuous if all the mappings
γi, i = 1, . . . , k, are continuous. Moreover, if all theγi are differentiable, we writeγ′(t) =

(γ′1(t), . . . , γ
′
k(t)).

Definition 5.7 Let f1, . . . , fk be real functions on[a, b] and letf = (f1, . . . , fk) be the corre-
ponding mapping from[a, b] intoRk. If α increases on[a, b], to say thatf ∈ R(α) means that
fj ∈ R(α) for j = 1, . . . , k. In this case we define

∫ b

a

f dα =

(∫ b

a

f1 dα, . . . ,

∫ b

a

fk dα

)
.

In other words
∫ b
a
f dα is the point inRk whosejth coordinate is

∫ b
a
fj dα. It is clear that parts

(a), (c), and (e) of Proposition 5.9 are valid for these vector valued integrals; we simply apply
the earlier results to each coordinate. The same is true for Proposition 5.12, Theorem 5.14, and
Theorem 5.15. To illustrate this, we state the analog of the fundamental theorem of calculus.

Theorem 5.28 If f = (f1, . . . , fk) ∈ R on [a, b] and ifF = (F1, . . . , Fk) is an antiderivative
of f on [a, b], then ∫ b

a

f(x) dx = F (b)− F (a).

The analog of Proposition 5.10 (b) offers some new features.Letx = (x1, . . . , xk) ∈ Rk be any
vector inRk. We denote itsEuclidean normby ‖x‖ =

√
x2

1 + · · ·+ x2
k.

Proposition 5.29 If f = (f1, . . . , fk) ∈ R(α) on [a, b] then‖f‖ ∈ R(α) and
∥∥∥∥
∫ b

a

f dα

∥∥∥∥ ≤
∫ b

a

‖f‖ dα. (5.42)

Proof. By the definition of the norm,

‖f‖ =
(
f 2

1 + f 2
2 + · · ·+ f 2

k

) 1
2 .

By Proposition 5.10 (a) each of the functionsf 2
i belong toR(α); hence so does their sumf 2

1 +

f 2
2 + · · ·+ f 2

k . Note that the square-root is a continuous function on the positive half line. If we



5.4 Integration of Vector-Valued Functions 149

apply Proposition 5.8 we see‖f‖ ∈ R(α).
To prove (5.42), puty = (y1, . . . , yk) with yj =

∫ b
a
fj dα. Then we havey =

∫ b
a
f dα, and

‖y‖2 =

k∑

j=1

y2
j =

k∑

j=1

yj

∫ b

a

fj dα =

∫ b

a

k∑

j=1

(yjfj) dα.

By the Cauchy–Schwarz inequality, Proposition 1.25,

k∑

j=1

yjfj(t) ≤ ‖y‖ ‖f(t)‖ , t ∈ [a, b].

Inserting this into the preceding equation, the monotony ofthe integral gives

‖y‖2 ≤ ‖y‖
∫ b

a

‖f‖ dα.

If y = 0, (5.42) is trivial. Ify 6= 0, division by‖y‖ gives (5.42).

Integration of Complex Valued Functions

This is a special case of the above arguments withk = 2. Let ϕ : [a, b] → C be a complex-
valued function. Letu, v : [a, b] → R be the real and imaginary parts ofϕ, respectively;u =

Reϕ andv = Imϕ.
The functionϕ = u+ iv is said to beintegrableif u, v ∈ R on [a, b] and we set

∫ b

a

ϕ dx =

∫ b

a

u dx+ i

∫ b

a

v dx.

The fundamental theorem of calculus holds: If the complex functionϕ is Riemann integrable,
ϕ ∈ R on [a, b] andF (x) is an antiderivative ofϕ, then

∫ b

a

ϕ(x) dx = F (b)− F (a).

Similarly, if u andv are both continuous,F (x) =
∫ x
a
ϕ(t) dt is an antiderivative ofϕ(x).

Proof. LetF = U+iV be the antiderivative ofϕwhereU ′ = u andV ′ = v. By the fundamental
theorem of calculus

∫ b

a

ϕ dx =

∫ b

a

u dx+ i

∫ b

a

v dx = U(b)− U(a) + i (V (b)− V (a)) = F (b)− F (a).

Example: ∫ b

a

eαt dt =
1

α
eαt
∣∣∣∣
b

a

, α ∈ C.
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5.5 Inequalities

Besides the triangle inequality
∣∣∣
∫ b
a
f dα

∣∣∣ ≤
∫ b
a
| f | dα which was shown in Proposition 5.10

we can formulate Hölder’s, Minkowski’s, and the Cauchy–Schwarz inequalities for Riemann–
Stieltjes integrals. For, letp > 0 be a fixed positive real number andα an increasing function
on [a, b]. Forf ∈ R(α) define theLp-norm

‖f‖p =

(∫ b

a

| f |p dα

) 1
p

. (5.43)

Cauchy–Schwarz Inequality

Proposition 5.30 Let f, g : [a, b] → C be complex valued functions andf, g ∈ R on [a, b].
Then

(∫ b

a

| fg | dx
)2

≤
∫ b

a

| f |2 dx ·
∫ b

a

| g |2 dx. (5.44)

Proof. Lettingf = | f | andg = | g |, it suffices to show(
∫
fg dx)2 ≤

∫
f 2 dx ·

∫
g2 dx. For,

putA =
∫ b
a
g2 dx, B =

∫ b
a
fg dx, andC =

∫ b
a
f 2 dx. Let λ ∈ C be arbitrary. By the positivity

and linearity of the integal,

0 ≤
∫ b

a

(f + λg)2 dx =

∫ b

a

f 2 dx+ 2λ

∫ b

a

fg dx+ λ2

∫ b

a

g2 dx = C + 2Bλ+ Aλ2 =: h(λ).

Thus,h is non-negative for all complex valuesλ.
Case 1.A = 0. Inserting this, we get2Bλ + C ≥ 0 for all λ ∈ C. This impliesB = 0 and
C ≥ 0; the inequality is satisfied.
Case 2.A > 0. Dividing the above inequality byA, we have

0 ≤ λ2 +
2B

A
λ+

C

A
≤
(
λ+

B

A

)2

−
(
B

A

)2

+
C

A
.

This is satisfied for allλ if and only if

(
B

A

)2

≤ C

A
and, finally B2 ≤ AC.

This completes the proof.

Proposition 5.31 (a) Cauchy–Schwarz inequality.Supposef, g ∈ R(α), then

∣∣∣∣
∫ b

a

fg dα

∣∣∣∣ ≤
∫ b

a

| fg | dα ≤

√∫ b

a

| f |2 dα

√∫ b

a

| g |2 dα or (5.45)

∫ b

a

| fg | dα ≤ ‖f‖2 ‖g‖2 . (5.46)
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(b) Hölder’s inequality.Letp andq be positive real numbers such that
1

p
+

1

q
= 1. If f, g ∈ R(α),

then
∣∣∣∣
∫ b

a

fg dα

∣∣∣∣ ≤
∫ b

a

| fg | dα ≤ ‖f‖p ‖g‖q . (5.47)

(c) Minkowski’s inequality.Letp ≥ 1 andf, g ∈ R(α), then

‖f + g‖p ≤ ‖f‖p + ‖g‖p . (5.48)

5.6 Appendix D

The composition of an integrable and a continuous function is integrable

Proof of Proposition 5.8. Letε > 0. Sinceϕ is uniformly continuous on[m,M ], there exists
δ > 0 such thatδ < ε and|ϕ(s)− ϕ(t) | < ε if | s− t | < δ and[s, t ∈ [m,M ].
Sincef ∈ R(α), there exists a partitionP = {x0, x1, . . . , xn} of [a, b] such that

U(P, f, α)− L(P, f, α) < δ2. (5.49)

Let Mi andmi have the same meaning as in Definition 5.1, and letM∗
i andm∗

i the analogous
numbers forh. Divide the numbers1, 2, . . . , n into two classes:i ∈ A if Mi − mi < δ and
i ∈ B if Mi − mi > δ. For i ∈ A our choice ofδ shows thatM∗

i − m∗
i ≤ ε. For i ∈ B,

M∗
i −m∗

i ≤ 2K whereK = sup{|ϕ(t) | | m ≤ t ≤M}. By (5.49), we have

δ
∑

i∈B
∆αi ≤

∑

i∈B
(Mi −mi)∆αi < δ2 (5.50)

so that
∑

i∈B ∆αi < δ. It follows that

U(P, h, α)− L(P, h, α) =
∑

i∈A
(M∗

i −m∗
i )∆αi +

∑

i∈B
(M∗

i −m∗
i )∆αi ≤

ε(α(b)− α(a)) + 2Kδ < ε(α(b)− α(a) + 2K).

Sinceε was arbitrary, Proposition 5.3 implies thath ∈ R(α).

Convex Functions are Continuous

Proposition 5.32 Every convex functionf : (a, b)→ R,−∞ ≤ a < b ≤ +∞, is continuous.

Proof. There is a very nice geometric proof in Rudin’s book “Real and Complex Analysis”,
see [Rud66, 3.2 Theorem]. We give another proof here.
Let x ∈ (a, b); choose a finite subinterval(x1, x2) with a < x1 < x < x2 < b. Since
f(x) ≤ λf(x1) + (1 − λ)f(x2), λ ∈ [0, 1], f is bounded above on[x1, x2]. Chosingx3 with
x1 < x3 < x the convexity off implies

f(x3)− f(x1)

x3 − x1

≤ f(x)− f(x1)

x− x1

=⇒ f(x) ≥ f(x3)− f(x1)

x3 − x1

(x− x1).
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This means thatf is bounded below on[x3, x2] by a linear function; hencef is bounded on
[x3, x2], say| f(x) | ≤ C on [x3, x2].
The convexity implies

f

(
1

2
(x+ h) +

1

2
(x− h)

)
≤ 1

2
(f(x+ h) + f(x− h))

=⇒ f(x)− f(x− h) ≤ f(x+ h)− f(x).

Iteration yields

f(x− (ν − 1)h)− f(x− νh) ≤ f(x+ h)− f(x) ≤ f(x+ νh)− f(x+ (ν − 1)h).

Summing up overν = 1, . . . , n we have

f(x)− f(x− nh) ≤ n (f(x+ h)− f(x)) ≤ f(x+ nh)− f(x)

=⇒ 1

n
(f(x)− f(x− nh)) ≤ f(x+ h)− f(x) ≤ 1

n
(f(x+ nh)− f(x)) .

Let ε > 0 be given; choosen ∈ N such that2C/n < ε and chooseh such thatx3 < x− nh <
x < x+ nh < x2. The above inequality then implies

| f(x+ h)− f(x) | ≤ 2C

n
< ε.

This shows continuity off atx.

If g is an increasing convex function andf is a convex function, theng◦f is convex since
f(λx+ µy) ≤ λf(x) + µf(y), λ+ µ = 1, λ, µ ≥ 0, implies

g(f(λx+ µy)) ≤ g(λf(x) + µg(x)) ≤ λg(f(x)) + µg(f(y)).

5.6.1 More on the Gamma Function

Let I ⊂ R be an interval. A positive functionF : I → R is called logarithmic convexif
logF : I → R is convex, i. e. for everyx, y ∈ I and everyλ, 0 ≤ λ ≤ 1 we have

F (λx+ (1− λ)y) ≤ F (x)λ F (y)1−λ.

Proposition 5.33 The Gamma function is logarithmic convex.

Proof. Let x, y > 0 and 0 < λ < 1 be given. Setp = 1/λ and q = 1/(1 − λ). Then
1/p+ 1/q = 1 and we apply Hölder’s inequality to the functions

f(t) = t
x−1

p e−
t
p , g(t) = t

y−1
q e−

t
q

and obtain ∫ R

ε

f(t)g(t) dt ≤
(∫ R

ε

f(t)p dt

) 1
p
(∫ R

ε

g(t)q dt

) 1
q

.
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Note that
f(t)g(t) = t

x
p
+ y

q
−1e−t, f(t)p = tx−1e−t, g(t)q = ty−1e−t.

Taking the limtsε→ 0 + 0 andR→ +∞ we obtain

Γ

(
x

p
+
y

q

)
≤ Γ(x)

1
p Γ(y)

1
q .

Remark 5.5 One can prove that a convex function (see Definition 4.4) is continuous, see Propo-
sition 5.32. Also, an increasing convex function of a convexfunctionf is convex, for example
ef is convex iff is. We conclude thatΓ(x) is continuous forx > 0.

Theorem 5.34 LetF : (0,+∞)→ (0,+∞) be a function with

(a)F (1) = 1,
(b) F (x+ 1) = xF (x),
(c) F is logarithmic convex.

ThenF (x) = Γ(x) for all x > 0.

Proof. SinceΓ(x) has the properties (a), (b), and (c) it suffices to prove thatF is uniquely
determined by (a), (b), and (c). By (b),

F (x+ n) = F (x)x(x+ 1) · · · (x+ n)

for every positivex and every positive integern. In particularF (n + 1) = n! and it suffices to
show thatF (x) is uniquely determined for everyx with x ∈ (0, 1). Sincen + x = (1− x)n +

x(n + 1) from (c) it follows

F (n+ x) ≤ F (n)1−xF (n+ 1)x = F (n)1−xF (n)x nx = (n− 1)!nx.

Similarly, fromn+ 1 = x(n + x) + (1− x)((n+ 1 + x) it follows

n! = F (n+ 1) ≤ F (n+ x)xF (n+ 1 + x)1−x = F (n+ x)(n + x)1−x.

Combining both inequalities,

n!(n + x)x−1 ≤ F (n+ x) ≤ (n− 1)!nx

and moreover

an(x) :=
n!(n + x)x−1

x(x+ 1) · · · (x+ n− 1)
≤ F (x) ≤ (n− 1)!nx

x(x+ 1) · · · (x+ n− 1)
=: bn(x).

Since bn(x)
an(x)

= (n+x)nx

n(n+x)x converges to1 asn→∞,

F (x) = lim
n→∞

(n− 1)!nx

x(x+ 1) · · · (x+ n)
.

HenceF is uniquely determined.
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Stirling’s Formula

We give an asymptotic formula forn! asn → ∞. We call two sequences(an) and(bn) to be

asymptotically equalif lim
n→∞

an
bn

= 1, and we writean ∼ bn.

Proposition 5.35 (Stirling’s Formula) The asymptotical behavior ofn! is

n! ∼
√

2πn
(n

e

)n
.

Proof. Using the trapezoid rule (5.34) withf(x) = log x, f ′′(x) = −1/x2 we have

∫ k+1

k

log x dx =
1

2
(log k + log(k + 1)) +

1

12ξ2
k

with k ≤ ξk ≤ k + 1. Summation overk = 1, . . . , n− 1 gives

∫ n

1

log x dx =
n∑

k=1

log k − 1

2
log n+

1

12

n−1∑

k=1

1

ξ2
k

.

Since
∫

log x dx = x log x− x (integration by parts), we have

n log n− n+ 1 =

n∑

k=1

log k − 1

2
logn+

1

12

n−1∑

k=1

1

ξ2
k

n∑

k=1

log k =

(
n+

1

2

)
logn− n + γn,

whereγn = 1− 1
12

∑n−1
k=1

1
ξ2
k

. Exponentiating both sides of the equation we find withcn = eγn

n! = nn+ 1
2 e−n cn. (5.51)

Since0 < 1/ξ2
k ≤ 1/k2, the limit

γ = lim
n→∞

γn = 1−
∞∑

k=1

1

ξ2
k

exists, and so the limitc = lim
n→∞

cn = eγ .

Proof ofcn →
√

2π. Using (5.51) we have

c2n
c2n

=
(n!)2

√
2n(2n)2n

n2n+1(2n)!
=
√

2
22n(n!)2

√
n(2n)!

andlimn→∞
c2n
c2n

= c2

c
= c. Using Wallis’s product formula forπ

π = 2
∞∏

k=1

4k2

4k2 − 1
= lim

n→∞
2

2·2·4·4 · · · ·2n·2n
1·3·3·5 · · · ·(2n− 1)(2n+ 1)

(5.52)
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we have
(

2

n∏

k=1

4k2

4k2 − 1

) 1
2

=
√

2
2·4 · · ·2n

3·5 · · · (2n− 1)
√

2n+ 1
=

1√
n + 1

2

· 22·42 · · · (2n)2

2·3·4 · · · (2n− 1)(2n)

=
1√
n + 1

2

· 2
2n(n!)2

(2n)!
,

such that
√
π = lim

n→∞

22n(n!)2

√
n(2n)!

.

Consequently,c =
√

2π which completes the proof.

Proof of Hölder’s Inequality

Proof of Proposition 5.31. We prove (b). The other two statements are consequences, their
proofs are along the lines in Section 1.3. The main idea is to approximate the integral on the left
by Riemann sums and use Hölder’s inequality (1.22). Letε > 0; without loss of generality, let
f, g ≥ 0. By Proposition 5.10fg, f p, gq ∈ R(α) and by Proposition 5.3 there exist partitions
P1,P2, andP3 of [a, b] such thatU(fg, P1, α)−L(fg, P1, α) < ε,U(f p, P2, α)−L(f p, P2, α) <

ε, andU(gq, P3, α) − L(gq, P3, α) < ε. Let P = {x0, x1, . . . , xn} be the common refinement
of P1, P2, andP3. By Lemma 5.4 (a) and (c)

∫ b

a

fg dα <
n∑

i=1

(fg)(ti)∆αi + ε, (5.53)

n∑

i=1

f(ti)
p∆αi <

∫ b

a

f p dα + ε, (5.54)

n∑

i=1

g(ti)
q∆αi <

∫ b

a

gq dα + ε, (5.55)

for anyti ∈ [xi−1, xi]. Using the two preceding inequalities and Hölder’s inequality (1.22) we
have

n∑

i=1

f(ti)∆α
1
p

i g(ti)∆α
1
q

i ≤
(

n∑

i=1

f(ti)
p∆αi

) 1
p
(

n∑

i=1

g(ti)
q∆αi

) 1
q

<

(∫ b

a

f p dα + ε

) 1
p
(∫ b

a

gq dα + ε

) 1
q

.

By (5.53),

∫ b

a

fg dα <
n∑

i=1

(fg)(ti)∆αi + ε <

(∫ b

a

f p dα + ε

) 1
p
(∫ b

a

gq dα + ε

) 1
q

+ ε.
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Sinceε > 0 was arbitrary, the claim follows.



Chapter 6

Sequences of Functions and Basic
Topology

In the present chapter we draw our attention to complex-valued functions (including the real-
valued), although many of the theorems and proofs which follow extend to vector-valued func-
tions without difficulty and even to mappings into more general spaces. We stay within this
simple framework in order to focus attention on the most important aspects of the problem that
arise whenlimit processes are interchanged.

6.1 Discussion of the Main Problem

Definition 6.1 Suppose(fn), n ∈ N, is a sequence of functions defined on a setE, and suppose
that the sequence of numbers(fn(x)) converges for everyx ∈ E. We can then define a function
f by

f(x) = lim
n→∞

fn(x), x ∈ E. (6.1)

Under these circumstances we say that(fn) convergeson E and f is the limit (or the limit
function) of (fn). Sometimes we say that “(fn) converges pointwiseto f onE” if (6.1) holds.
Similarly, if

∑∞
n=1 fn(x) converges for everyx ∈ E, and if we define

f(x) =

∞∑

n=1

fn(x), x ∈ E, (6.2)

the functionf is called thesumof the series
∑∞

n=1 fn.

The main problem which arises is to determine whether important properties of the functions
fn are preserved under the limit operations (6.1) and (6.2). For instance, if the functionsfn are
continuous, or differentiable, or integrable, is the same true of the limit function? What are the
relations betweenf ′

n andf ′, say, or between the integrals offn and that off? To say thatf is
continuous atx means

lim
t→x

f(t) = f(x).

157
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Hence, to ask whether the limit of a sequence of continuous functions is continuous is the same
as to ask whether

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t) (6.3)

i. e. whether the order in which limit processes are carried out is immaterial. We shall now
show by means of several examples that limit processes cannot in general be interchanged
without affecting the result. Afterwards, we shall prove that under certain conditions the order
in which limit operations are carried out is inessential.

Example 6.1 (a) Our first example, and the simplest one, concerns a “double sequence.” For
positive integersm,n ∈ N let

smn =
m

m+ n
.

Then, for fixedn
lim
m→∞

smn = 1,

so that lim
n→∞

lim
m→∞

smn = 1. On the other hand, for every fixedm,

lim
n→∞

smn = 0,

so that lim
m→∞

lim
n→∞

smn = 0. The two limits cannot be interchanged.

(b) Let fn(x) = xn on [0, 1]. Thenf(x) =

{
0, 0 ≤ x < 1,

1, x = 1.
All functions fn(x) are conti-

nous on[0, 1]; however, the limitf(x) is discontinuous atx = 1; that is lim
x→1−0

lim
n→∞

tn = 0 6=
1 = lim

n→∞
lim
t→1−0

tn. The limits cannot be interchanged.

After these examples, which show what can go wrong if limit processes are interchanged care-
lessly, we now define a new notion of convergence, stronger than pointwise convergence as
defined in Definition 6.1, which will enable us to arrive at positive results.

6.2 Uniform Convergence

6.2.1 Definitions and Example

Definition 6.2 A sequence of functions(fn) convergesuniformlyonE to a functionf if for
everyε > 0 there is a positive integern0 such thatn ≥ n0 implies

| fn(x)− f(x) | ≤ ε (6.4)

for all x ∈ E. We writefn ⇉ f onE.

As a formula,fn ⇉ f onE if

∀ ε > 0 ∃n0 ∈ N ∀n ≥ n0 ∀x ∈ E : | fn(x)− f(x) | ≤ ε.
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f(x)

f(x) + 

f(x) −

ε

ε

a b

Uniform convergence offn to f on [a, b] means
thatfn is in theε-tube off for sufficiently large
n

It is clear that every uniformly convergent sequence is pointwise convergent (to the same func-
tion). Quite explicitly, the difference between the two concepts is this: If(fn) converges point-
wise onE to a functionf , for everyε > 0 and for everyx ∈ E, there exists an integern0

depending on bothε andx ∈ E such that (6.4) holds ifn ≥ n0. If (fn) converges uniformly on
E it is possible, for eachε > 0 to find oneintegern0 which will do for all x ∈ E.
We say that the series

∑∞
k=1 fk(x) convergesuniformlyonE if the sequence(sn(x)) of partial

sums defined by

sn(x) =

n∑

k=1

fk(x)

converges uniformly onE.

Proposition 6.1 (Cauchy criterion) (a)The sequence of functions(fn) defined onE converges
uniformly onE if and only if for everyε > 0 there is an integern0 such thatn,m ≥ n0 and
x ∈ E imply

| fn(x)− fm(x) | ≤ ε. (6.5)

(b) The series of functions
∞∑

k=1

gk(x) defined onE converges uniformly onE if and only if for

everyε > 0 there is an integern0 such thatn,m ≥ n0 andx ∈ E imply
∣∣∣∣∣

n∑

k=m

gk(x)

∣∣∣∣∣ ≤ ε.

Proof. Suppose(fn) converges uniformly onE and letf be the limit function. Then there is an
integern0 such thatn ≥ n0, x ∈ E implies

| fn(x)− f(x) | ≤ ε

2
,

so that
| fn(x)− fm(x) | ≤ | fn(x)− f(x) |+ | fm(x)− f(x) | ≤ ε

if m,n ≥ n0, x ∈ E.
Conversely, suppose the Cauchy condition holds. By Proposition 2.18, the sequence(fn(x))
converges for everyx to a limit which may we callf(x). Thus the sequence(fn) converges
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pointwise onE to f . We have to prove that the convergence is uniform. Letε > 0 be given,
choosen0 such that (6.5) holds. Fixn and letm → ∞ in (6.5). Sincefm(x) → f(x) as
m→∞ this gives

| fn(x)− f(x) | ≤ ε

for everyn ≥ n0 andx ∈ E.
(b) immediately follows from (a) withfn(x) =

∑n
k=1 gk(x).

Remark 6.1 Suppose

lim
n→∞

fn(x) = f(x), x ∈ E.

Put

Mn = sup
x∈E
| fn(x)− f(x) | .

Thenfn ⇉ f uniformly onE if and only ifMn → 0 asn→∞. (prove!)

The following comparison test of a function series with a numerical series gives a sufficient
criterion for uniform convergence.

Theorem 6.2 (Weierstraß) Suppose(fn) is a sequence of functions defined onE, and suppose

| fn(x) | ≤ Mn, x ∈ E, n ∈ N. (6.6)

Then
∑∞

n=1 fn converges uniformly onE if
∑∞

n=1Mn converges.

Proof. If
∑
Mn converges, then, for arbitraryε > 0 there existsn0 such thatm,n ≥ n0 implies∑n

i=mMi ≤ ε. Hence,

∣∣∣∣∣
n∑

i=m

fi(x)

∣∣∣∣∣ ≤tr.In.

n∑

i=m

| fi(x) | ≤
(6.6)

n∑

i=m

Mi ≤ ε, ∀x ∈ E.

Uniform convergence now follows from Proposition 6.1.

Proposition 6.3 ( Comparison Test)If
∑∞

n=1 gn(x) converges uniformly onE and| fn(x) | ≤
gn(x) for all sufficiently largen and allx ∈ E then

∑∞
n=1 fn(x) converges uniformly onE.

Proof. Apply the Cauchy criterion. Note that

∣∣∣∣∣
m∑

n=k

fn(x)

∣∣∣∣∣ ≤
m∑

n=k

| fn(x) | ≤
m∑

n=k

gn(x) < ε.
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Application of Weierstraß’ Theorem to Power Series and Fourier Series

Proposition 6.4 Let

∞∑

n=0

anz
n, an ∈ C, (6.7)

be a power series with radius of convergenceR > 0.
Then(6.7)converges uniformly on the closed disc{z | | z | ≤ r} for everyr with 0 ≤ r < R.

Proof. We apply Weierstraß’ theorem tofn(z) = anz
n. Note that

| fn(z) | = | an | | z |n ≤ | an | rn.

Sincer < R, r belongs to the disc of convergence, the series
∑∞

n=0 | an | rn converges by Theo-
rem 2.34. By Theorem 6.2, the series

∑∞
n=0 anz

n converges uniformly on{z | | z | ≤ r}.

Remark 6.2 (a) The power series
∞∑

n=0

nanz
n−1

has the same radius of convergenceR as the series (6.7) and hence also converges uniformly on
the closed disc{z | | z | ≤ r}.
Indeed, this simply follows from the fact that

lim
n→∞

n
√

(n+ 1) | an+1 | = lim
n→∞

n
√
n+ 1 lim

n→∞
n
√
| an | =

1

R
.

(b) Note that the power series in general doesnot converge uniformly on the whole open disc
of convergence| z | < R. As an example, consider the geometric series

f(z) =
1

1− z =
∞∑

k=0

zk, | z | < 1.

Note that the condition

∃ ε0 > 0 ∀n ∈ N ∃xn ∈ E : | fn(xn)− f(xn) | ≥ ε0

implies that(fn) does notconverge uniformly tof onE. Prove!
To ε = 1 and everyn ∈ N choosezn = n

n+1
and we obtain, using Bernoulli’s inequality,

znn =

(
1− 1

n+ 1

)n
≥ 1− n 1

n+ 1
= 1− zn, hence

znn
1− zn

≥ 1. (6.8)

so that

| sn−1(zn)− f(zn) | =
∣∣∣∣∣
n−1∑

k=0

zkn −
1

1− zn

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n

zkn

∣∣∣∣∣ =
znn

1− zn
≥

(6.8)
1.

The geometric series doesn’t converge uniformly on the whole open unit disc.
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Example 6.2 (a) A series of the form
∞∑

n=0

an cos(nx) +

∞∑

n=1

bn sin(nx), an, bn, x ∈ R, (6.9)

is called aFourier series(see Section 6.3 below). If both
∑∞

n=0 | an | and
∑∞

n=0 | bn | converge
then the series (6.9) converges uniformly onR to a functionF (x).
Indeed, since| an cos(nx) | ≤ | an | and| bn sin(nx) | ≤ | bn |, by Theorem 6.2, the series (6.9)
converges uniformly onR.

(b) Letf : R→ R be the sum of the Fourier series

f(x) =
∞∑

n=1

sinnx

n
(6.10)

Note that (a) does not apply since
∑

n | bn | =
∑

n
1
n

diverges.
If f(x) exists, so doesf(x+2π) = f(x), andf(0) = 0. We will show that the series converges
uniformly on [δ, 2π − δ] for everyδ > 0. For, put

sn(x) =
n∑

k=1

sin kx = Im

(
n∑

k=1

eikx

)
.

If δ ≤ x ≤ 2π − δ we have

| sn(x) | ≤
∣∣∣∣∣

n∑

k=1

eikx

∣∣∣∣∣ =

∣∣∣∣
ei(n+1)x − eix

eix − 1

∣∣∣∣ ≤
2

| eix/2 − e−ix/2 | =
1

sin x
2

≤ 1

sin δ
2

.

Note that| Im z | ≤ | z | and
∣∣ eix

∣∣ = 1. Sincesin x
2
≥ sin δ

2
for δ/2 ≤ x/2 ≤ π − δ/2 we have

for 0 < m < n
∣∣∣∣∣

n∑

k=m

sin kx

k

∣∣∣∣∣ =
∣∣∣∣∣

n∑

k=m

sk(x)− sk−1(x)

k

∣∣∣∣∣

=

∣∣∣∣∣
n∑

k=m

sk(x)

(
1

k
− 1

k + 1

)
+
sn(x)

n + 1
− sm−1(x)

m

∣∣∣∣∣

≤ 1

sin δ
2

(∣∣∣∣∣
n∑

k=m

(
1

k
− 1

k + 1

)
+

1

n+ 1

∣∣∣∣∣ +
∣∣∣∣

1

m

∣∣∣∣

)

≤ 1

sin δ
2

(
1

m
− 1

n+ 1
+

1

n + 1
+

1

m

)
≤ 2

m sin δ
2

The right side becomes arbitraryly small asm → ∞. Using Proposition 6.1 (b) uniform con-
vergence of (6.10) on[δ, 2π − δ] follows.

6.2.2 Uniform Convergence and Continuity

Theorem 6.5 LetE ⊂ R be a subset andfn : E → R, n ∈ N, be a sequence of continuous
functions onE uniformly converging to some functionf : E → R.
Thenf is continuous onE.
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Proof. Let a ∈ E andε > 0 be given. Sincefn ⇉ f there is anr ∈ N such that

| fr(x)− f(x) | ≤ ε/3 for all x ∈ E.

Sincefr is continuous ata, there existsδ > 0 such that|x− a | < δ implies

| fr(x)− f(a) | ≤ ε/3.

Hence|x− a | < δ implies

| f(x)− f(a) | ≤ | f(x)− fr(x) |+ | fr(x)− fr(a) |+ | fr(a)− f(a) | ≤ ε

3
+
ε

3
+
ε

3
= ε.

This proves the assertion.

The same is true for functionsf : E → C whereE ⊂ C.

Example 6.3 (Example 6.2 continued)(a) A power series defines a continuous functions on
the disc of convergence{z | | z | < R}.
Indeed, let| z0 | < R. Then there existsr ∈ R such that| z0 | < r < R. By Proposition 6.4,∑

n anx
n converges uniformly on{x | |x | ≤ r}. By Theorem 6.5, the function, defined by the

sum of the power series is continuous on[−r, r].
(b) The sum of the Fourier series (6.9) is a continuous function onR if both

∑
n | an | and∑

n | bn | converge.
(c) The sum of the Fourier seriesf(x) =

∑
n

sin(nx)
n

is continuous on[δ, 2π − δ] for all δ with
0 < δ < π by the above theorem. Clearly,f is 2π-periodic since all partial sums are.

−π/2

π 2π
. . .

π/2
f(x)

Later (see the section on Fourier series) we will show that

f(x) =

{
0, x = 0,
π−x

2
, x ∈ (0, 2π),

Sincef is discontinuous atx0 = 2πn, the Fourier series
does not converge uniformly onR.

Also, Example 6.1 (b) shows that the continuity of thefn(x) = xn alone is not sufficient for
the continuity of the limit function. On the other hand, the sequence of continuous functions
(xn) on(0, 1) converges to the continuous function0. However, the convergence is not uniform.
Prove!

6.2.3 Uniform Convergence and Integration

Example 6.4 Let fn(x) = 2n2xe−n
2x2

; clearly limn→∞ fn(x) = 0 for all x ∈ R. Further

∫ 1

0

fn(x) dx = −e−n
2x2
∣∣∣
1

0
=
(
1− e−n

2
)
−→ 1.
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On the other hand
∫ 1

0
limn→∞ fn(x) dx =

∫ 1

0
0 dx = 0. Thus,limn→∞ and integration cannot

be interchanged. The reason,(fn) converges pointwise to0 but not uniformly. Indeed,

fn

(
1

n

)
=

2n2

n
e−1 =

2n

e
−→
n→∞

+∞.

Theorem 6.6 Let α be an increasing function on[a, b]. Supposefn ∈ R(α) on [a, b] for all
n ∈ N and supposefn → f uniformly on[a, b]. Thenf ∈ R(α) on [a, b] and

∫ b

a

f dα = lim
n→∞

∫ b

a

fn dα. (6.11)

Proof. Put
εn = sup

x∈[a,b]

| fn(x)− f(x) | .

Then
fn − εn ≤ f ≤ fn + εn,

so that the upper and the lower integrals off satisfy

∫ b

a

(fn − εn) dα ≤
∫ b

a

f dα ≤
∫ b

a

f dα ≤
∫ b

a

(fn + εn) dα. (6.12)

Hence,

0 ≤
∫
f dα−

∫
f dα ≤ 2εn(α(b)− α(a)).

Sinceεn → 0 asn → ∞ (Remark 6.1), the upper and the lower integrals off are equal. Thus
f ∈ R(α). Another application of (6.12) yields

∫ b

a

(fn − εn) dα ≤
∫ b

a

f dα ≤
∫ b

a

(fn + εn) dα

∣∣∣∣
∫ b

a

f dα−
∫ b

a

fn dα

∣∣∣∣ ≤ εn((α(b)− α(a)).

This implies (6.11).

Corollary 6.7 If fn ∈ R(α) on [a, b] and if the series

f(x) =
∞∑

n=1

fn(x), a ≤ x ≤ b

converges uniformly on[a, b], then

∫ b

a

( ∞∑

n=1

fn

)
dα =

∞∑

n=1

(∫ b

a

fn dα

)
.

In other words, the series may be integrated term by term.
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Corollary 6.8 Let fn : [a, b]→ R be a sequence of continuous functions uniformly converging
on [a, b] to f . Letx0 ∈ [a, b].
Then the sequenceFn(x) =

∫ x
x0
fn(t) dt converges uniformly toF (x) =

∫ x
x0
f(t) dt.

Proof. The pointwise convergence ofFn follows from the above theorem withα(t) = t anda
andb replaced byx0 andx.
We show uniform convergence: Letε > 0. Sincefn ⇉ f on [a, b], there existsn0 ∈ N such
thatn ≥ n0 implies | fn(t)− f(t) | ≤ ε

b−a for all t ∈ [a, b]. Forn ≥ n0 and allx ∈ [a, b] we
thus have

|Fn(x)− F (x) | =
∣∣∣∣
∫ x

x0

(fn(t)− f(t)) dt

∣∣∣∣ ≤
∫ x

x0

| fn(t)− f(t) | dt ≤ ε

b− a (b− a) = ε.

Hence,Fn ⇉ F on [a, b].

Example 6.5 (a) For every realt ∈ (−1, 1) we have

log(1 + t) = t− t2

2
+
t3

3
∓ · · · =

∞∑

n=1

(−1)n−1

n
tn. (6.13)

Proof. In Homework 13.5 (a) there was computed the Taylor series

T (x) =

∞∑

n=1

(−1)n−1

n
xn

of log(1 + x) and it was shown thatT (x) = log(1 + x) if x ∈ (0, 1).

By Proposition 6.4 the geometric series
∞∑

n=0

(−1)nxn converges uniformly to the function1
1+x

on [−r, r] for all 0 < r < 1. By Corollary 6.7 we have for allt ∈ [−r, r]

log(1 + t) = log(1 + x)|t0 =

∫ t

0

dx

1 + x
=

∫ t

0

∞∑

n=0

(−1)nxn dx

=
Cor 6.7

∞∑

n=0

∫ t

0

(−1)nxn dx =

∞∑

n=0

(−1)n

n + 1
xn+1

∣∣∣∣
t

0

=

∞∑

n=1

(−1)n−1

n
tn

(b) For| t | < 1 we have

arctan t = t− t3

3
+
t5

5
∓ · · · =

∞∑

n=0

(−1)n
t2n+1

2n+ 1
(6.14)

As in the previous example we use the uniform convergence of the geometric series on[−r, r]
for every0 < r < 1 that allows to exchange integration and summation

arctan t =

∫ t

0

dx

1 + x2
=

∫ t

0

∞∑

n=0

(−1)nx2n dx =
∞∑

n=0

(−1)n
∫ t

0

x2n dx =
∞∑

n=0

(−1)n

2n+ 1
t2n+1.



166 6 Sequences of Functions and Basic Topology

Note that you are, in general, not allowed to insertt = 1 into the equations (6.13) and (6.14).
However, the following proposition (the proof is in the appendix to this chapter) fills this gap.

Proposition 6.9 (Abel’s Limit Theorem) Let
∑∞

n=0 an a convergent series of real numbers.
Then the power series

f(x) =

∞∑

n=0

anx
n

converges forx ∈ [0, 1] and is continuous on[0, 1].

As a consequence of the above proposition we have

log 2 = 1− 1

2
+

1

3
− 1

4
± · · · =

∞∑

n=0

(−1)n−1

n
,

π

4
= 1− 1

3
+

1

5
− 1

7
± · · · =

∞∑

n=0

(−1)n

2n+ 1
.

Example 6.6 We havefn(x) =
1

n
e−

x
n ⇉ f(x) ≡ 0 on [0,+∞). Indeed,| fn(x)− 0 | ≤ 1

n
< ε

if n ≥ 1
ε

and for allx ∈ R+. However,

∫ ∞

0

fn(t) dt = −e−
t
n

∣∣∣
+∞

0
= lim

t→+∞

(
1− e−

t
n

)
= 1.

Hence

lim
n→∞

∫ ∞

0

fn(t) dt = 1 6= 0 =

∫ ∞

0

f(t) dt.

That is, Theorem 6.6 fails in case of improper integrals.

6.2.4 Uniform Convergence and Differentiation

Example 6.7 Let

fn(x) =
sin(nx)√

n
, x ∈ R, n ∈ N, (6.15)

f(x) = lim
n→∞

fn(x) = 0. Thenf ′(x) = 0, and

f ′
n(x) =

√
n cos(nx),

so that(f ′
n) does not converge tof ′. For instancef ′

n(0) =
√
n −→
n→∞

+∞ asn → ∞, whereas

f ′(0) = 0. Note that(fn) converges uniformly to0 onR since| sin(nx)/
√
n | ≤ 1/

√
n becomes

small, independently onx ∈ R.
Consequently, uniform convergence of(fn) implies nothing about the sequence(f ′

n). Thus,
stronger hypothesis are required for the assertion thatfn → f impliesf ′

n → f ′
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Theorem 6.10 Suppose(fn) is a sequence of continuously differentiable functions on[a, b]

pointwise converging to some functionf . Suppose further that(f ′
n) converges uniformly on

[a, b].
Thenfn converges uniformly tof on [a, b], f is continuously differentiable and on[a, b], and

f ′(x) = lim
n→∞

f ′
n(x), a ≤ x ≤ b. (6.16)

Proof. Putg(x) = limn→∞ f ′
n(x), theng is continuous by Theorem 6.5. By the Fundamental

Theorem of Calculus, Theorem 5.14,

fn(x) = fn(a) +

∫ x

a

f ′
n(t) dt.

By assumption on(f ′
n) and by Corollary 6.8 the sequence

(∫ x

a

f ′
n(t) dt

)

n∈N
converges uniformly on[a, b] to

∫ x
a
g(t) dt. Taking the limitn → ∞ in the above equation, we

thus obtain

f(x) = f(a) +

∫ x

a

g(t) dt.

Since g is continuous, the right hand side defines a differentiable function, namely the
antiderivative ofg(x), by the FTC. Hence,f ′(x) = g(x); sinceg is continuous the proof is now
complete.

For a more general result (without the additional assumption of continuity off ′
n) see [Rud76,

7.17 Theorem].

Corollary 6.11 Letf(x) =
∑∞

n=0 anx
n be a power series with radius of convergenceR.

(a)Thenf is differentiable on(−R,R) and we have

f ′(x) =
∞∑

n=1

nanx
n−1, x ∈ (−R,R). (6.17)

(b) The functionf is infinitely often differentiable on(−R,R) and we have

f (k)(x) =

∞∑

n=k

n(n− 1) · · · (n− k + 1)anx
n−k, (6.18)

an =
1

n!
f (n)(0), n ∈ N0. (6.19)

In particular, f coincides with its Taylor series.

Proof. (a) By Remark 6.2 (a), the power series
∑∞

n=0(anx
n)′ has the same radius of convergence

and converges uniformly on every closed subinterval[−r, r] of (−R,R). By Theorem 6.10,
f(x) is differentiable and differentiation and summation can beinterchanged.
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(b) Iterated application of (a) yields thatf (k−1) is differentiable on(−R,R) with (6.18). In
particular, insertingx = 0 into (6.18) we find

f (k)(0) = k!ak, =⇒ ak =
f (k)(0)

k!
.

These are exactly the Taylor coefficients off hat a = 0. Hence,f coincides with its Taylor
series.

Example 6.8 Forx ∈ (−1, 1) we have

∞∑

n=1

nxn =
x

(1− x)2
.

Since the geometric seriesf(x) =
∑∞

n=0 x
n equals1/(1− x) on (−1, 1) by Corollary 6.11 we

have
1

(1− x)2
=

d

dx

(
1

1− x

)
=

d

dx

( ∞∑

n=0

xn

)
=

∞∑

n=1

d

dx
(xn) =

∞∑

n=1

nxn−1.

Multiplying the preceding equation byx gives the result.

6.3 Fourier Series

In this section we consider basic notions and results of the theory of Fourier series. The question
is to write a periodic function as a series ofcos kx andsin kx, k ∈ N. In contrast to Taylor
expansions the periodic function need not to be infinitely often differentiable. Two Fourier
series may have the same behavior in one interval, but may behave in different ways in some
other interval. We have here a very striking contrast between Fourier series and power series.
In this section aperiodic function is meant to be a2π-periodic complex valued function onR,
that isf : R→ C satisfiesf(x+ 2π) = f(x) for all x ∈ R. Special periodic functions are the
trigonometric polynomials.

Definition 6.3 A functionf : R→ R is calledtrigonometric polynomialif there are real num-
bersak, bk, k = 0, . . . , n with

f(x) =
a0

2
+

n∑

k=1

ak cos kx+ bk sin kx. (6.20)

The coefficientsak andbk are uniquely determined byf since

ak =
1

π

∫ 2π

0

f(x) cos kx dx, k = 0, 1, . . . , n,

bk =
1

π

∫ 2π

0

f(x) sin kx dx, k = 1, . . . , n.

(6.21)
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This is immediate from
∫ 2π

0

cos kx sinmx dx = 0,

∫ 2π

0

cos kx cosmx dx = πδkm,

∫ 2π

0

sin kx sinmx dx = πδkm,

k,m ∈ N, (6.22)

whereδkm = 1 if k = m and δkm = 0 if k 6= m is the so calledKronecker symbol, see
Homework 19.2. For example, ifm ≥ 1 we have

1

π

∫ 2π

0

f(x) cosmx dx =
1

π

∫ 2π

0

(
a0

2
+

n∑

k=1

ak cos kx+ bk sin kx

)
cosmx dx

=
1

π

(
n∑

k=1

∫ 2π

0

(ak cos kx cosmx+ bk sin kx cosmx) dx

)

=
1

π

(
n∑

k=1

akπδkm

)
= am.

Sometimes it is useful to consider complex trigonometric polynomials. Using the formulas
expressingcos x andsin x in terms ofeix ande−ix we can write the above polynomial (6.20) as

f(x) =

n∑

k=−n
cke

ikx, (6.23)

wherec0 = a0/2 and

ck =
1

2
(ak − ibk) , c−k =

1

2
(ak + ibk) , k ≥ 1.

To obtain the coefficientsck using integration we need the notion of an integral of a complex-
valued function, see Section 5.5. Ifm 6= 0 we have

∫ b

a

eimx dx =
1

im
eimx

∣∣∣∣
b

a

.

If a = 0 andb = 2π andm ∈ Z we obtain

∫ 2π

0

eimx dx =

{
0, m ∈ Z \ {0},
2π, m = 0.

(6.24)

We conclude,

ck =
1

2π

∫ 2π

0

f(x) e−ikx dx, k = 0,±1, . . . ,±n.
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Definition 6.4 Let f : R→ C be a periodic function withf ∈ R on [0, 2π]. We call

ck =
1

2π

∫ 2π

0

f(x)e−ikx dx, k ∈ Z (6.25)

theFourier coefficientsof f , and the series

∞∑

k=−∞
cke

ikx, (6.26)

i. e. the sequence of partial sums

sn =
n∑

k=−n
cke

ikx, n ∈ N,
theFourier seriesof f .

The Fourier series can also be written as

a0

2
+

∞∑

k=1

ak cos kx+ bk sin kx. (6.27)

whereak and bk are given by (6.21). One can ask whether the Fourier series ofa function
converges to the function itself. It is easy to see: If the functionf is theuniformlimit of a series
of trigonometric polynomials

f(x) =
∞∑

k=−∞
γke

ikx (6.28)

thenf coincides with its Fourier series. Indeed, since the series(6.28) converges uniformly, by
Proposition 6.6 we can change the order of summation and integration and obtain

ck =
1

2π

∫ 2π

0

( ∞∑

m=−∞
γmeimx

)
e−ikx dx

=
1

2π

∞∑

m=−∞

∫ 2π

0

γmei(m−k)x dx = γk.

In general, the Fourier series off neither converges uniformly nor pointwise tof . For Fourier
series convergence with respect to theL2-norm

‖f‖2 =

(
1

2π

∫ 2π

0

| f |2 dx

) 1
2

(6.29)

is the appropriate notion.
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6.3.1 An Inner Product on the Periodic Functions

Let V be the linear space of periodic functionsf : R → C, f ∈ R on [0, 2π]. We introduce an
inner product onV by

f·g =
1

2π

∫ 2π

0

f(x) g(x) dx, f, g ∈ V.

One easily checks the following properties forf, g, h ∈ V , λ, µ ∈ C.

f + g·h = f·h+ g·h,
f·g + h = f·g + f·h,
λf·µg = λµ f·g,
f·g = g·f.

For everyf ∈ V we havef·f = 1/(2π)
∫ 2π

0
| f |2 dx ≥ 0. However,f·f = 0 does not imply

f = 0 (you can changef at finitely many points without any impact onf·f ). If f ∈ V is
continuous, thenf·f = 0 impliesf = 0, see Homework 14.3. Put‖f‖2 =

√
f·f .

Note that in the physical literature the inner product inL2(X) is oftenlinear in the second com-
ponent and antilinear in the first component. Define fork ∈ Z the periodic functionek : R→ C
by ek(x) = eikx, the Fourier coefficients off ∈ V take the form

ck = f·ek, k ∈ Z.
From (6.24) it follows that the functionsek, k ∈ Z, satisfy

ek·el = δkl. (6.30)

Any such subset{ek | k ∈ N} of an inner product spaceV satisfying (6.30) is called an
orthonormal system (ONS). Using ek(x) = cos kx + i sin kx the real orthogonality relations
(6.22) immediately follow from (6.30).
The next lemma shows that the Fourier series off is the bestL2-approximation of a periodic
functionf ∈ V by trigonometric polynomials.

Lemma 6.12 (Least Square Approximation)Supposef ∈ V has the Fourier coefficientsck,
k ∈ Z and letγk ∈ C be arbitrary. Then

∥∥∥∥∥f −
n∑

k=−n
ckek

∥∥∥∥∥

2

2

≤
∥∥∥∥∥f −

n∑

k=−n
γkek

∥∥∥∥∥

2

2

, (6.31)

and equality holds if and only ifck = γk for all k. Further,
∥∥∥∥∥f −

n∑

k=−n
ckek

∥∥∥∥∥

2

2

= ‖f‖22 −
n∑

k=−n
| ck |2 . (6.32)
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Proof. Let
∑

always denote
n∑

k=−n
. Putgn =

∑
γkek. Then

f·gn = f·∑ γk ek =
∑
γkf·ek =

∑
ckγk

andgn·ek = γk such that

gn·gn =
∑
| γk |2 .

Noting that| a− b |2 = (a− b)(a− b) = | a |2 + | b |2 − ab− ab, it follows that

‖f − gn‖22 = f − gn·f − gn = f·f − f·gn − gn·f + gn·gn
= ‖f‖22 −

∑
ckγk −

∑
ckγk +

∑
| γk |2

= ‖f‖22 −
∑
| ck |2 +

∑
| γk − ck |2 (6.33)

which is evidently minimized if and only ifγk = ck. Inserting this into (6.33), equation (6.32)
follows.

Corollary 6.13 (Bessel’s Inequality) Under the assumptions of the above lemma we have

∞∑

k=−∞
| ck |2 ≤ ‖f‖22 . (6.34)

Proof. By equation (6.32), for everyn ∈ N we have

n∑

k=−n
| ck |2 ≤ ‖f‖22 .

Taking the limitn→∞ or supn∈N shows the assertion.

An ONS{ek | k ∈ Z} is said to becompleteif instead of Bessel’s inequality, equality holds for
all f ∈ V .

Definition 6.5 Let fn, f ∈ V , we say that(fn) converges tof in L2 (denoted byfn −→
‖·‖2

f ) if

lim
n→∞

‖fn − f‖2 = 0.

Explicitly

∫ 2π

0

| fn(x)− f(x) |2 dx −→
n→∞

0.
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Remarks 6.3 (a) Note that theL2-limit in V is not unique; changingf(x) at finitely many
points of[0, 2π] does not change the integral

∫ 2π

0
| f − fn |2 dx.

(b) If fn ⇉ f onR thenfn −→
‖·‖2

f . Indeed, letε > 0. Then there existsn0 ∈ N such that

n ≥ n0 impliessupx∈R | fn(x)− f(x) | ≤ ε. Hence
∫ 2π

0

| fn − f |2 dx ≤
∫ 2π

0

ε2 dx = 2πε2.

This showsfn − f −→
‖·‖2

0.

(c) The above Lemma, in particular (6.32), shows that the Fourier series converges inL2 to f if
and only if

‖f‖22 =

∞∑

k=−∞
| ck |2 . (6.35)

This is calledParseval’s Completeness Relation. We will see that it holds for allf ∈ V .

Let use write

f(x) ∼
∞∑

k=−∞
cke

ikx

to express the fact that(ck) are the (complex) Fourier coefficients off . Further

sn(f) = sn(f ; x) =

n∑

k=−n
cke

ikx (6.36)

denotes thenth partial sum.

Theorem 6.14 (Parseval’s Completeness Theorem)The ONS{ek | k ∈ Z} is complete.
More precisely, iff, g ∈ V with

f ∼
∞∑

k=−∞
ckek, g ∼

∞∑

k=−∞
γkek,

then

(i) lim
n→∞

1

2π

∫ 2π

0

| f − sn(f) |2 dx = 0, (6.37)

(ii)
1

2π

∫ 2π

0

f g dx =

∞∑

k=−∞
ck γk, (6.38)

(iii)
1

2π

∫ 2π

0

| f |2 dx =
∞∑

k=−∞
| ck |2 =

a2
0

4
+

1

2

∞∑

k=1

(a2
k + b2k) Parseval’s formula.

(6.39)

The proof is in Rudin’s book, [Rud76, 8.16, p.191]. It uses Stone–Weierstraß theorem about
the uniform approximation of a continuoous function by polynomials. An elementary proof is
in Forster’s book [For01,§23].
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Example 6.9 (a) Consider the periodic functionf ∈ V given by

f(x) =

{
1, 0 ≤ x < π

−1, π ≤ x < 2π.

Sincef is an odd function the coefficientsak vanish. We compute the Fourier coefficientsbk.

bk =
2

π

∫ π

0

sin kx dx = − 2

kπ
− cos kx

∣∣∣∣
π

0

=
2

kπ

(
(−1)k+1 + 1

)
=

{
0, if k is even,
4
kπ
, if k is odd..

The Fourier series off reads

f ∼ 4

π

∞∑

n=0

sin(2n+ 1)x

2n+ 1
.

Noting that
∑

k∈Z | ck |2 =
a2

0

4
+

1

2

∑

n∈N(a2
n + b2n)

Parseval’s formula gives

‖f‖22 =
1

2π

∫ 2π

0

dx = 1 =
1

2

∑

n∈N b2n =
8

π2

∞∑

n=0

1

(2n+ 1)2
=:

8

π2
s1 =⇒ s1 =

π2

8
.

Now we can computes =
∑∞

n=1
1
n2 . Since this series converges absolutely we are allowed to

rearrange the elements in such a way that we first add all the odd terms, which givess1 and then
all the even terms which givess0. Usings1 = π2/8 we find

s = s1 + s0 = s1 +
1

22
+

1

42
+

1

62
+ · · ·

s = s0 +
1

22

(
1

12
+

1

22
+ · · ·

)
= s1 +

s

4

s =
4

3
s1 =

π2

6
.

(b) Fix a ∈ [0, 2π] and considerf ∈ V with

f(x) =

{
1, 0 ≤ x ≤ a,

0, a < x < 2π

The Fourier coefficients off arec0 =
1

2π

∫ a

0

dx =
a

2π
and

ck = f·ek =
1

2π

∫ a

0

e−ikx dx =
i

2πk

(
e−ika − 1

)
, k 6= 0.

If k 6= 0,

| ck |2 =
1

4π2k2

(
1− eika

) (
1− e−ika

)
=

1− cos ka

2π2k2
,
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hence Parseval’s formula gives

∞∑

k=−∞
| ck |2 =

a2

4π2
+

∞∑

k=1

1− cos ak

π2k2

=
a2

4π2
+

1

π2

∞∑

k=1

1

k2
− 1

π2

∞∑

k=1

cos ak

k2

=
a2

4π2
+

1

π2

(
s−

∞∑

k=1

cos ak

k2

)
,

wheres =
∑

1/k2. On the other hand

‖f‖22 =
1

2π

∫ a

0

dx =
a

2π
.

Hence, (6.37) reads

a2

4π2
+

1

π2

(
s−

∞∑

k=1

cos ka

k2

)
=

a

2π

∞∑

k=1

cos ka

k2
=
a2

4
− aπ

2
+
π2

6
=

(a− π)2

4
− π2

12
. (6.40)

Since the series

∞∑

k=1

cos kx

k2
(6.41)

converges uniformly onR (use Theorem 6.2 and
∑

k 1/k2 is an upper bound) (6.41) is the
Fourier series of the function

(x− π)2

4
− π2

12
, x ∈ [0, 2π]

and the Fourier series converges uniformly onR to the above function. Since the term by term
differentiated series converges uniformly on[δ, 2π − δ], see Example 6.2, we obtain

−
∞∑

k=1

sin kx

k
=

∞∑

k=1

(
cos kx

k2

)′
=

(
(x− π)2

4
− π2

12

)′
=
x− π

2

which is true forx ∈ (0, 2π).
We can also integrate the Fourier series and obtain by Corollary 6.7

∫ x

0

∞∑

k=1

cos kt

k2
dt =

∞∑

k=1

1

k2

∫ x

0

cos kt dt =
∞∑

k=1

1

k3
sin kt

∣∣∣∣
x

0

=
∞∑

k=1

sin kx

k3
.
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On the other hand,
∫ x

0

(
(t− π)2

4
− π2

12

)
dt =

(x− π)3

12
− π2

12
x+

π3

12
.

By homework 19.5

f(x) =

∞∑

k=1

sin kx

k3
=

(x− π)3

12
− π2

12
x+

π3

12

defines a continuously differentiable periodic function onR.

π 2π 3π 4π

π 2π 3π 4π

Theorem 6.15 Let f : R → R be a continu-
ous periodic function which is piecewise con-
tinuously differentiable, i. e. there exists a par-
tition {t0, . . . , tr} of [0, 2π] such thatf |[ti−1, ti]

is continuously differentiable.
Then the Fourier series off converges uni-
formly tof .

Proof. Let ϕi : [ti−1, ti] → R denote the continuous derivative off |[ti−1, ti] andϕ : R → R
the periodic function that coincides withϕi on [ti−1, ti]. By Bessel’s inequality, the Fourier
coefficientsγk of ϕ satisfy

∞∑

k=−∞
| γk |2 ≤ ‖ϕ‖22 <∞.

If k 6= 0 the Fourier coefficientsck of f can be found using integration by parts from the Fourier
coefficients ofγk.

∫ ti

ti−1

f(x)e−ikx dx =
i

k

(
f(x)e−ikx

∣∣ti
ti−1
−
∫ ti

ti−1

ϕ(x)e−ikx dx

)
.

Hence summation overi = 1, . . . , r yields,

ck =
1

2π

∫ 2π

0

f(x)e−ikx dx =
1

2π

r∑

i=1

∫ ti

ti−1

f(x)e−ikx dx

ck =
−i

2πk

∫ 2π

0

ϕ(x)e−ikx dx =
−iγk
k

.

Note that the term
r∑

i=1

f(x)e−ikx

∣∣∣∣∣

ti

ti−1

vanishes sincef is continuous andf(2π) = f(0). Since forα, β ∈ C we have|αβ | ≤
1
2
(|α |2 + |β |2), we obtain

| ck | ≤
1

2

(
1

| k |2
+ | γk |2

)
.
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Since both
∞∑

k=1

1

k2
and

∞∑

k=−∞
| γk |2 converge,

∞∑

k=−∞
| ck | <∞.

Thus, the Fourier series converges uniformly to a continuous functiong (see Theorem 6.5).
Since the Fourier series converges both tof and tog in theL2 norm,‖f − g‖2 = 0. Since both
f andg are continuous, they coincide. This completes the proof.

Note that for anyf ∈ V , the series
∑

k∈Z | ck |2 converges while the series
∑

k∈Z | ck |
converges only if the Fourier series converges uniformly tof .

6.4 Basic Topology

In the study of functions of several variables we need some topological notions like neighbor-
hood, open set, closed set, and compactness.

6.4.1 Finite, Countable, and Uncountable Sets

Definition 6.6 If there exists a1-1 mapping of the setA onto the theB (a bijection), we say
thatA andB have the samecardinalityor thatA andB areequivalent; we writeA ∼ B.

Definition 6.7 For any nonnegative integern ∈ N0 letNn be the set{1, 2, . . . , n}. For any set
A we say that:

(a)A is finite if A ∼ Nn for somen. The empty set∅ is also considered to be
finite.
(b)A is infinite if A is not finite.
(c)A is countableif A ∼ N.
(d)A is uncountableif A is neither finite nor countable.
(e)A is at most countableif A is finite or countable.

For finite setsA andB we evidently haveA ∼ B if A andB have the same number of elements.
For infinite sets, however, the idea of “having the same number of elements” becomes quite
vague, whereas the notion of1-1 correspondence retains its clarity.

Example 6.10 (a)Z is countable. Indeed, the arrangement

0, 1,−1, 2,−2, 3,−3, . . .

gives a bijection betweenN andZ. An infinite setZ can be equivalent to one of its proper
subsetsN .
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(b) Countable sets represent the “smallest” infinite cardinality: No uncountable set can be a
subset of a countable set. Any countable set can be arranged in a sequence. In particular,Q is
contable, see Example 2.6 (c).
(c) The countable union of countable sets is a countable set;this is Cantor’s First Diagonal
Process:

x11 → x12 x13 → x14 . . .

ւ ր ւ ր
x21 x22 x23 x24 . . .

↓ ր ւ ր
x31 x32 x33 x34 . . .

ւ ր ւ
x41 x42 x43 x44 · · ·
↓ ր
x51 · · ·

(d) LetA = {(xn) | xn ∈ {0, 1} ∀n ∈ N} be the set of all sequences whose elements are0

and1. This setA is uncountable. In particular,R is uncountable.
Proof. Suppose to the contrary thatA is countable and arrange the elements ofA in a sequence
(sn)n∈N of distinct elements ofA. We construct a sequences as follows. If thenth element in
sn is 1 we let thenth digit of s be0, and vice versa. Then the sequences differs from every
members1, s2, . . . at least in one place; hences 6∈ A—a contradiction sinces is indeed an
element ofA. This proves,A is uncountable.

6.4.2 Metric Spaces and Normed Spaces

Definition 6.8 A setX is said to be ametric spaceif for any two pointsx, y ∈ X there is
associated a real numberd(x, y), called thedistanceof x andy such that

(a)d(x, x) = 0 andd(x, y) > 0 for all x, y ∈ X with x 6= y (positive definiteness);
(b) d(x, y) = d(y, x) (symmetry);
(c) d(x, y) ≤ d(x, z) + d(z, y) for anyz ∈ X (triangle inequality).

Any functiond : X ×X → R with these three properties is called adistance functionor metric
onX.

Example 6.11 (a)C,R,Q, andZ are metric spaces withd(x, y) := | y − x |.
Any subsets of a metric space is again a metric space.
(b) Thereal planeR2 is a metric space with respect to

d2((x1, x2), (y1, y2)) :=
√

(x1 − x2)2 + (y1 − y2)2,

d1((x1, x2), (y1, y2)) := |x1 − x2 |+ | y1 − y2 | .

d2 is called theeuclidean metric.
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(c) LetX be a set. Define

d(x, y) :=

{
1, if x 6= y,

0, if x = y.

Then(X, d) becomes a metric space. It is called thediscrete metric space.

Definition 6.9 LetE be a vector space overC (orR). Suppose onE there is given a function
‖·‖ : E → R which associates to eachx ∈ E a real number‖x‖ such that the following three
conditions are satisfied:

(i) ‖x‖ ≥ 0 for everyx ∈ E, and‖x‖ = 0 if and only if x = 0,
(ii) ‖λx‖ = |λ | ‖x‖ for all λ ∈ C (inR, resp.)
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ , for all x, y ∈ E.

ThenE is called anormed (vector) spaceand‖x‖ is thenormof x.

‖x‖ generalizes the “length” of vectorx ∈ E. Every normed vector spaceE is a metric space
if we putd(x, y) = ‖x− y‖. Prove!
However, there are metric spaces that are not normed spaces,for example(N, d(m,n) =

|n−m |).

Example 6.12 (a)E = Rk orE = Ck. Let x = (x1, · · · , xk) ∈ E and define

‖x‖2 =

√√√√
k∑

i=1

|xi |2.

Then‖·‖ is a norm onE. It is called theEuclidean norm.
There are other possibilities to define a norm onE. For example,

‖x‖∞ = max
1≤i≤k

| xi | ,

‖x‖1 =

k∑

i=1

|xk | ,

‖x‖a = ‖x‖2 + 3 ‖x‖1 , ‖x‖b = max(‖x‖1 , ‖x‖2).

(b)E = C([a, b]). Let p ≥ 1. Then

‖f‖∞ = sup
x∈[a,b]

| f(x) | ,

‖f‖p =

(∫ b

a

| f(t) |p dt

) 1
p

.

define norms onE. Note that‖f‖p ≤ p
√
b− a ‖f‖∞.

(c) Hilbert’s sequence space.E = ℓ2 = {(xn) |
∑∞

n=1 |xn |
2 <∞}. Then

‖x‖2 =

( ∞∑

n=1

| xn |2
) 1

2
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defines a norm onℓ2.
(d) The bounded sequences.E = ℓ∞ = {(xn) | supn∈N |xn | <∞}. Then

‖x‖∞ = sup
n∈N |xn |

defines a norm onE.
(e)E = C([a, b]). Then

‖f‖1 =

∫ b

a

| f(t) | dt

defines a norm onE.

6.4.3 Open and Closed Sets

Definition 6.10 LetX be a metric space with metricd. All points and subsets mentioned below
are understood to be elements and subsets ofX, in particular, letE ⊂ X be a subset ofX.

(a) The setUε(x) = {y | d(x, y) < ε} with some ε > 0 is called the
ε-neighborhood(or ε-ball with centerx) of x. The numberε is called the radius of
the neighborhoodUε(x).

(b) A point p is an interior or inner point of E if there is a neighborhoodUε(p)
completely contained inE. E is openif every point ofE is an interior point.

(c) A pointp is called anaccumulationor limit point ofE if every neighborhood of
p has a pointq 6= p such thatq ∈ E.

(d)E is said to beclosedif every accumulation point ofE is a point ofE. Theclo-
sureof E (denoted byE) isE together with all accumulation points ofE. In other
wordsp ∈ E, if and only if every neighborhood ofx has a non-empty intersection
with E.

(e) Thecomplementof E (denoted byEc) is the set of all pointsp ∈ X such that
p 6∈ E.

(f) E is boundedif there exists a real numberC > 0 such thatd(x, y) ≤ C for all
x, y ∈ E.

(g)E is densein X if E = X.

Example 6.13 (a)X = R with the standard metricd(x, y) = |x− y |. E = (a, b) ⊂ R is
an open set. Indeed, for everyx ∈ (a, b) we haveUε(x) ⊂ (a, b) if ε is small enough, say
ε ≤ min{|x− a | , |x− b |}. Hence,x is an inner point of(a, b). Sincex was arbitrary,(a, b)
is open.
F = [a, b) is not open sincea is not an inner point of[a, b). Indeed,Uε(a) ( [a, b) for every
ε > 0.
We have

E = F = set of accumulation points= [a, b].
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Indeed,a is an accumulation point of both(a, b) and[a, b). This is true since every neighbor-
hoodUε(a), ε < b − a, hasa + ε/2 ∈ (a, b) (resp. in[a, b)) which is different froma. For any
pointx 6∈ [a, b] we find a neighborhoodUε(x) with Uε(x) ∩ [a, b) = ∅; hencex 6∈ E.
The set of rational numbersQ is dense inR. Indeed, every neighborhoodUε(r) of every real
numberr contains a rational number, see Proposition 1.11 (b).
For the real line one can prove: Every open set is the at most countable union of disjoint open
(finite or infinite) intervals. A similar description for closed subsets ofR is false. There is no
similar description of open subsets ofRk, k ≥ 2.
(b) For every metric spaceX, both the whole spaceX and the empty set∅ are open as well as
closed.
(c) LetB = {x ∈ Rk | ‖x‖2 < 1} be theopen unit ballin Rk. B is open (see Lemma 6.16
below);B is not closed. For example,x0 = (1, 0, . . . , 0) is an accumulation point ofB since
xn = (1 − 1/n, 0, . . . , 0) is a sequence of elements ofB converging tox0, however,x0 6∈ B.
The accumulation points ofB areB = {x ∈ Rk | ‖x‖2 ≤ 1}. This is also the closure ofB inRk.

f- ε

f+ ε

g

(d) ConsiderE = C([a, b]) with the supremum norm.
Theng ∈ E is in theε-neighborhood of a functionf ∈ E
if and only if

| f(t)− g(t) | < ε, for all x ∈ [a, b].

Lemma 6.16 Every neighborhoodUr(p), r > 0, of a pointp is an open set.

q x

p

Proof. Let q ∈ Ur(p). Then there existsε > 0 such thatd(q, p) =

r − ε. We will show thatUε(q) ⊂ Ur(p). For, letx ∈ Uε(q). Then
by the triangle inequality we have

d(x, p) ≤ d(x, q) + d(q, p) < ε+ (r − ε) = r.

Hencex ∈ Ur(p) andq is an interior point ofUr(p). Sinceq was
arbitrary,Ur(p) is open.

Remarks 6.4 (a) If p is an accumulation point of a setE, then every neighborhood ofp contains
infinitely many points ofE.
(b) A finite set has no accumulation points; hence any finite set is closed.

Example 6.14 (a) The open complex unit disc,{z ∈ C | | z | < 1}.
(b) The closed unit disc,{z ∈ C | | z | ≤ 1}.
(c) A finite set.
(d) The setZ of all integers.
(e){1/n | n ∈ N}.
(f) The setC of all complex numbers.
(g) The interval(a, b).
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Here (d), (e), and (g) are regarded as subsets ofR. Some properties of these sets are tabulated
below:

Closed Open Bounded
(a) No Yes Yes
(b) Yes No Yes
(c) Yes No Yes
(d) Yes No No
(e) No No Yes
(f) Yes Yes No
(g) No Yes Yes

Proposition 6.17 A subsetE ⊂ X of a metric spaceX is open if and only if its complement
Ec is closed.

Proof. First, supposeEc is closed. Choosex ∈ E. Thenx 6∈ Ec, andx is not an accumulation
point of Ec. Hence there exists a neighborhoodU of x such thatU ∩ Ec is empty, that is
U ⊂ E. Thusx is an interior point ofE andE is open.
Next, suppose thatE is open. Letx be an accumulation point ofEc. Then every neighborhood
of x contains a point ofEc, so thatx is not an interior point ofE. SinceE is open, this means
thatx ∈ Ec. It follows thatEc is closed.

6.4.4 Limits and Continuity

In this section we generalize the notions of convergent sequences and continuous functions to
arbitrary metric spaces.

Definition 6.11 Let X be a metric space and(xn) a sequence of elements ofX. We say that
(xn) converges tox ∈ X if lim

n→∞
d(xn, x) = 0. We write lim

n→∞
xn = x or xn −→

n→∞
x.

In other words,limn→∞ xn = x if for every neighborhoodUε, ε > 0, of x there exists ann0 ∈ N
such thatn ≥ n0 impliesxn ∈ Uε.
Note that a subsetF of a metric spaceX is closed if and only ifF contains all limits of
convergent sequences(xn), xn ∈ F .
Two metricsd1 andd2 on a spaceX are said to betopologically equivalentif limn→∞ xn = x

w.r.t. d1 if and only if limn→∞ xn = x w.r.t. d2. In particular, two norms‖·‖1 and‖·‖2 on the
same linear spaceE are said to beequivalentif the metric spaces are topologically equivalent.

Proposition 6.18 LetE1 = (E, ‖·‖1) andE2 = (E, ‖·‖2) be normed vector spaces such that
there exist positive numbersc1, c2 > 0 with

c1 ‖x‖1 ≤ ‖x‖2 ≤ c2 ‖x‖1 , for all x ∈ E. (6.42)

Then‖·‖1 and‖·‖2 are equivalent.
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Proof. Condition (6.42) is obviously symmetric with respect toE1 andE2 since‖x‖2 /c2 ≤
‖x‖1 ≤ ‖x‖2 /c1. Therefore, it is sufficient to show the following: Ifxn −→

n→∞
x w.r.t. ‖·‖1 then

xn −→
n→∞

x w.r.t. ‖·‖2. Indeed, by Definition,limn→∞ ‖xn − x‖1 = 0. By assumption,

c1 ‖xn − x‖1 ≤ ‖xn − x‖2 ≤ c2 ‖xn − x‖1 , n ∈ N.
Since the first and the last expressions tend to0 asn → ∞, the sandwich theorem shows that
limn→∞ ‖xn − x‖2 = 0, too. This provesxn → x w.r.t. ‖·‖2.

Example 6.15 LetE = Rk orE = Ck with the norm‖x‖p = p
√
|x1 |p + · · · |xk |p, p ∈ [1,∞].

All these norms are equivalent. Indeed,

‖x‖p∞ ≤
k∑

i=1

|xi |p ≤
k∑

i=1

‖x‖p∞ = k ‖x‖p∞ ,

=⇒ ‖x‖∞ ≤ ‖x‖p ≤
p
√
k ‖x‖∞ . (6.43)

The following Proposition is quite analogous to Proposition 2.33 withk = 2. Recall that a
complex sequence(zn) converges if and only if bothRe zn and Im zn converge.

Proposition 6.19 Let (xn) be a sequence of vectors of the euclidean space(Rk, ‖·‖2),

xn = (xn1, . . . , xnk).

Then(xn) converges toa = (a1, . . . , ak) ∈ Rk if and only if

lim
n→∞

xni = ai, i = 1, . . . , k.

Proof. Suppose thatlim
n→∞

xn = a. Givenε > 0 there is ann0 ∈ N such thatn ≥ n0 implies

‖xn − a‖2 < ε. Thus, fori = 1, . . . , k we have

|xni − ai | ≤ ‖xn − a‖2 < ε;

hence lim
n→∞

xni = ai.

Conversely, suppose thatlim
n→∞

xni = ai for i = 1, . . . , k. Givenε > 0 there aren0i ∈ N such

thatn ≥ n0i implies
|xni − ai | <

ε√
k
.

Forn ≥ max{n01, . . . , n0k} we have (see (6.43))

‖xn − a‖2 ≤
√
k ‖xn − a‖∞ < ε.

hence lim
n→∞

xn = a.



184 6 Sequences of Functions and Basic Topology

Corollary 6.20 LetB ⊂ Rk be a bounded subset and(xn) a sequence of elements ofB.
Then(xn) has a converging subsequence.

Proof. SinceB is bounded all coordinates ofB are bounded; hence there is a subsequence(x
(1)
n )

of (xn) such that the first coordinate converges. Further, there is asubsequence(x(2)
n ) of (x

(1)
n )

such that the second coordinate converges. Finally there isa subsequence(x(k)
n ) of (x

(k−1)
n )

such that all coordinates converge. By the above proposition the subsequence(x(k)
n ) converges

inRk.

The same statement is true for subsetsB ⊂ Ck.

Definition 6.12 A mappingf : X → Y from the metric spaceX into the metric spaceY is
said to becontinuousata ∈ X if one of the following equivalent conditons is satisfied.
(a) For everyε > 0 there existsδ > 0 such that for everyx ∈ X

d(x, a) < δ implies d(f(x), f(a)) < ε. (6.44)

(b) For any sequence(xn), xn ∈ X with lim
n→∞

xn = a it follows that lim
n→∞

f(xn) = f(a).

The mappingf is said to becontinuousonX if f is continuous at every pointa of X.

Proposition 6.21 The composition of two continuous mappings is continuous.

The proof is completely the same as in the real case (see Proposition 3.4) and we omit it.
We give the topological description of continuous functions.

Proposition 6.22 LetX andY be metric spaces. A mappingf : X → Y is continuous if and
only if the preimage of any open set inY is open inX.

Proof. Suppose thatf is continuous andG ⊂ Y is open. Iff−1(G) = ∅, there is nothing to
prove; the empty set is open. Otherwise there existsx0 ∈ f−1(G), and thereforef(x0) ∈ G.
SinceG is open, there isε > 0 such thatUε(f(x0)) ⊂ G. Sincef is continuous atx0, there
existsδ > 0 such thatx ∈ Uδ(x0) impliesf(x) ∈ Uε(f(x0)) ⊂ G. That is,Uδ(x0) ⊂ f−1(G),
andx0 is an inner point off−1(G); hencef−1(G) is open.
Suppose now that the condition of the proposition is fulfilled. We will show thatf is continu-
ous. Fixx0 ∈ X andε > 0. SinceG = Uε(f(x0)) is open by Lemma 6.16,f−1(G) is open by
assumption. In particular,x0 ∈ f−1(G) is an inner point. Hence, there existsδ > 0 such that
Uδ(x0) ⊂ f−1(G). It follows thatf(Uδ(x0)) ⊂ Uε(x0); this means thatf is continuous atx0.
Sincex0 was arbitrary,f is continuous onX.

Remark 6.5 Since the complement of an open set is a closed set, it is obvious that the proposi-
tion holds if we replace “open set” by “closed set.”
In general, the image of an open set under a continuous function need not to be open; consider
for examplef(x) = sin x andG = (0, 2π) which is open; however,f((0, 2π)) = [−1, 1] is not
open.
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6.4.5 Comleteness and Compactness

(a) Completeness

Definition 6.13 Let (X, d) be a metric space. A sequence(xn) of elements ofX is said to be a
Cauchy sequenceif for everyε > 0 there exists a positive integern0 ∈ N such that

d(xn, xm) < ε for all m,n ≥ n0.

A metric space is said to becompleteif every Cauchy sequence converges.
A complete normed vector space is called aBanachspace.

Remark.The euclideank-spaceRk andCk is complete.
The function spaceC([a, b]), ‖·‖∞) is complete, see homework 21.2. The Hilbert spaceℓ2 is
complete

(b) Compactness

The notion of compactness is of great importance in analysis, especially in connection with
continuity.
By anopen coverof a setE in a metric spaceX we mean a collection{Gα | α ∈ I} of open
subsets ofX such thatE ⊂ ⋃αGα. HereI is any index set and

⋃

α∈I
Gα = {x ∈ X | ∃ β ∈ I : x ∈ Gβ}.

Definition 6.14 (Covering definition) A subsetK of a metric spaceX is said to becompactif
every open cover ofK contains a finite subcover. More explicitly, if{Gα} is an open cover of
K, then there are finitely many indicesα1, . . . , αn such that

K ⊂ Gα1 ∪ · · · ∪Gαn .

Note that the definition does not state that a set is compact ifthere exists a finite open cover—the
whole spaceX is open and a cover consisting of only one member. Instead,everyopen cover
has a finite subcover.

Example 6.16 (a) It is clear that every finite set is compact.
(b) Let (xn) be a converging tox sequence in a metric spaceX. Then

A = {xn | n ∈ N} ∪ {x}
is compact.
Proof. Let {Gα} be any open cover ofA. In particular, the limit pointx is covered by, say,G0.
Then there is ann0 ∈ N such thatxn ∈ G0 for everyn ≥ n0. Finally, xk is covered by some
Gk, k = 1, . . . , n0 − 1. Hence the collection

{Gk | k = 0, 1, . . . , n0 − 1}

is a finite subcover ofA; thereforeA is compact.



186 6 Sequences of Functions and Basic Topology

Proposition 6.23 (Sequence Definition)A subsetK of a metric spaceX is compact if and
only if every sequence inK contains a convergent subsequence with limit inK.

Proof. (a) LetK be compact and suppose to the contrary that(xn) is a sequence inK without
any convergent to some point ofK subsequence. Then everyx ∈ K has a neighborhoodUx
containing only finitely many elements of the sequence(xn). (Otherwisex would be a limit
point of (xn) and there were a converging tox subsequence.) By construction,

K ⊂
⋃

x∈X
Ux.

SinceK is compact, there are finitely many pointsy1, . . . , ym ∈ K with

K ⊂ Uy1 ∪ · · · ∪ Uym .

Since everyUyi
contains only finitely many elements of(xn), there are only finitely many

elements of(xn) in K—a contradiction.
(b) The proof is an the appendix to this chapter.

Remark 6.6 Further properties. (a) A compact subset of a metric space isclosed and bounded.
(b) A closed subsets of a compact set is compact.
(c) A subsetK of Rk orCk is compact if and only ifK is bounded and closed.
Proof. SupposeK is closed and bounded. Let(xn) be a sequence inK. By Corollary 6.20(xn)
has a convergent subsequence. SinceK is closed, the limit is inK. By the above proposition
K is compact. The other directions follows from (a)

(c) Compactness and Continuity

As in the real case (see Theorem 3.6) we have the analogous results for metric spaces.

Proposition 6.24 LetX be a compact metric space.
(a)Let f : X → Y be a continuous mapping into the metric spaceY . Thenf(X) is compact.
(b) Let f : X → R a continuous mapping. Thenf is bounded and attains its maximum and
minimum, that is there are pointsp andq in X such that

f(p) = sup
x∈X

f(x), f(q) = inf
x∈X

f(x).

Proof. (a) Let{Gα} be an open covering off(X). By Proposition 6.22f−1(Gα) is open for
everyα. Hence,{f−1(Gα)} is an open cover ofX. SinceX is compact there is an open
subcover ofX, say{f−1(Gα1), . . . , f

−1(Gαn)}. Then{Gα1 , . . . , Gαn} is a finite subcover of
{Gα} coveringf(X). Hence,f(X) is compact. We skip (b).

Similarly as for real function we have the following proposition about uniform continuity. The
proof is in the appendix.
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Proposition 6.25 Let f : K → R be a continuous function on a compact setK ⊂ R. Thenf
is uniformly continuous onK.

6.4.6 Continuous Functions inRk

Proposition 6.26 (a) The projection mappingpi : Rk → R, i = 1, . . . , k, given by
pi(x1, . . . , xk) = xi is continuous.

(b) LetU ⊆ Rk be open andf, g : U → R be continuous onU . Thenf + g, fg, | f |, and,f/g
(g 6= 0) are continuous functions onU .

(c) LetX be a metric space. A mapping

f = (f1, . . . , fk) : X → Rk

is continuous if and only if all componentsfi : X → R, i = 1, . . . , k, are continuous.

Proof. (a) Let (xn) be a sequence converging toa = (a1, . . . , ak) ∈ Rk. Then the sequence
(pi(xn)) converges toai = pi(a) by Proposition 6.19. This shows continuity ofpi ata.
(b) The proofs are quite similar to the proofs in the real case, see Proposition 2.3. As a sample
we carry out the proof in casefg. Let a ∈ U and putM = max{| f(a) | , | f(b) |}. Let ε > 0,
ε < 3M2, be given. Sincef andg are continuous ata, there existsδ > 0 such that

‖x− a‖ < δ implies | f(x)− f(a) | < ε

3M
,

‖x− a‖ < δ implies | g(x)− g(a) | < ε

3M
.

(6.45)

Note that

fg(x)− fg(a) = (f(x)− f(a))(g(x)− g(a)) + f(a)(g(x)− g(a)) + g(a)(f(x)− f(a)).

Taking the absolute value of the above identity, using the triangle inequality as well as (6.45)
we have that‖x− a‖ < δ implies

| fg(x)−fg(a) | ≤ | f(x)−f(a) | | g(x)−g(a) |+ | f(a) | | g(x)− g(a) |+ | g(a) | | f(x)− f(a) |

≤ ε2

9M2
+M

ε

3M
+M

ε

3M
≤ ε

3
+
ε

3
+
ε

3
= ε.

This proves continuity offg ata.
(c) Suppose first thatf is continuous ata ∈ X. Sincefi = pi◦f , fi is continuous by the result
of (a) and Proposition 6.21.
Suppose now that all thefi, i = 1, . . . , k, are continuous ata. Let (xn), xn 6= a, be a sequence
in X with limn→∞ xn = a in X. Sincefi is continuous, the sequences(fi(xn)) of numbers
converge tofi(a). By Proposition 6.19, the sequence of vectorsf(xn) converges tof(a); hence
f is continuous ata.
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Example 6.17 Let f : R3 → R2 be given by

f(x, y, z) =

(
sin x2+ez√

x2+y2+z2+1

log |x2 + y2 + z2 + 1 |

)
.

Thenf is continuous onU . Indeed, since product, sum, and composition of continuousfunc-
tions are continuous,

√
x2 + y2 + z2 + 1 is a continuous function onR3. We also made use

of Proposition 6.26 (a); the coordinate functionsx, y, andz are continuous. Since the denomi-
nator is nonzero,f1(x, y, z) = sin x2+ez√

x2+y2+z2+1
is continuous. Since|x2 + y2 + z2 + 1 | > 0,

f2(x, y, z) = log |x2 + y2 + z2 + 1 | is continuous. By Proposition 6.26 (c)f is continuous.

6.5 Appendix E

(a) A compact subset is closed

Proof. LetK be a compact subset of a metric spaceX. We shall prove that the complement of
K is an open subset ofX.
Suppose thatp ∈ X, p 6∈ K. If q ∈ K, let V q andU(q) be neighborhoods ofp and q,
respectively, of radius less thand(p, q)/2. SinceK is compact, there are finitely many points
q1, . . . , qn in K such that

K ⊂ Uq1 ∪ · · · ∪ Uqn =: U.

If V = V q1 ∩ · · · ∩ V qn, thenV is a neighborhood ofp which does not intersectU . Hence
U ⊂ Kc, so thatp is an interior point ofKc, andK is closed. We show thatK is bounded.
Let ε > 0 be given. SinceK is compact the open cover{Uε(x) | x ∈ K} of K has a finite
subcover, say{Uε(x1), . . . , Uε(xn)}. Let U =

⋃n
i=1 Uε(xi), then the maximal distance of two

pointsx andy in U is bounded by

2ε+
∑

1≤i<j≤n
d(xi, xj).

A closed subset of a compact set is compact

Proof. SupposeF ⊂ K ⊂ X, F is closed inX, andK is compact. Let{Uα} be an open cover
of F . SinceF c is open,{Uα, F c} is an open coverΩ of K. SinceK is compact, there is a
finite subcoverΦ of Ω, which coversK. If F c is a member ofΦ, we may remove it fromΦ and
still retain an open cover ofF . Thus we have shown that a finite subcollection of{Uα} covers
F .
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Equivalence of Compactness and Sequential Compactness

Proof of Proposition 6.23 (b). This direction is hard to proof. It does not work in arbitrary
topological spaces and essentially uses thatX is a metric space. The prove is roughly along the
lines of Exercises 22 to 26 in [Rud76]. We give the proof of Bredon (see [Bre97, 9.4 Theorem])
Suppose that every sequence inK contains a converging inK subsequence.
1)K contains a countable dense set. For, we show that for everyε > 0, K can be covered by
a finite number ofε-balls (ε is fixed). Suppose, this is not true, i. e.K can’t be covered by any
finite number ofε-balls. Then we construct a sequence(xn) as follows. Take an arbitraryx1.
Supposex1, . . . , xn are already found; sinceK is not covered by a finite number ofε-balls, we
find xn+1 which distance to every preceding element of the sequence isgreater than or equal
to ε. Consider a limit pointx of this sequence and anε/2-neighborhoodU of x. Almost all
elements of a suitable subsequence of(xn) belong toU , sayxr andxs with s > r. Since both
are inU their distance is less thanε. But this contradicts the construction of the sequence.
Now take the union of all those finite sets corresponding toε = 1/n, n ∈ N. This is a countable
dense set ofK.
2) Any open cover{Uα} ofK has a countable subcover. Letx ∈ K be given. Since{Uα}α∈I is
an open cover ofK we findβ ∈ I andn ∈ N such thatU2/n(x) ⊂ Uα. Further, since{xi}i∈N
is dense inK, we findi, n ∈ N such thatd(x, xi) < 1/n. By the triangle inequality

x ∈ U1/n(xi) ⊂ U2/n(x) ⊂ Uβ.

To each of the countably manyU1/n(xi) choose oneUβ ⊃ U1/n(xi). This is a countable sub-
cover of{Uα}.
3) Rename the countable open subcover by{Vn}n∈N and consider the decreasing sequenceCn
of closed sets

Cn = K \
n⋃

k=1

Vk, C1 ⊃ C2 ⊃ · · · .

If Ck = ∅ we have found a finite subcover, namelyV1, V2, . . . , Vk. Suppose that all theCn are
nonempty, sayxn ∈ Cn. Further, letx be the limit of the subsequence(xni

). Sincexni
∈ Cm

for all ni ≥ m andCm is closed,x ∈ Cm for all m. Hencex ∈ ⋂m∈N Cm. However,

⋂

m∈NCm = K \
⋃

m∈NVm = ∅.

This contradiction completes the proof.

Proofof Proposition 6.25. Letε > 0 be given. Sincef is continuous, we can associate to each
point p ∈ K a positive numberδ(p) such thatq ∈ K ∩ Uδ(p)(p) implies | f(q)− f(p) | < ε/2.
Let J(p) = {q ∈ K | | p− q | < δ(p)/2}.
Sincep ∈ J(p), the collection{J(p) | p ∈ K} is an open cover ofK; and sinceK is compact,
there is a finite set of pointsp1, . . . , pn in K such that

K ⊂ J(p1) ∪ · · · ∪ J(pn). (6.46)
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We put δ := 1
2
min{δ(p1), . . . , δ(pn)}. Thenδ > 0. Now let p andq be points ofK with

|x− y | < δ. By (6.46), there is an integerm, 1 ≤ m ≤ n, such thatp ∈ J(pm); hence

| p− pm | <
1

2
δ(pm),

and we also have

| q − pm | ≤ | p− q |+ | p− pm | < δ +
1

2
δ(pm) ≤ δ(pm).

Finally, continuity atpm gives

| f(p)− f(q) | ≤ | f(p)− f(pm) |+ | f(pm)− f(q) | < ε.

Proposition 6.27 There exists a real continuous function on the real line which is nowhere
differentiable.

Proof. Define

ϕ(x) = |x | , x ∈ [−1, 1]

and extend the definition ofϕ to all realx by requiring periodicity

ϕ(x+ 2) = ϕ(x).

Then for alls, t ∈ R,

|ϕ(s)− ϕ(t) | ≤ | s− t | . (6.47)

In particular,ϕ is continuous onR. Define

f(x) =

∞∑

n=0

(
3

4

)n
ϕ(4nx). (6.48)

Since0 ≤ ϕ ≤ 1, Theorem 6.2 shows that the series (6.48) converges uniformly on R. By
Theorem 6.5,f is continuous onR.
Now fix a real numberx and a positive integerm ∈ N. Put

δm =
±1

2 · 4m

where the sign is chosen that no integer lies between4mx and4m(x + δm). This can be done
since4m | δm | = 1

2
. It follows that|ϕ(4mx)− ϕ(4mx+ 4mδm) | = 1

2
. Define

γn =
ϕ(4n(x+ δm))− ϕ(4nx)

δm
.
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Whenn > m, then4nδm is an even integer, so thatγn = 0 by peridicity ofϕ. When0 ≤ n ≤ m,
(6.47) implies| γn | ≤ 4m. Since| γm | = 4m, we conclude that

∣∣∣∣
f(x+ δm)− f(x)

δm

∣∣∣∣ =

∣∣∣∣∣
m∑

n=0

(
3

4

)n
γn

∣∣∣∣∣ ≥ 3m −
m−1∑

n=0

3n =
1

2
(3m + 1) .

Asm→∞, δm → 0. It follows thatf is not differentiable atx.

Proof of Abel’s Limit Theorem, Proposition 6.9. By Proposition 6.4, the series converges on
(−1, 1) and the limit function is continuous there since the radius of convergence is at least1,
by assumption. Hence it suffices to proof continuity atx = 1, i. e. thatlimx→1−0 f(x) = f(1).
Putrn =

∑∞
k=n ak; thenr0 = f(1) andrn+1 − rn = −cn for all nonnegative integersn ∈ Z+

andlimn→∞ rn = 0. Hence there is a constantC with | rn | ≤ C and the series
∑∞

n=0 rn+1x
n

converges for| x | < 1 by the comparison test. We have

(1− x)
∞∑

n=0

rn+1x
n =

∞∑

n=0

rn+1x
n +

∞∑

n=0

rn+1x
n+1

=
∞∑

n=0

rn+1x
n −

∞∑

n=0

rnx
n + r0 = −

∞∑

n=0

anx
n + f(1),

hence,

f(1)− f(x) = (1− x)
∞∑

n=0

rn+1x
n.

Let ε > 0 be given. ChooseN ∈ N such thatn ≥ N implies| rn | < ε. Putδ = ε/(CN); then
x ∈ (1− δ, 1) implies

| f(1)− f(x) | ≤ (1− x)
N−1∑

n=0

| rn+1 | xn + (1− x)
∞∑

n=N

| rn+1 |xn

≤ (1− x)CN + (1− x)ε
∞∑

n=0

xn = 2ε;

hencef tends tof(1) asx→ 1− 0.

Definition 6.15 If X is a metric spaceC(X) will denote the set of all continuous, bounded
functions with domainX. We associate with eachf ∈ C(X) its supremum norm

‖f‖∞ = ‖f‖ = sup
x∈X
| f(x) | . (6.49)

Sincef is assumed to be bounded,‖f‖ <∞. Note that boundedness ofX is redundant ifX is
a compactmetric space (Proposition 6.24). ThusC(X) contains of all continuous functions in
that case.
It is clear thatC(X) is a vector space since the sum of bounded functions is again abounded
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function (see the triangle inequality below) and the sum of continuous functions is a continuous
function (see Proposition 6.26). We show that‖f‖∞ is indeed a norm onC(X).
(i) Obviously,‖f‖∞ ≥ 0 since the absolute value| f(x) | is nonnegative. Further‖0‖ = 0.
Suppose now‖f‖ = 0. This implies| f(x) | = 0 for all x; hencef = 0.
(ii) Clearly, for every (real or complex) numberλ we have

‖λf‖ = sup
x∈X
| λf(x) | = |λ | sup

x∈X
| f(x) | = |λ | ‖f‖ .

(iii) If h = f + g then

|h(x) | ≤ | f(x) |+ | g(x) | ≤ ‖f‖+ ‖g‖ , x ∈ X;

hence
‖f + g‖ ≤ ‖f‖+ ‖g‖ .

We have thus madeC(X) into a normed vector space. Remark 6.1 can be rephrased as

A sequence(fn) converges tof with respect to the norm inC(X) if and only if
fn → f uniformly onX.

Accordingly, closed subsets ofC(X) are sometimes calleduniformly closed, the closure of a
setA ⊂ C(X) is called theuniform closure, and so on.

Theorem 6.28 The above norm makesC(X) into a Banach space (a complete normed space).

Proof. Let (fn) be a Cauchy sequence ofC(X). This means to everyε > 0 corresponds an
n0 ∈ N such thatn,m ≥ n0 implies‖fn − fm‖ < ε. It follows by Proposition 6.1 that there
is a functionf with domainX to which (fn) converges uniformly. By Theorem 6.5,f is
continuous. Moreover,f is bounded, since there is ann such that| f(x)− fn(x) | < 1 for all
x ∈ X, andfn is bounded.
Thusf ∈ C(X), and sincefn → f uniformly onX, we have‖f − fn‖ → 0 asn→∞.



Chapter 7

Calculus of Functions of Several Variables

In this chapter we consider functionsf : U → R or f : U → Rm whereU ⊂ Rn is an open set.
In Subsection 6.4.6 we collected the main properties ofcontinuousfunctionsf . Now we will
study differentiation and integration of such functions inmore detail

The Norm of a linear Mapping

Proposition 7.1 LetT ∈ L(Rn,Rm) be a linear mapping of the euclidean spacesRn intoRm.
(a)Then there exists someC > 0 such that

‖T (x)‖2 ≤ C ‖x‖2 , for all x ∈ Rn. (7.1)

(b) T is uniformly continuous onRn.

Proof. (a) Using the standard bases ofRn andRm we identifyT with its matrixT = (aij),
T ej =

∑m
i=1 aijei. Forx = (x1, . . . , xn) we have

T (x) =

(
n∑

j=1

a1jxj , . . . ,

n∑

j=1

amjxj

)
;

hence by the Cauchy–Schwarz inequality we have

‖T (x)‖22 =

m∑

i=1

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣

2

≤
n∑

i=1

(
m∑

j=1

| aijxj |
)2

≤
m∑

i=1

n∑

j=1

| aij |2
n∑

j=1

|xj |2 =

(∑

i,j

a2
ij

)
n∑

j=1

| xj |2 = C2 ‖x‖2 ,

whereC =
√∑

i,j a
2
ij . Consequently,

‖Tx‖ ≤ C ‖x‖ .

(b) Let ε > 0. Putδ = ε/C with the aboveC. Then‖x− y‖ < δ implies

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ C ‖x− y‖ < ε,

which proves (b).

193
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Definition 7.1 Let V andW normed vector spaces andA ∈ L(V,W ). The smallest numberC
with (7.1) is called thenormof the linear mapA and is denoted by‖A‖.

‖A‖ = inf{C | ‖Ax‖ ≤ C ‖x‖ for all x ∈ V }. (7.2)

By definition,

‖Ax‖ ≤ ‖A‖ ‖x‖ . (7.3)

Let T ∈ L(Rn,Rm) be a linear mapping. One can show that

‖T‖ = sup
x 6=0

‖Tx‖
‖x‖ = sup

‖x‖=1

‖Tx‖ = sup
‖x‖≤1

‖Tx‖ .

7.1 Partial Derivatives

We consider functionsf : U → R whereU ⊂ Rn is an open set. We want to find derivatives
“one variable at a time.”

Definition 7.2 Let U ⊂ Rn be open andf : U → R a real function. Thenf is calledpartial
differentiableata = (a1, . . . , an) ∈ U with respect to theith coordinate if the limit

Dif(a) = lim
h→0

f(a1, . . . , ai + h, . . . , an)− f(a1, . . . , an)

h
(7.4)

exists whereh is real and sufficiently small (such that(a1, . . . , ai + h, . . . , an) ∈ U).
Dif(x) is called theith partial derivative off at a. We also use the notations

Dif(a) =
∂f

∂xi
(a) =

∂f(a)

∂xi
= fxi

(a).

It is important thatDif(a) is the ordinary derivative of a certain function; in fact, ifg(x) =

f(a1, . . . , x, . . . , an), thenDif(a) = g′(ai). That is,Dif(a) is the slope of the tangent line at
(a, f(a)) to the curve obtained by intersecting the graph off with the planexj = aj, j 6= i. It
also means that computation ofDif(a) is a problem we can already solve.

Example 7.1 (a) f(x, y) = sin(xy2). ThenD1f(x, y) = y2 cos(xy2) and D2f(x, y) =

2xy cos(xy2).
(b) Consider the radius functionr : Rn → R

r(x) = ‖x‖2 =
√
x2

1 + · · ·+ x2
n,

x = (x1, . . . , xn) ∈ Rn. Thenr is partial differentiable onRn \ 0 with

∂r

∂xi
(x) =

xi
r(x)

, x 6= 0. (7.5)

Indeed, the function

f(ξ) =
√
x2

1 + · · ·+ ξ2 + · · ·+ x2
n
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is differentiable, wherex1, . . . , xi−1, xi+1, . . . , xn are considered to be constant. Using the chain
rule one obtains (withξ = xi)

∂r

∂xi
(x) = f ′(ξ) =

1

2

2ξ√
x2

1 + · · ·+ ξ2 + · · ·+ x2
n

=
xi
r
.

(c) Let f : (0,+∞) → R be differentiable. The compositionx 7→ f(r(x)) (with the above
radius functionr) is denoted byf(r), it is partial differentiable onRn \ 0. The chain rule gives

∂

∂xi
f(r) = f ′(r)

∂r

∂xi
= f ′(r)

xi
r
.

(d) Partial differentiability does not imply continuity. Define

f(x, y) =

{
xy

(x2+y2)2
= xy

r4
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

Obviously,f is partial differentiable onR2 \ 0. Indeed, by definition of the partial derivative

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)

h
= lim

h→0
0 = 0.

Sincef is symmetric inx andy, ∂f
∂y

(0, 0) = 0, too. However,f is not continuous at0 since
f(ε, ε) = 1/(4ε2) becomes large asε tends to0.

Remark 7.1 In the next section we will become acquainted with stronger notion of differen-
tiability which implies continuity. In particular, acontinuouslypartial differentiable function is
continuous.

Definition 7.3 LetU ⊂ Rn be open andf : U → R partial differentiable. The vector

grad f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
(7.6)

is called thegradientof f atx ∈ U .

Example 7.2 (a) For the radius functionr(x) defined in Example 7.1 (b) we have

grad r(x) =
x

r
.

Note thatx/r is a unit vector (of the euclidean norm1) in the directionx. With the notations of
Example 7.1 (c),

grad f(r) = f ′(r)
x

r
.

(b) Let f, g : U → R be partial differentiable functions. Then we have the following product
rule

grad (fg) = g grad f + f grad g. (7.7)

This is immediate from the product rule for functions of one variable

∂

∂xi
(fg) =

∂f

∂xi
g + f

∂g

∂xi
.

(c) f(x, y) = xy. Then grad f(x, y) = (yxy−1, xy log x).
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Notation. Instead ofgrad f one also writes∇f (“Nabla f ”). ∇ is a vector-valued differential
operator:

∇ =

(
∂

∂x1
, . . . ,

∂

∂xn

)
.

Definition 7.4 LetU ⊂ Rn. A vector fieldonU is a mapping

v = (v1, . . . , vn) : U → Rn. (7.8)

To every pointx ∈ U there is associated a vectorv(x) ∈ Rn.
If the vector fieldv is partial differentiable (i. e. all componentsvi are partial differentiable)
then

div v =

n∑

i=1

∂vi
∂xi

(7.9)

is called thedivergenceof the vector fieldv.

Formally the divergence ofv can be written as a inner product of∇ andv

div v = ∇·v =
n∑

i=1

∂

∂xi
vi.

The product rule gives the following rule for the divergence. Let f : U → R a partial differen-
tiable function and

v = (v1, . . . , vn) : U → R
a partial differentiable vector field, then

∂

∂xi
(fvi) =

∂f

∂xi
· vi + f · ∂vi

∂xi
.

Summation overi gives

div (fv) = grad f·v + f div v. (7.10)

Using the nabla operator this can be rewritten as

∇·fv = ∇f·v + f∇·v.
Example 7.3 Let F : Rn \ 0→ Rn be the vector fieldF (x) = x

r
, r = ‖x‖. Since

div x =
n∑

i=1

∂xi
∂xi

= n and x·x = r2,

Example 7.2 gives withv = x andf(r) = 1/r

div
x

r
= grad

1

r
·x+

1

r
div x = − x

r3 ·x+
n

r
=
n− 1

r
.
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7.1.1 Higher Partial Derivatives

Let U ⊂ Rn be open andf : U → R a partial differentiable function. If all partial derivatives
Dif : U → R are again partial differentiable,f is calledtwice partial differentiable. We can
form the partial derivativesDjDif of the second order.
More general,f : U → R is said to be(k+ 1)-times partial differentiableif it is k-times partial
differentiable and all partial derivatives of orderk

DikDik−1
· · ·Di1f : U → R

are partial differentiable.
A function f : U → R is said to bek-times continuously partial differentiableif it is k-times
partial differentiable and all partial derivatives of order less than or equal tok are continuous.
The set of all such functions onU is denoted byCk(U).
We also use the notation

DjDif =
∂2f

∂xj∂xi
= fxixj

, DiDif =
∂2f

∂x2
i

, Dik · · ·Di1f =
∂kf

∂xik · · ·∂xi1
.

Example. Let f(x, y) = sin(xy2). One easily sees that

fyx = fxy = 2y cos(xy2)− y2 sin(xy2)2xy.

Proposition 7.2 (Schwarz’s Lemma)LetU ⊂ Rn be open andf : U → R be twice continu-
ously partial differentiable.
Then for everya ∈ U and all i, j = 1, . . . , n we have

DjDif(a) = DiDjf(a). (7.11)

Proof. Without loss of generality we assumen = 2, i = 1, j = 2, anda = 0; we write(x, y) in
place of(x1, x2). SinceU is open, there is a small square of length2δ > 0 completely contained
in U :

{(x, y) ∈ R2 | | x | < δ, | y | < δ} ⊂ U.

For fixedy ∈ Uδ(0) define the functionF : (−δ, δ)→ R via

F (x) = f(x, y)− f(x, 0).

By the mean value theorem (Theorem 4.9) there is aξ with | ξ | ≤ |x | such that

F (x)− F (0) = xF ′(ξ).

But F ′(ξ) = fx(ξ, y) − fx(ξ, 0). Applying the mean value theorem to the functionh(y) =

fx(ξ, y), there is anη with | η | ≤ | y | and

fx(ξ, y)− fx(ξ, 0) = h′(y)y =
∂

∂y
fx(ξ, η) y = fxy(ξ, η) y.

Altogether we have

F (x)− F (0) = f(x, y)− f(x, 0)− f(0, y) + f(0, 0) = fxy(ξ, η)xy. (7.12)
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The same arguments but starting with the functionG(y) = f(x, y)−f(0, y) show the existence
of ξ′ andη′ with | ξ′ | ≤ |x |, | η′ | ≤ | y | and

f(x, y)− f(x, 0)− f(0, y) + f(0, 0) = fxy(ξ
′, η′) xy. (7.13)

From (7.12) and (7.13) forxy 6= 0 it follows that

fxy(ξ, η) = fxy(ξ
′, η′).

If (x, y) approaches(0, 0) so do(ξ, η) and(ξ′, η′). Sincefxy andfyx are both continuous it
follows from the above equation

D2D1f(0, 0) = D1D2f(0, 0).

Corollary 7.3 LetU ⊂ Rn be open andf : U → Rn bek-times continuously partial differen-
tiable. Then

Dik · · ·Di1f = Diπ(k)
· · ·Diπ(1)

f

for every permutationπ of 1, . . . , k.

Proof. The proof is by induction onk using the fact that any permutation can be written as a
product of transpositions(j ↔ j + 1).

Example 7.4 Let U ⊂ R3 be open and letv : U → R3 be a partial differentiable vector field.
One defines a new vector fieldcurl v : U → R3, thecurl of v by

curl v =

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
. (7.14)

Formally one can think ofcurl v as being the vector product of∇ andv

curl v = ∇× v =

∣∣∣∣∣∣∣

e1 e2 e3
∂
∂x1

∂
∂x2

∂
∂x3

v1 v2 v3

∣∣∣∣∣∣∣
,

wheree1, e2, ande3 are the unit vectors inR3. If f : U → R has continuous second partial
derivatives then, by Proposition 7.2,

curl grad f = 0. (7.15)

Indeed, the first coordinate ofcurl grad f is by definition

∂2f

∂x2∂x3
− ∂2f

∂x3∂x2
= 0.

The other two components are obtained by cyclic permutationof the indices.
We have found:curl v = 0 is a necessary condition for a continuously partial differentiable
vector fieldv : U → R3 to be the gradient of a functionf : U → R.
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7.1.2 The Laplacian

LetU ⊂ Rn be open andf ∈ C(U). Put

∆f = div grad f =
∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
n

, (7.16)

and call

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

theLaplacianor Laplace operator. The equation∆f = 0 is called theLaplace equation; its
solution are theharmonicfunctions. Iff depends on an additional time variablet, f : U × I →R, (x, t) 7→ f(x, t) one considers the so calledwave equation

ftt − a2∆f = 0, (7.17)

and the so calledheat equation

ft − k∆f = 0. (7.18)

Example 7.5 Let f : (0,+∞)→ R be twice continuously differentiable. We want to compute
the Laplacian∆f(r), r = ‖x‖, x ∈ Rn \ 0. By Example 7.2 we have

grad f(r) = f ′(r)
x

r
,

and by the product rule and Example 7.3 we obtain

∆f(r) = div grad f(r) = grad f ′(r)·x
r

+ f ′(r) div
x

r
= f ′′(r)

x

r
·x
r

+ f ′(r)
n− 1

r
;

thus

∆f(r) = f ′′(r) +
n− 1

r
f ′(r).

In particular,∆ 1
rn−2 = 0 if n ≥ 3 and∆ log r = 0 if n = 2. Prove!

7.2 Total Differentiation

In this section we define (total) differentiability of a function f from Rn to Rm. Roughly
speaking,f is differentiable (at some point) if it can be approximated by a linear mapping. In
contrast to partial differentiability we need not to refer to single coordinates. Differentiable
functions are continuous. In this sectionU always denotes an open subset ofRn. The vector
space of linear mappingsf of a vector spaceV into a vector spaceW will be denoted by
L(V,W ).
Motivation: If f : R→ R is differentiable atx ∈ R andf ′(x) = a, then

lim
h→0

f(x+ h)− f(x)− a·h
h

= 0.

Note that the mappingh 7→ ah is linear fromR→ R and any linear mapping is of that form.
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Definition 7.5 The mappingf : U → Rm is said to bedifferentiable at a pointx ∈ U if there
exist a linear mapA : Rn → Rm such that

lim
h→0

‖f(x+ h)− f(x)− A(h)‖
‖h‖ = 0. (7.19)

The linear mapA ∈ L(Rn,Rm) is called thederivativeof f atx and will be denoted byDf(x).

In casen = m = 1 this notion coincides with the ordinary differentiabilityof a function.

Remark 7.2 We reformulate the definition of differentiability off ata ∈ U : Define a function
ϕa : Uε(0) ⊂ Rn → Rm (depending on botha andh) by

f(a+ h) = f(a) + A(h) + ϕa(h). (7.20)

Thenf is differentiable ata if and only if limh→0
‖ϕa(h)‖

‖h‖ = 0. Replacing the r.h.s. of (7.20) by
f(a) + A(h) (forgetting aboutϕa) and insertingx in place ofa + h andDf(a) in place ofA,
we obtain thelinearizationL : Rn → Rm of f ata:

L(x) = f(a) +Df(a)(x− a). (7.21)

Lemma 7.4 If f is differentiable atx ∈ U the linear mappingA is uniquely determined.

Proof. Throughout we refer to the euclidean norms onRn andRm. Suppose thatA′ ∈
L(Rn,Rm) is another linear mapping satisfying (7.19). Then forh ∈ Rn, h 6= 0,

‖A(h)− A′(h)‖ = ‖f(x+ h)− f(x)−A(h)− (f(x+ h)− f(x)− A′(h))‖
≤ ‖f(x+ h)− f(x)− A(h)‖+ ‖f(x+ h)− f(x)− A′(h)‖

‖A(h)−A′(h)‖
‖h‖ ≤ ‖f(x+ h)− f(x)− A(h)‖

‖h‖ +
‖f(x+ h)− f(x)− A′(h)‖

‖h‖
Since the limith→ 0 on the right exists and equals0, the l.h.s also tends to0 ash→ 0, that is

lim
h→0

‖A(h)− A′(h)‖
‖h‖ = 0.

Now fix h0 ∈ Rn, h0 6= 0, and puth = th0, t ∈ R , t→ 0. Thenh→ 0 and hence,

0 = lim
t→0

‖A(th0)−A′(th0)‖
‖th0‖

= lim
t→0

| t | ‖A(h0)− A′(h0)‖
| t | ‖h0‖

=
‖A(h0)− A′(h0)‖

‖h0‖
.

Hence,‖A(h0)−A′(h0)‖ = 0 which impliesA(h0) = A′(h0) such thatA = A′.

Definition 7.6 The matrix(aij) ∈ Rm×n to the linear mapDf(x) with respect to the standard
bases inRn andRm is called theJacobi matrixof f atx. It is denoted byf ′(x), that is

aij = (f ′(x))ij = (0, 0, . . . , 1︸︷︷︸
i

, 0, . . . , 0)·Df(x)·




0
...
1
...
0




= ei·Df(x)(ej).
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Example Let f : Rn → Rm be linear,f(x) = B(x) with B ∈ L(Rn,Rm). ThenDf(x) = B

is the constant linear mapping. Indeed,

f(x+ h)− f(x)−B(h) = B(x+ h)−B(x)− B(h) = 0

sinceB is linear. Hence,lim
h→0
‖f(x+ h)− f(x)−B(h)‖ ‖h‖ = 0 which proves the claim.

Remark 7.3 (a) Using a column vectorh = (h1, . . . , hn)
⊤ the mapDf(x)(h) is then given by

matrix multiplication

Df(x)(h) = f ′(x) · h =



a11 . . . a1n

...
...

am1 . . . amn






h1

...
hn


 =




∑n
j=1 a1j hj

...∑n
j=1 amj hj


 .

Once chosen the standard basis inRm, we can writef(x) = (f1(x), . . . , fm(x)) as vector ofm
scalar functionsfi : Rn → R. By Proposition 6.19 the limit of the vector function

lim
h→0

1

‖h‖ (f(x+ h)− f(x)−Df(x)(h)) .

exists and is equal to0 if and only if the limit exists for every coordinatei = 1, . . . , m and is0

lim
h→0

1

‖h‖

(
fi(x+ h)− fi(x)−

n∑

j=1

aijhj

)
= 0, i = 1, . . . , m. (7.22)

We see,f is differentiable atx if and only if all fi, i = 1, . . . , m, are. In this case the Jacobi
matrixf ′(x) is just the collection of the row vectorsf ′

i(x), i = 1, . . . , m:

f ′(x) =



f ′

1(x)
...

f ′
m(x)


 ,

wheref ′
i(x) = (ai1, ai2, . . . , ain).

(b) Casem = 1 (f = f1), f ′(a) ∈ R1×n is a linear functional (a row vector). Proposition 7.6
below will show thatf ′(a) = grad f(a). The linearizationL(x) of f ata is given by the linear
functionalDf(a) from Rn → R. The graph ofL is ann-dimensional hyper plane inRn+1

touching the graph off at the point(a, f(a)). In coordinates, the linearization (hyper plane
equation) is

xn+1 = L(x) = f(a) + f ′(a)·(x− a).
Heref ′(a) is the row vector corresponding to the linear functionalDf(a) : Rn → R w.r.t. the
standard basis.

Example 7.6 Let C = (cij) ∈ Rn×n be a symmetricn × n matrix, that iscij = cji for all
i, j = 1, . . . , n and definef : Rn → R by

f(x) = x·C(x) =
n∑

i,j=1

cijxixj , x = (x1, . . . , xn) ∈ Rn.
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If a, h ∈ Rn we have

f(a+ h) = a+ h·C(a+ h) = a·C(a) + h·C(a) + a·C(h) + h·C(h)

= a·Ca+ 2C(a)·h+ h·C(h)

= f(a) + v·h+ ϕ(h),

wherev = 2C(a) andϕ(h) = h·C(h). Since, by the Cauchy–Schwarz inequality,

|ϕ(h) | = | h·C(h) | ≤ ‖h‖ ‖C(h)‖ ≤ ‖h‖ ‖C‖ ‖h‖ ≤ ‖C‖ ‖h‖2 ,

limh→0
ϕ(h)
‖h‖ = 0. This provesf to be differentiable ata ∈ Rn with derivativeDf(x)(x) =

2C(a)·x. The Jacobi matrix is a row vectorf ′(a) = 2C(a)⊤.

7.2.1 Basic Theorems

Lemma 7.5 Letf : U → Rm differentiable atx, thenf is continuous atx.

Proof. Defineϕx(h) as in Remarks 7.2 withDf(x) = A, then

lim
h→0
‖ϕx(h)‖ = 0

sincef is differentiable atx. SinceA is continuous by Prop. 7.1,limh→0A(h) = A(0) = 0.
This gives

lim
h→0

f(x+ h) = f(x) + lim
h→0

A(h) + lim
h→0

ϕx(h) = f(x).

This shows continuity off atx.

Proposition 7.6 Letf : U → Rm, f(x) = (f1(x), . . . , fm(x)) be differentiable atx ∈ U . Then
all partial derivatives∂fi(x)

∂xj
, i = 1, . . .m, j = 1, . . . , n exist and the Jacobi matrixf ′(x) ∈Rm×n has the form

(aij) = f ′(x) =




∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm

∂x1
. . . ∂fm

∂xn


 (x) =

(
∂fi(x)

∂xj

)

i = 1, . . . , m

j = 1, . . . , n

. (7.23)

Notation. (a) For the Jacobi matrix we also use the notation

f ′(x) =

(
∂(f1, . . . , fm)

∂(x1, . . . , xn)
(x)

)
.

(b) In casen = m the determinantdet(f ′(x)) of the Jacobi matrix is called theJacobianor
functional determinantof f atx. It is denoted by

det(f ′(x)) =
∂(f1, . . . , fn)

∂(x1, . . . , xn)
(x) .
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Proof. Insertingh = tej = (0, . . . , t, . . . , 0) into (7.22) (see Remark 7.3) we have, since‖h‖ =

| t | andhk = tδkj for all i = 1, . . . , m

0 = lim
t→0

‖fi(x+ tej)− fi(x)−
∑n

k=1 aikhk‖
‖tej‖

= lim
t→0

| fi(x1, . . . , xj + t, . . . , xn)− fi(x)− taij |
| t |

= lim
t→0

∣∣∣∣
fi(x1, . . . , xj + t, . . . , xn)− fi(x)

t
− aij

∣∣∣∣

=

∣∣∣∣
∂fi(x)

∂xj
− aij

∣∣∣∣ .

Henceaij =
∂fi(x)

∂xj
.

Hyper Planes

A plane inR3 is the setH = {(x1, x2, x3) ∈ R3 | a1x2 + a2x2 + a3x3 = a4} where,ai ∈ R,
i = 1, . . . , 4. The vectora = (a1, a2, a3) is thenormal vectorto H; a is orthogonal to any
vectorx− x′, x, x′ ∈ H. Indeed,a·(x− x′) = a·x− a·x′ = a4 − a4 = 0.
The planeH is 2-dimensional sinceH can be written with two parametersα1, α2 ∈ R as
(x0

1, x
0
2, x

0
3)+α1 v1+α2v2, where(x0

1, x
0
2, x

0
3) is some point inH andv1, v2 ∈ R3 are independent

vectors spanningH.
This concept is can be generalized toRn. A hyper planeinRn is the set of points

H = {(x1, . . . , xn) ∈ Rn | a1x1 + a2x2 + · · ·+ anxn = an+1},

wherea1, . . . , an+1 ∈ R. The vector(a1, . . . , an) ∈ Rn is called thenormal vectorto the hyper
planeH. Note thata is unique only up to scalar multiples. A hyper plane inRn is of dimension
n − 1 since there aren − 1 linear independent vectorsv1, . . . , vn−1 ∈ Rn and a pointh ∈ H
such that

H = {h+ α1v1 + · · ·+ αnvn | α1, . . . , αn ∈ R}.
Example 7.7 (a) Special casem = 1; let f : U → R be differentiable. Then

f ′(x) =

(
∂f

∂x1

(x), . . . ,
∂f

∂xn
(x)

)
= grad f(x).

It is a row vector and gives a linear functional onRn which linearly associates to each vector
y = (y1, . . . , yn)

⊤ ∈ Rn a real number

Df(x)



y1

...
yn


 = grad f(x)·y =

n∑

j=1

fxj
(x)yj.
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In particular by Remark 7.3 (b), the equation of the linearization off at a (the touching hyper
plane) is

xn+1 = L(x) = f(a) + grad f(a)·(x− a)
xn+1 = f(a) + (fx1(a), . . . , fxn(a)) ·(x1 − a1, · · · , xn − an)

xn+1 = f(a) +
n∑

j=1

fxj
(a)(xj − aj)

0 =

n∑

j=1

−fxj
(a)(xj − aj) + 1 · (xn+1 − f(a))

0 = ñ·(x̃− ã),
wherex̃ = (x1, · · · , xn, xn+1), ã = (a1, · · ·an, f(a)) andñ = (− grad f(a), 1) ∈ Rn+1 is the
normal vector to the hyper plane atã.
(b) Special casen = 1; let f : (a, b) → Rm, f = (f1, . . . , fm) be differentiable. Thenf is a
curvein Rm with initial point f(a) and end pointf(b). f ′(t) = (f ′

1(t), . . . , f
′
m(t)) ∈ Rm×1 is

the Jacobi matrix off atx (column vector). It is thetangent vectorto the curvef at t ∈ (a, b).
(c) Letf : R3 → R2 be given by

f(x, y, z) = (f1, f2) =

(
x3 − 3xy2 + z

sin(xyz2)

)
.

Then

f ′(x, y, z) =

(
∂(f1, f2)

∂(x, y, z)

)
=

(
3x2 − 3y2 −6xy 1

yz2 cos(xy2z) xz2 cos(xy2z) 2xyz cos(xy2z)

)
.

The linearization off at (a, b, c) is

L(x, y, z) = f(a, b, c) + f ′(a, b, c)·(x− a, y − b, z − c).
Remark 7.4 Note that the existence of all partial derivatives does not imply the existence of
f ′(a). Recall Example 7.1 (d). There was given a function having partial derivatives at the
origin not being continuous at(0, 0), and hence not being differentiable at(0, 0). However, the
next proposition shows that the converse is true provided all partial derivatives are continuous.

Proposition 7.7 Letf : U → Rm be continuously partial differentiable at a pointa ∈ U .
Thenf is differentiable ata andf ′ : U → L(Rn,Rm) is continuous ata.

The proof in casen = 2,m = 1 is in the appendix to this chapter.

Theorem 7.8 (Chain Rule) If f : Rn → Rm is differentiable at a pointa andg : Rm → Rp is
differentiable atb = f(a), then the compositionk = g◦f : Rn → Rp is differentiable ata and

Dk(a) = Dg(b)◦Df(a). (7.24)
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Using Jacobi matrices, this can be written as

k′(a) = g′(b) · f ′(a). (7.25)

Proof. LetA = Df(a), B = Dg(b), andy = f(x). Defining functionsϕ, ψ, andρ by

ϕ(x) = f(x)− f(a)−A(x− a), (7.26)

ψ(y) = g(y)− g(b)−B(y − b), (7.27)

ρ(x) = g◦f(x)− g◦f(a)−B◦A(x− a) (7.28)

then

lim
x→a

‖ϕ(x)‖
‖x− a‖ = 0, lim

y→b

‖ψ(y)‖
‖y − b‖ = 0 (7.29)

and we have to show that

lim
x→a

‖ρ(x)‖
‖x− a‖ = 0.

Inserting (7.26) and (7.27) we find

ρ(x) = g(f(x))− g(f(a))− BA (x− a) = g(f(x))− g(f(a))− B(f(x)− f(a)− ϕ(x))

ρ(x) = [g(f(x))− g(f(a))−B(f(x)− f(a))] +B◦ϕ(x)

ρ(x) = ψ(f(x)) +B(ϕ(x)).

Using‖T (x)‖ ≤ ‖T‖ ‖x‖ (see Proposition 7.1) this shows

‖ρ(x)‖
‖x− a‖ ≤

‖ψ(f(x))‖
‖x− a‖ +

‖B◦ϕ(x)‖
‖x− a‖ ≤

‖ψ(y)‖
‖y − b‖ ·

‖f(x)− f(a)‖
‖x− a‖ + ‖B‖ ‖ϕ(x)‖

‖x− a‖ .

Inserting (7.26) again into the above equation we continue

=
‖ψ(y)‖
‖y − b‖ ·

‖ϕ(x) + A(x− a)‖
‖a− x‖ + ‖B‖ ‖ϕ(x)‖

‖x− a‖

≤ ‖ψ(y)‖
‖y − b‖

( ‖ϕ(x)‖
‖a− x‖ + ‖A‖

)
+ ‖B‖ ‖ϕ(x)‖

‖x− a‖ .

All terms on the right side tend to0 asx approachesa. This completes the proof.

Remarks 7.5 (a) The chain rule in coordinates. IfA = f ′(a), B = g′(f(a)), andC = k′(a),
thenA ∈ Rm×n, B ∈ Rp×m, andC ∈ Rp×n and

(
∂(k1, . . . , kp)

∂(x1, . . . , xn)

)
=

(
∂(g1, . . . , gp)

∂(y1, . . . , ym)

)
◦

(
∂(f1, . . . , fm)

∂(x1, . . . , xn)

)
(7.30)

∂kr
∂xj

(a) =

m∑

i=1

∂gr
∂yi

(f(a))
∂fi
∂xj

(a), r = 1, . . . , p, j = 1, . . . , n. (7.31)

(b) In particular, in casep = 1, k(x) = g(f(x)) we have,

∂k

∂xj
=

∂g

∂y1

∂f1

∂xj
+ · · ·+ ∂g

∂ym

∂fm
∂xj

.
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Example 7.8 (a) Let f(u, v) = uv, u = g(x, y) = x2 + y2, v = h(x, y) = xy, andz =

f(g(x, y), h(x, y)) = (x2 + y2)xy = x3y + x2y3.

∂z

∂x
=
∂f

∂u
· ∂g
∂x

+
∂f

∂v
· ∂h
∂x

= v · 2x+ u · y = 2x2y + y(x2 + y2)

∂z

∂x
= 3x2y + y3.

(b) Letf(u, v) = uv, u(t) = v(t) = t. ThenF (t) = f(u(t), v(t)) = tt and

F ′(t) =
∂f

∂u
u′(t) +

∂f

∂v
v′(t) = vuv−1 · 1 + uv log u · 1

= t · tt−1 + tt log t = tt(log t+ 1).

7.3 Taylor’s Formula

The gradient off gives an approximation of a scalar functionf by a linear functional. Taylor’s
formula generalizes this concept of approximation to higher order. We consider quadratic ap-
proximation off to determine local extrema. Througout this section we referto the euclidean
norm‖x‖ = ‖x‖2 =

√
x2

1 + · · ·+ x2
n.

7.3.1 Directional Derivatives

Definition 7.7 Let f : U → R be a function,a ∈ U , ande ∈ Rn a unit vector,‖e‖ = 1. The
directional derivativeof f ata in the direction of the unit vectore is the limit

(Def)(a) = lim
t→0

f(a+ te)− f(a)

t
. (7.32)

Note that fore = ej we haveDef = Djf = ∂f
∂xj

.

Proposition 7.9 Letf : U → R be continuously differentiable. Then for everya ∈ U and every
unit vectore ∈ Rn, ‖e‖ = 1, we have

Def(a) = e· grad f(a) (7.33)

Proof. Defineg : R → Rn by g(t) = a + te = (a1 + te1, . . . , an + ten). For sufficiently small
t ∈ R, say| t | ≤ ε, the compositionk = f ◦gR g→ Rn f→ R, k(t) = f(g(t)) = f(a1 + te1, . . . , an + ten)

is defined. We computek′(t) using the chain rule:

k′(t) =
n∑

j=1

∂f

∂xj
(a + te) g′j(t).



7.3 Taylor’s Formula 207

Sinceg′j(t) = (aj + tej)
′ = ej andg(0) = a, it follows

k′(t) =
n∑

j=1

∂f

∂xj
(a+ te) ej , (7.34)

k′(0) =

n∑

j=1

fxj
(a)ej = grad f(a)·e.

On the other hand, by definition of the directional derivative

k′(0) = lim
t→0

k(t)− k(0)

t
= lim

t→0

f(a+ te)− f(a)

t
= Def(a).

This completes the proof.

Remark 7.6 (Geometric meaning of grad f ) Suppose thatgrad f(a) 6= 0 and lete be a
normed vector,‖e‖ = 1. Varying e, Def(x) = e· grad f(x) becomes maximal if and only if
e and∇f(a) have the same directions. Hence the vectorgrad f(a) points in the direction of
maximal slope off ata. Similarly,− grad f(a) is the direction of maximal decline.

For examplef(x, y) =
√

1− x2 − y2 has

grad f(x, y) =

(
−x√

1−x2−y2
, −y√

1−x2−y2

)
. The

maximal slope off at (x, y) is in direction
e = (−x,−y)/

√
x2 + y2. In this case,the tan-

gent line to the graph points to thez-axis and
has maximal slope.

Corollary 7.10 Letf : U → R bek-times continuously differentiable,a ∈ U andx ∈ Rn such
that the whole segmenta+ tx, t ∈ [0, 1] is contained inU .
Then the functionh : [0, 1]→ R, h(t) = f(a+ tx) is k-times continuously differentiable, where

h(k)(t) =

n∑

i1,...,ik=1

Dik · · ·Di1f(a+ tx)xi1 · · ·xik . (7.35)

In particular

h(k)(0) =

n∑

i1,...,ik=1

Dik · · ·Di1f(a)xi1 · · ·xik . (7.36)

Proof. The proof is by induction onk. Fork = 1 it is exactly the statement of the Proposition.
We demonstrate the step fromk = 1 to k = 2. By (7.34)

h′′(t) =

n∑

i1=1

d

dt

(
∂f(a + tx)

∂xi1

)
xi1 =

n∑

i1=1

n∑

i2=1

∂f

∂xi2∂xi1
(a+ tx)xi2xi1 .

In the second equality we applied the chain rule toh̃(t) = fxi1
(a+ tx).
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For brevity we use the following notation for the term on the right of (7.36):

(x∇)kf(a) =
n∑

i1,...,ik=1

xi1 · · ·xikDik · · ·Di1f(a).

In particular, (x∇)f(a) = x1fx1(a) + x2fx2(a) + · · · + xnfxn(a) and (∇ x)2f(a) =∑n
i,j=1 xixj

∂2f
∂xi∂xj

.

7.3.2 Taylor’s Formula

Theorem 7.11 Let f ∈ Ck+1(U), a ∈ U , andx ∈ Rn such thata + tx ∈ U for all t ∈ [0, 1].
Then there existsθ ∈ [0, 1] such that

f(a+ x) =
k∑

m=0

1

m!
(x∇)mf(a) +

1

(k + 1)!
(x∇)k+1f(a+ θx) (7.37)

f(a+ x) = f(a) +
n∑

i=1

xifxi
(a) +

1

2!

n∑

i,j=1

xixjfxixj
(a) + · · ·+

+
1

(k + 1)!

∑

i1,...ik+1

xi1 · · ·xik+1
fxi1

···xik+1
(a+ θx).

The expressionRk+1(a, x) = 1
(k+1)!

(x∇)k+1f(a+ θx) is called theLagrange remainder term.

Proof. Consider the functionh : [0, 1] → R, h(t) = f(a + tx). By Corollary 7.10,h is a
(k + 1)-times continuously differentiable. By Taylor’s theorem for functions in one variable
(Theorem 4.15 withx = 1 anda = 0 therein), we have

f(a+ x) = h(1) =

k∑

m=0

h(m)(0)

m!
+
h(k+1)(θ)

(k + 1)!
.

By Corollary 7.10 form = 1, . . . , k we have

h(m)(0)

m!
=

1

m!
(x∇)mf(a).

and
h(k+1)(θ)

(k + 1)!
=

1

(k + 1)!
(x∇)k+1f(a+ θx);

the assertion follows.

It is often convenient to substitutex := x+ a. Then the Taylor expansion reads

f(x) =

k∑

m=0

1

m!
((x− a)∇)mf(a) +

1

(k + 1)!
((x− a)∇)(k+1)f(a+ θ(x− a))

f(x) = f(a) +

n∑

i=1

(xi − ai)fxi
(a) +

1

2!

n∑

i,j=1

(xi − ai)(xj − aj)fxixj
(a) + · · ·+

+
1

(k + 1)!

∑

i1,...,ik+1

(xi1 − ai1) · · · (xik+1
− aik+1

)fxi1
···xik+1

(a+ θ(x− a)).
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We write the Taylor formula for the casen = 2, k = 3:

f(a+ x,b+ y) = f(a, b) + (fx(a, b)x+ fy(a, b)y)+

+
1

2!

(
fxx(a, b)x

2 + 2fxy(a, b) xy + fyy(a, b)y
2
)
+

+
1

3!

(
fxxx(a, b)x

3 + 3fxxy(a, b)x
2y + 3fxyy(a, b)xy

2 + fyyy(a, b)y
3)
)

+R4(a, x).

If f ∈ ⋂∞
k=0 Ck(U) = {f : f ∈ Ck(U) ∀ k ∈ N} and lim

k→∞
Rk(a, x) = 0 for all x ∈ U , then

f(x) =
∞∑

m=0

1

m!
((x− a)∇)mf(a).

The r.h.s. is called theTaylor seriesof f ata.

Example 7.9 (a) We compute the Taylor expansion off(x, y) = cosx sin y at(0, 0) to the third
order. We have

fx = − sin x sin y, fy = cosx cos y,

fx(0, 0) = 0, fy(0, 0) = 1,

fxx = − cosx sin y, fyy = − cos x sin y, fxy = − sin x cos y

fxx(0, 0) = 0, fyy(0, 0) = 0, fxy(0, 0) = 0.

fxxy = − cosx cos y, fyyy = − cos x cos y,

fxxy(0, 0) = −1, fyyy(0, 0) = −1, fxyy(0, 0) = fxxx(0, 0) = 0.

Inserting this gives

f(x, y) = y +
1

3!

(
−3x2y − y3

)
+R4(x, y; 0).

The same result can be obtained by multiplying the Taylor series forcosx andsin y:
(

1− x2

2
+
x4

4!
∓ · · ·

)(
y − y3

3!
± · · ·

)
= y − 1

2
x2y − y3

6
+ · · ·

(b) The Taylor series off(x, y) = exy
2

at (0, 0) is

∞∑

n=0

(xy2)n

n!
= 1 + xy2 +

1

2
x2y4 + · · · ;

it converges all overR2 to f(x, y).

Corollary 7.12 (Mean Value Theorem) Letf : U → R be continuously differentiable,a ∈ U ,
x ∈ Rn such thata+ tx ∈ U for all t ∈ [0, 1]. Then there existsθ ∈ [0, 1] such that

f(a+ x)− f(a) = ∇f(a+ θx)·x, f(y)− f(x) = ∇f((1− θ)x+ θy)·(y − x). (7.38)

This is the special case of Taylor’s formula withk = 0.
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Corollary 7.13 Let f : U → R bek times continuously differentiable,a ∈ U , x ∈ Rn such
thata+ tx ∈ U for all t ∈ [0, 1]. Then there existsϕ : U → R such that

f(a+ x) =
k∑

m=0

1

m!
(x∇)mf(a) + ϕ(x), (7.39)

where

lim
x→0

ϕ(x)

‖x‖k
= 0.

Proof. By Taylor’s theorem forf ∈ Ck(U), there existsθ ∈ [0, 1] such that

f(x+ a) =

k−1∑

m=0

1

m!
(x∇)mf(a) +

1

k!
(x∇)kf(a+ θx)

!
=

k∑

m=0

1

m!
(x∇)mf(a) + ϕ(x).

This implies

ϕ(x) =
1

k!

(
(x∇)kf(a+ θx)− (x∇)kf(a)

)
.

Since|xi1 · · ·xik | ≤ ‖x‖ . . . ‖x‖ = ‖x‖k for x 6= 0,

|ϕ(x) |
‖x‖k

≤ 1

k!

∣∣∇kf(a+ θx)−∇kf(a)
∣∣ .

Since allkth partial derivatives off are continuous,

Di1i2···ik(f(a+ θx)− f(a)) −→
x→0

0.

This proves the claim.

Remarks 7.7 (a) With the above notations let

Pm(x) =
((x− a)∇)m

m!
f(a).

ThenPm is a polynomial of degreem in the set of variablesx = (x1, . . . , xn) and we have

f(x) =
k∑

m=0

Pm(x) + ϕ(x), lim
x→a

‖ϕ(x)‖
‖x− a‖k

= 0.

Let us consider in more detail the casesm = 0, 1, 2.
Casem = 0.

P0(x) =
D0f(a)

0!
x0 = f(a).

P0 is the constant polynomial with valuef(a).
Casem = 1. We have

P1(x) =
n∑

j=1

fxj
(a)(xj − aj) = grad f(a)·(x− a)
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Using Corollary 7.13 the first order approximation of a continuously differentiable function is

f(x) = f(a) + grad f(a)·(x− a) + ϕ(x), lim
x→a

ϕ(x)

‖x− a‖ = 0. (7.40)

The linearization off ata isL(x) = P0(x) + P1(x).
Casem = 2.

P2(x) =
1

2

n∑

i,j=1

fxixj
(a)(xi − ai)(xj − aj).

Hence,P2(x) is quadratic with the corresponding matrix
(

1
2
fxixj

(a)
)
. As a special case of

Corollary 7.13 (m = 2) we have forf ∈ C2(U)

f(a+ x) = f(a) + grad f(a)·x+
1

2
x⊤·Hess f(a)·x+ ϕ(x), lim

x→0

ϕ(x)

‖x‖2
= 0, (7.41)

where

( Hess f)(a) =
(
fxixj

(a)
)n
i,j=1

(7.42)

is called theHessian matrixof f at a ∈ U . The Hessian matrix is symmetric by Schwarz’
lemma.

7.4 Extrema of Functions of Several Variables

Definition 7.8 Let f : U → R be a function. The pointx ∈ U is called local maximum
(minimum)of f if there exists a neighborhoodUε(x) ⊂ U of x such that

f(x) ≥ f(y) (f(x) ≤ f(y)) for all y ∈ Uε(x).

A local extremumis either a local maximum or a local minimum.

Proposition 7.14 Let f : U → R be partial differentiable. Iff has a local extremum atx ∈ U
then grad f(x) = 0.

Proof. For i = 1, . . . , n consider the function

gi(t) = f(x+ tei).

This is a differentiable function of one variable, defined ona certain interval(−ε, ε). If f has
an extremum atx, thengi has an extremum att = 0. By Proposition 4.7

g′i(0) = 0.

Sinceg′i(0) = limt→0
f(x+tei)−f(x)

t
= fxi

(x) andi was arbitrary, it follows that

grad f(x) = (Dif(x), . . . , Dnf(x)) = 0.
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Example 7.10 Let f(x, y) =
√

1− x2 − y2 be defined on the open unit discU = {(x, y) ∈R2 | x2 + y2 < 1}. Then grad f(x, y) = (−x/r,−y/r) = 0 if and only if x = y = 0. If f has
an extremum inU then at the origin. Obviously,f(x, y) =

√
1− x2 − y2 ≤ 1 = f(0, 0) for all

points inU such thatf attains its global (and local) maximum at(0, 0).

To obtain a sufficient criterion for the existence of local extrema we have to consider the Hessian
matrix. Before, we need some facts from Linear Algebra.

Definition 7.9 Let A ∈ Rn×n be a real, symmetricn × n-matrix, that isaij = aji for all
i, j = 1, . . . , n. The associated quadratic form

Q(x) =

n∑

i,j=1

aijxixj = x⊤ · A · x

is called

positive definite if Q(x) > 0 for all x 6= 0,
negative definite if Q(x) < 0 for all x 6= 0,
indefinite if Q(x) > 0,Q(y) < 0 for somex, y,
positive semidefinite if Q(x) ≥ 0 for all x andQ is not positive definite,
negative semidefiniteif Q(x) ≤ 0 for all x andQ is not negative definite.

Also, we say that the corresponding matrixA is positive defininiteif Q(x) is.

Example 7.11 Let n = 2, Q(x) = Q(x1, x2). ThenQ1(x) = 3x2
1 + 7x2

2 is positive definite,
Q2(x) = −x2

1−2x2
2 is negative definite,Q3(x) = x2

1−2x2
2 is indefinite,Q4(x) = x2

1 is positive
semidefinite, andQ5(x) = −x2

2 is negative semidefinite.

Proposition 7.15 (Sylvester)LetA be a real symmetricn × n-matrix andQ(x) = x·Ax the
corresponding quadratic form. Fork = 1, · · · , n let

Ak =



a11 · · · a1k

...
...

ak1 · · · akk


 , Dk = detAk.

Letλ1, . . . , λn be the eigenvalues ofA. Then

(a)Q is positive definite if and only ifλ1 > 0, λ2 > 0, . . . , λn > 0. This is the case
if and only ifD1 > 0,D2 > 0,. . . ,Dn > 0.
(b) Q(x) is negative definite if and only ifλ1 < 0, λ2 < 0,. . . ,λn < 0. This is the
case if and only if(−1)kDk > 0 for all k = 1, . . . , n.
(c)Q(x) is indefinite if and only if,A has both positive and negative eigenvalues.

Example 7.12 Casen = 2. Let A ∈ R2×2, A =

(
a b

b c

)
, be a symmetric matrix. By

Sylvester’s criterionA is

(a) positive definite if and only ifdetA > 0 anda > 0,
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(b) negative definite if and only ifdetA > 0 anda < 0,

(c) indefinite if and only ifdetA < 0,

(d) semidefinite if and only ifdetA = 0.

Proposition 7.16 Letf : U → R be twice continuously differentiable and letgrad f(a) = 0 at
some pointa ∈ U .

(a) If Hess f(a) is positive definite, thenf has a local minimum ata.
(b) If Hess f(a) is negative definite, thenf has a local maximum ata.
(c) If Hess f(a) is indefinite, thenf has not a local extremum ata.

Note that in general there is no information ona if Hess f(a) is semidefinit.
Proof. By (7.41) and sincegrad f(a) = 0,

f(a+ x) = f(a) +
1

2
x·A(x) + ϕ(x), lim

x→0

ϕ(x)

‖x‖2
= 0, (7.43)

whereA = Hess f(a).
(a) LetA be positive definite. Since the unit sphereS = {x ∈ Rn | ‖x‖ = 1} is compact (closed
and bounded) and the mapQ(x) = x·A(x) is continuous, the function attains its minimum, say
m, onS, see Proposition 6.24,

m = min{x·A(x) | x ∈ S}.

SinceQ(x) is positive definite and0 6∈ S,m > 0. If x is nonzero,y = x/ ‖x‖ ∈ S and therefore

m ≤ y·A(y) =
1

‖x‖x·A
(

x

‖x‖

)
=

x

‖x‖·
A(x)

‖x‖ =
1

‖x‖2
x·A(x),

This impliesQ(x) = x·A(x) ≥ m ‖x‖2 for all x ∈ U .
Sinceϕ(x)/ ‖x‖2 −→ 0 asx→ 0, there existsδ > 0 such that‖x‖ < δ implies

−m
4
‖x‖2 ≤ ϕ(x) ≤ m

4
‖x‖2 .

From (7.43) it follows

f(a+ x) = f(a) +
1

2
Q(x) + ϕ(x) ≥ f(a) +

1

2
m ‖x‖2 − m

4
‖x‖2 ≥ f(a) +

m

4
‖x‖2 ,

hence
f(a+ x) > f(a), if 0 < ‖x‖ < δ,

andf has a strict (isolated) local minimum ata.
(b) If A = Hess f(a) is negative definite, consider−f in place off and apply (a).
(c) LetA = Hess f(a) indefinite. We have to show that in every neighborhood ofa there exist
x′ andx′′ such thatf(x′′) < f(a) < f(x′). SinceA is indefinite, there is a vectorx ∈ Rn \ 0

such thatx·A(x) = m > 0. Then for smallt we have

f(a+ tx) = f(a) +
1

2
tx·A(tx) + ϕ(tx) = f(a) +

m

2
t2 + ϕ(tx).
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If t is small enough,−m
4
t2 ≤ ϕ(tx) ≤ m

4
t2, hence

f(a+ tx) > f(a), if 0 < | t | < δ.

Similarly, if y ∈ Rn \ 0 satisfiesy·A(y) < 0, for sufficiently smallt we havef(a+ ty) < f(a).

Example 7.13 (a) f(x, y) = x2 + y2. Here∇f = (2x, 2y)
!
= 0 if and only if x = y = 0.

Furthermore,

Hess f(x, y) =

(
2 0

0 2

)

is positive definite.f has a (strict) local minimum at(0, 0)

(b)Find the local extrema ofz = f(x, y) = 4x2 − y2 on R2. (the graph is a hyperbolic
paraboloid). We find that the necesary condition∇f = 0 impliesfx = 8x = 0, fy = −2y = 0;
thusx = y = 0. Further,

Hess f(x, y) =

(
fxx fxy
fyx fyy

)
=

(
8 0

0 −2

)
.

The Hessian matrix at(0, 0) is indefinite; the function has not an extremum at the origin(0, 0).
(c) f(x, y) = x2 + y3. ∇f(x, y) = (2x, 3y2) vanishes if and only ifx = y = 0. Furthermore,

Hess f(0, 0) =

(
2 0

0 0

)

is positive semidefinit. However, there is no local extremumat the origin sincef(ε, 0) = ε2 >

0 = f(0, 0) > −ε3 = f(0,−ε).
(d) f(x, y) = x2 + y4. Again the Hessian matrix at(0, 0) is positive semidefinite. However,
(0, 0) is a strict local minimum.

Local and Global Extrema

To compute theglobal extrema of a functionf : U → R whereU ⊂ Rn is open andU is the
closure ofU we have go along the following lines:

(a) Compute the local extrema onU ;

(b) Compute the global extrema on the boundary∂U = U ∩ Uc;

(c) If U is unbounded without boundary (asU = R), consider the limits at infinity.

Note that
sup
x∈U

f(x) = max{maximum of all local maxima inU, sup
x∈∂U

f(x)}.

To compute the global extremum off on the boundary one has to find the local extrema on
the interior point of the boundary and to compare them with the values on the boundary of the
boundary.
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Example 7.14 Find the global extrema off(x, y) = x2y onU = {(x, y) ∈ R2 | x2 + y2 ≤ 1}
(whereU is the open unit disc.)
Since grad f = (fx, fy) = (2xy, x2) local extrema can appear only on they-axisx = 0, y is
arbitrary. The Hessian matrix at(0, y) is

Hess f(0, y) =

(
fxx fxy
fxy fyy

)∣∣∣∣
x=0

=

(
2y 2x

2x 0

)∣∣∣∣
x=0

=

(
2y 0

0 0

)
.

This matrix is positive semidefinite in casey > 0, negative semidefinite in casey < 0 and0 at
(0, 0). Hence, the above criterion givesno answer. We have to apply the definition directly. In
casey > 0 we havef(x, y) = x2y ≥ 0 for all x. In particularf(x, y) ≥ f(0, y) = 0. Hence
(0, y) is a local minimum. Similarly, in casey < 0, f(x, y) ≤ f(0, y) = 0 for all x. Hence,f
has a local maximum at(0, y), y < 0. Howeverf takes both positive and negative values in a
neighborhood of(0, 0), for examplef(ε, ε) = ε3 andf(ε,−ε) = −ε3. Thus(0, 0) is not a local
extremum.
We have to consider the boundaryx2 + y2 = 1. Insertingx2 = 1− y2 we obtain

g(y) = f(x, y)|x2+y2=1 = x2y
∣∣
x2+y2=1

= (1− y2)y = y − y3, | y | ≤ 1.

We compute the local extrema of the boundaryx2+y2 = 1 (note, that the circle has no boundary,
such that the local extrema are actually the global extrema).

g′(y) = 1− 3y2 !
= 0, | y | = 1√

3
.

Sinceg′′(1/
√

3) < 0 andg′′(−1/
√

3) > 0, g attains its maximum 2
3
√

3
at y = 1/

√
3. Since this

is greater than the local maximum off at (0, y), y > 0, f attains its global maximum at the two
points

M1,2 =

(
±
√

2

3
,

1√
3

)
,

wheref(M1,2) = x2y = 2
3
√

3
. g attains its minimum− 2

3
√

3
at y = −1/

√
3. Since this is less

than the local minimum off at (0, y), y < 0, f attains its global minimum at the two points

m1,2 =

(
±
√

2

3
,− 1√

3

)
,

wheref(m1,2) = x2y = − 2
3
√

3
.

The arithmetic-geometric mean inequality shows the same result forx, y > 0:

1

3
≥ x2 + y2

3
=

x2

2
+ x2

2
+ y2

3
≥
(
x2

2

x2

2
y2

) 1
3

=⇒ x2y ≤ 2

3
√

3
.

(b) Among all boxes with volume1 find the one where the sum of the length of the12 edges is
minimal.
Let x, y andz denote the length of the three perpendicular edges of one vertex. By assumption
xyz = 1; andg(x, y, z) = 4(x+ y + z) is the function to minimize.
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Local Extrema.Inserting the constraintz = 1/(xy) we have to minimize

f(x, y) = 4

(
x+ y +

1

xy

)
on U = {(x, y) | x > 0, y > 0}.

The necessary condition is

fx = 4

(
1− 1

x2y

)
= 0,

fy = 4

(
1− 1

xy2

)
= 0,

=⇒ x2y = xy2 = 1 =⇒ x = y = 1.

Further,

fxx =
8

x3y
, fyy =

8

xy3
, fxy =

4

x2y2

such that

det Hess f(1, 1) =

∣∣∣∣
8 4

4 8

∣∣∣∣ = 64− 16 > 0;

hencef has an extremum at(1, 1). Sincefxx(1, 1) = 8 > 0, f has a local minimum at(1, 1).
Global Extrema. We show that(1, 1) is even the global minimum on the first quadrantU .
ConsiderN = {(x, y) | 1

25
≤ x, y ≤ 5}. If (x, y) 6∈ N ,

f(x, y) ≥ 4(5 + 0 + 0) = 20,

Sincef(x, y) ≥ 12 = f(1, 1), the global minimum off on the right-upper quadrant is attained
on the compact rectangleN . Inserting the four boundariesx = 5, y = 5, x = 1/5, andy = 1/5,
in all cases,f(x, y) ≥ 20 such that the local minimum(1, 1) is also the global minimum.

7.5 The Inverse Mapping Theorem

Suppose thatf : R → R is differentiable on an open setU ⊂ R, containinga ∈ U , and
f ′(a) 6= 0. If f ′(a) > 0, then there is an open intervalV ⊂ U containinga such thatf ′(x) >

0 for all x ∈ V . Thusf is strictly increasing onV and therefore injective with an inverse
functiong defined on some open intervalW containingf(a). Moreoverg is differentiable (see
Proposition 4.5) andg′(y) = 1/f ′(x) if f(x) = y. An analogous result in higher dimensions is
more involved but the result is very important.
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Theorem 7.17 (Inverse Mapping Theorem)Suppose thatf : Rn → Rn is continuously dif-
ferentiable on an open setU containinga, anddet f ′(a) 6= 0. Then there is an open setV ⊂ U

containinga and an open setW containingf(a) such thatf : V →W has a continuous inverse
g : W → V which is differentiable and for ally ∈W . For y = f(x) we have

g′(y) = (f ′(x))
−1
, Dg(y) = (Df(x))−1. (7.44)

For the proof see [Rud76, 9.24 Theorem] or [Spi65, 2-11].

Corollary 7.18 Let U ⊂ Rn be open, f : U → Rn continuously differentiable and
det f ′(x) 6= 0 for all x ∈ U . Thenf(U) is open inRn.

Remarks 7.8 (a) One main part is to show that there is an open setV ⊂ U which is mapped
onto anopensetW . In general, this is not true forcontinuousmappings. For examplesin x
maps the open interval(0, 2π) onto the closed set[−1, 1]. Note thatsin x does not satisfy the
assumptions of the corollary sincesin′(π/2) = cos(π/2) = 0.
(b) Note that continuity off ′(x) in a neighborhood ofa, continuity of the determinant mapping
det : Rn×n → R, anddet f ′(a) 6= 0 implies thatdet f ′(x) 6= 0 in a neighborhoodV1 of a, see
homework 10.4. This implies that the linear mappingDf(x) is invertible forx ∈ V1. Thus,
Df(x)−1 and(f ′(x))−1 exist forx ∈ V1 — the linear mappingDf(x) is regular.
(c) Let us reformulate the statement of the theorem. Suppose

y1 = f1(x1, . . . , xn),

y2 = f2(x1, . . . , xn),

...

yn = fn(x1, . . . , xn)

is a system ofn equations inn variablesx1, . . . , xn; y1, . . . , yn are given in a neighborhoodW
of f(a). Under the assumptions of the theorem, there exists a uniquesolutionx = g(y) of this
system of equations

x1 = g1(y1, . . . , yn),

x2 = g2(y1, . . . , yn),

...

xn = gn(y1, . . . , yn)

in a certain neighborhood(x1, . . . , xn) ∈ V of a. Note that the theorem states the existence of
such a solution. It doesn’t provide an explicit formula.
(d) Note that the inverse functiong may exist even ifdet f ′(x) = 0. For examplef : R → R,
defined byf(x) = x3 hasf ′(0) = 0; howeverg(y) = 3

√
x is inverse tof(x). One thing is

certain ifdet f ′(a) = 0 theng cannot be differentiable atf(a). If g were differentiable atf(a),
the chain rule applied tog(f(x)) = x would give

g′(f(a)) · f ′(a) = id



218 7 Calculus of Functions of Several Variables

and consequently
det g′(f(a)) det f ′(a) = det id = 1

contradictingdet f ′(a) = 0.
(e) Note that the theorem states that under the given assumptionsf is locally invertible. There
is no information about the existence of an inverse functiong to f on a fixed open set. See
Example 7.15 (a) below.

Example 7.15 (a) Let x = r cosϕ and y = r sinϕ be the polar coordinates inR2. More
precisely, let

f(r, ϕ) =

(
x

y

)
=

(
r cosϕ

r sinϕ

)
, f : R2 → R2.

The Jacobian is
∂(x, y)

∂(r, ϕ)
=

∣∣∣∣
xr xϕ
yr yϕ

∣∣∣∣ =
∣∣∣∣
cosϕ −r sinϕ

sinϕ r cosϕ

∣∣∣∣ = r.

Let f(r0, ϕ0) = (x0, y0) 6= (0, 0), thenr0 6= 0 and the Jacobian off at (r0, ϕ0) is non-zero.
Since all partial derivatives off with respect tor andϕ exist and they are continuous onR2, the
assumptions of the theorem are satisfied. Hence, in a neighborhoodU of (x0, y0) there exists a
continuously differentiable inverse functionr = r(x, y), ϕ = ϕ(x, y). In this case, the function
can be given explicitly,r =

√
x2 + y2, ϕ = arg(x, y). We want to compute the Jacobi matrix

of the inverse function. Since the inverse matrix

(
cosϕ −r sinϕ

sinϕ r cosϕ

)−1

=

(
cosϕ sinϕ

−1
r
sinϕ 1

r
cosϕ

)

we obtain by the theorem

g′(x, y) =

(
∂(r, ϕ)

∂(x, y)

)
=

(
cosϕ sinϕ

−1
r
sinϕ 1

r
cosϕ

)
=

(
x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

)
;

in particular, the second row gives the partial derivativesof the argument function with respect
to x andy

∂ arg(x, y)

∂x
=

−y
x2 + y2

,
∂ arg(x, y)

∂y
=

x

x2 + y2
.

Note that we have not determined the explicit form of the argument function which is not unique
sincef(r, ϕ+2kπ) = f(r, ϕ), for all k ∈ Z. However, the gradient takes always the above form.
Note thatdet f ′(r, ϕ) 6= 0 for all r 6= 0 is not sufficient forf to be injective onR2 \ {(0, 0)}.
(b) Letf : R2 → R2 be given by(u, v) = f(x, y) where

u(x, y) = sin x− cos y, v(x, y) = − cosx+ sin y.

Since

∂(u, v)

∂(x, y)
=

∣∣∣∣
ux uy
vx vy

∣∣∣∣ =

∣∣∣∣
cosx sin y

sin x cos y

∣∣∣∣ = cosx cos y − sin x sin y = cos(x+ y)
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f is locally invertible at(x0, y0) = (π
4
,−π

4
) since the Jacobian at(x0, y0) is cos 0 = 1 6= 0.

Sincef(π
4
,−π

4
) = (0,−

√
2), the inverse functiong(u, v) = (x, y) is defined in a neighborhood

of (0,−
√

2) and the Jacobi matrix ofg at (0,−
√

2) is
(

1√
2
− 1√

2
1√
2

1√
2

)−1

=

(
1√
2

1√
2

− 1√
2

1√
2

)
.

Note that at point(π
4
, π

4
) the Jacobian off vanishes. There is indeed no neighborhood of(π

4
, π

4
)

wheref is injective since for allt ∈ R
f
(π

4
+ t,

π

4
− t
)

= f
(π

4
,
π

4

)
= (0, 0).

7.6 The Implicit Function Theorem

Motivation: Hyper Surfaces

Suppose thatF : U → R is a continuously differentiable function andgradF (x) 6= 0 for all
x ∈ U . Then

S = {(x1, . . . , xn) | F (x1, . . . , xn) = 0}
is called ahyper surfacein Rn. A hyper surface inRn has dimensionn − 1. Examples are
hyper planesa1x1 + · · ·+ anxn + c = 0 ((a1, . . . , an) 6= 0), spheresx2

1 + · · ·+ x2
n = r2. The

graph of differentiable functionsf : U → R is also a hyper surface inRn+1

Γf = {(x, f(x)) ∈ Rn+1 | x ∈ U}.
Question: Is any hyper surface locally the graph of a differentiable function? More precisely,
we may ask the following question: Suppose thatf : Rn × R → R is differentiable and
f(a1, . . . , an, b) = 0. Can we find for each(x1, . . . , xn) near(a1, . . . , an) a uniquey nearb
such thatf(x1, . . . , xn, y) = 0? The answer to this question is provided by the Implicit Func-
tion Theorem (IFT).
Consider the functionf : R2 → R defined byf(x, y) = x2 + y2 − 1. If we choose(a, b) with
a, b > 0, there are open intervalsA andB containiga andb with the following property: if
x ∈ A, there is a uniquey ∈ B with f(x, y) = 0. We can therefore define a functiong : A→ B

by the conditiong(x) ∈ B andf(x, g(x)) = 0. If b > 0 theng(x) =
√

1− x2; if b < 0 then
g(x) = −

√
1− x2. Both functionsg are differentiable. These functions are said to be defined

implicitly by the equationf(x, y) = 0.
On the other hand, there exists no neighborhood of(1, 0) such thatf(x, y) = 0 can locally be
solved fory. Note thatfy(1, 0) = 0. However it can be solved forx = h(y) =

√
1− y2.

Theorem 7.19 Suppose thatf : Rn × Rm → Rm, f = f(x, y), is continuously differentiable
in an open set containing(a, b) ∈ Rn+m andf(a, b) = 0. LetDfy(x, y) be the linear mapping
fromRm intoRm given by

Dyf(x, y) =
(
Dn+jf

i(x, y)
)

=

(
∂(f1, . . . , fm)

∂(y1, . . . , ym)
(x, y)

)
=

(
∂fi(x, y)

∂yj

)
, i, j = 1, . . . , m.

(7.45)
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If detDyf(a, b) 6= 0 there is an open setA ⊂ Rn containinga and an open setB ⊂ Rm

containingb with the following properties: There exists a unique continuously differentiable
functiong : A→ B such that

(a) g(a) = b,
(b) f(x, g(x)) = 0 for all x ∈ A.

For the derivativeDg(x) ∈ L(Rn,Rm) we have

Dg(x) = −(Dfy(x, g(x)))
−1◦Dfx(x, g(x)),

g′(x) = −(f ′
y(x, g(x)))

−1·f ′
x(x, g(x)).

The Jacobi matrixg′(x) is given by
(
∂(g1, . . . , gm)

∂(x1, . . . , xn)
(x)

)
= −f ′

y(x, g(x))
−1 ·

(
∂(f1, . . . , fm)

∂(x1, . . . , xn)
(x, g(x))

)
(7.46)

∂(gk(x))

∂xj
= −

n∑

l=1

(f ′
y(x, g(x))

−1)kl ·
∂fl(x, g(x))

∂xj
, k = 1, . . . , m, j = 1, . . . , n.

Idea of Proof.DefineF : Rn ×Rm → Rn ×Rm byF (x, y) = (x, f(x, y)). LetM = f ′
y(a, b).

Then

F ′(a, b) =

( 1n 0n,m
0m,n M

)
=⇒ detF ′(a, b) = detM 6= 0.

By the inverse mapping theorem Theorem 7.17 there exists an open setW ⊂ Rn × Rm con-
tainingF (a, b) = (a, 0) and an open setV ⊂ Rn ×Rm containing(a, b) which may be of the
formA×B such thatF : A×B →W has a differentiable inverseh : W → A× B.
Sinceg is differentiable, it is easy to find the Jacobi matrix. In fact, sincefi(x, g(x)) = 0,
i = 1, . . . n, taking the partial derivative∂f

∂xj
on both sides gives by the chain rule

0 =
∂fi(x, g(x))

∂xj
+

m∑

k=1

∂fi(x, g(x))

∂yk
· ∂gk(x)
∂xj

0 =
∂fi(x, g(x))

∂xj
+ f ′

y(x, g(x)) ·
(
∂gk(x)

∂xj

) ∣∣∣∣−
∂fi(x, g(x))

∂xj

−
(
∂fi(x, g(x))

∂xj

)
= f ′

y(x, g(x)) ·
(
∂gk(x)

∂xj

)
.

Sincedet f ′
y(a, b) 6= 0, det f ′

y(x, y) 6= 0 in a small neighborhood of(a, b). Hencef ′
y(x, g(x))

is invertible and we can multiply the preceding equation from the left by(f ′
y(x, g(x)))

−1 which
gives (7.46).

Remarks 7.9 (a) The theorem gives a sufficient condition for “locally” solving the system of
equations

0 = f1(x1, . . . , xn, y1, . . . ym),

...

0 = fm(x1, . . . , xn, y1, . . . , ym)
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with givenx1, . . . , xn for y1, . . . , ym.
(b) We rewrite the statement in casen = m = 1: If f(x, y) is continously differentiable on an
open setG ⊂ R2 which contains(a, b) andf(a, b) = 0. If fy(a, b) 6= 0 then there existδ, ε > 0

such that the following holds: for everyx ∈ Uδ(a) there exists a uniquey = g(x) ∈ Uε(b) with
f(x, y) = 0. We haveg(a) = b; the functiony = g(x) is continuously differentiable with

g′(x) = −fx(x, g(x))
fy(x, g(x))

.

Be careful, notefx(x, g(x)) 6= d
dx

(f(x, g(x))).

Example 7.16 (a) Letf(x, y) = sin(x+ y) + exy − 1. Note thatf(0, 0) = 0. Since

fy(0, 0) = cos(x+ y) + xexy|(0,0) = cos 0 + 0 = 1 6= 0

f(x, y) = 0 can uniquely be solved fory = g(x) in a neighborhood ofx = 0, y = 0. Further

fx(0, 0) = cos(x+ y) + yexy|(0,0) = 1.

By Remark 7.9 (b)

g′(x) = − fx(x, y)

fy(x, y)

∣∣∣∣
y=g(x)

=
cos(x+ g(x)) + g(x) exg(x)

cos(x+ g(x)) + x exg(x)
.

In particularg′(0) = −1.

Remark. Differentiating the equationfx + fyg
′ = 0 we obtain

0 = fxx + fxyg
′ + (fyx + fyyg

′)g′ + fyg
′′

g′′ = − 1

fy

(
fxx + 2fxyg

′ + fyy(g
′)2
)

g′′ =
g′=− fx

fy

−fxxf 2
y + 2fxyfxfy − fyyf 2

x

f 3
y

.

Since

fxx(0, 0) = − sin(x+ y) + y2exy
∣∣
(0,0)

= 0,

fyy(0, 0) = − sin(x+ y) + x2exy
∣∣
(0,0)

= 0,

fxy(0, 0) = − sin(x+ y) + exy(1 + xy)|(0,0) = 1,

we obtaing′′(0) = 2. Therefore the Taylor expansion ofg(x) around0 reads

g(x) = x+ x2 + r3(x).

(b) Let γ(t) = (x(t), y(t)) be a differentiable curveγ ∈ C2([0, 1]) in R2. Suppose in a neigh-
borhood oft = 0 the curve describes a functiony = g(x). Find the Taylor polynomial of degree
2 of g atx0 = x(0).
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Inserting the curve into the equationy = g(x) we havey(t) = g(x(t)). Differentiation gives

ẏ = g′ ẋ, ÿ = g′′ẋ2 + g′ẍ

Thus

g′(x) =
ẏ

ẋ
, g′′(x) =

ÿ − g′ẍ
ẋ2

=
ÿẋ− ẍẏ
ẋ3

Now we have the Taylor ploynomial ofg atx0

T2(g)(x) = x0 + g′(x0)(x− x0) +
g′′(x0)

2
(x− x0)

2.

(c) The tangent hyper plane to a hyper surface.

Anyone who understands geometry can understand everythingin this world
(Galileo Galilei, 1564 – 1642)

Suppose thatF : U → R is continuously differentiable,a ∈ U , F (a) = 0, and gradF (a) 6= 0.
Then

∇F (a)·(x− a) =

n∑

i=1

Fxi
(a)(xi − ai) = 0

is the equation of the tangent hyper plane to the surfaceF (x) = 0 at pointa.
Proof. Indeed, since the gradient ata is nonzero we may assume without loss of generality that
Fxn(a) 6= 0. By the IFT,F (x1, . . . , xn−1, xn) = 0 is locally solvable forxn = g(x1, . . . , xn−1)

in a neighborhood ofa = (a1, . . . , an) with g(ã) = an, where ã = (a1, . . . , an−1) and
x̃ = (x1, . . . , xn−1). Define the tangent hyperplane to be the graph of the linearization of g
at (a1, . . . , an−1, an). By Example 7.7 (a) the hyperplane to the graph ofg at ã is given by

xn = g(ã) + grad g(ã)·x̃. (7.47)

SinceF (ã, g(ã)) = 0, by the implicit function theorem

∂g(ã)

∂xj
= −Fxj

(a)

Fxn(a)
, j = 1, . . . , n− 1.

Inserting this into (7.47) we have

xn − an = − 1

Fxn(a)

n−1∑

j=1

Fxj
(a)(xj − aj).

Multiplication by−Fxn(a) gives

−Fxn(a)(xn − an) =

n−1∑

j=1

Fxj
(a)(xj − aj) =⇒ 0 = gradF (a)·(x− a).



7.7 Lagrange Multiplier Rule 223

U
U

U

1

−1

0

Let f : U → R be differentiable. Forc ∈ R
define thelevel setUc = {x ∈ U | f(x) =

c}. The setUc may be empty, may consist of
a single point (in case of local extrema) or, in
the “generic” case, that is ifgradF (a) 6= 0 and
Uc is non-empty,Uc it is a (n− 1)-dimensional
hyper surface.{Uc | c ∈ R} is family of non-
intersecting subsets ofU which coverU .

7.7 Lagrange Multiplier Rule

This is a method to find local extrema of a function under certain constraints.
Consider the following problem: Find local extremma of a function f(x, y) of two variables
wherex andy are not independent from each other but satisfy the constraint

ϕ(x, y) = 0.

Suppose further thatf andϕ are continuously differentiable. Note that the level setsUc =

{(x, y) ∈ R2 | f(x, y) = c} form a family of non-intersecting curves in the plane.

ϕ =0

f=c

We have to find the curvef(x, y) = c intersecting
the constraint curveϕ(x, y) = 0 wherec is as large
or as small as possible. Usuallyf = c intersects
ϕ = 0 if c monotonically changes. However ifc is
maximal, the curvef = c touchesthe graphϕ =

0. In other words, the tangent lines coincide. This
means that the defining normal vectors to the tangent
lines are scalar multiples of each other.

Theorem 7.20 (Lagrange Multiplier Rule) Let f, ϕ : U → R, U ⊂ Rn is open, be continu-
ously differentiable andf has a local extrema ata ∈ U under the constraintϕ(x) = 0. Suppose
that gradϕ(a) 6= 0.
Then there exists a real numberλ such that

grad f(a) = λ gradϕ(a).

This numberλ is calledLagrange multiplier.
Proof. The idea is to solve the constraintϕ(x) = 0 for one variable and to consider the “free”
extremum problem with one variable less. Suppose without loss of generality thatϕxn(a) 6=
0. By the implicit function theorm we can solveϕ(x) = 0 for xn = g(x1, . . . , xn−1) in a
neighborhood ofx = a. Differentiatingϕ(x̃, g(x̃)) = 0 and insertinga = (ã, an) as before we
have

ϕxj
(a) + ϕxn(a)gxj

(ã) = 0, j = 1, . . . , n− 1. (7.48)
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Sinceh(x̃) = f(x̃, g(x̃)) has a local extremum atã all partial derivatives ofh vanish at̃a:

fxj
(a) + fxn(a)gxj

(ã) = 0, j = 1, . . . , n− 1. (7.49)

Settingλ = fxn(a)/ϕxn(a) and comparing (7.48) and (7.49) we find

fxj
(a) = λϕxj

(a), j = 1, . . . , n− 1.

Since by definition,fxn(a) = λϕxn(a) we finally obtain grad f(a) = λ gradϕ(a) which
completes the proof.

Example 7.17 (a) LetA = (aij) be a real symmetricn×n-matrix, and definef(x) = x·Ax =∑
i,j aijxixj . We aks for the local extrema off on the unit sphereSn−1 = {x ∈ Rn | ‖x‖ = 1}.

This constraint can be written asϕ(x) = ‖x‖2 − 1 =
∑n

i=1 x
2
i − 1 = 0. Suppose thatf attains

a local minimum ata ∈ Sn−1. By Example 7.6 (b)

grad f(a) = 2A(a).

On the other hand
gradϕ(a) = (2x1, . . . , 2xn)|x=a = 2a.

By Theorem 7.20 there exists a real numberλ1 such that

grad f(a) = 2A(a) = λ1 gradϕ(a) = 2a,

HenceA(a) = λ1a; that is,λ is an eigenvalue ofA anda the corresponding eigenvector. In
particular,A has a real eigenvalue. SinceSn−1 has no boundary, the global minimum is also a
local one. We find: iff(a) = a·A(a) = a·λa = λ is the global minimum,λ is the smallest
eigenvalue.
(b) Leta be the point of a hypersurfaceM = {x | ϕ(x) = 0} with minimal distance to a given
point b 6∈M . Then the line througha andb is orthogonal toM .
Indeed, the functionf(x) = ‖x− b‖2 attains its minimum under the conditionϕ(x) = 0 at a.
By the Theorem, there is a real numberλ such that

grad f(a) = 2(a− b) = λ gradϕ(a).

The assertion follows since by Example 7.16 (c),gradϕ(a) is orthogonal toM ata andb − a
is a multiple of the normal vector∇ϕ(a).

Theorem 7.21 (Lagrange Multiplier Rule — extended version)Let f, ϕi : U → R, i =

1, . . . , m, m < n, be continuously differentiable functions. LetM = {x ∈ U | ϕ1(x) = · · · =
ϕm(x) = 0} and suppose thatf(x) has a local extrema ata under the constraintsx ∈ M .
Suppose further that the Jacobi matrixϕ′(a) ∈ Rm×n has maximal rankm.
Then there exist real numbersλ1, . . . , λm such that

grad f(a) = grad (λ1ϕ1 + · · ·+ λmϕm)(a) = 0.

Note that the rank condition ensures that there is a choice ofm variables out ofx1, . . . , xn such
that the Jacobian ofϕ1, . . . , ϕm with respect to this set of variable is nonzero ata.



7.8 Integrals depending on Parameters 225

7.8 Integrals depending on Parameters

Problem: DefineI(y) =
∫ b
a
f(x, y) dx; what are the relations between properties off(x, y) and

of I(y) for example with respect to continuity and differentiability.

7.8.1 Continuity of I(y)

Proposition 7.22 Letf(x, y) be continuous on the rectangleR = [a, b]× [c, d].
ThenI(y) =

∫ b
a
f(x, y) dx is continuous on[c, d].

Proof. Let ε > 0. Sincef is continuous on the compact setR, f is uniformly continuous onR
(see Proposition 6.25). Hence, there is aδ > 0 such that|x− x′ | < δ and| y − y′ | < δ and
(x, y), (x′, y′) ∈ R imply

| f(x, y)− f(x′, y′) | < ε.

Therefore,| y − y0 | < δ andy, y0 ∈ [c, d] imply

| I(y)− I(y0) | =
∣∣∣∣
∫ b

a

(f(x, y)− f(x, y0)) dx

∣∣∣∣ ≤ ε(b− a).

This shows continuity ofI(y) aty0.

For example,I(y) =
∫ 1

0
arctan x

y
dx is continuous fory > 0.

Remark 7.10 (a) Note that continuity aty0 means that we can interchange the limit and the

integral, lim
y→y0

∫ b

a

f(x, y) dx =

∫ b

a

lim
y→y0

f(x, y) dx =

∫ b

a

f(x, y0) dx.

(b) A similar statement holds fory →∞: Suppose thatf(x, y) is continuous on[a, b]×[c,+∞)

andlimy→+∞ f(x, y) = ϕ(x) existsuniformlyfor all x ∈ [a, b] that is

∀ ε > 0 ∃R > 0 ∀x ∈ [a, b], y ≥ R : | f(x, y)− ϕ(x) | < ε.

Then
∫ b
a
ϕ(x) dx exists andlim

y→∞
I(y) =

∫ b

a

ϕ(x) dx.

7.8.2 Differentiation of Integrals

Proposition 7.23 Letf(x, y) be defined onR = [a, b]× [c, d] and continuous as a function ofx
for every fixedy. Suppose thatfy(x, y) exists for all(x, y) ∈ R and is continuous as a function
of the two variablesx andy.
ThenI(y) is differentiable and

I ′(y) =
d

dy

∫ b

a

f(x, y) dx =

∫ b

a

fy(x, y) dx.
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Proof. Let ε > 0. Sincefy(x, y) is continuous, it is uniformly continuous onR. Hence there
existsδ > 0 such that|x′ − x′′ | < δ and| y′ − y′′ | < δ imply | fy(x′, y′)− fy(x′′, y′′) | < ε.
We have for|h | < δ

∣∣∣∣
I(y0 + h)− I(y0)

h
−
∫ b

a

fy(x, y0) dx

∣∣∣∣ ≤
∣∣∣∣
∫ b

a

(
f(x, y0 + h)− f(x, y0)

h
− fy(x, y0)

)
dx

∣∣∣∣

≤
Mean value theorem

∫ b

a

| fy(x, y0 + θh)− fy(x, y0) | dx < ε(b− a)

for someθ ∈ (0, 1). Since this inequality holds for all smallh, it holds for the limit ash → 0,
too. Thus, ∣∣∣∣ I ′(y0)−

∫ b

a

fy(x, y0) dx

∣∣∣∣ ≤ ε(b− a).

Sinceε was arbitrary, the claim follows.

In case of variable integration limits we have the followingtheorem.

Proposition 7.24 Letf(x, y) be as in Proposition 7.23. Letα(y) andβ(y) be differentiable on
[c, d], and suppose thatα([c, d]) andβ([c, d]) are contained in[a, b].
Let I(y) =

∫ β(y)

α(y)
f(x, y) dx. ThenI(y) is differentiable and

I ′(y) =

∫ β(y)

α(y)

fy(x, y) dx + β ′(y)f(β(y), y) − α′(y)f(α(y), y). (7.50)

Proof. LetF (y, u, v) =
∫ v
u
f(x, y) dx; thenI(y) = F (y, α(y), β(y)). The fundamental theorem

of calculus yields

∂F

∂v
(y, u, v) =

∂

∂v

∫ v

u

f(x, y) dx = f(v, y),

∂F

∂u
(y, u, v) =

∂

∂u

(
−
∫ u

v

f(x, y) dx

)
= −f(u, y).

(7.51)

By the chain rule, the previous proposition and (7.51) we have

I ′(y) =
∂F

∂y
+
∂F

∂u
α′(y) +

∂F

∂v
β ′(y)

=
∂F

∂y
(y, α(y), β(y)) +

∂F

∂u
(y, α(y), β(y))α′(y) +

∂F

∂v
(y, α(y), β(y)) β ′(y)

=

∫ β(y)

α(y)

fy(x, y) dx+ α′(y)(−f(α(y), y)) + β ′(y)f(β(y), y).
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Example 7.18 (a) I(y) =
∫ 4

3
sin(xy)
x

dx is differentiable by Proposition 7.23 sincefy(x, y) =
cos(xy)

x
x = cos(xy) is continuous. Hence

I ′(y) =

∫ 4

3

cos(xy) dx =
sin(xy)

y

∣∣∣∣
4

3

=
sin 4y

y
− sin 3y

y
.

(b) I(y) =
∫ sin y

log y
ex

2y dx is differentiable with

I ′(y) =

∫ sin y

log y

x2ex
2y dx+ cos yey sin2 y − 1

y
ey(log y)

2

.

7.8.3 Improper Integrals with Parameters

Suppose that the improper integral
∫∞
a
f(x, y) dx exists fory ∈ [c, d].

Definition 7.10 We say that the improper integral
∫∞
a
f(x, y) dx converges uniformlywith re-

spect toy on [c, d] if for everyε > 0 there is anA0 > 0 such thatA > A0 implies
∣∣∣∣ I(y)−

∫ A

a

f(x, y) dx

∣∣∣∣ ≡
∣∣∣∣
∫ ∞

A

f(x, y) dx

∣∣∣∣ < ε

for all y ∈ [c, d].

Note that the Cauchy and Weierstraß criteria (see Proposition 6.1 and Theorem 6.2) for uniform
convergence of series of functions also hold for improper parametric integrals. For example the
theorem of Weierstraß now reads as follows.

Proposition 7.25 Suppose that
∫ A
a
f(x, y) dx exists for allA ≥ a and y ∈ [c, d]. Suppose

further that| f(x, y) | ≤ ϕ(x) for all x ≥ a and
∫∞
a
ϕ(x) dx converges.

Then
∫∞
a
f(x, y) dx converges uniformly with respect toy ∈ [c, d].

Example 7.19 I(y) =
∫∞
1

e−xyxyy2 dx converges uniformly on[2, 4] since

| f(x, y) | =
∣∣ e−xyxyy2

∣∣ ≤ e−2xx442 = ϕ(x).

and
∫∞
1

e−2xx442 dx <∞ converges.

If we add the assumption ofuniform convergencethen the preceding theorems remain true for
improper integrals.

Proposition 7.26 Let f(x, y) be continuous on{(x, y) ∈ R2 | a ≤ x < ∞, c ≤ y ≤ d}.
Suppose thatI(y) =

∫∞
a
f(x, y) dx converges uniformly with respect toy ∈ [c, d].

ThenI(y) is continuous on[c, d].

Proof. This proof was not carried out in the lecture. Letε > 0. Since the improper integral
converges uniformly, there existsA0 > 0 such that for allA ≥ A0 we have

∣∣∣∣
∫ ∞

A

f(x, y) dx

∣∣∣∣ < ε
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for all y ∈ [c, d]. LetA ≥ A0 be fixed. On{(x, y) ∈ R2 | a ≤ x ≤ A, c ≤ y ≤ d} f(x, y)

is uniformly continuous; hence there is aδ > 0 such that|x′ − x′′ | < δ and | y′ − y′′ | < δ

implies
| f(x′, y′)− f(x′′, y′′) | < ε

A− a.

Therefore,
∫ A

a

| f(x, y)− f(x, y0) | dx <
ε

A− a(A− a) = ε, for | y − y0 | < δ.

Finally,

| I(y)− I(y0) | =
(∫ A

a

+

∫ ∞

A

)
| f(x, y)− f(x, y0) | ≤ 2ε for | y − y0 | < δ.

We skip the proof of the following proposition.

Proposition 7.27 Let fy(x, y) be continuous on{(x, y) | a ≤ x < ∞, c ≤ y ≤ d}, f(x, y)

continuous with respect tox for all fixedy ∈ [c, d].
Suppose that for ally ∈ [c, d] the integral I(y) =

∫∞
a
f(x, y) dx exists and the integral∫∞

a
fy(x, y) dx converges uniformly with respect toy ∈ [c, d].

ThenI(y) is differentiable andI ′(y) =
∫∞
a
fy(x, y) dx.

Combinig the results of the last Proposition and Proposition 7.25 we get the following corollary.

Corollary 7.28 Let fy(x, y) be continuous on{(x, y) | a ≤ x < ∞, c ≤ y ≤ d}, f(x, y)

continuous with respect tox for all fixedy ∈ [c, d].
Suppose that

(a) for all y ∈ [c, d] the integralI(y) =
∫∞
a
f(x, y) dx exists,

(b) | fy(x, y) | ≤ ϕ(x) for all x ≥ a and ally

(c)
∫∞
a
ϕ(x) dx exists.

ThenI(y) is differentiable andI ′(y) =
∫∞
a
fy(x, y) dx.

Example 7.20 (a) I(y) =
∫∞
0

e−x
2
cos(2yx) dx. f(x, y) = e−x

2
cos(2yx), fy(x, y) =

−2x sin(2yx) e−x
2

converges uniformly with respect toy since

| fy(x, y) | ≤ 2xe−x
2 ≤ Ke−x

2/2.

Hence,

I ′(y) = −
∫ ∞

0

2x sin(2yx) e−x
2

dx.

Integration by parts withu = sin(2yx), v′ = −e−x
2
2x givesu′ = 2y cos(2yx), v = e−x

2
and

∫ A

0

−e−x
2

2x sin(2yx) dx = sin(2yA) e−A
2 −

∫ A

0

2y cos(2yx) e−x
2

dx.
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AsA→∞ the first summand on the right tends to0; thusI(y) satisfies the ordinary differential
equation

I ′(y) = −2yI(y).

ODE: y′ = −2xy; dy = −2xy dx; dy/y = −2x dx. Integration yieldslog y = −x2 + c;
y = c′e−x

2
.

The general solution isI(y) = Ce−y
2
. We determine the constantC. Inserty = 0. Since

I(0) =
∫∞
0

e−x
2
dx =

√
π/2, we find

I(y) =

√
π

2
e−y

2

.

1.510.5 2

2.2

2

1.8

1.6

1.4

1.2

1

x

32.5

Gamma Function

(b) The Gamma functionΓ(x) =
∫∞
0
tx−1e−t dt

is in C∞(R+). Let x > 0, say x ∈
[c, d]. Recall from Subsection 5.3.3 the defini-
tion and the proof of the convergence of the im-
proper integralsΓ1 =

∫ 1

0
f(x, t) dt andΓ2 =∫∞

1
f(x, t) dt, wheref(x, t) = tx−1e−t. Note

thatΓ1(x) is an improper integral att = 0 + 0.
By L’Hospital’s rule lim

t→0+0
tα log t = 0 for all

α > 0. In particular,| log t | < t−c/2 if 0 < t <

t0 < 1.

Sincee−t < 1 and moreovertx−1 < tc−1 for t < t0 by Lemma 1.23 (b) we conclude that
∣∣∣∣
∂

∂x
f(x, t)

∣∣∣∣ =
∣∣ tx−1 log te−t

∣∣ ≤ | log t | tc−1 ≤ t−
c
2 tc−1 =

1

t1−
c
2

,

for 0 < t < t0. Sinceϕ(t) = 1

t1−
c
2

is integrable over[0, 1], Γ1(x) is differentiable by the

Corrollary withΓ′
1(x) =

∫ 1

0
tx−1 log te−t dt. Similarly, Γ2(x) is an improper integral over an

unbounded interval[1,+∞), for sufficiently larget ≥ t0 > 1, we havelog t < t andtx < td,
such that

∂

∂x
f(x, t) = tx−1 log te−t ≤ tx e−t ≤ tde−t ≤ tde−t/2 e−t/2 ≤Me−t/2.

Sincetde−t/2 tends to0 ast→∞, it is bounded by some constantM ande−t/2 is integrable on
[1,+∞) such thatΓ2(x) is differentiable with

Γ′
2(x) =

∫ ∞

1

tx−1 log te−t dt.

Consequently,Γ(x) is differentiable for allx > 0 with

Γ′(x) =

∫ ∞

0

tx−1 log t e−t dt.

Similarly one can show thatΓ ∈ C∞(R>0) with

Γ(k)(x) =

∫ ∞

0

tx−1 (log t)k e−t dt.
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7.9 Appendix

Proofof Proposition 7.7. LetA = (Aij) =

(
∂fi
∂xj

)
be the matrix of partial derivatives consid-

ered as a linear map fromRn toRm. Our aim is to show that

lim
h→0

‖f(a+ h)− f(a)−Ah‖
‖h‖ = 0.

For, it suffices to prove the convergence to0 for each coordinatei = 1, . . . , m by Proposi-
tion 6.26

lim
h→0

fi(a + h)− fi(a)−
∑n

j=1Aijhj

‖h‖ = 0. (7.52)

Without loss of generality we assumem = 1 andf = f1. For simplicity, letn = 2, f = f(x, y),
a = (a, b), andh = (h, k). Note first that by the mean value theorem we have

f(a+ h, b+ k)− f(a, b) = f(a+ h, b+ k)− f(a, b+ k) + f(a, b+ k)− f(a, b)

=
∂f

∂x
(ξ, b+ k)h +

∂f

∂y
(a, η)k,

whereξ ∈ (a, a + h) andη ∈ (b, b+ k). Using this, the expression in(7.52) reads

f(a+ h, b+ k)− f(a, b)− ∂f
∂x

(a, b) h− ∂f
∂y

(a, b) k
√
h2 + k2

=

=

(
∂f
∂x

(ξ, b+ k)− ∂f
∂x

(a, b)
)
h+

(
∂f
∂y

(a, η)− ∂f
∂x

(a, b)
)
k

√
h2 + k2

.

Since both∂f
∂x

and ∂f
∂y

are continuous at(a, b), givenε > 0 we find δ > 0 such that(x, y) ∈
Uδ((a, b)) implies

∣∣∣∣
∂f

∂x
(x, y)− ∂f

∂x
(a, b)

∣∣∣∣ < ε,

∣∣∣∣
∂f

∂y
(x, y)− ∂f

∂y
(a, b)

∣∣∣∣ < ε.

This shows
∥∥∥∥∥∥

(
∂f
∂x

(ξ, b+ k)− ∂f
∂x

(a, b)
)
h+

(
∂f
∂y

(a, η)− ∂f
∂x

(a, b)
)
k

√
h2 + k2

∥∥∥∥∥∥
≤ ε |h |+ ε | k |√

h2 + k2
≤ 2ε,

hencef is differentiable at(a, b) with Jacobi matrixA = (∂f
∂x

(a, b) ∂f
∂y

(a, b)).
Since both components ofA—the partial derivatives—are continuous functions of(x, y), the
assignmentx 7→ f ′(x) is continuous by Proposition 6.26.



Chapter 8

Curves and Line Integrals

8.1 Rectifiable Curves

8.1.1 Curves inRk

We consider curves inRk. We define the tangent vector, regular points, angle of intersection.

Definition 8.1 A curvein Rk is a continuous mappingγ : I → Rk, whereI ⊂ R is a closed
interval consisting of more than one point.

The interval can beI = [a, b], I = [a,+∞), or I = R. In the first caseγ(a) andγ(b) are
called theinitial andend pointof γ. These two points derfine a naturalorientationof the curve
“from γ(a) to γ(b)”. Replacingγ(t) by γ(a+ b− t) we obtain the curve fromγ(b) to γ(a) with
opposite orientation.
If γ(a) = γ(b), γ is said to be aclosed curve. The curveγ is given by ak-tupelγ = (γ1, . . . , γk)

of continuous real-valued functions. Ifγ is differentiable, the curve is said to bedifferentiable.
Note that we have defined the curve to bea mapping, not a set of points inRk. Of course, with
each curveγ inRk there is associated a subset ofRk, namely the image ofγ,

C = γ(I) = {γ(t) ∈ Rk | t ∈ I}.

but different curvesγ may have the same imageC = γ(I). The curve is said to besimpleif γ
is injective on the inner pointsI◦ of I. A simple curve has no self-intersection.

Example 8.1 (a) A circle inR2 of radiusr > 0 with center(0, 0) is described by the curve

γ : [0, 2π]→ R2, γ(t) = (r cos t, r sin t).

Note thatγ̃ : [0, 4π] → R2 with γ̃(t) = γ(t) has the same image but is different fromγ. γ is a
simple curve,̃γ is not.
(b) Letp, q ∈ Rk be fixed points,p 6= q. Then

γ1(t) = (1− t)p + tq, t ∈ [0, 1],

γ2(t) = (1− t)p + tq, t ∈ R,
231
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are thesegmentpq from p to q and theline pq throughp and q, respectively. Ifv ∈ Rk is a
vector, thenγ3(t) = p+ tv, t ∈ R, is the line throughp with directionv.
(c) If f : [a, b]→ R is a continuous function, the graph off is a curve inR2:

γ : [a, b]→ R2, γ(t) = (t, f(t)).

(d) Implicit Curves. Let F : U ⊂ R2 → R be continuously differentiable,F (a, b) = 0, and
∇F (a, b) 6= 0 for some point(a, b) ∈ U . By the Implicit function theorem,F (x, y) = 0 can
locally be solved fory = g(x) or x = f(y). In both casesγ(t) = (t, g(t)) andγ(t) = (f(t), t)

is a curve through(a, b). For example,

F (x, y) = y2 − x3 − x2 = 0

is locally solvable except for(a, b) = (0, 0). The corresponding curve isNewton’s knot

Definition 8.2 (a) A simple curveγ : I → Rk is said to beregular at t0 if γ is continuously
differentiable onI andγ′(t0) 6= 0. γ is regular if it is regular at every pointt0 ∈ I.
(b) The vectorγ′(t0) is called thetangent vector, α(t) = γ(t0) + tγ′(t0), t ∈ R, is called the
tangent lineto the curveγ at pointγ(t0).

Remark 8.1 The moving partice. Let t the time variable ands(t) the coordinates of a point
moving inRk. Then the tangent vectorv(t) = s′(t) is thevelocity vectorof the moving point.
Theinstantaneous velocityis the euclidean norm ofv(t) ‖v(t)‖ =

√
s′1(t)

2 + · · ·+ s′k(t)
2. The

acceleration vectoris the second derivative ofs(t), a(t) = v′(t) = s′′(t).

Let γi : Ii → Rk, i = 1, 2, be two regular curves with a common pointγ1(t1) = γ2(t2). The
angle of intersectionϕ between the two curvesγi at ti is defined to be the angle between the
two tangent linesγ′1(t1) andγ′2(t2). Hence,

cosϕ =
γ′1(t1)·γ′2(t2)
‖γ′1(t1)‖ ‖γ′2(t2)‖

, ϕ ∈ [0, π].

10.50-0.5-1

1.5

1

0.5

0

-0.5

-1

-1.5

NewtonsKnot

Example 8.2 (a) Newton’s knot. The curve
γ : R → R2 given byγ(t) = (t2 − 1, t3 − t)

is not injective sinceγ(−1) = γ(1) = (0, 0) =

x0. The pointx0 is adouble pointof the curve.
In generalγ has two different tangent lines at
a double point. Sinceγ′(t) = (2t, 3t2 − 1) we
haveγ′(−1) = (−2, 2) andγ′(1) = (2, 2). The
curve is regular sinceγ′(t) 6= 0 for all t.

Let us compute the angle of self-intersection. Sinceγ(−1) = γ(1) = (0, 0), the self-
intersection angleϕ satisfies

cosϕ =
(−2, 2)·(2, 2)

8
= 0,
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henceϕ = 90◦, the intersection is orthogonal.
(b) Neil’s parabola. Letγ : R → R2 be given byγ(t) = (t2, t3). Sinceγ′(t) = (2t, 3t2), the
origin is the only singular point.

8.1.2 Rectifiable Curves

The goal of this subsection is to define thelength of a curve. For differentiable curves, there
is a formula using the tangent vector. However, the “lenght of a curve” makes sense for some
non-differentiable, continuous curves.
Let γ : [a, b] → Rk be a curve. We associate to each partitionP = {t0, . . . , tn} of [a, b] the
pointsxi = γ(ti), i = 0, . . . , n, and the number

ℓ(P, γ) =

n∑

i=1

‖γ(ti)− γ(ti−1)‖ . (8.1)

Theith term in this sum is the euclidean distance of the pointsxi−1 = γ(ti−1) andxi = γ(ti).

x

x
x

x

0

1

2

3

1

t t21a b

Henceℓ(P, γ) is the length of the polygonal
path with verticesx0, . . . , xn. As our parti-
tion becomes finer and finer, this polygon ap-
proaches the image ofγ more and more closely.

Definition 8.3 A curveγ : [a, b] → Rk is said to berectifiable if the set of non-negative real
numbers{ℓ(P, γ) | P is a partition of[a, b]} is bounded. In this case

ℓ(γ) = sup ℓ(P, γ),

where the supremum is taken over all partitionsP of [a, b], is called thelengthof γ.

In certain cases,ℓ(γ) is given by a Riemann integral. We shall prove this forcontinuously
differentiablecurves, i. e. for curvesγ whose derivativeγ′ is continuous.

Proposition 8.1 If γ′ is continuous on[a, b], thenγ is rectifiable, and

ℓ(γ) =

∫ b

a

‖γ′(t)‖ dt.

Proof. If a ≤ ti−1 < ti ≤ b, by Theorem 5.28,γ(ti) − γ(ti−1) =
∫ ti
ti−1

γ′(t) dt. Applying
Proposition 5.29 we have

‖γ(ti)− γ(ti−1)‖ =

∥∥∥∥
∫ ti

ti−1

γ′(t) dt

∥∥∥∥ ≤
∫ ti

ti−1

‖γ′(t)‖ dt.

Hence

ℓ(P, γ) ≤
∫ b

a

‖γ′(t)‖ dt
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for every partitionP of [a, b]. Consequently,

ℓ(γ) ≤
∫ b

a

‖γ′(t)‖ dt.

To prove the opposite inequality, letε > 0 be given. Sinceγ′ is uniformly continuous on[a, b],
there existsδ > 0 such that

‖γ′(s)− γ′(t)‖ < ε if | s− t | < δ.

Let P be a partition with∆ti ≤ δ for all i. If ti−1 ≤ t ≤ ti it follows that

‖γ′(t)‖ ≤ ‖γ′(ti)‖+ ε.

Hence
∫ ti

ti−1

‖γ′(t)‖ dt ≤ ‖γ′(ti)‖∆ti + ε∆ti

=

∥∥∥∥
∫ ti

ti−1

(γ′(t)− γ′(ti)− γ′(t)) dt

∥∥∥∥+ ε∆ti

≤
∥∥∥∥
∫ ti

ti−1

γ′(t) dt

∥∥∥∥+

∥∥∥∥
∫ ti

ti−1

(γ′(ti)− γ′(t)) dt

∥∥∥∥+ ε∆ti

≤ ‖γ′(ti)− γ′(ti−1)‖+ 2ε∆ti.

If we add these inequalities, we obtain
∫ b

a

‖γ′(t)‖ dt ≤ ℓ(P, γ) + 2ε(b− a) ≤ ℓ(γ) + 2ε(b− a).

Sinceε was arbitrary, ∫ b

a

‖γ′(t) dt‖ ≤ ℓ(γ).

This completes the proof.

Special Casek = 2

k = 2, γ(t) = (x(t), y(t)), t ∈ [a, b]. Then

ℓ(γ) =

∫ b

a

√
x′(t)2 + y′(t)2 dt.

In particular, letγ(t) = (t, f(t)) be the graph of a continuously differentiable function
f : [a, b]→ R. Thenℓ(γ) =

∫ b
a

√
1 + (f ′(t))2 dt.

Example 8.3 Catenary Curve. Let f(t) = a cosh t
a
, t ∈ [0, b], b > 0. Thenf ′(t) = sinh t

a

and moreover

ℓ(γ) =

∫ b

0

√
1 +

(
sinh

t

a

)2

dt =

∫ b

0

cosh
t

a
dt = a sinh

t

b

∣∣∣∣
b

0

= a sinh
b

a
.
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Cycloid
Defining Circle
Curve 3
Curve 4

 

Cycloid and Circle

0

0.5

1

1.5

2

1 2 3 4 5 6

(b) The position of a bulge in a bicycle
tire as it rolls down the street can be
parametrized by an angleθ as shown
in the figure.

Let the radius of the tire bea. It can be verified by plane trigonometry that

γ(θ) =

(
a(θ − sin θ)

a(1− cos θ)

)
.

This curve is called acycloid.
Find the distance travelled by the bulge for0 ≤ θ ≤ 2π.

Using1− cos θ = 2 sin2 θ

2
we have

γ′(θ) = a(1− cos θ, sin θ)

‖γ′(θ)‖ = a
√

(1− cos θ)2 + sin2 θ = a
√

2− 2 cos θ

= a
√

2
√

1− cos θ = 2a sin
θ

2
.

Therefore,

ℓ(γ) = 2a

∫ 2π

0

sin
θ

2
dθ = −4a

(
cos

θ

2

)∣∣∣∣
2π

0

= 4a(− cos π + cos 0) = 8a.

dx

dy
ds

(c) The arc elementds. Formally the arc element of
a plane differentiable curve can be computed using the
pythagorean theorem

( ds)2 = ( dx)2 + ( dy)2 =⇒ ds =
√

dx2 + dy2

ds = dx

√
1 +

dy2

dx2

ds =
√

1 + (f ′(x))2 dx.

(d) Arc of an Ellipse. The ellipse with equationx2/a2 +y2/b2 = 1 , 0 < b ≤ a, is parametrized
by γ(t) = (a cos t, b sin t), t ∈ [0, t0], such thatγ′(t) = (−a sin t, b cos t). Hence,

ℓ(γ) =

∫ t0

0

√
a2 sin2 t+ b2 cos2 tdt =

∫ t0

0

√
a2 − (a2 − b2) cos2 t dt

= a

∫ t0

0

√
1− ε2 cos2 t dt,

whereε =
√
a2−b2
a

. This integral can be transformed into the function

E(τ, ǫ) =

∫ τ

0

√
1− ε2 sin2 t dt
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is the elliptic integral of the second kind as defined in Chapter5.
(e)A non-rectifiable curve. Consider the graphγ(t) = (t, f(t)), t ∈ [0, 1], of the functionf ,

f(t) =

{
t cos π

2t
, 0 < t ≤ 1,

0, t = 0.

Since lim
t→0+0

f(t) = f(0) = 0, f is continuous andγ(t) is a curve. However, this curve is not rec-

tifiable. Indeed, choose the partitionPk = {t0 = 0, 1/(4k), 1/(4k − 2), . . . , 1/4, 1/2, t2k+1 =

1} consisting of2k + 1 points, ti = 1
4k−2i+2

, i = 1, . . . , 2k. Note that t0 = 0 and

t2k+1 = 1 play a special role and will be omitted in the calculations below. Then
(
cos π

2ti

)
=

(1,−1, 1,−1, . . . ,−1, 1), i = 1, . . . , 2k. Thus

ℓ(Pk, γ) ≥
2k∑

i=2

√
(ti − ti−1)2 + (f(ti)− f(ti−1))2 ≥

2k∑

i=2

| f(ti)− f(ti−1) |

≥
(

1

4k − 2
+

1

4k

)
+

(
1

4k − 4
+

1

4k − 2

)
+ · · ·+

(
1

2
+

1

4

)

=
1

2
+ 2

(
1

4
+ · · ·+ 1

4k − 2

)
+

1

4k

which is unbounded fork → ∞ since the harmonic series is unbounded. Henceγ is not
rectifiable.

8.2 Line Integrals

A lot of physical applications are to be found in [MW85, Chapter 18]. Integration of vector
fields along curves is of fundamental importance in both mathematics and physics. We use the
concept ofwork to motivate the material in this section.
The motion of an object is described by a parametric curve~x = ~x(t) = (x(t), y(t), z(t)). By
differentiating this function, we obtain the velocity~v(t) = ~x′(t) and the acceleration~a(t) =

~x′′(t). We use the physicist notatioṅ~x(t) and~̈x(t) to denote derivatives with respect to the time
t.
According to Newton’s law, the total forcẽF acting on an object of massm is

F̃ = m~a.

Since the kinetic energyK is defined byK = 1
2
m~v2 = 1

2
m~v · ~v we have

K̇(t) =
1

2
m(~̇v · ~v + ~v · ~̇v) = m~a · ~v = F̃ · ~v.

The total change of the kinetic energy from timet1 to t2, denotedW , is called thework done by
the forceF̃ along the path~x(t):

W =

∫ t2

t1

K̇(t) dt =

∫ t2

t1

F̃ · ~v dt =

∫ t2

t1

F̃ (t) · ~̇x(t) dt.
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Let us now suppose that the forcẽF at timet depends only on the position~x(t). That is, we
assume that there is a vector field~F (~x) such thatF̃ (t) = ~F (~x(t)) (gravitational and electrostatic
attraction are position-dependent while magnetic forces are velocity-dependent). Then we may
rewrite the above integral as

W =

∫ t2

t1

~F (~x(t)) · ~̇x(t) dt.

In the one-dimensional case, by a change of variables, this can be simplified to

W =

∫ b

a

F (x) dx,

wherea andb are the starting and ending positions.

Definition 8.4 Let Γ = {~x(t) | t ∈ [r, s]}, be a continuously differentiable curve~x(t) ∈
C1([r, s]) inRn and ~f : Γ → Rn a continuous vector field onΓ . The integral

∫

Γ

~f(~x) · d~x =

∫ s

r

~f(~x(t)) · ~̇x(t) dt

is called theline integralof the vector field~f along the curveΓ .

Remark 8.2 (a) The definition of the line integral does not depend on the parametrization of
Γ .
(b) If we take different curves between the same endpoints, the line integral may be different.
(c) If the vector field~f is orthogonal to the tangent vector, then

∫
Γ
~f · d~x = 0.

(d) Other notations. If~f = (P,Q) is a vector field inR2,
∫

Γ

~f · d~x =

∫

Γ

P dx+Q dy,

where the right side is either a symbol or
∫
Γ
P dx =

∫
Γ
(P, 0) · d~x.

Example 8.4 (a) Find the line integral
∫
Γi
y dx + (x − y) dy, i =

1, 2, where

Γ1 = {~x(t) = (t, t2) | t ∈ [0, 1]} and Γ2 = Γ3 ∪ Γ4,

with Γ3 = {(t, 0) | t ∈ [0, 1]}, Γ4 = {(1, t) | t ∈ [0, 1]}.
In the first casė~x(t) = (1, 2t); hence

Γ

Γ

(0,0) 3

4

(1,0)

(1,1)

Γ1

∫

Γ

y dx+ (x− y) dy =

∫ 1

0

(t2 · 1 + (t− t2)2t) dt =

∫ 1

0

(3t2 − 2t3) dt =
1

2
.

In the second case
∫
Γ2
f d~x =

∫
Γ3
f d~x+

∫
Γ4
f d~x. For the first part( dx, dy) = ( dt, 0), for the

second part( dx, dy) = (0, dt) such that
∫

Γ

f d~x =

∫

Γ

y dx+(x−y) dy =

∫ 1

0

0 dt+(t−0) ·0+

∫ 1

0

t ·0+(1− t) dt = t− 1

2
t2
∣∣∣∣
1

0

=
1

2
.

(b) Find the work done by the force field~F (x, y, z) = (y,−x, 1) as a particle moves from
(1, 0, 0) to (1, 0, 1) along the following pathsε = ±1:
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~x(t)ε = (cos t, ε sin t, t
2π

), t ∈ [0, 2π],

We find
∫

Γε

~F · d~x =

∫ 2π

0

(ε sin t,− cos t, 1) · (− sin t, ε cos t, 1/(2π)) dt

=

∫ 2π

0

(
−ε sin2 t− ε cos2 t+

1

2π

)
dt

= −2πε+ 1.

In caseε = 1, the motion is “with the force”, so the work is positive; for the pathε = −1, the
motion is against the force and the work is negative.
We can also define ascalar line integralin the following way. Letγ : [a, b] → Rn be a contin-
uously differentiable curve,Γ = γ([a, b]), andf : Γ → R a continuous function. The integral

∫

Γ

f(x) ds :=

∫ b

a

f(γ(t)) ‖γ′(t)‖ dt

is called thescalar line integralof f alongΓ .

Properties of Line Integrals

Remark 8.3 (a) Linearity.
∫

Γ

(~f + ~g) d~x =

∫

Γ

~f d~x+

∫

Γ

~g d~x,

∫

Γ

λ~f d~x = λ

∫

Γ

~f d~x.

(b) Change of orientation. If~x(t), t ∈ [r, s] defines a curveΓ which goes froma = ~x(r) to
b = ~x(s), then~y(t) = ~x(r + s− t), t ∈ [r, s], defines the curve−Γ which goes in the opposite
direction fromb to a. It is easy to see that

∫

−Γ
~f d~x = −

∫

Γ

~f d~x.

(c) Triangle inequality. ∣∣∣∣
∫

Γ

~f d~x

∣∣∣∣ ≤ ℓ(Γ ) sup
x∈Γ

∥∥∥~f(x)
∥∥∥ .

Proof. Let ~x(t), t ∈ [t0, t1] be a parametrization ofΓ , then
∣∣∣∣
∫

Γ

~f d~x

∣∣∣∣ =
∣∣∣∣
∫ t1

t0

~f(~x(t)) · ~x′(t) dt

∣∣∣∣ ≤
tri.in.,CSI

∫ t1

t0

∥∥∥~f(~x(t))
∥∥∥ ‖~x′(t)‖ dt

≤ sup
~x∈Γ

∥∥∥~f(~x)
∥∥∥
∫ t1

t0

‖~x′(t)‖ dt = sup
~x∈Γ

∥∥∥~f(~x)
∥∥∥ ℓ(Γ ).

(d) Splitting. If Γ1 andΓ2 are two curves such that the ending point ofΓ1 equals the starting
point ofΓ2 then ∫

Γ1∪Γ2

~f d~x =

∫

Γ1

~f d~x+

∫

Γ2

~f d~x.
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8.2.1 Path Independence

Problem: For which vector fields~f the line integral froma to b does not depend upon the path
(see Example 8.4 (a) Example 8.2)?

Definition 8.5 A vector field ~f : G → Rn, G ⊂ Rn, is calledconservativeif for any pointsa
andb in G and any curvesΓ1 andΓ2 from a to b we have

∫

Γ1

~f d~x =

∫

Γ2

~f d~x.

In this case we say that the line integral
∫
Γ
~f d~x is path independentand we use the notation∫ b

a
~f d~x.

Definition 8.6 A vector field ~f : G → Rn is calledpotential fieldor gradient vector fieldif
there exists a continuously differentiable functionU : G → R such that~f(x) = gradU(x) for
x ∈ G. We callU thepotential or antiderivativeof ~f .

Example 8.5 The gravitational force is given by

~F (x) = −α x

‖x‖3
,

whereα = γmM . It is a potential field with potential

U(x) = α
1

‖x‖

This follows from Example 7.2 (a),grad f(‖x‖) = f ′(‖x‖) x
‖x‖ with f(y) = 1/y andf ′(y) =

−1/y2.

Remark 8.4 (a) A vector field~f is conservative if and only if the line integral over anyclosed
curve inG is 0. Indeed, suppose that~f is conservative andΓ = Γ1 ∪ Γ2 is a closed curve,
whereΓ1 is a curve froma to b andΓ2 is a curve fromb to a. By Remark 8.3 (b), changing the
orientation ofΓ2, the sign of the line integral changes and−Γ2 is again a curve froma to b:

∫

Γ

~f d~x =

(∫

Γ1

+

∫

Γ2

)
~f d~x =

(∫

Γ1

−
∫

−Γ2

)
~f d~x = 0.

The proof of the other direction is similar.

x

y

G G

x

y (b) Uniqueness of a potential.An open subset
G ⊂ Rn is said to beconnected, if any two
pointsx, y ∈ G can be connected by a polygo-
nal path fromx to y insideG. If it exists,U(x)

is uniquely determined up to a constant.
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Indeed, ifgradU1(x) = gradU2(x) = ~f putU = U1−U2 then we have∇U = ∇U1−∇U2 =
~f − ~f = 0. Now suppose thatx, y ∈ G can be connected by a segmentxy ⊂ G insideG. By
the MVT (Corollary 7.12)

U(y)− U(x) = ∇U((1− t)x+ ty) (y − x) = 0,

since∇U = 0 on the segmentxy. This shows thatU = U1 − U2 = const. on any polygonal
path insideG. SinceG is connected,U1 − U2 is constant onG.

Theorem 8.2 LetG ⊂ Rn be a domain.
(i) If U : G → R is continuously differentiable and~f = gradU . Then~f is conservative, and
for every (piecewise continuously differentiable) curveΓ froma to b, a, b ∈ G, we have

∫

Γ

~f d~x = U(b)− U(a).

(ii) Let ~f : G→ Rn be a continuous, conservative vector field anda ∈ G. Put

U(x) =

∫ x

a

~f d~y, x ∈ G.

ThenU(x) is a potential for~f , that is gradU = ~f .
(iii) A continuous vector field~f is conservative inG if and only if it is a potential field.

Proof. (i) Let Γ = {~x(t) | t ∈ [r, s]}, be a continuously differentiable curve froma = ~x(r) to
b = ~x(s). We defineϕ(t) = U(~x(t)) and compute the derivative using the chain rule

ϕ̇(t) = gradU(~x(t)) · ~̇x(t) = ~f(~x(t)) · ~̇x(t).

By definition of the line integral we have
∫

Γ

~f d~x =

∫ s

r

~f(~x(t)) ~̇x(t) dt.

Inserting the above expression and applying the fundamental theorem of calculus, we find
∫

Γ

~f d~x =

∫ s

r

ϕ̇(t) dt = ϕ(s)− ϕ(r) = U(~x(s))− U(~x(r)) = U(b)− U(a).

(ii) Chooseh ∈ Rn small such thatx + th ∈ G for all t ∈ [0, 1]. By the path independence of
the line integral

U(x+ h)− U(x) =

∫ x+h

a

~f · d~y −
∫ x

a

~f · d~y =

∫ x+h

x

~f · d~y

Consider the curve~x(t) = x+ th, t ∈ [0, 1] from x to x+h. Then~̇x(t) = h. By the mean value
theorem of integration (Theorem 5.18 withϕ = 1, a = 0 andb = 1) we have

∫ x+h

x

~f · d~y =

∫ 1

0

~f(~x(t)) · h dt = ~f(x+ θh) · h,
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whereθ ∈ [0, 1]. We checkgradU(x) = ~f(x) using the definition of the derivative:
∣∣∣U(x+ h)− U(x)− ~f(x) · h

∣∣∣
‖h‖ =

∣∣∣ (~f(x+ θh)− ~f(x)) · h
∣∣∣

‖h‖ ≤
CSI

∥∥∥~f(x+ θh)− ~f(x)
∥∥∥ ‖h‖

‖h‖
=
∥∥∥~f(x+ θh)− ~f(x)

∥∥∥ −→
h→0

0,

since~f is continuous atx. This shows that∇U = ~f .
(iii) follows immediately from (i) and (ii).

Remark 8.5 (a) In casen = 2, a simple path to compute the line integral (and so the potential
U) in (ii) consists of2 segments: from(0, 0) via (x, 0) to (x, y). The line integral ofP dx+Q dy

then reads as ordinary Riemann integrals

U(x, y) =

∫ x

0

P (t, 0) dt+

∫ y

0

Q(x, t) dt.

(b) Casen = 3. You can also use just one single segment from the origin to the endpoint
(x, y, z). This path is parametrized by the curve

~x(t) = (tx, ty, tz), t ∈ [0, 1], ~̇x(t) = (x, y, z).

We obtain

U(x, y, z) =

∫ (x,y,z)

(0,0,0)

f1 dx+ f2 dy + f3 dz (8.2)

= x

∫ 1

0

f1(tx, ty, tz) dt+ y

∫ 1

0

f2(tx, ty, tz) dt+ z

∫ 1

0

f3(tx, ty, tz) dt. (8.3)

(c) Although Theorem 8.2 gives a necessary and sufficient condition for a vector field to be
conservative, we are missing an easy criterion.

Recall from Example 7.4, that a necessary condition for~f = (f1, . . . , fn) to be a potential vector
field is

∂fi
∂xj

=
∂fj
∂xi

, 1 ≤ i < j ≤ n.

which is a simple consequence from Schwarz’s lemma since iffi = Uxi
then

Uxixj
=
∂Uxi

∂xj
=
∂fi
∂xj

=
∂fj
∂xi

=
∂Uxj

∂xi
= Uxjxi

.

The condition∂fi

∂xj
=

∂fj

∂xi
, 1 ≤ i < j ≤ n. is called integrability conditionfor ~f . It is a

necessary condition for~f to be conservative. However, it is not sufficient.

Remark 8.6 Counter example.LetG = R2 \ {(0, 0)} and

~f = (P,Q) =

( −y
x2 + y2

,
x

x2 + y2

)
.
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The vector field satisfies the integrability conditionPy = Qx. However, it is not conservative.
For, consider the unit circleγ(t) = (cos t, sin t), t ∈ [0, 2π]. Thenγ′(t) = (− sin t, cos t) and
∫

γ

~f d~x =

∫

γ

−y dx

x2 + y2
+

x dy

x2 + y2
=

∫ 2π

0

sin t sin t dt

1
+

cos t cos t dt

1
=

∫ 2π

0

dt = 2π.

This contradicts
∫
Γ
~f d~x = 0 for conservative vector fields. Hence,~f is not conservative.

~f fails to be conservative sinceG = R2 \ {(0, 0)} has an hole.
For more details, see homework 30.1.

The next proposition shows that under one additional assumption this criterion is also sufficient.
A connected open subsetG (a region) ofRn is calledsimply connectedif every closed polygonal
path insideG can be shrunk insideG to a single point.
Roughly speaking, simply connected sets do not have holes.

convex subset ofRn simply connected
1-torusS1 = {z ∈ C | | z | = 1} not simply connected
annulus{(x, y) ∈ R2 | r2 < x2 + y2 ≤ R2}, 0 ≤ r < R ≤ ∞ not simply connectedR2 \ {(0, 0)} not simlpy connectedR3 \ {(0, 0, 0)} simply connected

The precise mathematical term for a curveγ to be “shrinkable to a point” is to be null-
homotopic.

Definition 8.7 (a) A closed curveγ : [a, b]→ G,G ⊂ Rn open, is said to benull-homotopicif
there exists a continuous mappingh : [a, b]× [0, 1]→ G and a pointx0 ∈ G such that

(a)h(t, 0) = γ(t) for all t,
(b) h(t, 1) = x0 for all t,
(c) h(a, s) = h(b, s) = x0 for all s ∈ [0, 1].

(b)G is simply connectedif any curve inG is null homotopic.

Proposition 8.3 Let ~f = (f1, f2, f3) a continuously differentiable vector field on a regionG ⊂R3.
(a) If ~f is conservative thencurl ~f = 0, i. e.

∂f3

∂x2

− ∂f2

∂x3

= 0,
∂f1

∂x3

− ∂f3

∂x1

= 0,
∂f2

∂x1

− ∂f1

∂x2

= 0.

(b) If curl ~f = 0 andG is simply connected, then~f is conservative.

Proof. (a) Let ~f be conservative; by Theorem 8.2 there exists a potentialU , gradU = ~f .
However,curl gradU = 0 since

∂f3

∂x2
− ∂f2

∂x3
=

∂2U

∂x2∂x3
− ∂2U

∂x3∂x2
= 0

by Schwarz’s Lemma.
(b) This will be an application of Stokes’ theorem, see below.
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Example 8.6 Let onR3, ~f = (P,Q,R) = (6xy2 + ex, 6x2y, 1). Then

curl ~f = (Ry −Qz, Pz − Rx, Qx − Py) = (0, 0, 12xy − 12xy) = 0;

hence,~f is conservative with the potentialU(x, y, z).
First method to compute the potentialU : ODE ansatz.
The ansatzUx = 6xy2 + ex will be integrated with respect tox:

U(x, y, z) =

∫
Ux dx+ C(y, z) =

∫
(6xy2 + ex) dx+ C(y, z) = 3x2y2 + ex + C(y, z).

Hence,
Uy = 6x2y + Cy(y, z)

!
= 6x2y, Uz = Cz

!
= 1.

This impliesCy = 0 andCz = 1. The solution here isC(y, z) = z + c1 such thatU =

3x2y2 + ex + z + c1.
Second method: Line Integrals.See Remark 8.5 (b))

U(x, y, z) = x

∫ 1

0

f1(tx, ty, tz) dt+ y

∫ 1

0

f2(tx, ty, tz) dt+ z

∫ 1

0

f3(tx, ty, tz) dt

= x

∫ 1

0

(6t3xy2 + etx) dt+ y

∫ 1

0

6t3x2y dt+ z

∫ 1

0

dt

= 3x2y2 + ex + z.
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Chapter 9

Integration of Functions of Several
Variables

References to this chapter are [O’N75, Section 4] which is quite elemantary and good accessi-
ble. Another elementary approach is [MW85, Chapter 17] (part III). A more advanced but still
good accessible treatment is [Spi65, Chapter 3]. This will be our main reference here. Rudin’s
book [Rud76] is not recommendable for an introduction to integration.

9.1 Basic Definition

The definition of the Riemann integral of a functionf : A → R, whereA ⊂ Rn is a closed
rectangle, is so similar to that of the ordinary integral that a rapid treatment will be given, see
Section 5.1.
If nothing is specified otherwise,A denotes a rectangle. ArectangleA is the cartesian product
of n intervals,

A = [a1, b1]× · · · × [an, bn] = {(x1, . . . , xn) ∈ Rn | ak ≤ xk ≤ bk, k = 1, . . . , n}.

Recall that apartition of a closed interval[a, b] is a sequencet0, . . . , tk wherea = t0 ≤ t1 ≤
· · · ≤ tk = b. The partition divides the interval[a, b] in to k subintervals[ti−1, ti]. A partition
of a rectangle[a1, b1] × · · · × [an, bn] is a collectionP = (P1, . . . , Pn) where eachPi is a
partition of the interval[ai, bi]. Suppose for example thatP1 = (t0, . . . , tk) is a partition of
[a1, b1] andP2 = (s0, . . . , sl) is a partition of[a2, b2]. Then the partitionP = (P1, P2) of
[a1, b1] × [a2, b2] divides the closed rectangle[a1, b1] × [a2, b2] into kl subrectangles, a typical
one being[ti−1, ti] × [sj−1, sj]. In general, ifPi divides[ai, bi] intoNi subintervals, thenP =

(P1, . . . , Pn) divides[a1, b1]× · · · × [an, bn] intoN1 · · ·Nn subrectangles. These subrectangles
will be calledsubrectangles of the partitionP .

Suppose nowA is a rectangle,f : A→ R is a bounded function, andP is a partition ofA. For
each subrectangleS of the partition let

mS = inf{f(x) | x ∈ S}, MS = sup{f(x) | x ∈ S},

245
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and let v(S) be the volume of the rectangleS. Note that volume of the rectangle
A = [a1, b1]× · · · × [an, bn] is

v(A) = (b1 − a1)(b2 − a2) · · · (bn − an).

The lower and theupper sumsof f for P are defined by

L(P, f) =
∑

S

mS v(S) and U(P, f) =
∑

S

MS v(S),

where the sum is taken over all subrectanglesS of the partitionP . Clearly, iff is bounded with
m ≤ f(x) ≤M on the rectanglex ∈ R,

mv(R) ≤ L(P, f) ≤ U(P, f) ≤M v(R),

so that the numbersL(P, f) andU(P, f) form bounded sets. Lemma 5.1 remains true; the proof
is completely the same.

Lemma 9.1 (a) Suppose the partitionP ∗ is a refinement ofP (that is, each subrectangle ofP ∗

is contained in a subrectangle ofP ). Then

L(P, f) ≤ L(P ∗, f) and U(P ∗, f) ≤ U(P, f).

(b) If P andP ′ are any two partitions, thenL(P, f) ≤ U(P ′, f).

It follows from the above corollary that all lower sums are bounded above by any upper sum
and vice versa.

Definition 9.1 Let f : A → R be a bounded function. The functionf is calledRiemann inte-
grableon the rectangleA if

∫

A

f dx := sup
P
{L(P, f)} = inf

P
{U(P, f)} =:

∫

A

f dx,

where the supremum and the infimum are taken over all partitions P of A. This common
number is theRiemann integralof f onA and is denoted by

∫

A

f dx or
∫

A

f(x1, . . . , xn) dx1 · · · dxn.

∫
A
f dx and

∫
A
f dx are called thelower and theupperintegral off onA, respectively. They

always exist. The set of integrable function onA is denoted byR(A).

As in the one dimensional case we have the following criterion.

Proposition 9.2 (Riemann Criterion) A bounded functionf : A→ R is integrable if and only
if for everyε > 0 there exists a partitionP ofA such thatU(P, f)− L(P, f) < ε.
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Example 9.1 (a) Letf : A→ R be a constant functionf(x) = c. Then for any PartitionP and
any subrectangleS we havemS = MS = c, so that

L(P, f) = U(P, f) =
∑

S

c v(S) = c
∑

S

v(S) = cv(A).

Hence,
∫
A
c dx = cv(A).

(b) Letf : [0, 1]× [0, 1]→ R be defined by

f(x, y) =

{
0, if x is rational,

1, if x is irrational.

If P is a partition, then every subrectangleS will contain points(x, y) with x rational, and also
points(x, y) with x irrational. HencemS = 0 andMS = 1, so

L(P, f) =
∑

S

0v(S) = 0,

and
U(P, f) =

∑

S

1v(S) = v(A) = v([0, 1]× [0, 1]) = 1.

Therefore,
∫
A
f dx = 1 6= 0 =

∫
A
f dx andf is not integrable.

9.1.1 Properties of the Riemann Integral

We briefly writeR for R(A).

Remark 9.1 (a) R is a linear space and
∫
A

(·) dx is a linear functional, i. e.f, g ∈ R imply
λf + µg ∈ R for all λ, µ ∈ R and∫

A

(λf + µg) dx = λ

∫

A

f dx+ µ

∫

A

g dx.

(b) R is a lattice, i. e., f ∈ R implies | f | ∈ R. If f, g ∈ R, thenmax{f, g} ∈ R and
min{f, g} ∈ R.

(c) R is an algebra, i. e.,f, g ∈ R imply fg ∈ R.

(d) The triangle inequality holds:∣∣∣∣
∫

A

f dx

∣∣∣∣ ≤
∫

A

| f | dx.

(e) C(A) ⊂ R(A).

(f) f ∈ R(A) andf(A) ⊂ [a, b], g ∈ C[a, b]. Theng◦f ∈ R(A).

(g) If f ∈ R andf = g except at finitely many points, theng ∈ R and
∫
A
f dx =

∫
A
g dx.

(h) Let f : A → R and letP be a partition ofA. Thenf ∈ R(A) if and only if f↾S is
integrable for each subrectangleS. In this case∫

A

f dx =
∑

S

∫

S

f↾S dx.
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9.2 Integrable Functions

We are going to characterize integrable functions. For, we need the notion of a set ofmeasure
zero.

Definition 9.2 LetA be a subset ofRn. A has (n-dimensional)measure zeroif for everyε > 0

there exists a sequence(Ui)i∈N of closed rectanglesUi which coverA such that
∑∞

i=1 v(Ui) < ε.

Open rectangles can also be used in the definition.

Remark 9.2 (a) Any finite set{a1, . . . , am} ⊂ Rn is of measure0. Indeed, letε > 0 and
chooseUi be a rectangle with midpointai and volumeε/m. Then{Ui | i = 1, . . . , m} covers
A and

∑
i v(Ui) ≤ ε.

(b) Any contable set is of measure0.
(c) Any countable set has measure0.
(d) If each(Ai)i∈N has measure0 thenA = A1 ∪ A2 ∪ · · · has measure0.
Proof. Let ε > 0. SinceAi has measure0 there exist closed rectanglesUik, i ∈ N, k ∈ N,
such that for fixedi, the family {Uik | k ∈ N} coversAi, i.e.

⋃
k∈NUik ⊇ Ai and∑

k∈N v(Uik) ≤ ε/2i−1, i ∈ N. In this way we have constructed an infinite array{Uik} which
coversA. Arranging those sets in a sequence (cf. Cantor’s first diagonal process), we obtain a
sequence of rectangles which coversA and

∞∑

i,k=1

v(Uik) ≤
∞∑

i=1

ε

2i−1
= 2ε.

Hence,
∑∞

i,k=1 v(Uik) ≤ 2ε andA has measure0.

(e) LetA = [a1, b1]×· · ·×[an, bn] be a non-singular rectangle, that isai < bi for all i = 1, . . . , n.
ThenA is not of measure0. Indeed, we use the following two facts about the volume of finite
unions of rectangles:

(a)v(U1 ∪ · · · ∪ Un) ≤
∑n

i=1 v(Ui),
(b)U ⊆ V impliesv(U) ≤ v(V ).

Now let ε = v(A)/2 = (b1 − a1) · · · (bn − an)/2 and suppose that the open rectangles(Ui)i∈N
cover the compact setA. Then there exists a finite subcoverU1 ∪ · · · ∪ Um ⊇ A. This and (a),
(b) imply

ε < v(A) ≤ v

(
n⋃

i=1

Ui

)
≤

n∑

i=1

v(Ui) ≤
∞∑

i=1

v(Ui).

This contradicts
∑

i v(Ui) ≤ ε; thus,A has not measure0.

Theorem 9.3 Let A be a closed rectangle andf : A → R a bounded function. Let
B = {x ∈ A | f is discontinuous atx}.
Thenf is integrable if and only ifB is a set of measure0.

For the proof see [Spi65, 3-8 Theorem] or [Rud76, Theorem 11.33].
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9.2.1 Integration over More General Sets

We have so far dealt only with integrals of functions over rectangles. Integrals over other sets
are easily reduced to this type.
If C ⊂ Rn, thecharacteristic functionχC of C is defined by

χC(x) =

{
1, x ∈ C,
0, x 6∈ C.
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C

A

Definition 9.3 Let f : C → R be bounded andA a rect-
angle,C ⊂ A. We callf Riemann integrableonC if the
product functionf ·χC : A → R is Riemann integrable
onA. In this case we define

∫

C

f dx =

∫

A

fχC dx.

This certainly occurs if bothf andχC are integrable on
A. Note, that

∫
C

1 dx =
∫
A
χC dx =: v(C) is defined to

be thevolume or measureof C.

Problem: Under which conditions onC, the volumev(C) =
∫
C

dx exists? By Theorem 9.3
χC is integrable if and only if the setB of discontinuities ofχC in A has measure0.

The boundary of a setC

δC

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���

���
���
���

���
���
���

���
���
���

C

A

LetC ⊂ A. For everyx ∈ A exactly one of the
following three cases occurs:
(a) x has a neighborhood which is completely
contained inC (x is an inner point ofC),
(b) x has a neighborhood which is completely
contained inCc (x is an inner point ofCc),
(c) every neighborhood ofx intersects bothC
andCc. In this case we say,x belongs to the
boundary∂C ofC. By definition∂C = C∩Cc;
also∂C = C \C◦.

By the above discussion,A is the disjoint union of two open and a closed set:

A = C◦ ∪ ∂C ∪ (Cc)◦.

Theorem 9.4 The characteristic functionχC : A→ R is integrable if and only if the boundary
ofC has measure0.

Proof. Since the boundary∂C is closed and inside the bounded set,∂C is compact. Suppose
first x is an inner point ofC. Then there is an open setU ⊂ C containingx. ThusχC(x) = 1

onx ∈ U ; clearlyχC is continuous atx (since it is locally constant). Similarly, ifx is an inner
point ofCc, χC(x) is locally constant, namelyχC = 0 in a neighborhood ofx. HenceχC is
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continuous atx. Finally, if x is in the boundary ofC for every open neighborhoodU of x there
is y1 ∈ U ∩ C andy2 ∈ U ∩ Cc, so thatχC(y1) = 1 whereasχC(y2) = 0. Hence,χC is not
continuous atx. Thus, the set of discontinuity ofχC is exactly the boundary∂C. The rest
follows from Theorem 9.3.

Definition 9.4 A bounded setC is calledJordan measurableor simply aJordan setif its bound-
ary has measure0. The integralv(C) =

∫
C

1 dx is called then-dimensionalJordan measureof
C or then-dimensionalvolumeof C; sometimes we writeµ(C) in place ofv(C).

Naturally, the one-dimensional volume in thelength, and the two-dimensional volume is the
area.

Typical Examples of Jordan Measurable Sets

Hyper planes
∑n

i=1 aixi = c, and, more general, hyper surfacesf(x1, . . . , xn) = c, f ∈ C1(G)

are sets with measure0 in Rn. Curves inRn have measure0. Graphs of functions
Γf = {(x, f(x)) ∈ Rn+1 | x ∈ G}, f continuous, are of measure0 in Rn+1. If G is a bounded
region in Rn, the boundary∂G has measure0. If G ⊂ Rn is a region, thecylinder
C = ∂G×R = {(x, xn+1) | x ∈ ∂G} ⊂ Rn+1 is a measure0 set.

LetD ⊂ Rn+1 be given by

D = {(x, xn+1) | x ∈ K, 0 ≤ xn+1 ≤ f(x)},

Kδ

D

K

f(x)

whereK ⊂ Rn is a compact set andf : K → R is continuous. ThenD is Jordan
measurable. Indeed,D is bounded by the graphΓf , the hyper planexn+1 = 0

and the cylinder∂D × R = {(x, xn+1) | x ∈ ∂K} and all have measure0 inRn+1.

9.2.2 Fubini’s Theorem and Iterated Integrals

Our goal is to evaluate Riemann integrals; however, so far there was no method to compute
multiple integrals. The following theorem fills this gap.

Theorem 9.5 (Fubini’s Theorem) Let A ⊂ Rn andB ⊂ Rm be closed rectangles, and let
f : A×B → R be integrable. Forx ∈ A let gx : B → R be defined bygx(y) = f(x, y) and let

L(x) =

∫

B

gx dy =

∫

B

f(x, y) dy,

U(x) =

∫

B

gx dy =

∫

B

f(x, y) dy.
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ThenL(x) andU(x) are integrable onA and
∫

A×B
f dxdy =

∫

A

L(x) dx =

∫

A

(∫

B

f(x, y) dy

)
dx,

∫

A×B
f dxdy =

∫

A

U(x) dx =

∫

A

(∫

B

f(x, y) dy

)
dx.

The integrals on the right are callediterated integrals.

The proof is in the appendix to this chapter.

Remarks 9.3 (a) A similar proof shows that we can exchange the order of integration
∫

A×B
f dxdy =

∫

B

(∫

A

f(x, y) dx

)
dy =

∫

B

(∫

A

f(x, y) dx

)
dy.

These integrals are callediterated integralsfor f .
(b) In practice it is often the case that eachgx is integrable so that

∫
A×B f dxdy =∫

A

(∫
B
f(x, y) dy

)
dx. This certainly occurs iff is continuous.

(c) If A = [a1, b1]× · · ·× [an, bn] andf : A→ R is continuous, we can apply Fubini’s theorem
repeatedly to obtain

∫

A

f dx =

∫ bn

an

(
· · ·
(∫ b1

a1

f(x1, . . . , xn) dx1

)
· · ·
)

dxn.

(d) If C ⊂ A× B, Fubini’s theorem can be used to compute
∫
C
f dx since this is by definition∫

A×B fχC dx. Here are two examples in casen = 2 andn = 3.
Let a < b andϕ(x) andψ(x) continuous real valued functions on
[a, b] with ϕ(x) < ψ(x) on [a, b]. Put

C = {(x, y) ∈ R2 | a ≤ x ≤ b, ϕ(x) ≤ y ≤ ψ(x)}.

Let f(x, y) be continuous onC. Thenf is integrable onC and

∫∫

C

f dxdy =

∫ b

a

(∫ ψ(x)

ϕ(x)

f(x, y) dy

)
dx.

a b

φ

ψ

(x)

(x)

Let

G = {(x, y, z) ∈ R3 | a ≤ x ≤ b, ϕ(x) ≤ y ≤ ψ(x), α(x, y) ≤ z ≤ β(x, y)},

where all functions are sufficiently nice. Then
∫∫∫

G

f(x, y, z) dxdydz =

∫ b

a

(∫ ψ(y)

ϕ(x)

(∫ β(x,y)

α(x,y)

f(x, y, z) dz

)
dy

)
dx.

(e) Cavalieri’s Principle. LetA andB be Jordan sets inR3 and letAc = {(x, y) | (x, y, c) ∈
A} be the section ofA with the planez = c; Bc is defined similar. Suppose eachAc andBc is
Jordan measurable (inR2) and they have the same areav(Ac) = v(Bc) for all c ∈ R.
ThenA andB have the same volumev(A) = v(B).
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(1,1)

x

y

Example 9.2 (a) Letf(x, y) = xy and

C = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, x2 ≤ y ≤ x}
= {(x, y) ∈ R2 | 0 ≤ y ≤ 1, y ≤ x ≤ √y}.

Then

∫∫

C

xy dxdy =

∫ 1

0

∫ x

x2

xy dy dx =

∫ 1

0

xy2

2

∣∣∣∣
x

y=x2

dx =
1

2

∫ 1

0

(x3 − x5) dx

=
x4

8
− x6

12

∣∣∣∣
1

0

=
1

8
− 1

12
=

1

24
.

Interchanging the order of integration we obtain

∫∫

C

xy dxdy =

∫ 1

0

∫ √
y

y

xy dx dy =

∫ 1

0

x2y

2

∣∣∣∣

√
y

y

=
1

2

∫ 1

0

(y2 − y3) dy

=
y3

6
− y4

8

∣∣∣∣
1

0

=
1

6
− 1

8
=

1

24
.

(b) LetG = {(x, y, z) ∈ R3 | x, y, z ≥ 0, x+ y+ z ≤ 1} andf(x, y, z) = 1/(x+ y+ z+1)3.
The setG can be parametrized as follows

∫∫∫

G

f dxdydz =

∫ 1

0

(∫ 1−x

0

(∫ 1−x−y

0

dz

(1 + x+ y + z)3

)
dy

)
dx

=

∫ 1

0

(∫ 1−x

0

1

2

−1

(1 + x+ y + z)2

∣∣∣∣
1−x−y

0

dy

)
dx

=

∫ 1

0

(∫ 1−x

0

(
1

2

1

(1 + x+ y)2
− 1

8

)
dy

)
dx

=
1

2

∫ 1

0

(
1

x+ 1
+
x− 3

4

)
dx =

1

2

(
log 2− 5

8

)
.

(2,2)

(1,1)

(1,2)

(2,4)
(c) Let f(x, y) = ey/x andD the above region. Compute
the integral off onD.
D can be parametrized as followsD = {(x, y) | 1 ≤ x ≤
2, x ≤ y ≤ 2x} Hence,

∫∫

D

f dxdy =

∫ 2

1

dx

∫ 2x

x

e
y
x dy

=

∫ 2

1

dx xe
y
x

∣∣∣
2x

x
=

∫ 2

1

(e2x− ex) dx =
3

2
(e2 − e).
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But trying to reverse the order of integration we encounter two problems. First, we must break
D in several regions:

∫∫

D

f dxdy =

∫ 2

1

dy

∫ y

1

ey/x dx+

∫ 4

2

dy

∫ 2

y/2

ey/x dx.

This is not a serious problem. A greater problem is thate1/x has no elementary antiderivative, so∫ y
1

ey/x dx and
∫ 2

y/2
ey/x dx are very difficult to evaluate. In this example, there is a considerable

advantage in one order of integration over the other.

The Cosmopolitan Integral

Let f ≥ 0 be a continuous real-valued function on[a, b].

a b x

y
f(x)

There are some very special solids whose volumes can
be expressed by integrals. The simplest such solidG is a
“volume of revolution” obtained by revolving the region
under the graph off ≥ 0 on [a, b] around the horizontal
axis. We apply Fubini’s theorem to the set

G = {(x, y, z) ∈ R3 | a ≤ x ≤ b, y2 + z2 ≤ f(x)2}.

Consequently, the volume ofv(G) is given by

v(G) =

∫∫∫

G

dxdydz =

∫ b

a

dx

(∫∫

Gx

dydz

)
, (9.1)

whereGx = {(y, z) ∈ R2 | y2 + z2 ≤ f(x)2} is the closed disc of radiusf(x) around(0, 0).
For any fixedx ∈ [a, b] its area isv(Gx) =

∫∫
Gx

dydz = πf(x)2. Hence

v(G) = π

∫ b

a

f(x)2 dx. (9.2)

Example 9.3 We compute the volume of the ellipsoid obtained by revolvingthe graph of the
ellipse

x2

a2
+
y2

b2
= 1

around thex-axis. We havey2 = f(x)2 = b2
(
1− x2

a2

)
; hence

v(G) = πb2
∫ a

−a

(
1− x2

a2

)
dx = πb2

(
x− x3

3a2

)∣∣∣∣
a

−a
= πb2

(
2a− 2a3

3a2

)
=

4π

3
b2a.

9.3 Change of Variable

We want to generalize change of variables formula
∫ g(b)
g(a)

f(x) dx =
∫ b
a
f(g(y))g′(y) dy.
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If BR is the ball inR3 with radiusR around the origin we have in cartesian coordinates

∫∫∫

BR

f dxdydz =

∫ R

−R
dx

∫ √
R2−x2

−
√
R2−x2

dy

∫ √R2−x2−y2

−
√
R2−x2−y2

dzf(x, y, z).

Usually, the complicated limits yield hard computations. Here spherical coordinates are appro-
priate.
To motivate the formula consider the area of a parallelogramD in thex-y-plane spanned by the
two vectorsa = (a1, a2) andb = (b1, b2).

D = {λa+ µb | λ, µ ∈ [0, 1]} =

{(
g1(λ, µ)

g2(λ, µ)

)∣∣∣∣ (λ, µ ∈ [0, 1]

}
,

whereg1(λ, µ) = λa1 + µb1 andg2(λ, µ) = λa2 + µb2. As known from linear algebra the area
of D equals the norm of the vector product

v(D) = ‖a× b‖ =

∥∥∥∥∥∥
det




e1 e2 e3

a1 a2 0

b1 b2 0



∥∥∥∥∥∥

= ‖(0, 0, a1b2 − a2b1)‖ = | a1b2 − a2b1 | =: d

Introducing new variablesλ andµ with

x = λa1 + µb1, y = λa2 + µb2,

the parallelogramD in thex-y-plane is now the unit squareC = [0, 1]× [0, 1] in theλ-µ-plane
andD = g(C). We want to compare the aread ofD with the area1 of C. Note thatd is exactly
the absolute value of the Jacobian∂(g1,g2)

∂(λ,µ)
; indeed

∂(g1, g2)

∂(λ, µ)
= det

(
∂g1
∂λ

∂g1
∂µ

∂g2
∂λ

∂g2
∂µ

)
= det

(
a1 a2

b1 b2

)
= a1b2 − a2b1.

Hence, ∫∫

D

dxdy =

∫∫

C

∣∣∣∣
∂(g1, g2)

∂(λ, µ)

∣∣∣∣ dλdµ.

This is true for anyRn and any regular map,g : C → D.

Theorem 9.6 (Change of variable)LetC andD be compact Jordan set inRn; let M ⊂ C a
set of measure0. Letg : C → D be continuously differentiable with the following properties

(i) g is injective onC \M .
(ii) g′(x) is regular onC \M .

Letf : D → R be continuous.
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g D, y

ffg

IR

Then
∫

D

f(y) dy =

∫

C

f(g(x))

∣∣∣∣
∂(g1, . . . , gn)

∂(x1, . . . , xn)
(x)

∣∣∣∣ dx. (9.3)
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Remark 9.4 Why theabsolute valueof the Jacobian? InR1 we don’t have the absolute value.
But in contrast toRn, n ≥ 1, we have an orientation of the integration set

∫ b
a
f dx = −

∫ a
b
f dx.

For the proof see [Rud76, 10.9 Theorem]. The main steps of theproof are: 1) In a small open
setg can be written as the composition ofn “flips” and n “primitive mappings”. A flip changes
two variablesxi andxk, wheras a primitive mappingH is equal to the identity except for one
variable,H(x) = x+ (h(x)− x)em whereh : U → R.
2) If the statement is true for transformationsS andT , then it is true for the compositionS◦T

which follows fromdet(AB) = detA detB.
3) Use a partition of unity.

Example 9.4 (a) Polar coordinates. LetA = {(r, ϕ) | 0 ≤ r ≤ R, 0 ≤ ϕ < 2π} be a rectangle
in polar coordinates. The mappingg(r, ϕ) = (x, y), x = r cosϕ, y = r sinϕ maps this
rectangle continuously differentiable onto the discD with radiusR. LetM = {(r, ϕ) | r = 0}.
Since∂(x,y)

∂(r,ϕ)
= r, the mapg is bijective and regular onA \M . The assumptions of the theorem

are satisfied and we have∫∫

D

f(x, y) dxdy =

∫∫

A

f(r cosϕ, r sinϕ)rdrdϕ

=
Fubini

∫ R

0

∫ 2π

0

f(r cosϕ, r sinϕ)r drdϕ.

(b) Spherical coordinates. Recall from the exercise class the spherical coordinatesr ∈ [0,∞),
ϕ ∈ [0, 2π], andϑ ∈ [0, π]

x = r sin ϑ cosϕ,

y = r sin ϑ sinϕ,

z = r cosϑ.

The Jacobian reads

∂(x, y, z)

∂(r, ϑ, ϕ)
=

∣∣∣∣∣∣

xr xϑ xϕ
yr yϑ yϕ
zr zϑ zϕ

∣∣∣∣∣∣
=

∣∣∣∣∣∣

sin ϑ cosϕ r cos ϑ cosϕ −r sin ϑ sinϕ

sinϑ sinϕ r cosϑ sinϕ r sin ϑ cosϕ

cosϑ −r sin ϑ 0

∣∣∣∣∣∣
= r2 sin ϑ

Sometimes one uses
∂(x, y, z)

∂(r, ϕ, ϑ)
= −r2 sin ϑ.

Hence ∫∫∫

B1

f(x, y, z) dxdydz =

∫ 1

0

∫ 2π

0

∫ π

0

f(x, y, z) sin2 ϑ dr dϕ dϑ.

This example was not covered in the lecture. Compute the volume of the ellipsoidE given by
u2/a2 + v2/b2 + w2/c2 = 1. We use scaled spherical coordinates:

u = ar sin ϑ cosϕ,

v = br sinϑ sinϕ,

w = cr cosϑ,
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wherer ∈ [0, 1], ϑ ∈ [0, π], ϕ ∈ 0, 2π]. Since the rows of the spherical Jacobian matrix∂(x,y,z)
∂(r,ϑ,ϕ)

are simply multiplied bya, b, andc, respectively, we have

∂(u, v, w)

∂(r, ϑ, ϕ)
= abcr2 sinϑ.

Hence, ifB1 is the unit ball around0 we have using iterated integrals

v(E) =

∫∫∫

E

dudvdw = abc

∫∫∫

B1

r2 sinϑ drdϑdϕ

= abc

∫ 1

0

drr2

∫ 2π

0

dϕ

∫ π

0

sinϑdϑ

=
1

3
abc 2π (− cos ϑ)|π0 =

4π

3
abc.

xy=1

xy=2

x  - y    =1

x -y    =4

2

2

2

2 (c)
∫∫

C

(x2 + y2) dxdy whereC is bounded by the four hyperbolas

xy = 1, xy = 2, x2 − y2 = 1, x2 − y2 = 4.
We change coordinatesg(x, y) = (u, v)

u = xy, v = x2 − y2.

The Jacobian is
∂(u, v)

∂(x, y)
=

∣∣∣∣
y x

2x −2y

∣∣∣∣ = −2(x2 + y2).

The Jacobian of the inverse transform is

∂(x, y)

∂(u, v)
= − 1

2(x2 + y2)
.

In the (u, v)-plane, the region is a rectangleD = {(u, v) ∈ R2 | 1 ≤ u ≤ 2, 1 ≤ v ≤ 4}.
Hence,

∫∫

C

(x2 + y2) dxdy =

∫∫

D

(x2 + y2)

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ dudv =

∫∫

D

x2 + y2

2(x2 + y2)
dudv =

1

2
v(D) =

3

2
.

Physical Applications

If ̺(x) = ρ(x1, x2, x3) is a mass density of a solidC ⊂ R3, then

m =

∫

C

ρ dx is the mass ofC and

xi =
1

m

∫

C

xi ρ(x) dx, i = 1, . . . , 3 are the coordinates of the mass centerx of C.
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Themoments of inertiaof C are defined as follows

Ixx=

∫∫∫

C

(y2 + z2)ρ dxdydz,Iyy=

∫∫∫

C

(x2 + z2)ρ dxdydz,Izz=

∫∫∫

C

(x2 + y2)ρ dxdydz,

Ixy =

∫∫∫

C

xyρ dxdydz, Ixz =

∫∫∫

C

xzρ dxdydz, Iyz =

∫∫∫

C

yzρ dxdydz.

HereIxx, Iyy, andIzz are the moments of inertia of the solid with respect to thex-axis,y-axis,
andz-axis, respectively.

Example 9.5 Compute the mass center of a homogeneous half-plate of radiusR,C = {(x, y) |
x2 + y2 ≤ R2, y ≥ 0}.
Solution. By the symmetry ofC with respect to they-axis,x = 0. Using polar coordinates we
find

y =
1

m

∫∫

C

y dxdy =
1

m

∫ R

0

∫ π

0

r sinϕrdϕ dr =
1

m

∫ R

0

r2 dr (− cosϕ) |π0 =
1

m

2R3

3
.

Since the mass is proportional to the area,m = πR
2

2
and we find(0, 4R

3π
) is the mass center of

the half-plate.

9.4 Appendix

Proof of Fubini’s Theorem. LetPA be a partition ofA andPB a partition ofB. Together they
give a partitionP of A×B for which any subrectangleS is of the formSA × SB, whereSA is
a subrectangle of the partitionPA, andSB is a subrectangle of the partitionPB. Thus

L(P, f) =
∑

S

mS v(S) =
∑

SA,SB

mSA×SB
v(SA × SB)

=
∑

SA

(∑

SB

mSA×SB
v(SB)

)
v(SA).

Now, if x ∈ SA, then clearlymSA×SB
(f) ≤ mSB

(gx) since the reference setSA × SB on the
left is bigger than the reference set{x} × SB on the right. Consequently, forx ∈ SA we have

∑

SB

mSA×SB
v(SB) ≤

∑

SB

mSB
(gx) v(SB) ≤

∫

B

gx dy = L(x)

∑

SB

mSA×SB
v(SB) ≤ mSA

(L(x)).

Therefore,

∑

SA

(∑

SB

mSA×SB
v(SB)

)
v(SA) ≤

∑

SA

mSA
(L(x))v(SA) = L(PA,L).
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We thus obtain

L(P, f) ≤ L(PA,L) ≤ U(PA,L) ≤ U(PA,U) ≤ U(P, f),

where the proof of the last inequality is entirely analogousto the proof of the first. Sincef is
integrable,sup{L(P, f)} = inf{U(P, f)} =

∫
A×B f dxdy. Hence,

sup{L(PA,L)} = inf{U(PA,L)} =

∫

A×B
f dxdy.

In other words,L(x) is integrable onA and
∫
A×B f dxdy =

∫
A

L(x) dx.
The assertion forU(x) follows similarly from the inequalities

L(P, f) ≤ L(PA,L) ≤ L(PA,U) ≤ U(PA,U) ≤ U(P, f).



Chapter 10

Surface Integrals

10.1 Surfaces inR3

Recall that adomainG is an open andconnectedsubset inRn; connected means that for any
two pointsx andy in G, there exist pointsx0, x1, . . . , xk with x0 = x andxk = y such that
every segmentxi−1xi, i = 1, . . . , k, is completely contained inG.

Definition 10.1 Let G ⊂ R2 be a domain andF : G → R3 continuously differentiable. The
mappingF as well as the setF = F (G) = {F (s, t) | (s, t) ∈ G} is called anopen regular
surfaceif the Jacobian matrixF ′(s, t) has rank2 for all (s, t) ∈ G.

If

F (s, t) =



x(s, t)

y(s, t)

z(s, t)


 ,

the Jacobian matrix ofF is

F ′(s, t) =



xs xt
ys yt
zs zt


 .

The two column vectors ofF ′(s, t) span the tangent plane toF at (s, t):

D1F (s, t) =

(
∂x

∂s
(s, t),

∂y

∂s
(s, t),

∂z

∂s
(s, t)

)
,

D2F (s, t) =

(
∂x

∂t
(s, t),

∂y

∂t
(s, t),

∂z

∂t
(s, t)

)
.

Justification: Suppose(s, t0) ∈ G wheret0 is fixed. Thenγ(s) = F (s, t0) defines a curve
in F with tangent vectorγ′(s) = D1F (s, t0). Similarly, for fixeds0 we obtain another curve
γ̃(t) = F (s0, t) with tangent vector̃γ′(t) = D2F (s0, t). SinceF ′(s, t) has rank2 at every point
of G, the vectorsD1F andD2F are linearly independent; hence they span a plane.

259
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Definition 10.2 LetF : G→ R3 be an open regular surface, and(s0, t0) ∈ G. Then

~x = F (s0, t0) + αD1F (s0, t0) + βD2F (s0, t0), α, β ∈ R
is called thetangent planeE to F atF (s0, t0). The line throughF (s0, t0) which is orthogonal
toE is called thenormal lineto F atF (s0, t0).

Recall that the vector product~x× ~y of vectors~x = (x1, x2, x3) and~y = (y1, y2, y3) fromR3 is
the vector

~x× ~y =

∣∣∣∣∣∣

e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
= (x2y3 − y2x3, x3y1 − y3x1, x1y2 − y1x2).

It is orthogonal to the plane spanned by the parallelogramP with edges~x and~y. Its length is
the area of the parallelogramP .

A vector which points in the direction of the normal line is

D1F (s0, t0)×D2F (s0, t0) =

∣∣∣∣∣∣

e1 e2 e3

xs ys zs
xt yt zt

∣∣∣∣∣∣
(10.1)

~n = ± D1F ×D2F

‖D1F ×D2F‖
, (10.2)

where~n is the unit normal vector at(s0, t0).

Example 10.1 (Graph of a function) Let F be given by the graph of a functionf : G → R,
namelyF (x, y) = (x, y, f(x, y)). By definition

D1F = (1, 0, fx), D2F = (0, 1, fy),

hence

D1f ×D2f =

∣∣∣∣∣∣

e1 e2 e3

1 0 fx
0 1 fy

∣∣∣∣∣∣
= (−fx,−fy, 1).

Therefore, the tangent plane has the equation

−fx(x− x0)− fy(y − y0) + 1(z − z0) = 0.

Further, the unit normal vector to the tangent plane is

~n = ± (fx, fy,−1)√
f 2
x + f 2

y + 1
.
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10.1.1 The Area of a Surface

LetF andF be as above. We assume that the continuous vector fieldsD1F andD2F onG can
be extended to continuous functions on the closureG.

Definition 10.3 The number

|F | =
∣∣F
∣∣ :=

∫∫

G

‖D1F ×D2F‖ dsdt (10.3)

is called theareaof F and ofF.
We call

dS = ‖D1F ×D2F‖ dsdt

the scalar surface elementof F . In this notation,|F | =
∫∫
G

dS.

-2
-1

0

-2

0

5

1

-1

10

0

15

1

20

2
2

25

Helix: (s*cos(t), s*cos(t), 2*t)

Example 10.2 Let F = {(s cos t, s sin t, 2t) | s ∈
[0, 2], t ∈ [0, 4π]} be the surfaced spanned by a helix.
We shall compute its area. The normal vector is

D1F = (cos t, sin t, 0), D2F = (−s sin t, s cos t, 2)

such that

D1F ×D2F =

∣∣∣∣∣∣

e1 e2 e3

cos t sin t 0

−s sin t s cos t 2

∣∣∣∣∣∣
= (2 sin t,−2 cos t, s).

Therefore,

|F | =
∫ 4π

0

∫ 2

0

√
4 cos2 t+ 4 sin2 t+ s2 dsdt = 4π

∫ 2

0

√
4 + s2 ds = 8π(

√
2− log(

√
2− 1)).

Example 10.3 (Guldin’s Rule (Paul Guldin, 1577–1643, SwissMathematician)) Let f be a
continuously differentiable function on[a, b] with f(x) ≥ 0 for all x ∈ [a, b]. Let the graph of
f revolve around thex-axis and letF be the corresponding surface. We have

|F | = 2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx.

Proof. Using polar coordinates in they-z-plane, we obtain a parametrization ofF

F = {(x, f(x) cosϕ, f(x) sinϕ) | x ∈ [a, b], ϕ ∈ [0, 2π]}.
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We have

D1F = (1, f ′(x) cosϕ, f ′(x) sinϕ), D1F = (0,−f sinϕ, f cosϕ),

D1F ×D2F = (ff ′,−f cosϕ,−f sinϕ);

so thatdS = f(x)
√

1 + f ′(x)2 dxdϕ. Hence

|F | =
∫ b

a

∫ 2π

0

f(x)
√

1 + f ′(x)2dϕ dx = 2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx.

10.2 Scalar Surface Integrals

Let F andF be as above, andf : F → R a continuous function on the compact subsetF ⊂ R3.

Definition 10.4 The number
∫∫

F

f(~x) dS :=

∫∫

G

f(F (s, t)) ‖D1F (s, t)×D2(s, t)‖ dsdt

is called thescalar surface integral off onF.

10.2.1 Other Forms for dS

(a) Let the surfaceF be given as the graph of a functionF (x, y) = (x, y, f(x, y)), (x, y) ∈ G.
Then, see Example 10.1,

dS =
√

1 + f 2
x + f 2

y dxdy.

(b) Let the surface be given implicitly asG(x, y, z) = 0. SupposeG is locally solvable forz in
a neighborhood of some point(x0, y0, z0). Then the surface element (up to the sign) is given by

dS =

√
F 2
x + F 2

y + F 2
z

|Fz |
dxdy =

‖ gradF‖
|Fz |

dxdy.

One checks thatDF1 ×DF2 = (Fx, Fy, Fz)/Fz.
(c) If F is given byF (s, t) = (x(s, t), y(s, t), z(s, t)) we have

dS =
√
EG−H2 dsdt,

where

E = x2
s + y2

s + z2
s , G = x2

t + y2
t + z2

t , H = xsxt + ysyt + zszt.
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Indeed, using
∥∥∥~a×~b

∥∥∥ = ‖~a‖
∥∥∥~b
∥∥∥ sinϕ andsin2 ϕ = 1− cos2 ϕ, whereϕ is the angle spanned

by~a and~b we get

EG−H2 = ‖D1F‖2 ‖D2F‖2 − (D1F ·D2F )2 = ‖D1F‖2 ‖D2F‖2 (1− cos2 ϕ)

= ‖D1F‖2 ‖D2F‖2 sin2 ϕ = ‖D1F ×D2F‖2

which proves the claim.

Example 10.4 (a) We give two different forms for the scalar surface element of a sphere. By
(b), the spherex2 + y2 + z2 = R2 has surface element

dS =
‖(2x, 2y, 2z)‖

2z
dxdy =

R

z
dxdy.

If

x = R cosϕ sinϑ, y = R sinϕ sinϑ, z = R cosϑ,

we obtain

D1 = Fϑ = R(cosϕ cosϑ, sinϕ cosϑ,− sin ϑ),

D2 = Fϕ = R(− sinϕ sinϑ, cosϕ sinϑ, 0),

D1 ×D2 = R2(cosϕ sin2 ϑ, sinϕ sin2 ϑ, sin ϑ cosϑ).

Hence,

dS = ‖D1 ×D2‖ dϑdϕ = R2 sinϑdϑdϕ.

(b) Riemann integral in R3 and surface integral over spheres.Let M = {(x, y, z) ∈ R3 |
ρ ≤ ‖(x, y, z)‖ ≤ R} whereR > ρ ≥ 0. Let f : M → R be continuous. Let us denote the
sphere of radiusr by Sr = {(x, y, z) ∈ R3 | x2 + y2 + z2 = r2}. Then

∫∫∫

M

f dxdydz =

∫ R

ρ

dr



∫∫

Sr

f(~x) dS


 =

∫ R

ρ

r2



∫∫

S1

f(r~x) dS(~x)


 dr.

Indeed, by the previous example, and by our knowledge of spherical coordinates(r, ϑ, ϕ).

dxdydz = r2 sinϑ dr dϑ dϕ = dr dSr.

On the other hand, on the unit sphereS1, dS = sinϑ dϑ dϕ such that

dxdydz = r2 dr dS

which establishes the second formula.
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10.2.2 Physical Application

(a) If ρ(x, y, z) is the mass density on a surfaceF,
∫∫
F

ρ dS is the total mass ofF. The mass

center ofF has coordinates(xc, yc, zc) with

xc =
1∫∫

F

ρ dS

∫∫

F

x ρ(x, y, z) dS,

and similarly foryc andzc.
(b) If σ(~x) is a charge density on a surfaceF. Then

U(~y) =

∫∫

F

σ(~x)

‖~y − ~x‖ dS(~x), ~y 6∈ F

is the potential generated byF.

10.3 Surface Integrals

10.3.1 Orientation

We want to define the notion oforientationfor a regular surface. LetF be a regular (injective)
surface with or without boundary. Then for every pointx0 ∈ F there exists the tangent plane
Ex0 ; the normal line toF atx0 is uniquely defined.
However, a unit vector on the normal line can have two different directions.

Definition 10.5 (a) Let F be a surface as above. Aunit normal fieldto F is a continuous
function~n : F → R3 with the following two properties for everyx0 ∈ F

(i) ~n(x0) is orthogonal to the tangent plane toF atx0.
(ii) ‖~n(x0)‖ = 1.

(b) A regular surfaceF is calledorientable, if there exists a unit normal field onF.

SupposeF is an oriented, open, regular surface with piecewise smoothboundary∂F. Let
F (s, t) be a parametrization ofF. We assume that the vector functionsF , DF1, andDF2 can
be extended to continuous functions onF. The unit normal vector is given by

~n = ε
D1F ×D2F

‖D1F ×D2F‖
,

whereε = +1 or ε = −1 fixes theorientationof F. It turns out that for a regular surfaceF
there either exists exactly two unit normal fields or there isno such field. IfF is provided with
an orientation we writeF+ for the pair(F, ~n). For F with the opposite orientation, we write
F−.
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Examples of non-orientable surfaces are theMöbius bandand thereal projective plane. Ana-
lytically the Möbius band is given by

F (s, t) =



(
1 + t cos s

2

)
sin s(

1 + t cos s
2

)
cos s

t sin s
2


 , (s, t) ∈ [0, 2π]×

(
−1

2
,
1

2

)
.

Definition 10.6 Let ~f : F → R3 be a continuous vector field onF. The number
∫∫

F+

~f(~x) · ~ndS (10.4)

is called thesurface integral of the vector field~f onF+. We call

~dS = ~n dS = εD1F ×D2F dsdt

the surface elementof F.

Remark 10.1 (a) The surface integral is independent of the parametrization of F but depends
on the orientation;

∫∫
F+

~f· ~dS = −
∫∫

F−

~f· ~dS.
For, let(s, t) = (s(ξ, η), t(ξ, η)) be a new parametrization withF (s(ξ, η), t(ξ, η)) = G(ξ, η).
Then the Jacobian is

dsdt =
∂(s, t)

∂(ξ, η)
= (sξtη − sηtξ) dξdη.

Further

D1G = D1F sξ +D2F tξ, D2G = D1F sη +D2Ftη,

so that using~x× ~x = 0, ~x× ~y = −~y × ~x

D1G×D2Gdξdη = (D1F sξ +D2F tξ)× (D1F sη +D2Ftη)dξdη,

= (sξtη − sηtξ)D1F ×D2Fdξdη

= D1F ×D2F dsdt.

(b) The scalar surface integral is a special case of the surface integral, namely∫∫
f dS =

∫∫
f~n·~n dS.

(c) Special cases. LetF be the graph of a functionf , F = {(x, y, f(x, y)) | (x, y) ∈ C}, then

~dS = ±(−fx,−fy, 1) dxdy.

If the surface is given implicitly byF (x, y, z) = 0 and it is locally solvable forz, then

~dS = ± gradF

Fz
dxdy.
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(d) Still another form of ~dS.
∫∫

F

~f ~dS = ε

∫∫

G

f(F (s, t)) · (D1F ×D2F ) dsdt

~f(F (s, t)) · (D1F ×D2F ) =

∣∣∣∣∣∣

f1(F (s, t)) f2(F (s, t)) f3(F (s, t))

xs(s, t) ys(s, t) zs(s, t)

xt(s, t) yt(s, t) zt(s, t)

∣∣∣∣∣∣
. (10.5)

(e) Again another notation. Computing the previous determinant or the determinant (10.1)
explicitely we have

~f ·(D1F×D2F ) = f1

∣∣∣∣
ys zs
yt zt

∣∣∣∣+f2

∣∣∣∣
zs xs
zt xt

∣∣∣∣+f3

∣∣∣∣
xs ys
xt yt

∣∣∣∣ = f1
∂(y, z)

∂(s, t)
+f2

∂(z, x)

∂(s, t)
+f3

∂(x, y)

∂(s, t)
.

Hence,

~dS = εD1F ×D2F dsdt = ε

(
∂(y, z)

∂(s, t)
dsdt,

∂(z, x)

∂(s, t)
dsdt,

∂(x, y)

∂(s, t)
dsdt

)

~dS = ε ( dydz, dzdx, dxdy) .

Therefore we can write
∫∫

F

~f · ~dS =

∫∫

F

(f1 dydz + f2 dzdx + f3 dxdy) .

In this setting
∫∫

F

f1 dydz =

∫∫

F

(f1, 0, 0) · ~dS = ±
∫∫

G

f1(F (s, t))
∂(y, z)

∂(s, t)
dsdt.

Sometimes one uses
~dS = (cos(~n, e1), cos(~n, e2), cos(~n, e3)) dS,

sincecos(~n, ei) = ~n·ei = ni and ~dS = ~n dS.
Note that we have surface integrals in the last two lines, notordinary double integrals sinceF
is a surface inR3 andf1 = f1(x, y, z) can also depend onx.
The physical meaning of

∫∫
F
~f · ~dS is the flow of the vector field~f through the surfaceF. The

flow is (locally) positive if~n and ~f are on the same side of the tangent plane toF and negative
in the other case.

Example 10.5 (a) Compute the surface integral
∫∫

F+

f dzdx

of f(x, y, z) = x2yz whereF is the graph ofg(x, y) = x2 + y over the unit squareG =

[0, 1]× [0, 1] with the downward directed unit normal field.
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By Remark 10.1 (c)
~dS = (gx, gy,−1) dxdy = (2x, 1,−1) dxdy.

Hence
∫∫

F+

f dzdx =

∫∫

F+

(0, f, 0) · ~dS

= (R)

∫∫

G

x2y(x2 + y) dxdy =

∫ 1

0

dx

∫ 1

0

(x4y + x2y2) dy =
19

90
.

x

y

z

R

R

(b) LetG denote the upper half ball of radiusR in R3:

G = {(x, y, z) | x2 + y2 + z2 ≤ R2, z ≥ 0},

and letF be the boundary ofG with the orientation of the
outer normal. ThenF consists of the upper half sphere
F1

F1 = {(x, y,
√
R2 − x2 − y2) | x2 + y2 ≤ R2}, z = g(x, y) =

√
R2 − x2 − y2,

with the upper orientation of the unit normal field and of the discF2 in thex-y-plane

F2 = {(x, y, 0) | x2 + y2 ≤ R2}, z = g(x, y) = 0,

with the downward directed normal. Let~f(x, y, z) = (ax, by, cz). We want to compute
∫∫

F+

~f · ~dS.

By Remark 10.1 (c), the surface element of the half-sphereF1 is ~dS = 1
z
(x, y, z) dxdy. Hence

I1 =

∫∫

F1+

~f · ~dS =

∫∫

BR

(ax, by, cz) · 1
z
(x, y, z) dxdy =

∫∫

BR

1

z
(ax2 + by2 + cz2)

∣∣∣∣
z=g(x,y)

dxdy.

Using polar coordinatesx = r cosϕ, y = r sinϕ, r ∈ [0, R], andz =
√
R2 − x2 − y2 =√

R2 − r2 we get

I1 =

∫ 2π

0

dϕ

∫ R

0

ar2 cos2 ϕ+ br2 sin2 ϕ+ c(R2 − r2)√
R2 − r2

rdr.

Noting
∫ 2π

0
sin2 ϕdϕ =

∫ 2π

0
cos2 ϕdϕ = π we continue

I1 = π

∫ R

0

(
ar3

√
R2 − r2

+
br3

√
R2 − r2

+ 2cr
√
R2 − r2

)
dr.
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Usingr = R sin t, dr = R cos t dt we have

∫ R

0

r3

√
R2 − r2

dr =

∫ π
2

0

R3 sin3 tR cos t dt

R
√

1− sin2 t
= R3

∫ π
2

0

sin3 t dt =
2

3
R3.

Hence,

I1 =
2π

3
R3(a + b) + πc

∫ R

0

(R2 − r2)
1
2 d(r2)

=
2π

3
R3(a + b) + πc

[
−2

3
(R2 − r2)

3
2

∣∣∣∣
R

0

=
2π

3
R3(a + b+ c).

In case of the discF2 we havez = f(x, y) = 0, such thatfx = fy = 0 and

~dS = (0, 0,−1) dxdy

by Remark 10.1 (c). Hence
∫∫

F2+

~f · ~dS =

∫∫

BR

(ax, by, cz) · (0, 0,−1) dxdy = −c
∫∫

BR

z dxdy =
z=0

0.

Hence, ∫∫

F

(ax, by, cz) · ~dS =
2π

3
R3(a+ b+ c).

10.4 Gauß’ Divergence Theorem

The aim is to generalize the fundamental theorem of calculusto higher dimensions:
∫ b

a

f ′(x) dx = f(b)− f(a).

Note thata andb form the boundary of the segment[a, b]. There are three possibilities to do this

∫∫∫
G

g dxdydz =⇒
∫∫

(∂G)+

~f· ~dS Gauß’ theorem inR3,

∫∫
G

g dxdy =⇒
∫

(∂G)+

~f·d~x Green’s theorem inR2,

∫∫
F+

~g· ~dS =⇒
∫

(∂G)+

~f·d~x Stokes’ theorem .

LetG ⊂ R3 be a bounded domain (open, connected) such that its boundaryF = ∂G satisfies
the following assumptions:

1. F is a union of regular, orientable surfacesFi. The parametrizationFi(s, t), (s, t) ∈ Ci,
of Fi as well asD1Fi andD2Fi are continuous vector functions onCi; Ci is a domain inR2.



10.4 Gauß’ Divergence Theorem 269

2. LetFi be oriented by theouter normal (with respect toG).

3. There is given a continuously differentiable vector field~f : G → R3 on G (More
precisely, there exist an open setU ⊃ G and a continuously differentiable function
f̃ : U → R3 such thatf̃↾G = ~f .)

Theorem 10.1 (Gauß’ Divergence Theorem)Under the above assumptions we have
∫∫∫

G

div ~f dxdydz =

∫∫

∂G+

~f· ~dS (10.6)

Sometimes the theorem is called Gauß–Ostrogadski theorem or simply Ostrogadski theorem.
Other writings:

∫∫∫

G

(
∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z

)
dxdydz =

∫∫

∂G

(f1 dydz + f2 dzdx + f3 dxdy) (10.7)

The theorem holds for more general regionsG ⊂ R3.

Proof.
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C

α

β(x,y)

(x,y)

G

We give a proof for

G = {(x, y, z) | (x, y) ∈ C, α(x, y) ≤ z ≤ β(x, y)},

whereC ⊂ R2 is a domain andα, β ∈ C1(C) define reg-
ular top and bottom surfacesF1 andF2 of F, respectively.
We prove only one part of (10.7) namely~f = (0, 0, f3).

∫∫∫

G

∂f3

∂z
dxdydz =

∫∫

∂G

f3 dxdy. (10.8)

By Fubini’s theorem, the left side reads

∫∫∫

G

∂f3

∂x
dxdydz =

∫∫

C

(∫ β(x,y)

α(x,y)

∂f3

∂z
dz

)
dxdy

=

∫∫

C

(f3(x, y, β(x, y))− f3(x, y, α(x, y))) dxdy, (10.9)

where the last equality is by the fundamental theorem of calculus.
Now we are going to compute the surface integral. The outer normal for the top surface is
(−βx(x, y),−βy(x, y), 1) such that

I1 =

∫∫

F1+

f3 dxdy =

∫∫

C

(0, 0, f3) · (−βx(x, y),−βy(x, y), 1) dxdy

=

∫∫

C

f3(x, y, β(x, y)) dxdy.
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Since the bottom surfaceF2 is oriented downward, the outer normal is(αx(x, y), αy(x, y),−1)

such that

I2 =

∫∫

F2+

f3 dxdy = −
∫∫

C

f3(x, y, α(x, y)) dxdy.

Finally, the shellF3 is parametrized by an angleϕ andz:

F3 = {(r(ϕ) cosϕ, r(ϕ) sinϕ, z) | α(x, y) ≤ z ≤ β(x, y), ϕ ∈ [0, 2π]}.

SinceD2F = (0, 0, 1), the normal vector is orthogonal to thez-axis,~n = (n1, n2, 0). Therefore,

I3 =

∫∫

F3+

f3 dxdy =

∫∫

F3+

(0, 0, f3) · (n1, n2, 0) dS = 0.

ComparingI1 + I2 + I3 with (10.9) proves the theorem in this special case.

Remarks 10.2 (a) Gauß’ divergence theorem can be used to compute the volume of the domain
G ⊂ R3. Suppose the boundary∂G of G has the orientation of the outer normal. Then

v(G) =

∫∫

∂G

x dydz =

∫∫

∂G

y dzdx =

∫∫

∂G

z dxdy.

(b) Applying the mean value theorem to the left-hand side of Gauß’ formula we have for any
bounded regionG containingx0

div ~f(x0 + h)

∫∫∫

G

dxdydz = div ~f(x0 + h)v(G) =

∫∫

∂G+

~f· ~dS,

whereh is a small vector. The integral on the left is the volumev(G). Hence

div ~f(x0) = lim
G→x0

1

v(G)

∫∫

∂G+

~f· ~dS = lim
ε→0

1
4πε3

3

∫∫

Sε(x0)+

~f· ~dS,

where the regionG tends tox0. In the second formula, we have chosenG = Bε(x0) the open
ball of radiusε with centerx0. The right hand side can be thought as to be thesource densityof
the field ~f . In particular, the right side gives a basis independent description of div ~f .

Example 10.6 We want to compute the surface integral from Example 10.5 (b)using Gauß’
theorem:
∫∫

F+

~f· ~dS =

∫∫∫

C

div f dxdydz =

∫∫∫

x2+y2+z2≤R2, z≥0

(a+ b+ c) dxdydz =
2πR3

3
(a + b+ c).
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Gauß’ divergence theorem which play an important role in partial differential equations.
Recall (Proposition 7.9 (Prop. 8.9)) that thedirectional derivativeof a functionv : U → R,
U ⊂ Rn, atx0 in the direction of the unit vector~n is given byD~nf(x0) = grad f(x0)·~n.
Notation. Let U ⊂ R3 be open andF+ ⊂ U be an oriented, regular open surface with the unit
normal vector~n(x0) atx0 ∈ F. Let g : U → R be differentiable.
Then

∂g

∂~n
(x0) = grad g(x0)·~n(x0) (10.10)

is called thenormal derivativeof g onF+ atx0.

Proposition 10.2 LetG be a region as in Gauß’ theorem, the boundary∂G is oriented with the
outer normal,u, v are twice continuously differentiable on an open setU withG ⊂ U . Then we
have Green’s identities:

∫∫∫

G

∇(u)·∇(v) dxdydz =

∫∫

∂G

u
∂v

∂~n
dS −

∫∫∫

G

u∆(v) dxdydz, (10.11)

∫∫∫

G

(u∆(v)− v∆(u)) dxdydz =

∫∫

∂G

(
u
∂v

∂~n
− v ∂u

∂~n

)
dS, (10.12)

∫∫∫

G

∆(u) dxdydz =

∫∫

∂G

∂u

∂~n
dS. (10.13)

Proof. Putf = u∇(v). Then by nabla calculus

div f = ∇(u∇v) = ∇(u) · ∇(v) + u∇·(∇v)
= gradu· grad v + u∆(v).

Applying Gauß’ theorem, we obtain
∫∫∫

G

div f dxdydz =

∫∫∫

G

( gradu· grad v) dxdydz +

∫∫∫

G

u∆(v) dxdydz

=

∫∫

∂G

u grad v · ~n dS =

∫∫

∂G

u
∂v

∂~n
dS.

This proves Green’s first identity. Changing the role ofu andv and taking the difference, we
obtain the second formula.
Insertingv = −1 into (10.12) we get (10.13).

Application to Laplace equation

Let u1 and u2 be functions onG with ∆u1 = ∆u2, which coincide on the boundary∂G,
u1(x) = u2(x) for all x ∈ ∂G. Thenu1 ≡ u2 in G.
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Proof. Putu = u1 − u2 and apply Green’s first formula (10.11) tou = v. Note that∆(u) =

∆(u1) − ∆(u2) = 0 (U is harmonic iniG) andu(x) = u1(x) − u2(x) = 0 on the boundary
x ∈ ∂G. In other words, a harmonic function is uniquely determinedby its boundary values.

∫∫∫

G

∇(u)·∇(u) dxdydz =

∫∫

∂G

u︸︷︷︸
0,x∈∂G

∂u

∂~n
dS −

∫∫∫
u∆(u)︸ ︷︷ ︸

0

dxdydz = 0.

Since∇(u)·∇(u) = ‖∇(u)‖2 ≥ 0 and‖∇(u)‖2 is a continuous function onG, by homework
14.3,‖∇(u)‖2 = 0 onG; hence∇(u) = 0 onG. By the Mean Value Theorem, Corollary 7.12,
u is constant onG. Sinceu = 0 on∂G, u(x) = 0 for all x ∈ G.

10.5 Stokes’ Theorem

Roughly speaking, Stokes’ theorem relates a surface integral over a surfaceF with a line integral
over the boundary∂F. In case of a plane surface inR2, it is called Green’s theorem.

10.5.1 Green’s Theorem
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�����
�����Γ

Γ

Γ2

3

1

G

Let G be a domain inR2 with picewise smooth (differ-
entiable) boundariesΓ1, Γ2, . . . , Γk. We give an orienta-
tion to the boundary: the outer curve is oriented counter
clockwise (mathematical positive), the inner boundaries
are oriented in the opposite direction.

Theorem 10.3 (Green’s Theorem)Let (P,Q) be a continuously differentiable vector field on
G and let the boundaryΓ = ∂G be oriented as above. Then

∫∫

G

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫

Γ

P dx+Q dy. (10.14)

Proof. (a) First, we consider a regionG of type 1 in the plane, as shown in the figure and we
will prove that

−
∫∫

G

∂P

∂y
dxdy =

∫

Γ

P dx. (10.15)

(x)ψ

(x)ϕ

4

3

Γ
2

a b x

y

Γ

Γ
Γ

1

The double integral on the left may be evaluated as an
iterated integral (Fubini’s theorem), we have

∫∫

G

∂P

∂y
dxdy =

∫ b

a

(∫ ψ(x)

ϕ(x)

Py(x, y) dy

)
dx

=

∫ b

a

(P (x, ψ(x))− P (x, ϕ(x))) dx.
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The latter equality is due to the fundamental theorem of calculus. To compute the line integral,
we parametrize the four parts ofΓ in a natural way:

−Γ1, ~x1(t) = (a, t), t ∈ [ϕ(a), ψ(a)], dx = 0, dy = dt,

Γ2, ~x2(t) = (t, ϕ(t)), t ∈ [a, b], dx = dt, dy = ϕ′(t) dt,

Γ3, ~x3(t) = (b, t), t ∈ [ϕ(b), ψ(b)], dx = 0, dy = dt,

−Γ4, ~x4(t) = (t, ψ(t)), t ∈ [a, b], dx = dt, dy = ψ′(t) dt.

Sincedx = 0 onΓ1 andΓ3 we are left with the line integrals overΓ2 andΓ4:
∫

Γ

P dx =

∫ b

a

P (t, ϕ(t)) dt−
∫ b

a

P (t, ψ(t)) dt

Let us prove the second part,−
∫∫
G

∂Q
∂x

dxdy =
∫
Γ
Q dy. Using Proposition 7.24 we have

∫ ψ(x)

ϕ(x)

∂

∂x
Q(x, y) dy =

d

dx

(∫ ψ(x)

ϕ(x)

Q(x, y) dy

)
− ψ′(x)Q(x, ψ(x)) + ϕ′(x)Q(x, ϕ(x)).

Inserting this into
∫∫
G

∂Q
∂x

dxdy =
∫ b
a

(∫ ψ(x)

ϕ(x)
∂Q
∂x

dy
)

dx, we get

∫∫

G

∂Q

∂x
dxdy =

∫ b

a

(
d

dx

(∫ ψ(x)

ϕ(x)

Q(x, y) dy

)
− ψ′(x)Q(x, ψ(x)) + ϕ′(x)Q(x, ϕ(x))

)
dx

=

∫ ψ(b)

ϕ(b)

Q(b, y) dy −
∫ ψ(a)

ϕ(a)

Q(a, y) dy −
∫ b

a

Q(x, ψ(x))ψ′(x) dx+ (10.16)

+

∫ b

a

Q(x, ϕ(x))ϕ′(x) dx. (10.17)

We compute the line integrals:

−
∫

−Γ1

Q dy = −
∫ ψ(a)

ϕ(a)

Q(a, y) dy,

∫

Γ3

Q dy =

∫ ψ(b)

ϕ(b)

Q(b, y) dy.

Further,
∫

Γ2

Q dy =

∫ b

a

Q(t, ϕ(t))ϕ′(t) dt, −
∫

−Γ4

Q dy = −
∫ b

a

Q(t, ψ(t))ψ′(t) dt.

Adding up these integrals and comparing the result with (10.17), the proof for type 1 regions is
complete.

(x)ϕ (x)ψΓ2

Γ3

x

y

Γ1

Γ4
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Exactly in the same way, we can prove that ifG is a type 2 region then (10.14) holds.

(b) Breaking a regionG up into smaller regions, each of which is both of type 1 and 2, Green’s
theorem is valid forG. The line integrals along the inner boundary cancel leavingthe line
integral around the boundary ofG.

(c) If the region has a hole, one can split it into two simply connected regions, for which
Green’s theorem is valid by the arguments of (b).

Application: Area of a Region

If Γ is a curve which bounds a regionG, then the area ofG is A =
∫
Γ
(1 − α)x dy − αy dx

whereα ∈ R is arbitrary, in particular,

A =
1

2

∫

Γ

x dy − y dx =

∫

Γ

x dy = −
∫

Γ

y dx. (10.18)

Proof. ChoosingQ = (1− α)x, P = −αy one has

A =

∫∫

G

dxdy =

∫∫

G

((1− α)− (−α)) dxdy =

∫∫

G

(Qx − Py) dxdy =

∫

Γ

P dx+Q dy

= −α
∫

Γ

y dx+ (1− α)

∫

Γ

x dy.

Insertingα = 0, α = 1, andα = 1
2

yields the assertion.

Example 10.7 Find the area bounded by the ellipseΓ :
x2

a2
+
y2

b2
= 1. We parametrizeΓ by

~x(t) = (a cos t, b sin t), t ∈ [0, 2π], ~̇x(t) = (−a sin t, b cos t). Then (10.18) gives

A =
1

2

∫ 2π

0

a cos t b sin t dt− b sin t(−a sin t) dt =
1

2

∫ 2π

0

ab dt = πab.

10.5.2 Stokes’ Theorem

Conventions: LetF+ be a regular, oriented surface. LetΓ = ∂F+ be the boundary ofF with the
induced orientation:the orientation of the surface (normal vector) together with the orientation
of the boundary form a right-oriented screw. A second way to get the induced orientation:
sitting in the arrowhead of the unit normal vector to the surface, the boundary curve has counter
clockwise orientation.

Theorem 10.4 (Stokes’ theorem)Let F+ be a smooth regular oriented surface with a
parametrizationF ∈ C2(G) andG is a plane region to which Green’s theorem applies. Let
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Γ = ∂F be the boundary with the above orientation. Further, let~f be a continuously differen-
tiable vector field onF.
Then we have

∫∫

F+

curl ~f· ~dS =

∫

∂F+

~f· d~x. (10.19)

This can also be written as
∫∫

F+

(
∂f3

∂y
− ∂f2

∂z

)
dydz+

(
∂f1

∂z
− ∂f3

∂x

)
dzdx+

(
∂f2

∂x
− ∂f1

∂y

)
dxdy =

∫

Γ

f1 dx+f2 dy+f3 dz.

Proof. Main idea: Reduction to Green’s theorem. Since both sides of the equation are additive
with respect to the vector field~f , it suffices to proof the statement for the vector fields(f1, 0, 0),
(0, f2, 0), and (0, 0, f3). We show the theorem for~f = (f, 0, 0), the other cases are quite
analogous: ∫∫

F

(
∂f

∂z
dzdx − ∂f

∂y
dxdy

)
=

∫

∂F

f dx.

Let F (u, v), u, v ∈ G be the parametrization of the surfaceF. Then

dx =
∂x

∂u
du+

∂x

∂v
dv,

such that the line integral on the right reads withP (u, v) = f(x(u, v), y(u, v), z(u, v)) ∂x
∂u

(u, v)

andQ(u, v) = f ∂x
∂v

.

∫

∂F

f dx =

∫

∂G

f xu du+ f xv dv =

∫

∂G

P du+Q dv =
Green′s th.

∫∫

G

(
−∂P
∂v

+
∂Q

∂u

)
du dv

=

∫∫

G

−(fuxu + f xvu) + (fuxv + f xuv) du dv =

∫∫

G

−fvxu + fuxv du dv

=

∫∫

G

−(fx xv + fy yv + fz zv)xu + (fx xu + fy yu + fz zu)xv du dv

=

∫∫

G

(−fy(xuyv − xvyu) + fz(zuxv − zvxu)) du dv

=

∫∫

G

(
−fy

∂(x, y)

∂(u, v)
+ fz

∂(z, x)

∂(u, v)

)
du dv =

∫∫

F

−fy dxdy + fz dzdx.

This completes the proof.

Remark 10.3 (a) Green’s theorem is a special case withF = G× {0}, ~n = (0, 0, 1) (orienta-
tion) and~f = (P,Q, 0).
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(b) The right side of (10.19) is called thecirculation of the vector field~f over the closed curve
Γ . Now let ~x0 ∈ F be fixed and consider smaller and smaller neighborhoodsF0+ of ~x0 with
boundariesΓ0. By Stokes’ theorem and by the Mean Value Theorem of integration,

∫

Γ0

~f d~x =

∫∫

F0

curl ~f·~n dS = curl ~f(x0)~n(x0) area (F0).

Hence,

curl ~f(x0)·~n(x0) = lim
F0→x0

∫
∂F0

~f d~x

|F0 |
.

We call curl ~f(x0) · ~n(x0) the infinitesimal circulationof the vector field~f atx0 corresponding
to the unit normal vector~n.
(c) Stokes’ theorem then says that the integral over the infinitesimal circulation of a vector field
~f corresponding to the unit normal vector~n overF equals the circulation of the vector field
along the boundary ofF.

Path Independence of Line Integrals

We are going complete the proof of Proposition 8.3 and show that for a

simplyconnected regionG ⊂ R3 and
a twice continuously differentiable vector field~f with
curl ~f = 0 for all x ∈ G

the vector field~f is conservative.
Proof. Indeed, letΓ be a closed, regular, piecewise differentiable curveΓ ⊂ G and letΓ be the
the boundary of a smooth regular oriented surfaceF+, Γ = ∂F+ such thatΓ has the induced
orientation. Insertingcurl ~f = 0 into Stokes’ theorem gives

∫∫

F+

curl f· ~dS = 0 =

∫

Γ

~f· d~x;

the line integral is path independent and hence,~f is conservative. Note that the region must be
simply connected; otherwise its in general impossible to find F with boundaryΓ .

10.5.3 Vector Potential and the Inverse Problem of Vector Analysis

Let ~f be a continuously differentiable vector field on thesimply connectedregionG ⊂ R3.

Definition 10.7 The vector field~f onG is called asource-freefield (solenoidal field) if there
exists a vector field~g onG with ~f = curl~g. Then~g is called thevector potentialto ~f .

Theorem 10.5 ~f is source-free if and only ifdiv ~f = 0.
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Proof. (a) If ~f = curl~g then div ~f = div ( curl~g) = 0.
(b) To simplify notations, we skip the arrows. We explicitlyconstruct a vector potentialg to f
with g = (g1, g2, 0) and curl g = f . This means

f1 = −∂g2

∂z
,

f2 =
∂g1

∂z
,

f3 =
∂g2

∂x
− ∂g1

∂y
.

Integrating the first two equations, we obtain

g2 = −
∫ z

z0

f1(x, y, t) dt+ h(x, y),

g1 =

∫ z

z0

f2(x, y, t) dt,

whereh(x, y) is the integration constant, not depending onz. Inserting this into the third equa-
tion, we obtain

∂g2

∂x
− ∂g1

∂y
= −

∫ z

z0

∂f1

∂x
(x, y, t) dt+ hx(x, y)−

∫ z

z0

∂f2

∂y
(x, y, t) dt

= −
∫ z

z0

(
∂f1

∂x
+
∂f2

∂y

)
dt+ hx

=
div f=0

∫ z

z0

∂f3

∂z
(x, y, t) dt+ hx

f3(x, y, z) = f3(x, y, z)− f3(x, y, z0) + hx(x, y).

This yields, hx(x, y) = f3(x, y, z0). Integration with respect tox finally gives
h(x, y) =

∫ x
x0
f3(t, y, z0) dt; the third equation is satisfied andcurl g = f .

Remarks 10.4 (a) The proof of second direction is a constructive one; you can use this method
to calculate a vector potential explicitly. You can also tryanother ansatz, sayg = (0, g2, g3) or
g = (g1, 0, g3).
(b) If g is a vector potential forf andU ∈ C2(G), theng̃ = g+ gradU is also a vector potential
for f . Indeed

curl g̃ = curl g + curl gradU = f.

The Inverse Problem of Vector Analysis

Let h be a function and~a be a vector field onG; both continuously differentiable.
Problem: Does there exist a vector field~f such that

div ~f = h and curl ~f = ~a.
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Proposition 10.6 The above problem has a solution if and only ifdiv~a = 0.

Proof. The condition is necessary sincediv~a = div curl ~f = 0. We skip the vector arrows.
For the other direction we use the ansatzf = r + s with

curl r = 0, div r = h, (10.20)

curl s = a, div s = 0. (10.21)

Since curl r = 0, by Proposition 8.3 there exists a potentialU with r = gradU . Then
curl r = 0 and div r = div gradU = ∆(U). Hence (10.20) is satisfied if and only if
r = gradU and∆(U) = h.
Sincediv a = 0 by asssumption, there exists a vector potentialg such thatcurl g = a. Letϕ be
twice continuously differentiable onG and sets = g + gradϕ. Then curl s = curl g = a and
div s = div g+ div gradϕ = div g+ ∆(ϕ). Hence,div s = 0 if and only if ∆(ϕ) = − div g.
Both equations∆(U) = h and∆(ϕ) = − div g are so called Poisson equations which can be
solved within the theory of partial differential equations(PDE).

The inverse problem hasnot a unique solution. Choose a harmonic functionψ, ∆(ψ) = 0 and
putf1 = f + gradψ. Then

div f1 = div f + div gradψ = div f + ∆(ψ) = div f = h,

curl f1 = curl f + curl gradψ = curl f = a.



Chapter 11

Differential Forms on Rn

We show that Gauß’, Green’s and Stokes’ theorems are three cases of a “general” theorem which
is also named after Stokes. The simple formula now reads

∫
c

dω =
∫
∂c
ω. The appearance of

the Jacobian in the change of variable theorem will become clear. We formulate the Poincaré
lemma.
Good references are [Spi65], [AF01], and [vW81].

11.1 The Exterior AlgebraΛ(Rn)

Although we are working with the ground fieldR all constructions make sense for arbitrary
fieldsK, in particular,K = C. Let {e1, . . . , en} be the standard basis ofRn; for h ∈ Rn we
write h = (h1, . . . , hn) with respect to the standard basis,h =

∑
i hiei.

11.1.1 The Dual Vector SpaceV ∗

The interplay between a normed spaceE and its dual spaceE ′ forms the basis offunctional
analysis. We start with the definition of the (algebraic) dual.

Definition 11.1 Let V be a linear space. Thedual vector spaceV ∗ to V is the set of all linear
functionalsf : V → R,

V ∗ = {f : V → R | f is linear}.

It turns out thatV ∗ is again a linear space if we introduce addition and scalar multiples in the
natural way. Forf, g ∈ V ∗, α ∈ R put

(f + g)(v) := f(v) + g(v), (αf)(v) := αf(v).

Theevaluationof f ∈ V ∗ onv ∈ V is sometimes denoted by

f(v) = 〈f , v〉 ∈ K.
279
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In this case, the brackets denote thedual pairingbetweenV ∗ andV . By definition, the pairing
is linear in both components. That is, for allv, w ∈ V and for allλ, µ ∈ R

〈λf + µg , v〉 = λ 〈f , v〉+ µ 〈g , v〉 ,
〈f , λv + µw〉 = λ 〈f , v〉+ µ 〈f , w〉 .

Example 11.1 (a) LetV = Rn with the above standard basis. Fori = 1, . . . , n define theith
coordinate functionaldxi : Rn → R by

dxi(h) = dxi(h1, . . . , hn) = hi, h ∈ Rn.

The functionaldxi associates to each vectorh ∈ Rn its ith coordinatehi. The functionaldxi is
indeed linear since for allv, w ∈ Rn andα, β ∈ R, dxi(αv+βw) = (αv+βw)i = αvi+βwi =

α dxi(v) + β dxi(w).

The linear space(Rn)∗ has also dimensionn. We will show that{ dx1, dx2, . . . , dxn} is a
basis of(Rn)∗. We call it thedual basisof to {e1, . . . , en}. Using the Kronecker symbol the
evaluation ofdxi on ej reads as follows

dxi(ej) = δij , i, j = 1, . . . , n.

{ dx1, dx2, . . . , dxn} generatesV ∗. Indeed, letf ∈ V ∗. Thenf =
∑n

i=1 f(ei) dxi since both
coincide for allh ∈ V :

n∑

i=1

f(ei) dxi(h) =

n∑

i=1

f(ei) hi =
f homog.

∑

i

f(hiei) = f

(∑

i

hiei

)
= f(h).

In Propostition 11.1 below, we will see that{ dx1, . . . , dxn} is not only generating but linearly
independent.

(b) If V = C([0, 1]), the continuous functions on[0, 1] andα is an increasing on[0, 1] function,
then the Riemann-Stieltjes integral

ϕα(f) =

∫ 1

0

f dα, f ∈ V

defines a linear functionalϕα onV .
If a ∈ [0, 1],

δa(f) = f(a), f ∈ V

defines theevaluation functionalof f ata. In casea = 0 this is Dirac’sδ-functional playing an
important role in the theory of distributions (generalizedfunctions).

(c) Let a ∈ Rn. Then〈a , x〉 =
∑n

i=1 aixi, x ∈ Rn defines a linear functional onRn. By (a)
this is already the most general form of a linear functional onRn.
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Definition 11.2 Let k ∈ N. An alternating (or skew-symmetric) multilinear form of degree
k onRn, a k-form for short, is a mappingω : Rn × · · · × Rn → R, k factorsRn, which is
multilinearandskew-symmetric, i. e.

MULT ω(· · · , αvi + βwi, · · · ) = αω(· · · , vi, · · · ) + βω(· · · , wi, · · · ), (11.1)

SKEW ω(· · · , vi, · · · , vj , · · · ) = −ω(· · · , vj, · · · , vi, · · · ), i, j = 1, . . . , k, i 6= j, (11.2)

for all vectorsv1, v2, . . . , vk, wi ∈ Rn.

We denote the linear space of allk-forms onRn by Λk(Rn) with the conventionΛ0(Rn) = R.
In casek = 1 property (11.2) is an empty condition such thatΛ1(Rn) = (Rn)∗ is just the dual
space.
Let f1, . . . , fk ∈ (Rn)∗ be linear functionals onRn. Then we define thek-form
f1∧ · · · ∧fk ∈ Λk(Rn) (read: “f1 wedgef2 . . . wedgefk”) as follows

f1∧ · · · ∧fk(h1, . . . , hk) =

∣∣∣∣∣∣∣

f1(h1) · · · f1(hk)
...

...
fk(h1) · · · fk(hk)

∣∣∣∣∣∣∣
(11.3)

In particular, leti1, . . . , ik ∈ {1, . . . , n} be fixed and choosefj = dxij , j = 1, . . . , k. Then

dxi1∧ · · · ∧ dxik(h1, . . . , hk) =

∣∣∣∣∣∣∣

h1i1 · · · hki1
...

...
h1ik · · · hkik

∣∣∣∣∣∣∣

f1∧ · · · ∧fk is indeed ak-form since thefi are linear, the determinant is multilinear

∣∣∣∣∣∣

λa + µa′ b c

λd+ µd′ e f

λg + µg′ h i

∣∣∣∣∣∣
= λ

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
+ µ

∣∣∣∣∣∣

a′ b c

d′ e f

g′ h i

∣∣∣∣∣∣
,

and skew-symmetric ∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

b a c

e d f

h g i

∣∣∣∣∣∣
.

For example, lety = (y1, . . . , yn), z = (z1, . . . , zn) ∈ Rn,

dx3∧ dx1(y, z) =

∣∣∣∣
y3 z3
y1 z1

∣∣∣∣ = y3z1 − y1z3.

If fr = fs = f for somer 6= s, we havef1∧ · · · ∧f∧ · · · ∧f∧ · · · ∧fk = 0 since determinants
with identical rows vanish. Also, for anyω ∈ Λk(Rn),

ω(h1, . . . , h, . . . , h, . . . , hk) = 0, h1, . . . , hk, h ∈ Rn

since the defining determinant has two identical columns.



282 11 Differential Forms onRn

Proposition 11.1 For k ≤ n thek-forms{ dxi1∧ · · · ∧ dxik | 1 ≤ i1 < i2 < · · · < ik ≤ n}
form a basis of the vector spaceΛk(Rn). A k-form withk > n is identically zero. We have

dimΛk(Rn) =

(
n

k

)
.

Proof. Any k-formω is uniquely determined by its values on thek-tuple of vectors(ei1 , . . . , eik)
with 1 ≤ i1 < i2 < · · · < ik ≤ n. Indeed, using skew-symmetry ofω, we knowω on all k-
tuples of basis vectors; using linearity in each component,we getω on all k-tuples of vectors.
This shows that thedxi1∧ · · · ∧ dxik with 1 ≤ i1 < i2 < · · · < ik ≤ n generate the linear space
Λk(Rn). We make this precise in casek = 2. With y =

∑
i yiei, z =

∑
j zjej we have by

linearity and skew-symmetry ofω

ω(y, z) =
n∑

i,j=1

yizjω(ei, ej) =
SKEW

∑

1≤i<j≤n
(yizj − yjzi)ω(ei, ej)

=
∑

i<j

ω(ei, ej)

∣∣∣∣
yi zi
yj zj

∣∣∣∣ =
∑

i<j

ω(ei, ej) dxi∧ dxj(y, z).

Hence,
ω =

∑

i<j

ω(ei, ej) dxi∧ dxj .

This shows that the
(
n
2

)
2-forms{ dxi∧ dxj | i < j} generateΛ2(Rn).

We show its linear independence. Suppose that
∑

i<j αij dxi∧ dxj = 0 for someαij ∈ R.
Evaluating this on(er, es), r < s, gives

0 =
∑

i<j

αij dxi∧ dxj(er, es) =
∑

i<j

αij

∣∣∣∣
δri δsi
δrj δsj

∣∣∣∣ =
∑

i<j

αij(δriδsj − δrjδsi) = αrs;

hence, the above2-forms are linearly independent. The arguments for generalk are similar.

In general, letω ∈ Λk(Rn) then there exist unique numbersai1···ik = ω(ei1 , . . . , eik) ∈ R,
i1 < i2 < · · · < ik such that

ω =
∑

1≤i1<···<ik≤n
ai1···ik dxi1∧ · · · ∧ dxik .

Example 11.2 Let n = 3.
k = 1 { dx1, dx2, dx3} is a basis ofΛ1(R3).
k = 2 { dx1∧ dx2, dx1∧ dx3, dx2∧ dx3} is a basis ofΛ2(R3).
k = 3 { dx1∧ dx2∧ dx3} is a basis ofΛ3(R3).
Λk(R3) = {0} for k ≥ 4.

Definition 11.3 An algebraA overR is a linear space together with a product map(a, b)→ ab,
A× A→ A, such that the following holds for alla, b, c ∈ A an dα ∈ R
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(i) a(bc) = (ab)c (associative),
(ii) (a+ b)c = ac+ bc, a(b+ c) = ab+ ac,
(iii) α(ab) = (αa)b = a(αb).

Standard examples areC(X), the continuous functions on a metric spaceX orRn×n, the full
n× n-matrix algebra overR or the algebra of polynomialsR[X].

LetΛ(Rn) =
n⊕

k=0

Λk(Rn) be the direct sum of linear spaces.

Proposition 11.2 (i) Λ(Rn) is anR-algebra with unity1 and product∧ defined by

( dxi1∧ · · · ∧ dxik)∧ ( dxj1∧ · · · ∧ dxjl) = dxi1∧ · · · ∧ dxik∧ dxj1∧ · · · ∧ dxjl

(ii) If ωk ∈ Λk(Rn) andωl ∈ Λl(Rn) thenωk∧ωl ∈ Λk+l(Rn) and

ωk∧ωl = (−1)klωl∧ωk.

Proof. (i) Associativity is clear since concatanation of stringsis associative. The distributive
laws are used to extend multiplication from the basis to the entire spaceΛ(Rn).
We show (ii) for ωk = dxi1∧ · · · ∧ dxik and ωl = dxj1∧ · · · ∧ dxjl. We already know
dxi∧ dxj = − dxj∧ dxi. There arekl transpositionsdxir ↔ dxjs necessary to transport all
dxjs from the right to the left ofωk. Hence the sign is(−1)kl.

In particular, dxi∧ dxi = 0. The formuladxi∧ dxj = − dxj∧ dxi determines the product in
Λ(Rn) uniquely.
We callΛ(Rn) is theexterior algebraof the vector spaceRn.
The following formula will be used in the next subsection. Let ω ∈ Λk(Rn) andη ∈ Λl(Rn)

then for allv1, . . . , vk+l ∈ Rn

(ω∧η)(v1, . . . , vk+l) =
1

k!l!

∑

σ∈Sk+l

(−1)σω(vσ(1), . . . , vσ(k)) η(vσ(k+1), . . . , vσ(k+l)). (11.4)

Indeed, letω = f1∧ · · · ∧fk, η = fk+1∧ · · · ∧fk+l, fi ∈ (Rn)∗. The above formula can be
obtained from

(f1∧ · · · ∧fk) ∧ (fk+1∧ · · · ∧fk+l)(v1, . . . , vk+l) =

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(v1) · · · f1(vk) f1(vk+1) · · ·f1(vk+l)

f2(v1) · · · f2(vk) f2(vk+1) · · ·f2(vk+l)
...

...
...

fk(v1) · · · fk(vk) fk(vk+1) · · · fk(vk+l)
fk+1(v1) · · ·fk+1(vk) fk+1(vk+1) · · · fk+1(vk+l)

...
...

...
fk+l(v1) · · · fk+l(vk) fk+l(vk+1) · · · fk+l(vk+l)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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when expanding this determinant with respect to the lastl rows. This can be done using Laplace
expansion:

|A | =
∑

1≤j1<···<jk≤n
(−1)

Pk
m=1(im+jm)

∣∣∣∣∣∣∣

ai1j1 · · · ai1jk
...

...
aikj1 · · · aikjk

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

aik+1jk+1
· · · aik+1jk+l

...
...

aik+ljk+1
· · · aik+ljk+l

∣∣∣∣∣∣∣
,

where(i1, . . . , ik) is any fixed orderd multi-index and(jk+1, . . . , jk+l) is the complementary
orderd multi-index to(j1, . . . , jk) such that all inegers1, 2, . . . , k + l appear.

11.1.2 The Pull-Back ofk-forms

Definition 11.4 LetA ∈ L(Rn,Rm) a linear mapping andk ∈ N. Forω ∈ Λk(Rm) we define
ak-formA∗(ω) ∈ Λk(Rn) by

(A∗ω)(h1, . . . , hk) = ω(A(h1), A(h2), . . . , A(hk)), h1, . . . , hk ∈ Rn

We callA∗(ω) thepull-backof ω underA.

Note thatA∗ ∈ L(Λk(Rm), Λk(Rn)) is a linear mapping. In casek = 1 we callA∗ the dual
mappingto A. In casek = 0, ω ∈ R we simply setA∗(ω) = ω. We haveA∗(ω∧η) =

A∗(ω)∧A∗(η). Indeed, letω ∈ Λk(Rn), η ∈ Λl(Rn), andhi ∈ Rn, i = 1, . . . , k + l, then by
(11.4)

A∗(ω∧η)(h1, . . . ,hk+l) = (ω∧η)(A(h1), . . . , A(hk+l))

=
1

k!l!

∑

σ∈Sk+l

(−1)σω(A(vσ(1)), . . . , A(vσ(k))) η(A(vσ(k+1)), . . . , A(vσ(k+l)))

=
1

k!l!

∑

σ∈Sk+l

(−1)σA∗(ω)(vσ(1), . . . , vσ(k))A
∗(η)(vσ(k+1), . . . , vσ(k+l))

= (A∗(ω)∧A∗(η))(h1, . . . , hk+l).

Example 11.3 (a) LetA =

(
1 0 3

2 1 0

)
∈ R2×3 be a linear mapA : R3 → R2, defined by

matrix multiplication,A(v) = A·v, v ∈ R3. Let {e1, e2, e3} and{f1, f2} be the standard bases
of R3 andR2 resp. and let{ dx1, dx2, dx3} and{ dy1, dy2} their dual bases, respectvely.
First we computeA∗( dy1) andA∗( dy2).

A∗( dy1)(ei) = dy1(A(ei)) = ai1, A∗( dy2)(ei) = ai2.

In particular,

A∗( dy1) = 1 dx1 + 0 dx2 + 3 dx3, A∗( dy2) = 2 dx1 + dx2.

ComputeA∗( dy2 ∧ dy1). By definition, for1 ≤ i < j ≤ 3,

A∗( dy2∧ dy1)(ei, ej) = dy2∧ dy1(A(ei), A(ej)) = dy2∧ dy1(Ai, Aj) =

∣∣∣∣
ai2 aj2
aj2 aj1

∣∣∣∣ .
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In particular

A∗( dy2∧ dy1)(e1, e2) =

∣∣∣∣
2 1

1 0

∣∣∣∣ = −1, A∗( dy2∧ dy1)(e1, e3) =

∣∣∣∣
2 0

1 3

∣∣∣∣ = 6,

A∗( dy2∧ dy1)(e2, e3) =

∣∣∣∣
1 0

3 0

∣∣∣∣ = 3.

Hence,

A∗( dy2∧ dy1) = − dx1∧ dx2 + 6 dx1∧ dx3 + 3 dx2∧ dx3.

On the other hand

A∗( dy2)∧A∗( dy1) = (2 dx1+ dx2)∧( dx1+3 dx3) = − dx1∧ dx2+3 dx1∧ dx3+6 dx1∧ dx3.

(b) Let A ∈ Rn×n, A : Rn → Rn and ω = dx1∧ · · · ∧ dxn ∈ Λn(Rn). Then
A∗(ω) = det(A)ω.

11.1.3 Orientation ofRn

If {e1, . . . , en} and{f1, . . . , fn} are two bases ofRn there exists a unique regular matrixA =

(aij) (detA 6= 0) such thatei =
∑

j aijfj . We say that{e1, . . . , en} and{f1, . . . , fn} are
equivalentif and only if detA > 0. SincedetA 6= 0, there are exactly two equivalence classes.
We say that the two bases{ei | i = 1, . . . , n} and{fi | i = 1, . . . , n} definethe same orientation
if and only if detA > 0.

Definition 11.5 An orientation of Rn is given by fixing one of the two equivalence classes.

Example 11.4 (a) InR2 the bases{e1, e2} and{e2, e1} have different orientations sinceA =(
0 1

1 0

)
anddetA = −1.

(b) InR3 the bases{e1, e2, e3}, {e3, e1, e2} and{e2, e3, e1} have the same orientation whereas
{e1, e3, e2}, {e2, e1, e3}, and{e3, e2, e1} have opposite orientation.
(c) The standard basis{e1, . . . , en} and{e2, e1, e3, . . . , en} define different orientations.

11.2 Differential Forms

11.2.1 Definition

Throughout this section letU ⊂ Rn be an open and connected set.

Definition 11.6 (a) A differentialk-form onU is a mappingω : U → Λk(Rn), i. e. to every
pointp ∈ U we associate ak-form ω(p) ∈ Λk(Rn). The linear space of differentialk-forms on
U is denoted byΩk(U).
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(b) Letω be a differentialk-form onU . Since{ dxi1∧· · ·∧ dxik | 1 ≤ i1 < i2 < · · · < ik ≤ n}
forms a basis ofΛk(Rn) there exist uniquely determined functionsai1···ik onU such that

ω(p) =
∑

1≤i1<···<ik≤n
ai1···ik(p) dxi1∧ · · ·∧ dxik . (11.5)

If all functionsai1···ik are inCr(U), r ∈ N ∪ {∞} we sayω is anr times continuosly differen-
tiable differentialk-formonU . The set of those differentialk-forms is denoted byΩk

r (U)

We defineΩ0
r (U) = Cr(U) andΩ(U) =

n⊕

k=0

Ωk(U). The product inΛ(Rn) defines a product

in Ω(U):
(ω∧η)(x) = ω(x)∧η(x), x ∈ U,

henceΩ(U) is an algebra. For example, if

ω1 = x2 dy∧dz + xyz dx∧ dy ω2 = (xy2 + 3z2) dx

define a differential2-form and a1-form onR3, ω1 ∈ Ω2(R3), ω2 ∈ Ω1(R3) thenω1∧ω2 =

(x3y2 + 3x2z2) dx∧ dy∧ dz.

11.2.2 Differentiation

Definition 11.7 Let f ∈ Ω0(U) = Cr(U) andp ∈ U . We define

df(p) = Df(p);

thendf is a differential1-form onU .
If ω(p) =

∑

1≤i1<···<ik≤n
ai1···ik(p) dxi1∧ · · · ∧ dxik is a differentialk-form, we define

dω(p) =
∑

1≤i1<···<ik≤n
dai1···ik(p)∧ dxi1∧ · · ·∧ dxik . (11.6)

Thendω is a differential(k + 1)-form. The linear operatord: Ωk(U)→ Ωk+1(U) is called the
exterior differential.

Remarks 11.1 (a) Note, that for a functionf : U → R, Df ∈ L(Rn,R) = Λ1(Rn). By
Example 7.7 (a)

Df(x)(h) = grad f(x) · h =

n∑

i=1

∂f

∂xi
(x)hi =

n∑

i=1

∂f

∂xi
(x) dxi(h),

hence

df(x) =
n∑

i=1

∂f

∂xi
(x) dxi. (11.7)
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Viewing xi : U → R as aC∞-function, by the above formula

dxi(x) = dxi.

This justifies the notationdxi. If f ∈ C∞(R) we havedf(x) = f ′(x) dx.

(b) One can show that the definition ofdω does not depend on the choice of the basis
{ dx1, . . . , dxn} of Λ1(Rn).

Example 11.5 (a)G = R2, ω = exy dx+ xy3 dy. Then

dω = d(exy)∧ dx+ d(xy3)∧ dy

= (yexy dx+ xexy dy)∧dx+ (y3 dx+ 3xy2 dy)∧dy

= (−xexy + y3) dx∧ dy.

(b) Letf be continuously differentiable. Then

df = fx dx+ fy dy + fz dz = grad f·( dx, dy, dz) = grad f·. d~x.

(c) Letv = (v1, v2, v3) be aC1-vector field. Putω = v1 dx+ v2 dy + v3 dz. Then we have

dω =

(
∂v3

∂y
− ∂v2

∂z

)
dy∧dz +

(
∂v1

∂z
− ∂v3

∂x

)
dz∧ dx+

(
∂v2

∂x
− ∂v1

∂y

)
dx∧ dy

= curl (v)· ( dy∧dz, dz∧ dx, dx∧ dy) = curl (v)·dS.

(d) Letv be as above. Putω = v1 dy∧ dz + v2 dz∧ dx+ v3 dx∧ dy. Then we have

dω = div (v) dx∧ dy∧dz.

Proposition 11.3 The exterior differentiald is a linear mapping which satisfies

(i) d(ω∧η) = dω∧η + (−1)kω∧dη, ω ∈ Ωk
1 (U), η ∈ Ω1(U).

(ii) d(dω) = 0, ω ∈ Ω2(U).

Proof. (i) We first prove Leibniz’ rule for functionsf, g ∈ Ω0
1(U). By Remarks 11.1 (a),

d(fg) =
∑

i

∂

∂xi
(fg) dxi =

∑

i

(
∂f

∂xi
g + f

∂g

∂xi

)
dxi

=
∑

i

∂f

∂xi
dxi g +

∑

i

∂g

∂xi
dxi f = df g + fdg.

For I = (i1, . . . , ik) andJ = (j1, . . . , jl) we abbreviatedxI = dxi1∧ · · · ∧ dxik and dxJ =
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dxj1∧ · · · ∧ dxjl. Letω =
∑

I

aI dxI andη =
∑

J

bJ dxJ . By definition

d(ω∧η) = d

(∑

I,J

aIbJ dxI∧ dxJ

)
=
∑

I,J

d(aIbj)∧ dxI∧ dxJ

=
∑

I,J

(daI bJ + aI dbJ )∧ dxI∧ dxJ

=
∑

I,J

daI∧ dxI∧ bJ dxJ +
∑

I,J

aI dxI∧dbJ∧ dxJ (−1)k

= dω∧η + (−1)kω∧dη,

where in the third line we useddbJ∧ dxI = (−1)k dxI∧dbJ .

(ii) Again by the definition ofd:

d(dω) =
∑

I

d (daI∧ dxI) =
∑

I,j

d

(
∂aI
∂xj

dxj∧ dxI

)
=
∑

I,i,j

∂2aI
∂xi∂xj

dxi∧ dxj∧ dxI

=
Schwarz’ lemma

∑

I,i,j

∂2aI
∂xj∂xi

(− dxj∧ dxi∧ dxI) = −d(dω).

It follows thatd(dω) = d2 ω = 0.

11.2.3 Pull-Back

Definition 11.8 Let f : U → V be a differentiable function with open setsU ⊂ Rn and
V ⊂ Rm. Let ω ∈ Ωk(V ) be a differentialk-form. We define a differentialk-form f ∗(ω) ∈
Ωk(U) by

(f ∗ω)(p) = (Df(p)∗)ω(f(p)),

(f ∗ω)(p; h1, . . . , hk) = ω(f(p);Df(p)(h1), . . . , Df(p)(hk)), p ∈ U, h1, . . . , hk ∈ Rn.

In casek = 0 andω ∈ Ω0(V ) = C∞(V ) we simply set

(f ∗ω)(p) = ω(f(p)), f ∗ω = ω◦f.

We callf ∗(ω) thepull-backof the differentialk-form ω with respect tof .

Note that by definition the pull-backf ∗ is a linear mapping from the space of differentialk-
forms onV to the space of differentialk-forms onU , f ∗ : Ωk(V )→ Ωk(U).
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Proposition 11.4 Let f be as above andω, η ∈ Ω(V ). Let{ dy1, . . . , dym} be the dual basis
to the standard basis in(Rm)∗. Then we have withf = (f1, . . . , fm)

(a) f ∗( dyi) =
n∑

j=1

∂fi
∂xj

dxj = dfi, i = 1, . . . , m. (11.8)

(b) f ∗(dω) = d(f ∗ω), (11.9)

(c) f ∗(aω) = (a◦f)f ∗(ω), a ∈ C∞(V ), (11.10)

(d) f ∗(ω∧η) = f ∗(ω)∧f ∗(η). (11.11)

If n = m, then

(e) f ∗( dy1∧ · · · ∧ dyn) =
∂(f1, . . . , fn)

∂(x1, . . . , xn)
dx1∧ · · · ∧ dxn. (11.12)

Proof. We show (a). Leth ∈ Rn; by Definition 11.7 and the definition of the derivative we have

f ∗( dyi)(h) = dyi(Df(p)(h)) =

〈
dyi ,

(
n∑

j=1

(
∂fk(p)

∂xj

)
hj

)

k=1,...,m

〉

=

n∑

j=1

(
∂fi(p)

∂xj

)
hj =

n∑

j=1

(
∂fi(p)

∂xj

)
dxj(h).

This shows (a). Equation (11.10) is a special case of (11.11); we prove (d). Letp ∈ U . Using
the pull-back formula fork forms we obtain

f ∗(ω∧η)(p) = (Df(p))∗(ω∧η(f(p))) = (Df(p))∗(ω(f(p))∧η(f(p)))

= (Df(p))∗(ω(f(p))) ∧ (Df(p))∗(η(f(p)))

= f ∗(ω)(p) ∧ f ∗(η)(p) = (f ∗(ω) ∧ f ∗(η))(p)

To show (11.9) we start with a0-form g and prove thatf ∗(dg) = d(f ∗ g) for functions
g : U → R. By (11.7) and (11.10) we have

f ∗(dg)(p) = f ∗

(
m∑

i=1

∂g

∂yi
dyi

)
(p) =

m∑

i=1

∂g(f(p))

∂yi
f ∗( dyi)

=
m∑

i=1

∂g(f(p))

∂yi

n∑

j=1

∂fi
∂xj

(p) dxj

=

n∑

j=1

(
m∑

i=1

∂g(f(p))

∂yi

∂fi(p)

∂xj

)
dxj

=
chain rule

n∑

j=1

∂

∂xj
(g◦f)(p) dxj

= d(g◦f)(p) = d(f ∗g)(p).

Now letω =
∑

I aI dxI be an arbitrary form. Since by Leibniz rule

df ∗( dxI) = d(d(fi1)∧ · · · ∧d(fik)) = 0,
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we get by Leibniz rule

d (f ∗ω) = d

(∑

I

f ∗(aI)f
∗( dxI)

)

=
∑

I

(d(f ∗(aI)) ∧ f ∗( dxI) + f ∗(aI) d(f ∗( dxI))) =
∑

I

d(f ∗(aI))i ∧ f ∗( dxI).

On the other hand, by (d) we have

f ∗

(
d
∑

I

ai dxI

)
= f ∗

(∑

I

daI ∧ dxI

)
=
∑

I

f ∗(daI) ∧ f ∗( dxI).

By the first part of (b), both expressions coincide. This completes the proof of (b).
We finally prove (e). By (b) and (d) we have

f ∗( dy1∧ · · · ∧ dyn) = f ∗( dy1)∧ · · ·∧f ∗( dyn)

=

n∑

i1=1

∂f1

∂xi1
dxi1∧ · · · ∧

n∑

in=1

∂fn
∂xin

dxin

=

n∑

i1,...,in=1

∂f1

∂xi1
· · · ∂fn

∂xin
dxi1∧ · · · ∧ dxin .

Since the square of a1-form vanishes, the only non-vanishing terms in the above sum are the
permutations(i1, . . . , in) of (1, . . . , n). Using skew-symmetry to writedxi1∧ · · · ∧ dxin as a
multiple of dx1∧ · · ·∧ dxn, we obtain the sign of the permutation(i1, . . . , in):

f ∗( dy1∧ · · · ∧ dyn) =
∑

I=(i1,...,in)∈Sn

sign (I)
∂f1

∂xi1
· · · ∂fn

∂xin
dx1∧ · · · ∧ dxn

=
∂(f1, . . . , fn)

∂(x1, . . . , xn)
dx1∧ · · · ∧ dxn.

Example 11.6 (a) Letf(r, ϕ) = (r cosϕ, r sinϕ) be given onR2 \ (0 × R) and let{ dr, dϕ}
and{ dx, dy} be the dual bases to{er, eϕ} and{e1, e2}. We have

f ∗(x) = r cosϕ, f ∗(y) = r sinϕ,

f ∗( dx) = cosϕ dr − r sinϕdϕ, f ∗( dy) = sinϕ dr + r cosϕdϕ,

f ∗( dx∧ dy) = r dr∧dϕ,

f ∗
( −y
x2 + y2

dx+
x

x2 + y2
dy

)
= dϕ.

(b) Letk ∈ N, r ∈ {1, . . . , k}, andα ∈ R. Define a mapping a mapping fromI : Rk → Rk+1

andω ∈ Ωk(Rk+1) by

I(x1, . . . , xk) = (x1, . . . , xr−1, α, xr, . . . xk),

ω(y1, . . . , yk+1) =
k+1∑

i=1

fi(y) dy1∧ · · · d̂yi · · · ∧ dyk+1,



11.2 Differential Forms 291

wherefi ∈ C∞(Rk+1) for all i; the hat means omission of the factordyi. Then

I∗(ω)(x) = fr(x1, . . . , xr−1, α, xr, . . . , xk) dx1∧ · · · ∧ dxk.

This follows from

I∗( dyi) = dxi, i = 1, . . . , r − 1,

I∗( dyr) = 0,

I∗( dyi+1) = dxi, i = r, . . . , k.

Roughly speaking:f ∗(ω) is obtained by substituting the new variables at all places.

11.2.4 Closed and Exact Forms

Motivation: Letf(x) be a continuous function onR. Thenω = f(x) dx is a1-form. By the
fundamental theorem of calculus, there exists an antiderivativeF (x) to f(x) such thatdF (x) =

f(x) dx = ω.
Problem: Givenω ∈ Ωk(U). Does there existη ∈ Ωk−1(U) with dη = ω?

Definition 11.9 ω ∈ Ωk(U) is calledclosedif dω = 0.
ω ∈ Ωk(U) is calledexactif there existsη ∈ Ωk−1(U) such thatd η = ω.

Remarks 11.2 (a) An exact formω is closed; indeed,dω = d(dη) = 0.
(b) A 1-formω =

∑
i fi dxi is closed if and only ifcurl ~f = 0 for the corresponding vector field

~f = (f1, . . . , fn). Here the generalcurl can be defined as a vector withn(n−1)/2 components

( curl ~f)ij =
∂fj
∂xi
− ∂fi
∂xj

.

The formω is exact if and only if~f is conservative, that is,~f is a gradient vector field with
~f = grad (U). Thenω = dU .
(c) There are closed forms that are not exact; for example, the winding form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

onR2 \ {(0, 0)} is not exact, cf. homework 30.1.
(d) If d η = ω thend(η + dξ) = ω, too, for allξ ∈ Ωk−2(U).

x
0

Definition 11.10 An open setU is calledstar-shapedif there ex-
ists anx0 ∈ U such that for allx ∈ U the segment fromx0 to x is
in U , i. e. (1− t)x0 + tx ∈ U for all t ∈ [0, 1].

Convex setsU are star-shaped (take anyx0 ∈ U); any star-shaped set is connected and simply
connected.
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Lemma 11.5 Let U ⊂ Rn be star-shaped with respect to the origin. Let
ω =

∑

i1<···<ik

ai1···ik dxi1∧ · · · ∧ dxik ∈ Ωk(U). Define

I(ω)(x) =
∑

i1<···<ik

k∑

r=1

(−1)r−1

(∫ 1

0

tk−1ai1···ik(tx) dt

)
xir dxi1∧ · · · ∧ d̂xir∧ · · · ∧ dxik ,

(11.13)

where the hat means omission of the factordxir . Then we have

I(dω) + d(I ω) = ω. (11.14)

(Without proof.)

Example 11.7 (a) Letk = 1, n = 3, andω = a1 dx1 + a2 dx2 + a3 dx3. Then

I(ω) = x1

∫ 1

0

a1(tx) dt+ x2

∫ 1

0

a2(tx) dt+ x3

∫ 1

0

a3(tx) dt.

Note that this is exactly the formula for the potentialU(x1, x2, x3) from Remark 8.5 (b). Let
(a1, a2, a3) be a vector field onU with dω = 0. This is equivalent tocurl a = 0 by Exam-
ple 11.5 (c). The above lemma showsdU = ω for U = I(ω); this meansgradU = (a1, a2, a3),
U is the potential to the vector field(a1, a2, a3).
(b) Letk = 2, n = 3, andω = a1 dx2∧ dx3 +a2 dx3∧ dx1 +a3 dx1∧ dx2 wherea is aC1-vector
field onU . Then

I(ω) =

(
x3

∫ 1

0

ta2(tx) dt− x2

∫ 1

0

ta3(tx) dt

)
dx1+

+

(
x1

∫ 1

0

ta3(tx) dt− x3

∫ 1

0

ta1(tx) dt

)
dx2+

+

(
x2

∫ 1

0

ta1(tx) dt− x1

∫ 1

0

ta2(tx) dt

)
dx3.

By Example 11.5 (d),ω is closed if and only ifdiv (a) = 0 onU . Let η = b1 dx1 + b2 dx2 +

b3 dx3 such thatdη = ω. This meanscurl b = a. The Poincaré lemma shows thatb with
curl b = a exists if and only ifdiv (a) = 0. Thenb is the vector potential toa. In casedω = 0

we can choose~b d~x = I(ω).

Theorem 11.6 (Poincaŕe Lemma) LetU be star-shaped. Then every closed differential form
is exact.

Proof. Without loss of generality letU be star-shaped with respect to the origin anddω = 0.
By Lemma 11.5,d(Iω) = ω.
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Remarks 11.3 (a) Let U be star-shaped,ω ∈ Ωk(U). Supposed η0 = ω for someη ∈
Ωk−1(U). Then the general solution ofd η = ω is given byη0 + dξ with ξ ∈ Ωk−2(U).
Indeed, letη be a second solution ofd η = ω. Thend(η − η0) = 0. By the Poincaré lemma,
there existsξ ∈ Ωk−2(U) with η − η0 = dξ, henceη = η0 + dξ.
(b) Let V be a linear space andW a linear subspace ofV . We define an equivalence relation
onV by v1 ∼ v2 if v1 − v2 ∈ W . The equivalence class ofv is denoted byv +W . One easily
sees that the set of equivalence classes, denoted byV/W , is again a linear space:α(v +W ) +

β(u+W ) := αv + βu+W .
LetU be an arbitrary open subset ofRn. We define

Ck(U) = {ω ∈ Ωk(U) | dω = 0}, thecocyclesonU ,
Bk(U) = {ω ∈ Ωk(U) | ω is exact}, thecoboundariesonU .

Since exact forms are closed,Bk(U) is a linear subspace ofCk(U). The factor space

Hk
deR(U) = Ck(U)/Bk(U)

is called thede Rham cohomologyof U . If U is star-shaped,Hk
deR(U) = 0 for k ≥ 1, by

Poincaré’s lemma. The first de Rham cohomologyH1
deR ofR2 \ {(0, 0)} is non-zero. The wind-

ing form is a non-zero element. We have

H0
deR(U) ∼= Rp,

if and only ifU has exactlyp components which are not connectedU = U1 ∪ · · · ∪Up (disjoint
union). Then, the characteristic functionsχUi

, i = 1, . . . , p, form a basis of the0-cyclesC0(U)

(B0(U) = 0).

11.3 Stokes’ Theorem

11.3.1 Singular Cubes, Singular Chains, and the Boundary Operator

A very nice treatment of the topics to this section is [Spi65,Chapter 4]. The set[0, 1]k =

[0, 1] × · · · × [0, 1] = {x ∈ Rk | 0 ≤ xi ≤ 1, i = 1, . . . , k} is called thek-dimensional unit
cube. LetU ⊂ Rn be open.

Definition 11.11 (a) A singulark-cubein U ⊂ Rn is a continuously differentiable mapping
ck : [0, 1]k → U .
(b) A singulark-chain in U is a formal sum

sk = n1ck,1 + · · ·+ nrck,r

with singulark-cubesck,i and integersni ∈ Z.

c

c

2

2

A singular0-cube is a point, a singular1-cube is a curve,
in general, a singular2-cube (inR3) is a surface with
a boundary of4 pieces which are differentiable curves.
Note that a singular2-cube can also be a single point—
that is where the name “singular” comes from.
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Let Ik : [0, 1]k → Rk be the identity map, i. e.Ik(x) = x, x ∈ [0, 1]k. It is called thestandardk-
cube inRk. We are going to define theboundary∂sk of a singulark-chainsk. For i = 1, . . . , k

define

Ik(i,0)(x1, . . . , xk−1) = (x1, . . . , xi−1, 0, xi, . . . , xk−1),

Ik(i,1)(x1, . . . , xk−1) = (x1, . . . , xi−1, 1, xi, . . . , xk−1).

Insert a0 and a1 at theith component, respectively.

The boundary of the standardk-cubeIk is now defined by∂Ik : [0, 1]k−1 → [0, 1]k

∂Ik =

k∑

i=1

(−1)i
(
Ik(i,0) − Ik(i,1)

)
. (11.15)

It is the formal sum of2k singular(k − 1)-cubes, the faces of thek-cube.

The boundary of an arbitrary singulark-cubeck : [0, 1]k → U ⊂ Rn is defined by the composi-
tion of the above mapping∂ Ik : [0, 1]k−1 → [0, 1]k and thek-cubeck:

∂ck = ck◦∂Ik =
k∑

i=1

(−1)i
(
ck◦Ik(i,0) − ck◦Ik(i,1)

)
, (11.16)

and for a singulark-chainsk = n1ck,1 + · · ·+ nrck,r we set

∂sk = n1∂ck,1 + · · ·+ nr∂ck,r.

The boundary operator∂ck associates to each singulark-chain a singular(k − 1)-chain (since
bothIk(i,0) andIk(i,1) depend onk − 1 variables, all from the segment[0, 1]).
One can show that

∂(∂sk) = 0

for any singulark-chainsk.

I(1,0)

x

x

x1

2

3

I

I

I

I
-

I+ (1,1)
(2,1)

(3,0)

(3,1)
+

-

-+
(2,0)

Example 11.8 (a) In casen = k = 3 have

∂I3 = −I3
(1,0) + I3

(1,1) + I3
(2,0) − I3

(2,1) − I3
(3,0) + I3

(3,1),

where

−I3
(1,0)(x1, x2) = −(0, x1, x2), +I3

(1,1)(x1, x2) = +(1, x1, x2),

+I3
(2,0)(x1, x2) = +(x1, 0, x2), −I3

(2,1)(x1, x2) = −(x1, 1, x2),

−I3
(3,0)(x1, x2) = −(x1, x2, 0), +I3

(3,1)(x1, x2) = +(x1, x2, 1).

Note, if we take care of the signs in (11.15) all6 unit normal vectorsD1I
k
(i,j) × D2I

k
(i,j) to

the faces have the orientation of the outer normal with respect to the unit3-cube[0, 1]3. The
above sum∂I3 is aformalsum of singular2-cubes. You are not allowed to add componentwise:
−(0, x1, x2) + (1, x1, x2) 6= (1, 0, 0).
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I
(1,1)

c2

E
1

E E

Γ Γ

Γ

Γ3
4

1
2

3

4

I
(1,0)

I
(2,1)

I
(2,0)

+
+

-

-

E
2

(b) In casek = 2 we have

∂ I2(x) = I2
(1,1) − I2

(1,0) + I2
(2,0) − I2

(2,1)

= (1, x)− (0, x) + (x, 0)− (x, 1).

∂∂ I2 = (E3 − E2)− (E4 −E1)+

+ (E2 − E1)− (E3 −E4) = 0.

Here we have∂c2 = Γ1 + Γ2 − Γ3 − Γ4.

(c) Let c2 : [0, 2π]× [0, π]→ R3 \ {(0, 0, 0)} be the singular2-cube

c(s, t) = (cos s sin t, sin s sin t, cos t).

By (b)

∂c2(x) = c2◦∂I2 =

= c2(2π, x)− c2(0, x) + c2(x, 0)− c2(x, π)

= (cos 2π sin x, sin 2π sin x, cos 2π)− (cos 0 sin x, sin 0 sin x, cos x)+

+ (cosx sin 0, sin x sin 0, cos 0)− (cosx sin π, sin x sin π, cosπ)

= (sin x, 0, cosx)− (sin x, 0, cosx) + (0, 0, 1)− (0, 0,−1)

= (0, 0, 1)− (0, 0,−1).

Hence, the boundary∂c2 of the singular2-cubec2 is a degenerate singular1-chain. We come
back to this example.

11.3.2 Integration

Definition 11.12 Let ck : [0, 1]k → U ⊂ Rn, ~x = ck(t1, . . . , tk), be a singulark-cube andω
a k-form onU . Then(ck)

∗(ω) is ak-form on the unit cube[0, 1]k. Thus there exists a unique
functionf(t), t ∈ [0, 1]k, such that

(ck)
∗(ω) = f(t) dt1∧ · · · ∧ dtk.

Then ∫

ck

ω :=

∫

Ik

(c∗k) (ω) :=

∫

[0,1]k
f(t) dt1 · · · dtk

is called theintegral ofω over the singular cubeck; on the right there is thek-dimensional
Riemann integral.

If sk =
r∑

i=1

nick,i is ak-chain, set

∫

sk

ω =

r∑

i=1

ni

∫

ck,i

ω.

If k = 0, a0-cube is a single pointc0(0) = x0 and a0-form is a functionω ∈ C∞(G). We set∫
c0
ω = c∗0(ω)|t=0 = ω(c0(0)) = ω(x0). We discuss two special casesk = 1 andk = n.
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Example 11.9 (a) k = 1. Let c : [0, 1] → Rn be an oriented, smooth curveΓ = c([0, 1]). Let
ω = f1(x) dx1 + · · ·+ fn(x) dxn be a1-form onRn, then

c∗(ω) = (f1(c(t))c
′
1(t) + · · ·+ fn(c(t))c

′
n(t)) dt

is a1-form on[0, 1] such that

∫

c

ω =

∫

[0,1]

c∗ ω =

∫ 1

0

f1(c(t))c
′
1(t) + · · ·+ fn(c(t))c

′
n(t) dt =

∫

Γ

~f · d~x.

Obviously,
∫
c
ω is the line integral of~f overΓ .

(b) k = n. Let c : [0, 1]k → Rk be continuously differentiable and letx = c(t). Let ω =

f(x) dx1∧ · · ·∧ dxk be a differentialk-form onRk. By Proposition 11.4 (e),

c∗(ω) = f(c(t))
∂(c1, . . ., ck)

∂(t1, . . ., tk)
dt1∧. . .∧ dtk.

Therefore,
∫

c

ω =

∫

[0,1]k

f(c(t))
∂(c1, . . ., ck)

∂(t1, . . ., tk)
dt1. . .dtk (11.17)

Let c = Ik be the standardk-cube in[0, 1]k. Then
∫

Ik

ω =

∫

[0,1]k

f(x) dx1· · ·dxk

is thek-dimensional Riemann integral off over[0, 1]k.
Let Ĩk(x1, . . ., xk) = (x2, x1, x3, . . ., xk). ThenIk([0, 1]k) = Ĩk([0, 1]k) = [0, 1]k, however

∫

Ĩk

ω =

∫

[0,1]k

f(x2, x1, x3, . . ., xk)(−1) dx1· · ·dxk

= −
∫

[0,1]k

f(x1, x2, x3, . . ., xk) dx1· · ·dxk = −
∫

Ik

ω.

We see that
∫
Ik

ω is anorientedRiemann integral. Note that in the above formula (11.17) we do

nothave the absolute value of the Jacobian.

11.3.3 Stokes’ Theorem

Theorem 11.7 LetU be an open subset ofRn, k ≥ 0 a non-negative integer and letsk+1 be a
singular(k + 1)-chain onU . Letω be a differentialk-form onU , ω ∈ Ωk

1 (U). Then we have
∫

∂sk+1

ω =

∫

sk+1

dω.
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Proof. (a) Letsk+1 = Ik+1 be the standard(k + 1)-cube, in particularn = k + 1.

Let ω =

k+1∑

i=1

fi(x) dx1∧· · ·∧ d̂xi∧· · ·∧ dxk+1. Then

dω =
k+1∑

i=1

(−1)i+1 ∂fi(x)

∂xi
dx1∧· · ·∧ dxk+1,

hence by Example 11.6 (b), Fubini’s theorem and the fundamental theorem of calculus
∫

Ik+1

dω =
k+1∑

i=1

(−1)i+1

∫

[0,1]k+1

∂fi
∂xi

dx1· · ·dxk+1

=
k+1∑

i=1

(−1)i+1

∫

[0,1]k

(∫ 1

0

∂fi
∂xi

(x1, . . ., t
bi
, . . .xk+1) dt

)
dx1· · ·dxi−1 dxi+1· · ·dxk+1

=

k+1∑

i=1

(−1)i+1

∫

[0,1]k

(fi(x1, . . . , 1bi
, . . . , xk+1)− fi(x1, . . . , 0bi

, . . . , xk+1)) dx1 · ·̂ · dxk+1

=
Example 11.6 (b)

k+1∑

i=1

(−1)i+1



∫

[0,1]k

(
Ik+1
(i,1)

)∗
ω −

∫

[0,1]k

(
Ik+1
(i,0)

)∗
ω




=

∫

∂Ik+1

ω,

by definition of∂Ik+1. The assertion is shown in case of identity map.
(b) The general case. LetIk+1 be the standard(k + 1)-cube. Since the pull-back and the
differential commute (Proposition 11.4) we have

∫

ck+1

dω =

∫

Ik+1

(ck+1)
∗ (dω) =

∫

Ik+1

d ((ck+1)
∗ω) =

∫

∂Ik+1

(ck+1)
∗ω

=

k+1∑

i=1

(−1)i



∫

Ik+1
(i,0)

(ck+1)
∗ω −

∫

Ik+1
(i,0)

(ck+1)
∗ω




=
k+1∑

i=1

(−1)i
∫

ck+1◦Ik+1
(i,0)

−ck+1◦Ik+1
(i,1)

ω =

∫

∂ck+1

ω.

(c) Finally, letsk+1 =
∑

i nicki with ni ∈ Z and singular(k + 1)-cubescki. By definition and
by (b),

∫

sk+1

dω =
∑

i

ni

∫

ck+1

dω =
∑

i

ni

∫

∂ck+1

ω =

∫

∂sk+1

ω.
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Remark 11.4 Stokes’ theorem is valid for arbitrary oriented compact differentiable k-
dimensional manifoldsF and continuously differentiable(k − 1)-formsω onF.

Example 11.10We come back to Example 11.8 (c). Letω = (x dy∧ dz + y dz∧ dx +

z dx∧ dy)/r3 be a2-form onR3 \ {(0, 0, 0)}. It is easy to show thatω is closed,dω = 0. We
compute

∫
c2

ω. First note thatc∗2(r
3) = 1, c∗2(x) = cos s sin t, c∗2(y) = sin s sin t, c∗2(z) = cos t

such that

c∗2( dx) = d(cos s sin t) = − sin s sin t ds+ cos s cos t dt,

c∗2( dy) = d(sin s sin t) = cos s sin t ds+ sin s cos t dt,

c∗2( dz) = − sin t dt.

and

c∗2(ω) = c∗2(x dy∧dz + y dz∧ dx+ z dx∧ dy)

= c∗2(x) c
∗
2( dy)∧c∗2( dz) + c∗2(y dz∧ dx) + c∗2(z dx∧ dy)

= (− cos2 s sin3 t− sin2 s sin3 t− cos t(sin2 s sin t cos t+ cos2 s sin t cos t) ds∧dt

= − sin t ds∧ dt,

such that
∫

c2

ω =

∫

[0,2π]×[0,π]

c∗2(ω) =

∫

[0,2π]×[0,π]

− sin t ds∧ dt =

∫ 2π

0

∫ π

0

(− sin t) dsdt = −4π.

Stokes’ theorem shows thatω is not exact onR3 \ {(0, 0, 0)}. Suppose to the contrary that
ω = d η for someη ∈ Ω1(R3 \ {(0, 0, 0)}). Since by Example 11.8 (c),∂c2 is a degenerate
1-chain (it consists of two points), the pull-back(∂c2)

∗(η) is 0 and so is the integral

0 =

∫

I1

(∂c2)
∗(η) =

∫

∂c2

η =

∫

c2

dη =

∫

c2

ω = −4π,

a contradiction; hence,ω is not exact.

We come back to the two special casesk = 1, n = 2 andk = 1, n = 3.

11.3.4 Special Cases

k = 1, n = 3. Let c : [0, 1]2 → U ⊆ R3 be a singular2-cube,F = c([0, 1]2) is a regular
smooth surface inR3. Then∂F is a closed path consisting of4 parts with the counter-clockwise
orientation. Letω = f1 dx1+f2 dx2+f3 dx3 be a differential1-form onU . By Example 11.9 (a)

∫

∂c2

ω =

∫

∂F

f1 dx1 + f2 dx2 + f3 dx3

On the other hand by Example 11.5 (c)

dω = curl f · ( dx2∧ dx2, dx3∧ dx2, dx1∧ dx2).
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In this case Stokes’ theorem gives
∫

∂c2

ω =

∫

c2

dω

∫

∂F

f1 dx1 + f2 dx2 + f3 dx3 =

∫

F

curl f · ( dx2∧ dx3, dx3∧ dx1, dx1∧ dx2)

If F is in thex1–x2 plane, we get Green’s theorem.
k = 2, n = 3. Let c3 be a singular3-cube inR3 andG = c3([0, 1]). Further let

ω = v1 dx2∧ dx3 + v2 dx3∧ dx1 + v3 dx1∧ dx2,

with a continuously differentiable vector fieldv ∈ C1(G). By Example 11.5 (d),
dω = div (v) dx1∧ dx2∧ dx3. The boundary ofG consists of the6 faces∂c3([0, 1]3). They
are oriented with the outer unit normal vector. Stokes’ theorem then gives

∫

c3

dω =

∫

∂c3

v1 dx2∧ dx3 + v2 dx3∧ dx1 + v3 dx1∧ dx2,

∫

G

div v dxdydz =

∫

∂G

~v · ~dS.

This is Gauß’ divergence theorem.

11.3.5 Applications

The following two applications were not covered by the lecture.
(a) Brower’s Fixed Point Theorem

Proposition 11.8 (Retraction Theorem)LetG ⊂ Rn be a compact, connected, simply con-
nected set with smooth boundary∂G.
There exist no vector fieldf : G → Rn, fi ∈ C2(G), i = 1, . . . , n such thatf(G) ⊂ ∂G and
f(x) = x for all x ∈ ∂G.

Proof. Suppose to the contrary that suchf exists; considerω ∈ Ωn−1(U),
ω = x1 dx2∧ dx3∧ · · ·∧ dxn. First we show thatf ∗(dω) = 0. By definition, for
v1, . . . , vn ∈ Rn we have

f ∗(dω)(p)(v1, . . . , vn) = dω(f(p))(Df(p)v1, Df(p)v2, . . . , Df(p)vn)).

Sincedim f(G) = dim ∂G = n − 1, then vectorsDf(p)v1, Df(p)v2, . . . , Df(p)vn can be
thought as beeingn vectors in ann − 1 dimensional linear space; hence, they are linearly
dependent. Consequently, any alternatingn-form on those vectors is0. Thusf ∗(dω) = 0. By
Stokes’ theorem ∫

∂G

f ∗(ω) = 0 =

∫

G

f ∗(dω).
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On the other hand,f = id on∂G such that

f ∗(ω) = ω |∂G= x1 dx2∧ · · ·∧ dxn |∂G .

Again, by Stokes’ theorem,

0 =

∫

∂G

f ∗(ω) =

∫

G

dx1∧ · · · ∧ dxn = |G | ;

a contradiction.

Theorem 11.9 (Brower’s Fixed Point Theorem)Let g : B1 → B1 a continuous mapping of
the closed unit ballB1 ⊂ Rn into itself.
Thenf has a fixed pointp, f(p) = p.

Proof. (a) We first prove that the theorem holds true for a twice continuously differentiable
mappingg. Suppose to the contrary thatg has no fixed point. For anyp ∈ B1 the line through
p andf(p) is then well defined. Leth(p) be those intersection point of the above line with the
the unit sphereSn−1 such thath(p) − p is a positive multiple off(p) − p. In particular,h is a
C2-mapping fromB1 into Sn−1 which is the identity onSn−1. By the previous proposition, such
a mapping does not exist. Hence,f has a fixed point.

(b) For a continuous mapping one needs Stone–Weierstraß to approximate the continuous
functions by polynomials.

In casen = 1 Brower’s theorem is just the intermediate value theorem.

(b) The Fundamental Theorem of Algebra

We give a first proof of the fundamental theorem of algebra, Theorem 5.19:

Every polynomialf(z) = zn+a1z
n−1 + · · ·+an with complex coefficientsai ∈ C

has a root inC.

We use two facts, the winding formω onR2 \ {(0, 0)} is closed but not exact andzn andf(z)

are “close together” for sufficiently large| z |.
We viewC asR2 with (a, b) = a+ bi. Define the following singular1-cubes onR2



11.3 Stokes’ Theorem 301

zn

f(z)
c(s,t)

(1-t) f(z)+t z n

cR,n(s) = (Rn cos(2πns), Rn sin(2πns)) = zn,

cR,f(s) = f ◦cR,1(s) = f(R cos(2πs), R sin(2πs)) = f(z),

wherez = z(s) = R(cos 2πs + i sin 2πs), s ∈ [0, 1].
Note that| z | = R. Further, let

c(s, t) = (1− t)cR,f(s) + tcR,n

= (1− t)f(z) + tzn, (s, t) ∈ [0, 1]2,

b(s, t) = f((1− t)R(cos 2πs, sin 2πs))

= f((1− t)z), (s, t) ∈ [0, 1]2

be singular2-cubes inR2.

Lemma 11.10 If | z | = R is sufficiently large, then

| c(s, t) | ≥ Rn

2
, (s, t) ∈ [0, 1]2.

Proof. Sincef(z)− zn is a polynomial of degree less thann,
∣∣∣∣
f(z)− zn

zn

∣∣∣∣ −→z→∞
0,

in particular| f(z)− zn | ≤ Rn/2 if R is sufficiently large. Then we have

| c(s, t) | = | (1− t)f(z) + tzn | = | zn + (1− t)(f(z)− zn) |

≥ | zn | − (1− t) | f(z)− zn | ≥ Rn − Rn

2
=
Rn

2
.

The only fact we need isc(s, t) 6= 0 for sufficiently largeR; hence,c maps the unit square intoR2 \ {(0, 0)}.

Lemma 11.11 Let ω = ω(x, y) = (−y dx + x dy)/(x2 + y2) be the winding form onR2 \ {(0, 0)}. Then we have
(a)

∂c = cR,f − cR,n,
∂b = f(z)− f(0).

(b) For sufficiently largeR, c, cR,n, andcR,f are chains inR2 \ {(0, 0)} and

∫

cR,n

ω =

∫

cR,f

ω = 2πn.
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Proof. (a) Note thatz(0) = z(1) = R. Since∂I2(x) = (x, 0)− (x, 1) + (1, x)− (0, x) we have

∂c(s) = c(s, 0)− c(s, 1) + c(1, s)− c(0, s)
= f(z)− zn − ((1− s)f(R) + sRn) + ((1− s)f(R) + sRn) = f(z)− zn.

This proves (a). Similarly, we have

∂b(s) = b(s, 0)− b(s, 1) + b(1, s)− b(0, s)
= f(z)− f(0) + f((1− s)R)− f((1− s)R) = f(z)− f(0).

(b) By the Lemma 11.10,c is a singular2-chain inR2 \ {(0, 0, 0)} for sufficiently largeR.
Hence∂c is a 1-chain in R2 \ {(0, 0)}. In particular, bothcR,n and cR,f take values inR2 \ {(0, 0)}. Hence(∂c)∗(ω) is well-defined. We computec∗R,n(ω) using the pull-backs of
dx and dy

cR,n
∗(x2 + y2) = R2n,

cR,n
∗( dx) = −2πnRn sin(2πns) ds,

cR,n
∗( dy) = 2πnRn cos(2πns) ds,

cR,n
∗(ω) = 2πn ds.

Hence ∫

cR,n

ω =

∫ 1

0

2πn ds = 2πn.

By Stokes’ theorem and sinceω is closed,
∫

∂c

ω =

∫

c

dω = 0,

such that by (a), and the above calculation

0 =

∫

∂c

ω =

∫

cR,n

ω −
∫

cR,f

ω, hence
∫

cR,n

ω =

∫

cR,f

ω = 2πn.
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b(s,t)=(1-t) z n

for  f=1.

We complete the proof of the fundamental theorem of al-
gebra. Suppose to the contrary that the polynomialf(z)

is non-zero inC, thenb as well as∂b are singular chains
in R2 \ {(0, 0)}.

By Lemma 11.11 (b) and again by Stokes’ theorem we have
∫

cR,f

ω =

∫

cR,f−f(0)

ω =

∫

∂b

ω =

∫

b

dω = 0.

But this is a contradiction to Lemma 11.11 (b). Hence,b is not a2-chain inR2 \ {(0, 0)}, that
is there exists, t ∈ [0, 1] such thatb(s, t) = f((1 − t)z) = 0. We have found that(1 −
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t)R(cos(2πs) + i sin(2πs)) is a zero off . Actually, we have shown a little more. There is a
zero off in the disc{z ∈ C | | z | ≤ R} whereR ≥ max{1, 2

∑
i | ai |}. Indeed, in this case

| f(z)− zn | ≤
n−1∑

k=1

| ak |
∣∣ zn−k

∣∣ ≤
n−1∑

k=1

| ak | Rn−1 ≤ Rn

2

and this condition ensures| c(s, t) | 6= 0 as in the proof of Lemma 11.10.
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Chapter 12

Measure Theory and Integration

12.1 Measure Theory

Citation from Rudins book, [Rud66, Chapter 1]: Towards the end of the19th century it became
clear to many mathematicians that the Riemann integral should be replaced by some other
type of integral, more general and more flexible, better suited for dealing with limit processes.
Among the attempts made in this direction, the most notable ones were due to Jordan, Borel,
W.H. Young, and Lebesgue. It was Lebesgue’s construction which turned out to be the most
successful.
In a brief outline, here is the main idea: The Riemann integral of a functionf over an interval
[a, b] can be approximated by sums of the form

n∑

i=1

f(ti)m(Ei),

whereE1, . . . , En are disjoint intervals whose union is[a, b], m(Ei) denotes the length ofEi
andti ∈ Ei for i = 1, . . . , n. Lebesgue discovered that a completely satisfactory theory of inte-
gration results if the setsEi in the above sum are allowed to belong to a larger class of subsets
of the line, the so-called “measurable sets,” and if the class of functions under consideration is
enlarged to what we call “measurable functions.” The crucial set-theoretic properties involved
are the following: The union and the intersection of any countable family of measurable sets are
measurable;. . . the notion of “length” (now called “measure”) can be extended to them in such
a way that

m(E1 ∪ E2 ∪ · · · ) = m(E1) +m(E2) + · · ·

for any countable collection{Ei} of pairwise disjoint measurable sets. This property ofm is
calledcountable additivity.

The passage from Riemann’s theory of integration to that of Lebesgue is a process of comple-
tion. It is of the same fundamental importance in analysis asthe construction of the real number
system from rationals.

305



306 12 Measure Theory and Integration

12.1.1 Algebras,σ-algebras, and Borel Sets

(a) The Measure Problem. Definitions

Lebesgue (1904) states the following problem: We want to associate to each bounded subset
E of the real line a positive real numberm(E), called measure ofE, such that the following
properties are satisfied:

(1) Any two congruent sets (by shift or reflexion) have the same measure.
(2) The measure is countably additive.
(3) The measure of the unit interval[0, 1] is 1.

He emphasized that he was not able to solve this problem in full detail, but for a certain class of
sets which he called measurable. We will see that this restriction to a large family of bounded
sets is unavoidable—the measure problem has no solution.

Definition 12.1 Let X be a set. A family (non-empty) familyA of subsets ofX is called an
algebraif A,B ∈ A impliesAc ∈ A andA ∪B ∈ A.
An algebraA is called aσ-algebra if for all countable families{An | n ∈ N} with An ∈ A we
have ⋃

n∈NAn = A1 ∪ A2 ∪ · · · ∪ An ∪ · · · ∈ A.

Remarks 12.1 (a) SinceA ∈ A impliesA ∪ Ac ∈ A; X ∈ A and∅ = Xc ∈ A.
(b) If A is an algebra, thenA ∩ B ∈ A for all A,B ∈ A. Indeed, by de Morgan’s rule,
(
⋃
αAα)

c =
⋂
αA

c

α and (
⋂
αAα)

c =
⋃
αA

c

α, we haveA ∩ B = (Ac ∪ Bc)c, and all the
members on the right are inA by the definition of an algebra.
(c) Let A be aσ-algebra. Then

⋂

n∈NAn ∈ A if An ∈ A for all n ∈ N. Again by de Morgan’s

rule
⋂

n∈NAn =

(⋃

n∈NAc

n

)
c

.

(d) The familyP(X) of all subsets ofX is both an algebra as well as aσ-algebra.
(e) Anyσ-algebra is an algebra but there are algebras not beingσ-algebras.
(f) The family of finite and cofinite subsets (these are complements of finite sets) of an infinite
set form an algebra. Do they form aσ-algebra?

(b) Elementary Sets and Borel Sets inRn

LetR be the extended real axis together with±∞,R = R ∪ {+∞} ∪ {−∞}. We use the old
rules as introduced in Section 3.1.1 at page 79. The new rule which is used in measure theory
only is

0 · ±∞ = ±∞ · 0 = 0.

The set
I = {(x1, . . . , xn) ∈ Rn | ai � xi � bi, i = 1, . . . , n}
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is called arectangleor a box in Rn, where� either stands for< or for ≤ whereai, bi ∈ R.
For exampleai = −∞ andbi = +∞ yieldsI = Rn, whereasa1 = 2, b1 = 1 yieldsI = ∅.
A subset ofRn is called anelementary setif it is the union of a finite number of rectangles
in Rn. Let En denote the set of elementary subsets ofRn. En = {I1 ∪ I2 ∪ · · · ∪ Ir | r ∈N, Ij is a box inRn}.

Lemma 12.1 En is an algebra but not aσ-algebra.

Proof. The complement of a finite interval is the union of
two intervals, the complement of an infinite interval is an
infinite interval. Hence, the complement of a rectangle inRn is the finite union of rectangles.
The countable (disjoint) unionM =

⋃
n∈N[n, n + 1

2
] is

not an elementary set.

Note that any elementary set is thedisjoint union of a
finite number of rectangles.

Let B be any (nonempty) family of subsets ofX. Let σ(B) denote the intersection of allσ-
algebras containingB, i. e. σ(B) =

⋂

i∈I
Ai, where{Ai | i ∈ I} is the family of allσ-algebras

Ai which containB, B ⊆ Ai for all i ∈ I.

Note that theσ-algebraP(X) of all subsets is always a member of that family{Ai} such that
σ(B) exists. We callσ(B) theσ-algebragenerated byB. By definition,σ(B) is the smallest
σ-algebra which contains the sets ofB. It is indeed aσ-algebra. Moreover,σ(σ(B)) = σ(B)

and ifB1 ⊂ B2 thenσ(B1) ⊂ σ(B2).

Definition 12.2 TheBorel algebraBn in Rn is theσ-algebra generated by the elementary sets
En. Its elements are calledBorel sets.

The Borel algebraBn = σ(En) is the smallestσ-algebra which contains all boxes inRn We
will see that the Borel algebra is a huge family of subsets ofRn which contains “all sets we are
ever interested in.” Later, we will construct a non-Borel set.

Proposition 12.2 Open and closed subsets ofRn are Borel sets.

Proof. We give the proof in case ofR2. Let Iε(x0, y0) = (x0 − ε, x0 + ε) × (y0 − ε, y0 + ε)

denote the open square of size2ε by 2ε with midpoint(x0, y0). ThenI 1
n+1
⊆ I 1

n
for n ∈ N. Let

M ⊂ R2 be open. To every point(x0, y0) with rational coordinatesx0, y0 we choose the largest
squareI1/n(x0, y0) ⊆ M in M and denote it byJ(x0, y0). We show that

M =
⋃

(x0,y0)∈M,x0,y0∈QJ(x0, y0).
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(x,y)

(a,b)
0 0

Since the number of rational points inM is at least countable, the right
side is inσ(E2). Now let (a, b) ∈ M arbitrary. SinceM is open, there
existsn ∈ N such thatI2/n(a, b) ⊆ M . Since the rational points
are dense inR2, there is rational point(x0, y0) which is contained in
I1/n(a, b). Then we have

I 1
n
(x0, y0) ⊆ I 2

n
(a, b) ⊆ M.

Since(a, b) ∈ I 1
n
(x0, y0) ⊆ J(x0, y0), we have shown thatM is the union of the countable

family of setsJ . Since closed sets are the complements of open sets and complements are
again in theσ-algebra, the assertion follows for closed sets.

Remarks 12.2 (a) We have proved that any open subsetM of Rn is the countable union of
rectanglesI ⊆M .
(b) The Borel algebraBn is also theσ-algebra generated by the family of open or closed sets
in Rn, Bn = σ(Gn) = σ(Fn). Countable unions and intersections of open or closed sets are in
Bn.
Let us look in more detail at some of the sets inσ(En). Let G andF be the families of all open
and closed subsets ofRn, respectively. LetGδ be the collection of all intersection of sequences
of open sets (fromG), and letFσ be the collection of all unions of sequences of sets ofF. One
can prove thatF ⊂ Gδ andG ⊂ Fσ. These inclusions are strict. Since countable intersection
and unions of countable intersections and union are still countable operations,Gδ,Fσ ⊂ σ(En)

For an arbitrary familyS of sets letSσ be the collection of all unions of sequences of sets inS,
and letSδ be the collection of all unions of sequences of sets inS. We can iterate the operations
represented byσ andδ, obtaining from the classG the classesGδ, Gδσ, Gδσδ,. . . and fromF the
classesFσ, Fσδ,. . . . It turns out that we have inclusions

G ⊂ Gδ ⊂ Gδσ ⊂ · · · ⊂ σ(En)

F ⊂ Fσ⊂ Fσδ ⊂ · · · ⊂ σ(En).

No two of these classes are equal. There are Borel sets that belong to none of them.

12.1.2 Additive Functions and Measures

Definition 12.3 (a) LetA be an algebra overX. An additive functionor contentµ on A is a
functionµ : A→ [0,+∞] such that

(i) µ(∅) = 0,
(ii) µ(A ∪ B) = µ(A) + µ(B) for all A,B ∈ A with A ∩B = ∅.

(b) An additive functionµ is calledcountably additive(or σ-additivein the German literature)
onA if for any disjoint family{An | An ∈ A, n ∈ N}, that isAi ∩ Aj = ∅ for all i 6= j, with
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⋃
n∈NAn ∈ A we have

µ

(⋃

n∈NAn) =
∑

n∈Nµ(An).

(c) A measureis a countably additive function on aσ-algebraA.
If X is a set,A a σ-algebra onX andµ a measure onA, then the tripel(X,A, µ) is called
a measure space. Likewise, ifX is a set andA a σ-algebra onX, the pair(X,A) is called a
measurable space.

Notation.
We write

∑

n∈NAn in place of
⋃

n∈NAn if {An} is a disjoint family of subsets. The countable

additivity reads as follows

µ(A1 ∪A2 ∪ · · · ) = µ(A1) + µ(A2) + · · · ,

µ

( ∞∑

n=1

An

)
=

∞∑

n=1

µ(An).

We sayµ is finite if µ(X) <∞. If µ(X) = 1, we call(X,A, µ) aprobability space. We callµ
σ-finite if there exist setsAn ∈ A, with µ(An) <∞ andX =

⋃∞
n=1An.

Example 12.1 (a) LetX be a set,x0 ∈ X andA = P(X). Then

µ(A) =

{
1, x0 ∈ A,
0, x0 6∈ A

defines a finite measure onA. µ is called thepoint mass concentrated atx0.
(b1) LetX be a set andA = P(X). Put

µ(A) =

{
n, if A hasn elements

+∞, if A has infinitely many elements.

µ is a measure onA, the so calledcounting measure.
(b2) LetX be a set andA = P(X). Put

µ(A) =

{
0, if A has finitely many or countably many elements

+∞, if A has uncountably many elements.

µ is countably additive, notσ-finite.
(b3) LetX be a set andA = P(X). Put

µ(A) =

{
0, if A is finite

+∞, if A is infinite.

µ is additive, notσ-additive.
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(c)X = Rn, A = En is the algebra of elementary sets ofRn. EveryA ∈ En is the finite disjoint
union of rectanglesA =

∑m
k=1 Ik. We setµ(A) =

∑m
k=1 µ(Ik) where

µ(I) = (b1 − a1) · · · (bn − an),

if I = {(x1, . . . , xn) ∈ Rn | ai � xi � bi, i = 1, . . . , n} andai � bi; µ(∅) = 0. Thenµ is an
additive function onEn. It is called theLebesgue contentonRn. Note thatµ is not a measure
(sinceA is not aσ-algebra andµ is not yet shown to be countably additive). However, we will
see in Proposition 12.5 below thatµ is evencountably additive. By definition,µ(line inR2) = 0

andµ(plane inR3) = 0.
(d) LetX = R, A = E1, andα an increasing function onR. Fora, b inR with a < b set

µα([a, b]) = α(b+ 0)− α(a− 0),

µα([a, b)) = α(b− 0)− α(a− 0),

µα((a, b]) = α(b+ 0)− α(a+ 0),

µα((a, b)) = α(b− 0)− α(a+ 0).

Thenµα is an additive function onE1 if we set

µα(A) =

n∑

i=1

µα(Ii), if A =

n∑

i=1

Ii.

We callµα theLebesgue–Stieltjes content.
On the other hand, ifµ : E1 → R is an additive function, thenαµ : R→ R defined by

αµ(x) =

{
µ((0, x]), x ≥ 0,

−µ((x, 0]), x < 0,

defines an increasing, right-continuous functionαµ onR such thatµ = µαµ . In generalα 6= αµα

since the function on the right hand side is continuous from the right whereasα is, in general,
not .

Properties of Additive Functions

Proposition 12.3 LetA be an algebra overX andµ an additive function onA. Then

(a)µ

(
n∑

k=1

Ak

)
=

n∑

k=1

µ(Ak) if Ak ∈ A, k = 1, . . . , n form a disjoint family ofn

subsets.

(b) µ(A ∪B) + µ(A ∩ B) = µ(A) + µ(B), A,B ∈ A.

(c)A ⊆ B impliesµ(A) ≤ µ(B) (µ is monotone).

(d) If A ⊆ B, A,B ∈ A, and µ(A) < +∞, thenµ(B \A) = µ(B) − µ(A),
(µ is subtractive).
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(e)

µ

(
n⋃

k=1

Ak

)
≤

n∑

k=1

µ(Ak),

if Ak ∈ A, k = 1, . . . , n, (µ is finitely subadditive).

(f) If {Ak | k ∈ N} is a disjoint family inA and
∞∑

k=1

Ak ∈ A. Then

µ

( ∞∑

k=1

Ak

)
≥

∞∑

k=1

µ(Ak).

Proof. (a) is by induction. (d), (c), and (b) are easy (cf. Homework34.4).

(e) We can write
n⋃

k=1

Ak as the finitedisjointunion ofn sets ofA:

n⋃

k=1

Ak = A1 ∪
(
A2 \A1

)
∪
(
A3 \ (A1 ∪ A2)

)
∪ · · · ∪

(
An \ (A1 ∪ · · · ∪An−1)

)
.

Sinceµ is additive,

µ

(
n⋃

k=1

Ak

)
=

n∑

k=1

µ (Ak \ (A1 ∪ · · ·Ak−1)) ≤
n∑

k=1

µ(Ak),

where we usedµ(B \A) ≤ µ(B) (from (d)).
(f) Sinceµ is additive, and monotone

n∑

k=1

µ(Ak) = µ

(
n∑

k=1

Ak

)
≤ µ

( ∞∑

k=1

Ak

)
.

Taking the supremum on the left gives the assertion.

Proposition 12.4 Letµ be an additive function on the algebraA. Consider the following state-
ments

(a)µ is countably additive.

(b) For any increasing sequenceAn ⊆ An+1, An ∈ A, with
∞⋃

n=1

An = A ∈ A we

have lim
n→∞

µ(An) = µ(A).

(c) For any decreasing sequenceAn ⊇ An+1, An ∈ A, with
∞⋂

n=1

An = A ∈ A and

µ(An) <∞ we havelim
n→∞

µ(An) = µ(A).

(d) Statement(c) withA = ∅ only.

We have(a) ↔ (b)→ (c)→ (d). In caseµ(X) <∞ (µ is finite), all statements are equivalent.
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Proof. (a)→ (b). Without loss of generalityA1 = ∅. PutBn = An \An−1 for n = 2, 3, . . . .
Then{Bn} is a disjoint family withAn = B2 ∪ B3 ∪ · · · ∪ Bn andA =

⋃∞
n=1Bn. Hence, by

countable additivity ofµ,

µ(A) =

∞∑

k=2

µ(Bk) = lim
n→∞

n∑

k=2

µ(Bk) = lim
n→∞

µ

(
n∑

k=2

Bk

)
= lim

n→∞
µ(An).

(b) → (a). Let {An} be a family of disjoint sets inA with
⋃
An = A ∈ A; put Bk =

A1 ∪ · · · ∪Ak. ThenBk is an increasing toA sequence. By (b)

µ(Bn) = µ

(
n∑

k=1

Ak

)
=

µ is additive

n∑

k=1

µ(Ak) −→
n→∞

µ(A) = µ

( ∞∑

k=1

Ak

)
;

Thus,
∞∑

k=1

µ(Ak) = µ

( ∞∑

k=1

Ak

)
.

(b)→ (c). SinceAn is decreasing toA, A1 \An is increasing toA1 \A. By (b)

µ(A1 \An) −→
n→∞

µ(A1 \A),

henceµ(A1)− µ(An) −→
n→∞

µ(A1)− µ(A) which implies the assertion.

(c)→ (d) is trivial.
Now letµ be finite, in particular,µ(B) <∞ for all B ∈ A. We show (d)→ (b). Let(An) be an
increasing toA sequence of subsetsA,An ∈ A. Then(A \An) is a decreasing to∅ sequence.
By (d), µ(A \An) −→

n→∞
0. Sinceµ is subtractive (Proposition 12.3 (d)) and all values are finite,

µ(An) −→
n→∞

µ(A).

Proposition 12.5 Let α be a right-continuous increasing functionα : R → R, and µα the
corresponding Lebesgue–Stieltjes content onE1. Thenµα is countably additive if.

Proof. For simplicity we writeµ for µα. Recal thatµ((a, b]) = α(b)− α(a). We will perform
the proof in case of

(a, b] =

∞⋃

k=1

(ak, bk]

with a disjoint family[ak, bk) of intervals. By Proposition 12.3 (f) we already know

µ ((a, b]) ≥
∞∑

k=1

µ((ak, bk]). (12.1)

We prove the opposite direction. Letε > 0. Sinceα is continuous from the right ata, there
existsa0 ∈ [a, b) such thatα(a0)−α(a) < ε and, similarly, for everyk ∈ N there existsck > bk
such thatα(ck)− α(bk) < ε/2k. Hence,

[a0, b] ⊂
∞⋃

k=1

(ak, bk] ⊂
∞⋃

k=1

(ak, ck)
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is an open covering of a compact set. By Heine–Borel (Definition 6.14) there exists a finite
subcover

[a0, b] ⊂
N⋃

k=1

(ak, ck), hence (a0, b] ⊂
N⋃

k=1

(ak, ck],

such that by Proposition 12.3 (e)

µ((a0, b]) ≤
N∑

k=1

µ((ak, ck]).

By the choice ofa0 andck,

µ((ak, ck]) = µ((ak, bk]) + α(ck)− α(bk) ≤ µ((ak, bk]) +
ε

2k
.

Similarly,µ((a, b]) = µ((a, a0]) + µ((a0, b]) such that

µ((a, b]) ≤ µ((a0, b]) + ε ≤
N∑

k=1

(
µ((ak, bk]) +

ε

2k

)
+ ε

≤
N∑

k=1

µ((ak, bk]) + 2ε ≤
∞∑

k=1

µ((ak, bk]) + 2ε

Sinceε was arbitrary,

µ((a, b]) ≤
∞∑

k=1

µ((ak, bk]).

In view of (12.1),µα is countably additive.

Corollary 12.6 The correspondenceµ 7→ αµ from Example 12.1 (d) defines a bijection be-
tween countably additive functionsµ onE1 and the monotonically increasing, right-continuous
functionsα onR (up to constant functions, i. e.α andα+ c define the same additive function).

Historical Note. It was the great achievment ofÉmile Borel (1871–1956) that he reallyproved
the countable additivity of the Lebesgue measure. He realized that the countable additivity ofµ
is a serious mathematical problem far from being evident.

12.1.3 Extension of Countably Additive Functions

Here we must stop the rigorous treatment of measure theory. Up to now, we know only two
trivial examples of measures (Example 12.1 (a) and (b)). We give an outline of the steps toward
the construction of the Lebesgue measure.

• Construction of anouter measureµ∗ onP(X) from a countably additive functionµ on an
algebraA.

• Construction of theσ-algebraAµ of measurable sets.
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The extension theory is due to Carathéodory (1914). For a detailed treatment, see [Els02, Sec-
tion II.4].

Theorem 12.7 (Extension and Uniqueness)Letµ be a countably additive function on the al-
gebraA.
(a) There exists an extension ofµ to a measure on theσ-algebraσ(A) which coincides withµ
on A. We denote the measure onσ(A) also byµ. It is defined as the restriction of the outer
measureµ∗ : P(X)→ [0,∞]

µ∗(A) = inf

{ ∞∑

k=n

µ(An) | A ⊂
∞⋃

n=1

An, An ∈ A, n ∈ N}
to theµ-measurable setsAµ∗.

(b) This extension is unique, if(X,A, µ) is σ-finite.

(For a proof, see [Brö92, (2.6), p.68])

Remark 12.3 (a) A subsetA ⊂ X is said to beµ-measurableif for all Y ⊂ X

µ∗(Y ) = µ∗(A ∩ Y ) + µ∗(Ac ∩ Y ).

The family ofµ-measurable sets form aσ-algebraAµ∗ .
(b) We haveA ⊂ σ(A) ⊂ Aµ∗ andµ∗(A) = µ(A) for all A ∈ A.
(c) (X,Aµ∗ , µ

∗) is a measure space, in particular,µ∗ is countably additive on the measurable
setsAµ∗ and we redenote it byµ.

12.1.4 The Lebesgue Measure onRn

Using the facts from the previous subsection we conclude that for any increasing, right contin-
uous functionα onR there exists a measureµα on theσ-algebra of Borel sets. We call this
measure theLebesgue–Stieltjes measure onR. In caseα(x) = x we call it theLebesgue mea-
sure. Extending the Lebesgue content on elementary sets ofRn to the Borel algebraBn, we
obtain then-dimensional Lebesgue measureλn onRn.

Completeness

A measureµ : A → R+ on aσ-algebraA is said to becompleteif A ∈ A, µ(A) = 0, and
B ⊂ A impliesB ∈ A. It turns out that the Lebesgue measureλn on the Borel sets ofRn is
not complete. Adjoining toBn the subsets of measure-zero-sets, we obtain theσ-algebraAλn

of Legesgue measurable setsAλn.

Aλn = σ (Bn ∪ {X ⊆ Rn | ∃B ∈ Bn : X ⊂ E, λn(B) = 0}) .

The Lebesgue measureλn onAλn is now complete.
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Remarks 12.4 (a) The Lebesgue measure is invariant under themotion groupof Rn. More
precisely, letO(n) = {T ∈ Rn×n | T⊤T = T T⊤ = En} be the group of real orthogonal
n× n-matrices (“motions”), then

λn(T (A)) = λn(A), A ∈ Aλn , T ∈ O(n).

(b)λn is translation invariant, i. e.λn(A) = λn(x+A) for all x ∈ Rn. Moreover, the invariance
of λn under translations uniquely characterizes the Lebesgue measureλn: If λ is a translation
invariant measure onBn, thenλ = cλn for somec ∈ R+.
(c) There exist non-measurable subsets inRn. We construct a subsetE ofR that is not Lebesgue
measurable.
We writex ∼ y if x − y is rational. This is an equivalence relation sincex ∼ x for all x ∈ R,
x ∼ y impliesy ∼ x for all x andy, andx ∼ y andy ∼ z impliesx ∼ z. LetE be a subset of
(0, 1) that contains exactly one point in every equivalence class.(the assertion that there is such
a setE is a direct application of theaxiom of choice). We claim thatE is not measurable. Let
E + r = {x+ r | x ∈ E}. We need the following two properties ofE:

(a) If x ∈ (0, 1), thenx ∈ E + r for some rationalr ∈ (−1, 1).
(b) If r ands are distinct rationals, then(E + r) ∩ (E + s) = ∅.

To prove (a), note that for everyx ∈ (0, 1) there existsy ∈ E with x ∼ y. If r = x − y, then
x = y + r ∈ E + r.
To prove (b), suppose thatx ∈ (E + r) ∩ (E + s). Thenx = y + r = z + s for somey, z ∈ E.
Sincey−z = s− r 6= 0, we havey ∼ z, andE contains two equivalent points, in contradiction
to our choice ofE.
Now assume thatE is Lebesgue measurable withλ(E) = α. DefineS =

⋃
(E + r) where

the union is over all rationalr ∈ (−1, 1). By (b), the setsE + r are pairwise disjoint; sinceλ
is translation invariant,λ(E + r) = λ(E) = α for all r. SinceS ⊂ (−1, 2), λ(S) ≤ 3. The
countable additivity ofλ now forcesα = 0 and henceλ(S) = 0. But (a) implies(0, 1) ⊂ S,
hence1 ≤ λ(S), and we have a contradiction.
(d) Any countable set has Lebesgue measure zero. Indeed, every single point is a box with
edges of length0; henceλ({pt}) = 0. Sinceλ is countably additive,

λ({x1, x2, . . . , xn, . . . }) =

∞∑

n=1

λ({xn}) = 0.

In particular, the rational numbers have Lebesgue measure0, λ(Q) = 0.
(e) There are uncountable sets with measure zero. The Cantorset (Cantor: 1845–1918, inventor
of set theory) is a prominent example:

C =

{ ∞∑

i=1

ai
3i

∣∣∣∣∣ ai ∈ {0, 2} ∀ i ∈ N} ;

Obviously,C ⊂ [0, 1]; C is compact and can be written as the intersection of a decreasing
sequence(Cn) of closed subsets;C1 = [0, 1/3] ∪ [2/3, 1], λ(C1) = 2/3, and, recursively,

Cn+1 =
1

3
Cn ∪

(
2

3
+

1

3
Cn

)
=⇒ λ(Cn+1) =

1

3
λ(Cn) +

1

3
λ

(
Cn +

2

3

)
=

2

3
λ(Cn).
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It turns out thatCn =
{∑∞

i=1
ai

3i

∣∣ iai ∈ {0, 2} ∀ i = 1, . . . , n
}

Clearly,

λ(Cn+1) =
2

3
λ(Cn) = · · · =

(
2

3

)n
λ(C1) =

(
2

3

)n+1

.

By Proposition 12.4 (c),λ(C) = lim
n→∞

λ(Cn) = 0. However,C has the same cardinality as

{0, 2}N ∼= {0, 1}N ∼= R which is uncountable.

12.2 Measurable Functions

Let A be aσ-algebra overX.

Definition 12.4 A real functionf : X → R is calledA-measurableif for all a ∈ R the set
{x ∈ X | f(x) > a} belongs toA.
A complex functionf : X → C is said to beA-measurableif both Re f and Im f areA-
measurable.
A function f : U → R, U ⊂ Rn, is said to be aBorel functionif f is Bn-measurable, i. e.f is
measurable with respect to the Borel algebra onRn.
A function f : U → V , U ⊂ Rn, V ⊂ Rm, is called aBorel functionif f−1(B) is a Borel set
for all Borel setsB ⊂ V . It is part of homework 39.3 (b) to prove that in casem = 1 these
definitions coincide. Also,f = (f1, . . . , fm) is a Borel function if allfi are.

Note that{x ∈ X | f(x) > a} = f−1((a,+∞)). From Proposition 12.8 below it becomes clear
that the last two notions are consistent. Note that no measure on(X,A) needs to be specified
to define a measurable function.

Example 12.2 (a) Any continuous functionf : U → R, U ⊂ Rn, is a Borel function. Indeed,
sincef is continuous and(a,+∞) is open,f−1((a,+∞)) is open as well and hence a Borel set
(cf. Proposition 12.2).
(b) The characteristic functionχA is A-measurable if and only ifA ∈ A (see homework 35.3).
(c) Letf : U → V andg : V →W be Borel functions. Theng◦f : U → W is a Borel function,
too. Indeed, for any Borel setC ⊂ W , g−1(C) is a Borel set inV sinceg is a Borel function.
Sincef is a Borel function(g◦f)−1(C) = f−1(g−1(C)) is a Borel subset ofU which shows the
assertion.

Proposition 12.8 Letf : X → R be a function. The following are equivalent

(a){x | f(x) > a} ∈ A for all a ∈ R (i. e. f is A-measurable).
(b) {x | f(x) ≥ a} ∈ A for all a ∈ R.
(c) {x | f(x) < a} ∈ A for all a ∈ R.
(d) {x | f(x) ≤ a} ∈ A for all a ∈ R.
(e)f−1(B) ∈ A for all Borel setsB ∈ B1.

Proof. (a)→ (b) follows from the identity

[a,+∞] =
⋂

n∈N (a− 1/n,+∞]
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and the invariance of intersections under preimages,f−1(A ∩ B) = f−1(A) ∩ f−1(B).
Sincef is A-measurable andA is aσ-algebra, the countable intersection on the right is inA.
(a)→ (d) follows from{x | f(x) ≤ a} = {x | f(x) > a}c. The remaining directions are left
to the reader (see also homework 35.5).

Remark 12.5 (a) Let f, g : X → R be A-measurable. Then{x | f(x) > g(x)} and{x |
f(x) = g(x)} are inA. Proof. Since

{x | f(x) < g(x)} =
⋃

q∈Q ({x | f(x) < q} ∩ {x | q < g(x)}) ,

and all sets{f < q} and{q < g} the right are inA, and on the right there is a countable union,
the right hand side is inA. A similar argument works for{f > g}. Note that the sets{f ≥ g}
and{f ≤ g} are the complements of{f < g} and{f > g}, respectively; hence they belong to
A as well. Finally,{f = g} = {f ≥ g} ∩ {f ≤ g}.

(b) It is not difficult to see that for any sequence(an) of real numbers

lim
n→∞

an = inf
n∈N sup

k≥n
ak and lim

n→∞
an = sup

n∈N inf
k≥n

ak. (12.2)

As a consequence we can construct new mesurable functions using sup andlimn→∞. Let (fn)
be a sequence ofA-measurable real functions onX. Thensup

n∈N fn, inf
n∈N fn, lim

n→∞
fn, lim

n→∞
fn are

A-measurable. In particularlim
n→∞

fn is measurable if the limit exists.

Proof. Note that for alla ∈ R we have

{sup fn ≤ a} =
⋂

n∈N{fn ≤ a}.

Since allfn are measurable, so issup fn. A similar proof works forinf fn. By (12.2), lim
n→∞

fn

and lim
n→∞

fn, are measurable, too.

Proposition 12.9 Letf, g : X → R Borel functions onX ⊂ Rn. Thenαf + βg, f · g, and| f |
are Borel functions, too.

Proof. The functionh(x) = (f(x), g(x)) : X → R2 is a Borel function since its coordinate
functions are so. Since the sums(x, y) = x + y and the productp(x, y) = xy are continuous
functions, the compositionss◦h andp◦h are Borel functions by Example 12.2 (c). Since the
constant functionsα andβ are Borel, so areαf , βg, and finallyαf + βg. Hence, the Borel
functions overX form a linear space, moreover a real algebra. In particular−f is Borel and so
is | f | = max{f,−f}.
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f+

f-

Let (X,A, µ) be a measure space andf : X → R ar-
bitrary. Let f+ = max{f, 0} and f− = max{−f, 0}
denote thepositive and negative parts off . We have
f = f+−f− and| f | = f++f−; moreoverf+, f− ≥ 0.

Corollary 12.10 Letf is a Borel function if and only if bothf+ andf− are Borel.

12.3 The Lebesgue Integral

We define the Lebesgue integral of a complex function in threesteps; first for positive simple
functions, then for positive measurable functions and finally for arbitrary measurable functions.
In this section(X,A, µ) is a measure space.

12.3.1 Simple Functions

Definition 12.5 LetM ⊆ X be a subset. The function

χM(x) =

{
1, x ∈M,

0, x 6∈M,

is calledcharacteristic functionof M .
An A-measurabel functionf : X → R is calledsimple if f takes only finitely many values
c1, . . . , cn. We denote the set of simple functions on(X,A) by S; the set of non-negative simple
functions is denoted byS+.

Clearly, if c1, . . . , cn are the distinct values of the simple functionf , then

f =

n∑

i=1

ciχAi
,

whereAi = {x | f(x) = ci}. It is clear, thatf measurable if and only ifAi ∈ A for all i.
Obviously,{Ai | i = 1, . . . , n} is a disjoint family of subsets ofX.
It is easy to see thatf, g ∈ S impliesαf +βg ∈ S, max{f, g} ∈ S, min{f, g} ∈ S, andfg ∈ S.

Step 1: Positive Simple Functions

Forf =

n∑

i=1

ciχAi
∈ S+ define

∫

X

f dµ =

n∑

i=1

ci µ(Ai). (12.3)

The convention0 · (+∞) is used here; it may happen thatci = 0 for somei andµ(Ai) = +∞.
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Remarks 12.6 (a) Sinceci ≥ 0 for all i, the right hand side is well-defined inR.

(b) Given another presentation off , say,f(x) =

m∑

j=1

djχBj
,
m∑

j=1

dj µ(Bj) gives the same value

as (12.3).

The following properties are easily checked.

Lemma 12.11 For f, g ∈ S+, A ∈ A, c ∈ R+ we have

(1)
∫
X
χA dµ = µ(A).

(2)
∫
X
cf dµ = c

∫
X
f dµ.

(3)
∫
X

(f + g) dµ =
∫
X
f dµ+

∫
X
g dµ.

(4) f ≤ g implies
∫
X
f dµ ≤

∫
X
g dµ.

12.3.2 Positive Measurable Functions

The idea is to approximate a positive measurable function with an increasing sequence of posi-
tive simple ones.

Theorem 12.12Let f : X → [0,+∞] be measurable. There exist simple functionssn, n ∈ N,
onX such that

(a) 0 ≤ s1 ≤ s2 ≤ · · · ≤ f .

(b) sn(x) −→
n→∞

f(x), asn→∞, for everyx ∈ X.

E
12 11

3/4

ba

f

E
24

E
24

F

1

1/2

0

y

x
1

E E
12 E

11

s1

Example.X = (a, b), n = 1,
1 ≤ i ≤ 2. Then

E11 = f−1

([
0,

1

2

))
,

E12 = f−1

((
1

2
, 1

))
,

F2 = f−1 ([1,+∞]) .

Proof. Forn ∈ N and for1 ≤ i ≤ n2n, define

Eni = f−1

([
i− 1

2n
,
i

2n

))
and Fn = f−1([n,∞])

and put

sn =
n2n∑

i=1

i− 1

2n
χEni

+ nχFn .
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Proposition 12.8 shows thatEni andFn are measurable sets. It is easily seen that the functions
sn satisfy (a). Ifx is such thatf(x) < +∞, then

0 ≤ f(x)− sn(x) ≤
1

2n
(12.4)

as soon asn is large enough, that is,x ∈ Eni for somen, i ∈ N and notx ∈ Fn. If f(x) = +∞,
thensn(x) = n; this proves (b).

From (12.4) it follows, thatsn ⇉ f uniformly onX if f is bounded.

Step 2: Positive Measurable Real Functions

Definition 12.6 (Lebesgue Integral)Let f : X → [0,+∞] be measurable. Let(sn) be an
increasing sequence of non-negative simple functionssn converging tof(x) for all x ∈ X,
lim
n→∞

sn(x) = sup
n∈N sn(x) = f(x). Define

∫

X

f dµ = lim
n→∞

∫

X

sn dµ = sup
n∈N∫X sn dµ (12.5)

and call this number in[0,+∞] theLebesgue integral off(x) overX with respect to the mea-
sureµ or µ-integral off overX.

The definition of the Lebesgue integral does not depend on thespecial choice of the increasing
functionssn ր f . One can define

∫

X

f dµ = sup

{∫

X

s dµ | s ≤ f, ands is a simple function

}
.

Observe, that we apparently have two definitions for
∫
X
f dµ if f is a simple function. However

these assign the same value to the integral sincef is the largest simple function greater than or
equal tof .

Proposition 12.13 The properties(1) to (4) from Lemma 12.11 hold for any non-negative mea-
surable functionsf, g : X → [0,+∞], c ∈ R+.

(Without proof.)

Step 3: Measurable Real Functions

Let f : X → R be measurable andf+(x) = max(f, 0), f−(x) = max(−f(x), 0). Thenf+

andf− are both positive and measurable. Define
∫

X

fdµ =

∫

X

f+dµ−
∫

X

f−dµ

if at least one of the integrals on the right is finite. We say that f is µ-integrableif both are
finite.
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Step 4: Measurable Complex Functions

Definition 12.7 (Lebesgue Integral—Continued)A complex, measurable function
f : X → C is calledµ-integrableif

∫

X

| f | dµ <∞.

If f = u + iv is µ-integrable, whereu = Re f andv = Im f are the real and imaginary parts
of f , u andv are real measurable functions onX. Define theµ-integral off overX by

∫

X

f dµ =

∫

X

u+ dµ−
∫

X

u− dµ+ i

∫

X

v+ dµ− i

∫

X

v− dµ. (12.6)

These four functionsu+, u−, v+, andv− are measurable, real, and non-negative. Since we have
u+ ≤ |u | ≤ | f | etc., each of these four integrals is finite. Thus, (12.6) defines the integral on
the left as a complex number.

We defineL 1(X,µ) to be the collection of all complexµ-integrable functionsf onX.
Note that for an integrable functionsf ,

∫
X
f dµ is a finite number.

Proposition 12.14 Letf, g : X → C be measurable.

(a) f is µ-integrable if and only if| f | is µ-integrable and we have
∣∣∣∣
∫

X

f dµ

∣∣∣∣ ≤
∫

X

| f | dµ.

(b) f is µ-integrable if and only if there exists an integrable functionh with | f | ≤
h.

(c) If f, g are integrable, so isc1f + c2g where
∫

X

(c1f + c2g) dµ = c1

∫

X

f dµ+ c2

∫

X

g dµ.

(d) If f ≤ g onX, then
∫
X
f dµ ≤

∫
X
g dµ.

It follows that the setL 1(X,µ) of µ-integrable complex-valued functions onX is a linear
space. The Lebesgue integral defines a positive linear functional onL 1(X,µ). Note that (b)
implies that any measurable and bounded functionf on a spaceX with µ(X) <∞ is integrable.

Step 5:
∫

A
f dµ

Definition 12.8 Let A ∈ A, f : X → R or f : X → C measurable. The functionf is called
µ-integrable overA if χA f is µ-integrable overX. In this case we put,

∫

A

f dµ =

∫

X

χA f dµ.

In particular, Lemma 12.11 (1) now reads
∫
A

dµ = µ(A).
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12.4 Some Theorems on Lebesgue Integrals

12.4.1 The Role Played by Measure Zero Sets

Equivalence Relations

LetX be a set andR ⊂ X ×X. Fora, b ∈ X we writea ∼ b if (a, b) ∈ R.

Definition 12.9 (a) The subsetR ⊂ X×X is said to be anequivalence relationif R is reflexive,
symmetricandtransitive, that is,

(r) ∀x ∈ X : x ∼ x.

(s) ∀x, y ∈ X : x ∼ y =⇒ y ∼ x.
(t) ∀x, y, z ∈ X : x ∼ y ∧ y ∼ z =⇒ x ∼ z.

Fora ∈ X the seta := {x ∈ X | x ∼ a} is called theequivalence classof a. We havea = b if
and only ifa ∼ b.
(b) A partition P of X is a disjoint familyP = {Aα | α ∈ I} of subsetsAα ⊂ X such that∑
α∈I

Aα = X.

The set of equivalence classes is sometimes denoted byX/ ∼.

Example 12.3 (a) OnZ definea ∼ b if 2 | (a−b). a andb are equivalent if both are odd or both
are even. There are two equivalence classes,1 = −5 = 2Z + 1 (odd numbers),0 = 100 = 2Z
even numbers.
(b) LetW ⊂ V be a subspace of the linear spaceV . Forx, y ∈ V definex ∼ y if x − y ∈ W .
This is an equivalence relation, indeed, the relation is reflexive sincex − x = 0 ∈ W , it
is symmetric sincex − y ∈ W implies y − x = −(x − y) ∈ W , and it is transitive since
x− y, y− z ∈W implies that there sum(x− y) + (y− z) = x− z ∈W such thatx ∼ z. One
has0 = W andx = x+W := {x+w | w ∈W}. Set set of equivalence classes with respect to
this equivalence relation is called thefactor spaceor quotient spaceof V with respect toW and
is denoted byV/W . The factor space becomes a linear space if we definex + y := x+ y and
λ x = λx, λ ∈ C. Addition is indeed well-defined sincex ∼ x′ andy ∼ y′, say,x− x′ = w1,
y− y′ = w2, w1, w2 ∈W impliesx+ y− (x′ + y′) = w1 +w2 ∈W such thatx+ y = x′ + y′.
(c) Similarly as in (a), form ∈ N define the equivalence relationa ≡ b (modm) if m | (a− b).
We say “a is congruentb modulom”. This defines a partition of the integers intom disjoint
equivalence classes0, 1, . . . , m− 1, wherer = {am+ r | a ∈ Z}.
(d) Two triangles in the plane are equivalent if

(1) there exists atranslationsuch that the first one is mapped onto the second one.
(2) there exists arotationaround(0, 0)

(3) there exists amotion(rotation or translation or reflexion or composition)

Then (1) – (3) define different equivalence relations on triangles or more generally on subsets
of the plane.
(e) Cardinality of sets is an equivalence relation.
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Proposition 12.15 (a) Let∼ be an equivalence relation onX. ThenP = {x | x ∈ X} defines
a partition onX denoted byP∼.
(b) Let P be a partition onX. Thenx ∼ y if there existsA ∈ P with x, y ∈ A defines an
equivalence relation∼P onX.
(c)∼P∼=∼ andP∼P

= P.

LetP be a property which a pointx may or may not have. For instance,P may be the property
“f(x) > 0” if f is a given function or “(fn(x)) converges” if(fn) is a given sequence of
functions.

Definition 12.10 If (X,A, µ) is a measure space andA ∈ A, we say“ P holds almost every-
where on A”, abbreviated by “P holds a. e. onA”, if there existsN ∈ A such thatµ(N) = 0

andP holds for every pointx ∈ A \N .

This concept of course strongly depends on the measureµ, and sometimes we write a. e. to
emphasize the dependence onµ.
(a) Main example. On the set of measurable functions onX, f : X → C we define an equiva-
lence relation by

f ∼ g, if f = g a. e. onX.

This is indeed an equivalence relation sincef(x) = f(x) for all x ∈ X, f(x) = g(x) implies
g(x) = f(x). Let f = g a. e. onX andg = h a. e. onX, that is, there existM,N ∈ A with
µ(M) = µ(N) = 0 andf(x) = g(x) for all x ∈ X \M , g(x) = h(x) for all x ∈ N . Hence,
f(x) = h(x) for all x ∈ M ∪ N . Since0 ≤ µ(M ∪ N) ≤ µ(M) + µ(N) = 0 + 0 = 0 by
Proposition 12.3 (e),µ(M ∪N) = 0 and finallyf = h a. e. onX.
(b) Note thatf = g a. e. onX implies

∫

X

f dµ =

∫

X

g dµ.

Indeed, letN denote the zero-set wheref 6= g. Then
∣∣∣∣
∫

X

f dµ−
∫

X

g dµ

∣∣∣∣ ≤
∫

X

| f − g | dµ =

∫

N

| f − g | dµ+

∫

X \N
| f − g | dµ

≤ µ(N)(∞) + µ(X \N) · 0 = 0.

Here we used that for disjoint setsA,B ∈ A,
∫

A∪B
f dµ =

∫

X

χA∪Bf dµ =

∫

X

χAf dµ+

∫

X

χBf dµ =

∫

A

f dµ+

∫

B

f dµ.

Proposition 12.16 Letf : X → [0,+∞] be measurable. Then
∫
X
f dµ = 0 if and only iff = 0 a. e. onX.

Proof. By the above argument in (b),f = 0 a. e. implies
∫
X
f dµ =

∫
X

0 dµ = 0 which proves
one direction. The other direction is homework 40.4.
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12.4.2 The spaceLp(X, µ)

For any measurable functionf : X → C and any realp, 1 ≤ p <∞ define

‖f‖p =

(∫

X

| f |p dµ

) 1
p

. (12.7)

This number may be finite or∞. In the first case,| f |p is integrable and we writef ∈ L
1(X,µ).

Proposition 12.17 Letp, q ≥ 1 be given such that1
p

+ 1
q

= 1.
(a) Letf, g : X → C be measurable functions such thatf ∈ L p andg ∈ L q.
Thenfg ∈ L 1 and

∫

X

| fg | dµ ≤ ‖f‖p ‖g‖q (Hölder inequality). (12.8)

(b) Letf, g ∈ L q. Thenf + g ∈ L q and

‖f + g‖q ≤ ‖f‖q + ‖g‖q , (Minkowski inequality). (12.9)

Idea of proof. Hölder follows from Young’s inequality (Proposition 1.31, as in the calssical case
of Hölder’s inequality inRn, see Proposition 1.32
Minkowski’s inequality follows from Hölder’s inequalityas in Propostion 1.34
Note that Minkowski implies thatf, g ∈ L p yields‖f + g‖ < ∞ such thatf + g ∈ L p. In
particular,L p is a linaer space.
Let us check the properties of‖·‖p. For all measurablef, g we have

‖f‖p ≥ 0,

‖λf‖p = |λ | ‖f‖p ,
‖f + g‖ ≤ ‖f‖+ ‖g‖ .

All properties of a norm, see Definition 6.9 at page 179 are satisfied except for the definitness:
‖f‖p = 0 imlies

∫
X
| f |p dµ = 0 implies by Proposition 12.16,| f |p = 0 a. e. impliesf = 0

a. e. . However, it does not implyf = 0. To overcome this problem, we use the equivalece
relationf = g a. e. and consider from now on onlyequivalence classesof functions inL

p, that
is we identify functionsf andg which are equal a. e. .
The spaceN = {f : X → C | f is measurable andf = 0 a. e.} is a linear subspace of
L p(X,µ) for all all p, andf = g a. e. if and only iff − g ∈ N. Then the factor spaceL p/N,
see Example 12.3 (b) is again a linear space.

Definition 12.11 Let (X,A, µ) be a measure space.Lp(X,µ) denotes the set of equivalence
classes of functions ofL p(X,µ) with respect to the equivalence relationf = g a. e. that is,

Lp(X,µ) = L
p(X,µ)/N

is the quotient space.(Lp(X,µ), ‖·‖p) is a normed space. With this normLp(X,µ) is complete.
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Example 12.4 (a) We haveχQ = 0 in Lp(R, λ) sinceχQ = 0 a. e. onR with respect to the
Lebesgue measure (note thatQ is a set of measure zero).
(b) In case of sequence spacesL p(N) with respect to the counting measure,L p = Lp since
f = 0 a. e. impliesf = 0.
(c) f(x) = 1

xα , α > 0 is in L2(0, 1) if and only if 2α < 1. We identify functions and their
equivalence classes.

12.4.3 The Monotone Convergence Theorem

The following theorem about the monotone convergence by Beppo Levi (1875–1961) is one of
the most important in the theory of integration. The theoremholds for anarbitrary increasing
sequence of measurable functions with, possibly,

∫
X
fn dµ = +∞.

Theorem 12.18 (Monotone Convergence Theorem/Lebesgue)Let (fn) be a sequence of
measurable functions onX and suppose that

(1) 0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ +∞ for all x ∈ X,
(2) fn(x) −→

n→∞
f(x), for everyx ∈ X.

Thenf is measurable, and

lim
n→∞

∫

X

fn dµ =

∫

X

f dµ =

∫

X

(
lim
n→∞

fn

)
dµ.

(Without proof) Note, thatf is measurable is a consequence of Remark 12.5 (b).

Corollary 12.19 (Beppo Levi) Let fn : X → [0,+∞] be measurable for alln ∈ N, and

f(x) =
∞∑

n=1

fn(x) for x ∈ X. Then

∫

X

∞∑

n=1

fn dµ =
∞∑

n=1

∫

X

fn dµ.

Example 12.5 (a) LetX = N, A = P(N) the σ-algebra of all subsets, andµ the counting
measure onN. The functions onN can be identified with the sequences(xn), f(n) = xn.
Trivially, any function isA-measurable.
What is

∫N xn dµ? First, letf ≥ 0. For a simple functiongn, given bygn = xnχ{n}, we obtain
∫
gn dµ = xnµ({n}) = xn. Note thatf =

∞∑

n=1

gn andgn ≥ 0 sincexn ≥ 0. By Corollary 12.19,

∫N f dµ =

∞∑

n=1

∫N gn dµ =

∞∑

n=1

xn.

Now, let f be arbitrary integrable, i. e.
∫N | f | dµ < ∞; thus

∑∞
n=1 |xn | < ∞. Therefore,

(xn) ∈ L 1(N, µ) if and only if
∑
xn convergesabsolutely. The space of absolutely convergent

series is denoted byℓ1 or ℓ1(N).
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(b) Letanm ≥ 0 for all n,m ∈ N. Then

∞∑

n=1

∞∑

m=1

amn =

∞∑

m=1

∞∑

n=1

amn.

Proof. Consider the measure space(N,P(N), µ) from (a). Forn ∈ N define functionsfn(m) =

amn. By Corollary 12.19 we then have

∫

X

∞∑

n=1

fn(m)

︸ ︷︷ ︸
f(m)

dµ =

∫

X

f dµ =
(a)

∞∑

m=1

f(m) =
∞∑

m=1

∞∑

n=1

amn

=

∞∑

n=1

∫

X

fn(m) dµ =

∞∑

n=1

∞∑

m=1

amn.

Proposition 12.20 Letf : X → [0,+∞] be measurable. Then

ϕ(A) =

∫

A

f dµ, A ∈ A

defines a measureϕ onA.

Proof. Sincef ≥ 0, ϕ(A) ≥ 0 for all A ∈ A. Let (An) be a countable disjoint family of
measurable setsAn ∈ A and letA =

∑∞
n=1An. By homework 40.1,χA =

∑∞
n=1 χAn and

therefore

ϕ(A) =

∫

A

f dµ =

∫

X

χAf dµ =

∫

X

∞∑

n=1

χAnf dµ =
B.Levi

∞∑

n=1

∫

X

χAnf dµ

=

∞∑

n=1

∫

An

f dµ =

∞∑

n=1

ϕ(An).

12.4.4 The Dominated Convergence Theorem

Besides the monotone convergence theorem the present theorem is the most important one. It is
due to Henry Lebesgue. The great advantage, compared with Theorem6.6, is thatµ(X) =∞ is
allowed, that is, non-compact domainsX are included. We only need thepointwiseconvergence
of (fn), not theuniformconvergence. The main assumtion here is the existence of an integrable
upper bound for allfn.

Theorem 12.21 (Dominated Convergence Theorem of Lebesgue)Let fn : X → R or
g, fn : X → C be measurable functions such that
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(1) fn(x)→ f(x) asn→∞ a. e. onX,

(2) | fn(x) | ≤ g(x) a. e. onX,

(3)
∫

X

g dµ < +∞.

Thenf is measurable and integrable,
∫
X
| f | dµ <∞, and

lim
n→∞

∫

X

fn dµ =

∫

X

f dµ =

∫

X

lim
n→∞

fn dµ,

lim
n→∞

∫

X

| fn − f | dµ = 0. (12.10)

Note, that (12.10) shows that(fn) converges tof in the normed spaceL1(X,µ).

Example 12.6 (a) LetAn ∈ A, n ∈ N, A1 ⊂ A2 ⊂ · · · be an increasing sequence with⋃

n∈NAn = A. If f ∈ L 1(A, µ), thenf ∈ L 1(An) for all n and

lim
n→∞

∫

An

f dµ =

∫

A

f dµ. (12.11)

Indeed, the sequence(χAn f) is pointwise converging toχAf sinceχA(x) = 1 iff x ∈ A

iff x ∈ An for all n ≥ n0 iff limn→∞ χAn(x) = 1. Moreover,|χAnf | ≤ |χAf | which is
integrable. By Lebesgue’s theorem,

lim
n→∞

∫

An

f dµ = lim
n→∞

∫

X

χAnf =

∫

X

χAf dµ =

∫

A

f dµ.

However, if we do not assumef ∈ L
1(A, µ), the statement is not true (see Remark 12.7 be-

low).
Exhausting theorem.Let (An) be an increasing sequencce of measurable sets andA =⋃∞
n=1An. suppose thatf is measurable, and

∫
An
f dµ is a bounded sequence. Thenf ∈

L 1(A, µ) and (12.11) holds.
(b) Let fn(x) = (−1)nxn on [0, 1]. The sequence is dominated by the integrable function
1 ≥ | fn(x) | for all x ∈ [0, 1]. Hencelimn→∞

∫
[0,1]

fndλ = 0 =
∫
[0,1]

limn→∞ fndλ.

12.4.5 Application of Lebesgue’s Theorem to Parametric Integrals

As a direct application of the dominated convergence theorem we now treat parameter depen-
dent integrals see Propostions 7.22 and 7.23

Proposition 12.22 (Continuity) Let U ⊂ Rn be an open connected set,t0 ∈ U , and
f : Rm × U → R be a function. Assume that

(a) for a.e.x ∈ Rm, the functiont 7→ f(x, t) is continuous att0,
(b) There exists an integrable functionF : Rm → R such that for everyt ∈ U ,

| f(x, t) | ≤ F (x) a.e. onRm.



328 12 Measure Theory and Integration

Then the function

g(t) =

∫Rm

f(x, t) dx

is continuous att0.

Proof. First we note that for any fixedt ∈ U , the functionft(x) = f(x, t) is integrable onRm since it is dominated by the integrable functionF . We have to show that for any sequence
tj → t0, tj ∈ U , g(tj) tends tog(t0) asn→ ∞. We setfj(x) = f(x, tj) andf0(x) = f(x, t0)

for all n ∈ N. By (b) we have

f0(x) = lim
j→∞

fj(x), a. e.x ∈ Rm.

By (a) and (c), the assumptions of the dominated convergencetheorem are satisfied and thus

lim
j→∞

g(tj) = lim
j→∞

∫Rm

fj(x) dx =

∫Rm

lim
j→∞

fj(x) dx =

∫Rm

f0(x) dx = g(t0).

Proposition 12.23 (Differentiation under the Integral Sign) Let I ⊂ R be an open interval
andf : Rm × I → R be a function such that

(a) for everyt ∈ I the functionx 7→ f(x, t) is integrable,
(b) for almost allx ∈ Rm, the functiont 7→ f(x, t) is finite and continuously
differentiable,
(c) There exists an integrable functionF : Rm → R such that for everyt ∈ I∣∣∣∣

∂f

∂t
(x, t)

∣∣∣∣ ≤ F (x), a.e.x ∈ Rm.

Then the functiong(t) =
∫Rm f(x, t) dx is differentiable onI with

g′(t) =

∫Rm

∂f

∂t
(x, t) dx.

The proof uses the previous theorem about the continuity of the parametric integral. A detailed
proof is to be found in [Kön90, p. 283].

Example 12.7 (a) Let f ∈ L
1(R). Then the Fourier transformf̂ : R→ C,

f̂(t) = 1√
2π

∫R e−itx f(x) dx is continuous onR, see homework 41.3.

(b) LetK ⊂ R3 be a compact subset andρ : K → R integrable, the Newton potential (with
mass densityρ) is given by

u(t) =

∫

K

ρ(x)

‖x− t‖ dx, t 6∈ K.

Thenu(t) is a harmonic function onR3 \K.
Similarly, if K ⊂ R2 is compact andρ ∈ L (K), the Newton potential is given by

u(t) =

∫

K

ρ(x) log ‖x− t‖ dx, t 6∈ K.

Thenu(t) is a harmonic function onR2 \K.
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12.4.6 The Riemann and the Lebesgue Integrals

Proposition 12.24 Letf be a bounded function on the finite interval[a, b].
(a)f is Riemann integrable on[a, b] if and only iff is continuous a. e. on[a, b].
(b) If f is Riemann integrable on[a, b], thenf is Lebesgue integrable, too. Both integrals
coincide.
Let I ⊂ R be an interval such thatf is Riemann integrable on all compact subintervals ofI.
(c) f is Lebesgue integrable onI if and only if | f | is improperly Riemann integrable onI (see
Section 5.4); both integrals coincide.

Remarks 12.7 (a) The characteristic functionχQ on [0, 1] is Lebesgue but not Riemann inte-
grable;χQ is nowhere continuous on[0, 1].
(b) The (improper) Riemann integral

∫ ∞

1

sin x

x
dx

converges (see Example 5.11); however, the Lebesgue integral does not exist since the integral
does not converge absolutely. Indeed, for non-negative integersn ≥ 1 we have with somec > 0

∫ (n+1)π

nπ

∣∣∣∣
sin x

x

∣∣∣∣ dx ≥ 1

(n+ 1)π

∫ (n+1)π

nπ

| sin x | dx =
c

(n + 1)π
;

hence ∫ (n+1)π

π

∣∣∣∣
sin x

x

∣∣∣∣ dx ≥ c

π

n∑

k=1

1

k + 1
.

Since the harmonic series diverges, so does the integral
∫∞
1

∣∣ sinx
x

∣∣ dx.

12.4.7 Appendix: Fubini’s Theorem

Theorem 12.25Let(X1,A1, µ1) and(X2,A2, µ2) beσ-finite measure spaces, letf be anA1⊗
A2-measurable function andX = X1 ×X2.
(a) If f : X → [0,+∞], ϕ(x1) =

∫
X2

f(x1, x2) dµ2, ψ(x2) =
∫
X1

f(x1, x2) dµ1, then

∫

X2

ψ(x2) dµ2 =

∫

X1×X2

f d(µ1 ⊗ µ2) =

∫

X1

ϕ(x1) dµ1.

(b) If f ∈ L 1(X,µ1 ⊗ µ2) then
∫

X1×X2

f d(µ1 ⊗ µ2) =

∫

X2

(∫

X1

f(x1, x2) dµ1

)
dµ2.

HereA1 ⊗ A2 denotes the smallestσ-algebra overX, which contains all setsA × B, A ∈ A1

andB ∈ A2. Defineµ(A×B) = µ1(A)µ2(B) and extendµ to a measureµ1⊗µ2 onA1⊗A2.

Remark 12.8 In (a), as in Levi’s theorem, we don’t need any assumption onf to change the
order of integration sincef ≥ 0. In (b) f is an arbitrary measurable function onX1 × X2,
however, the integral

∫
X
| f | dµ needs to be finite.
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Chapter 13

Hilbert Space

Functional analysis is a fruitful interplay between linearalgebra and analysis. One defines
function spaces with certain properties and certain topologies and considers linear operators
between such spaces. The friendliest example of such spacesare Hilbert spaces.
This chapter is divided into two parts—one describes the geometry of a Hilbert space, the
second is concerned with linear operators on the Hilbert space.

13.1 The Geometry of the Hilbert Space

13.1.1 Unitary Spaces

LetE be a linear space overK = R or overK = C.

Definition 13.1 An inner productonE is a function〈· , ·〉 : E ×E → K with

(a) 〈λ1x1 + λ2x2 , y〉 = λ1 〈x1 , y〉+ λ2 〈x2 , y〉 (Linearity)
(b) 〈x , y〉 = 〈y , x〉. (Hermitian property)
(c) 〈x , x〉 ≥ 0 for all x ∈ E, and〈x , x〉 = 0 impliesx = 0 (Positive definite-
ness)

A unitary spaceis a linear space together with an inner product.

Let us list some immediate consequences from these axioms: From (a) and (b) it follows that

(d) 〈y , λ1x1 + λ2x2〉 = λ1 〈y , x1〉+ λ2 〈y , x2〉 .

A form onE × E satisfying (a) and (d) is called asesquilinear form. (a) implies〈0 , y〉 = 0

for all y ∈ E. The mappingx 7→ 〈x , y〉 is a linear mapping intoK (a linear functional) for all
y ∈ E.
By (c), we may define‖x‖, thenorm of the vectorx ∈ E to be the square root of〈x , x〉; thus

‖x‖2 = 〈x , x〉 . (13.1)

331
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Proposition 13.1 (Cauchy–Schwarz Inequality)Let (E, 〈· , ·〉) be a unitary space. For
x, y ∈ E we have

| 〈x , y〉 | ≤ ‖x‖ ‖y‖ .
Equality holds if and only ifx = βy for someβ ∈ K.

Proof. Chooseα ∈ C, |α | = 1 such thatα 〈y , x〉 = | 〈x , y〉 |. Forλ ∈ R we then have (since
α 〈x , y〉 = α 〈y , x〉 = | 〈x , y〉 |)

〈x− αλy , x− αλy〉 = 〈x , x〉 − αλ 〈y , x〉 − αλ 〈x , y〉+ λ2 〈y , y〉
= 〈x , x〉 − 2λ | 〈x , y〉 |+ λ2 〈y , y〉 ≥ 0.

This is a quadratic polynomialaλ2 + bλ + c in λ with real coefficients. Since this polynomial
takes only non-negative values, its discriminantb2 − 4ac must be non-positive:

4 | 〈x , y〉 |2 − 4 ‖x‖2 ‖y‖2 ≤ 0.

This implies| 〈x , y〉 | ≤ ‖x‖ ‖y‖.

Corollary 13.2 ‖·‖ defines a norm onE.

Proof. It is clear that‖x‖ ≥ 0. From (c) it follows that‖x‖ = 0 implies x = 0. Further,

‖λx‖ =
√
〈λx , λx〉 =

√
|λ |2 〈x , x〉 = | λ | ‖x‖. We prove the triangle inequality. Since

2 Re (z) = z + z we have by Proposition 1.20 and the Cauchy-Schwarz inequality

‖x+ y‖2 = 〈x+ y , x+ y〉 = 〈x , x〉+ 〈x , y〉+ 〈y , x〉+ 〈y , y〉
= ‖x‖2 + ‖y‖2 + 2 Re 〈x , y〉
≤ ‖x‖2 + ‖y‖2 + 2 | 〈x , y〉 |
≤ ‖x‖2 + ‖y‖2 + 2 ‖x‖ ‖y‖ = (‖x‖+ ‖y‖)2;

hence‖x+ y‖ ≤ ‖x‖ + ‖y‖.

By the corollary, any unitary space is a normed space with thenorm‖x‖ =
√
〈x , x〉.

Recall that any normed vector space is a metric space with themetricd(x, y) = ‖x− y‖. Hence,
the notions of open and closed sets, neighborhoods, converging sequences, Cauchy sequences,
continuous mappings, and so on make sense in a unitary space.In particular lim

n→∞
xn = x

means that the sequence(‖xn − x‖) of non-negative real numbers tends to0. Recall from
Definition 6.8 that a metric space is said to be complete if every Cauchy sequence converges.

Definition 13.2 A complete unitary space is called aHilbert space.

Example 13.1 LetK = C.

(a)E = Cn, x = (x1, . . . , xn) ∈ Cn, y = (y1, . . . , yn) ∈ Cn. Then〈x , y〉 =

n∑

k=1

xkyk defines

an inner product, with the euclidean norm‖x‖ = (
∑n

k=1 | xk |)
1
2 . (Cn, 〈· , ·〉) is a Hilbert space.
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(b)E = L2(X,µ) is a Hilbert space with the inner product〈f , g〉 =
∫
X
fg dµ.

By Proposition 12.17 withp = q = 2 we obtain the Cauchy-Schwarz inequality
∣∣∣∣
∫

X

fg dµ

∣∣∣∣ ≤
(∫

X

| f |2 dµ

) 1
2
(∫

X

| g |2 dµ

) 1
2

.

Using CSI one can prove Minkowski’s inequality, that is,f, g ∈ L2(X,µ) implies f + g ∈
L2(X,µ). Also, 〈f , g〉 is a finite complex number, sincefg ∈ L1(X,µ).
Note that the inner product is positive definite since

∫
X
| f |2 dµ = 0 implies (by Proposi-

tion 12.16)| f | = 0 a. e. and therefore,f = 0 in L2(X,µ). To prove thecompleteness of
L2(X,µ) is more complicated, we skip the proof.
(c)E = ℓ2, i. e.

ℓ2 = {(xn) | xn ∈ C, n ∈ N, ∞∑

n=1

|xn |2 <∞}.

Note that Cauchy–Schwarz’s inequality inRk (Corollary 1.26) implies
∣∣∣∣∣

k∑

n=1

xnyn

∣∣∣∣∣

2

≤
k∑

n=1

| xn |2
k∑

n=1

| yn |2 ≤
∞∑

n=1

| xn |2
∞∑

n=1

| yn |2 .

Taking the supremum over allk ∈ N on the left, we have
∣∣∣∣∣

∞∑

n=1

xnyn

∣∣∣∣∣

2

≤
∞∑

n=1

| xn |2
∞∑

n=1

| yn |2 ;

hence

〈(xn) , (yn)〉 =
∞∑

n=1

xn yn

is an absolutely converging series such that the inner product is well-defined onℓ2.

Lemma 13.3 LetE be a unitary space. For any fixedy ∈ E the mappingsf, g : E → C given
by

f(x) = 〈x , y〉 , and g(x) = 〈y , x〉
are continuous functions onE.

Proof. First proof. Let (xn) be a sequence inE , converging tox ∈ E, that is,
limn→∞ ‖xn − x‖ = 0. Then

| 〈xn , y〉 − 〈x , y〉 | = | 〈xn − x , y〉 | ≤
CSI
‖xn − x‖ ‖y‖ =⇒ 0

asn→∞. This proves continuity off . The same proof works forg.
Second proof.The Cauchy–Schwarz inequality implies that forx1, x2 ∈ E

| 〈x1 , y〉 − 〈x2 , y〉 | = | 〈x1 − x2 , y〉 | ≤ ‖x1 − x2‖ ‖y‖ ,

which proves that the mapx 7→ 〈x , y〉 is in fact uniformly continuous (Givenε > 0 choose
δ = ε/ ‖y‖. Then‖x1 − x2‖ < δ implies | 〈x1 , y〉 − 〈x2 , y〉 | < ε). The same is true for
x 7→ 〈y , x〉.
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Definition 13.3 LetH be a unitary space. We callx andy orthogonalto each other, and write
x ⊥ y, if 〈x , y〉 = 0. Two subsetsM,N ⊂ H are calledorthogonalto each other ifx ⊥ y for
all x ∈M andy ∈ N .
For a subsetM ⊂ H define theorthogonal complementM⊥ of M to be the set

M⊥ = {x ∈ H | 〈x , m〉 = 0, for all m ∈M}.

For example,E = Rn with the standard inner product andv = (v1, . . . , vn) ∈ Rn, v 6= 0 yields

{v}⊥ = {x ∈ Rn |
n∑

k=1

xk vk = 0}.

This is a hyperplane inRn which is orthogonal tov.

Lemma 13.4 LetH be a unitary space andM ⊂ H be an arbitrary subset. Then,M⊥ is a
closed linear subspace ofH.

Proof. (a) Suppose thatx, y ∈ M⊥. Then form ∈M we have

〈λ1x+ λ2y , m〉 = λ1 〈x , m〉+ λ2 〈y , m〉 = 0;

henceλ1x+ λ2y ∈M⊥. This shows thatM⊥ is a linear subspace.
(b) We show that any converging sequence(xn) of elements ofM⊥ has its limit inM⊥. Suppose
lim
n→∞

xn = x, xn ∈ M⊥, x ∈ H. Then for allm ∈ M , 〈xn , m〉 = 0. Since the inner product is

continuous in the first argument (see Lemma 13.3) we obtain

0 = lim
n→∞

〈xn , m〉 = 〈x , m〉 .

This showsx ∈M⊥; henceM⊥ is closed.

13.1.2 Norm and Inner product

Problem.Given a normed linear space(E, ‖·‖). Does there exist an inner product〈· , ·〉 onE
such that‖x‖ =

√
〈x , x〉 for all x ∈ E? In this case we call‖·‖ an inner product norm.

Proposition 13.5 (a) A norm‖·‖ on a linear spaceE overK = C or K = R is an inner
product norm if and only if theparallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2), x, y ∈ E (13.2)

is satisfied.
(b) If (13.2) is satisfied, the inner product〈· , ·〉 is given by(13.3) in the real caseK = R and
by (13.4)in the complex caseK = C.

〈x , y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2

)
, if K = R. (13.3)

〈x , y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2

)
, if K = C. (13.4)

These equations are calledpolarization identities.
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Proof. We check the parallelogram and the polarization identity in the real case,K = R.

‖x+ y‖2 + ‖x− y‖2 = 〈x+ y , x+ y〉+ 〈x− y , x− y〉
= 〈x , x〉 + 〈y , x〉 + 〈x , y〉+ 〈y , y〉+ (〈x , x〉 − 〈y , x〉 − 〈x , y〉+ 〈y , y〉)
= 2 ‖x‖2 + 2 ‖y‖2 .

Further,

‖x+ y‖2 − ‖x− y‖2 = (〈x , x〉+ 〈y , x〉+ 〈x , y〉+ 〈y , y〉)−
− (〈x , x〉 − 〈y , x〉 − 〈x , y〉+ 〈y , y〉) = 4 〈x , y〉 .

The proof that the parallelogram identity is sufficient forE being a unitary space is in the
appendix to this section.

Example 13.2 We show thatL1([0, 2]) with ‖f‖1 =
∫ 2

0
| f | dx is not an inner product norm.

Indeed, letf = χ[1,2] andg = χ[0,1]. Thenf +g = | f − g | = 1 and‖f‖1 = ‖g‖1 =
∫ 1

0
dx = 1

such that
‖f + g‖21 + ‖f − g‖21 = 22 + 22 = 8 6= 4 = 2(‖f‖21 + ‖g‖21).

The parallelogram identity is not satisfied for‖·‖1 such thatL1([0, 2]) is not an inner product
space.

13.1.3 Two Theorems of F. Riesz

(born: January 22, 1880 in Austria-Hungary, died: February28, 1956, founder of functional
analysis)

Definition 13.4 Let (H1, 〈· , ·〉1) and(H2, 〈· , ·〉2) be Hilbert spaces. LetH = {(x1, x2) | x1 ∈
H1, x2 ∈ H2} be the direct sum of the Hilbert spacesH1 andH2. Then

〈(x1, x2) , (y1, y2)〉 = 〈x1 , y1〉1 + 〈x2 , y2〉2
defines an inner product onH. With this inner productH becomes a Hilbert space.H =

H1 ⊕H2 is called the (direct)orthogonal sumof H1 andH2.

Definition 13.5 Two Hilbert spacesH1 andH2 are calledisomorphicif there exists a bijective
linear mappingϕ : H1 → H2 such that

〈ϕ(x) , ϕ(y)〉2 = 〈x , y〉1 , x, y ∈ H1.

ϕ is calledisometric isomorphismor aunitary map.

Back to the orthogonal sumH = H1 ⊕H2. Let H̃1 = {(x1, 0) | x1 ∈ H1} andH̃2 = {(0, x2) |
x2 ∈ H2}. Thenx1 7→ (x1, 0) andx2 7→ (0, x2) are isometric isomorphisms fromHi → H̃i,
i = 1, 2. We haveH̃1 ⊥ H̃2 andH̃i, i = 1, 2 are closed linear subspaces ofH.
In this situation we say thatH is theinner orthogonal sum of the two closed subspacesH̃1 and
H̃2.
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(a) Riesz’s First Theorem

Problem. Let H1 be a closed linear subspace ofH. Does there exist another closed linear
subspaceH2 such thatH = H1 ⊕H2?
Answer: YES.
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Lemma 13.6 ( Minimal Distance Lemma) Let C be a con-
vex and closed subset of the Hilbert spaceH. For x ∈ H

let

̺(x) = inf{‖x− y‖ | y ∈ C}.

Then there exists a unique elementc ∈ C such that

̺(x) = ‖x− c‖ .

Proof. Existence. Since̺(x) is an infimum, there exists a sequence(yn), yn ∈ C, which
approximates the infimum,limn→∞ ‖x− yn‖ = ̺(x). We will show, that(yn) is a Cauchy
sequence. By the parallelogram law (see Proposition 13.5) we have

‖yn − ym‖2 = ‖yn − x+ x− ym‖2

= 2 ‖yn − x‖2 + 2 ‖x− ym‖2 − ‖2x− yn − ym‖2

= 2 ‖yn − x‖2 + 2 ‖x− ym‖2 − 4

∥∥∥∥x−
yn + ym

2

∥∥∥∥
2

.

SinceC is convex,(yn + ym)/2 ∈ C and therefore
∥∥x− yn+ym

2

∥∥ ≥ ̺(x). Hence

≤ 2 ‖yn − x‖2 + 2 ‖x− ym‖2 − 4̺(x)2.

By the choice of(yn), the first two sequences tend to̺(x)2 asm,n→∞. Thus,

lim
m,n→∞

‖yn − ym‖2 = 2(̺2(x) + ̺(x)2)− 4̺(x)2 = 0,

hence(yn) is a Cauchy sequence. SinceH is complete, there exists an elementc ∈ H such
that limn→∞ yn = c. Sinceyn ∈ C andC is closed,c ∈ C. By construction, we have
‖yn − x‖ −→ ̺(x). On the other hand, sinceyn −→ c and the norm is continuous (see
homework 42.1. (b)), we have

‖yn − x‖ −→ ‖c− x‖ .
This implies̺(x) = ‖c− x‖.
Uniqueness.Let c, c′ two such elements. Then, by the parallelogram law,

0 ≤ ‖c− c′‖2 = ‖c− x+ x− c′‖2

= 2 ‖c− x‖2 + 2 ‖x− c′‖2 − 4

∥∥∥∥x−
c+ c′

2

∥∥∥∥
2

≤ 2(̺(x)2 + ̺(x)2)− 4̺(x)2 = 0.

This impliesc = c′; the pointc ∈ C which realizes the infimum is unique.
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Theorem 13.7 (Riesz’s first theorem)
LetH1 be a closed linear subspace of the
Hilbert spaceH. Then we have

H = H1 ⊕H⊥
1 ,

that is, anyx ∈ H has a unique repre-
sentationx = x1 + x2 with x1 ∈ H1 and
x2 ∈ H⊥

1 .

Proof. Existence. Apply Lemma 13.6 to the convex, closed setH1. There exists a unique
x1 ∈ H1 such that

̺(x) = inf{‖x− y‖ | y ∈ H1} = ‖x− x1‖ ≤ ‖x− x1 − ty1‖

for all t ∈ K andy1 ∈ H1. homework 42.2 (c) now impliesx2 = x − x1 ⊥ y1 for all y1 ∈ H1.
Hencex2 ∈ H⊥

1 . Therefore,x = x1 + x2, and the existence of such a representation is shown.
Uniqueness.Suppose thatx = x1 + x2 = x′1 + x′2 are two possibilities to writex as a sum of
elements ofx1, x

′
1 ∈ H1 andx2, x

′
2 ∈ H⊥

1 . Then

x1 − x′1 = x′2 − x2 = u

belongs to bothH1 andH⊥
1 (by linearity ofH1 andH2). Hence〈u , u〉 = 0 which implies

u = 0. That is,x1 = x′1 andx2 = x′2.

Let x = x1 + x2 be as above. Then the mappingsP1(x) = x1 andP2(x) = x2 are well-defined
on H. They are calledorthogonal projectionsof H ontoH1 andH2, respectively. We will
consider projections in more detail later.

Example 13.3 LetH be a Hilbert space,z ∈ H, z 6= 0, H1 = K z the one-dimensional linear
subspace spanned by one single vectorz. Since any finite dimensional subspace is closed,
Riesz’s first theorem applies. We want to compute the projections ofx ∈ H with respect toH1

andH⊥
1 . Let x1 = αz; we have to determineα such that〈x− x1 , z〉 = 0, that is

〈x− αz , z〉 = 〈x , z〉 − 〈αz , z〉 = 〈x , z〉 − α 〈z , z〉 = 0.

Hence,

α =
〈x , z〉
〈z , z〉 =

〈x , z〉
‖z‖2

.

The Riesz’s representation with respect toH1 = Kz andH⊥
1 is

x =
〈x , z〉
‖z‖2

z +

(
x− 〈x , z〉

‖z‖2
z

)
.
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(b) Riesz’s Representation Theorem

Recall from Section 11 that alinear functionalon the vector spaceE is a mappingF : E → K
such thatF (λ1x1 + λ2x2) = λ1F (x1) + λ2F (x2) for all x1, x2 ∈ E andλ1, λ2 ∈ K.
Let (E, ‖·‖) be a normed linear space overK. Recall that a linear functionalF : E → K is
calledcontinuousif xn −→ x in E impliesF (xn) −→ F (x).
The set of all continuous linear functionalsF onE form a linear spaceE ′ with the same linear
operations as inE∗.
Now let (H, 〈· , ·〉) be a Hilbert space. By Lemma 13.3,Fy : H → K, Fy(x) = 〈x , y〉 defines
a continuous linear functional onH. Riesz’s representation theorem states thatanycontinuous
linear functional onH is of this form.

Theorem 13.8 (Riesz’s Representation Theorem)LetF be a continuous linear functional on
the Hilbert spaceH.
Then there exists a unique elementy ∈ H such thatF (x) = Fy(x) = 〈x , y〉 for all x ∈ H.

Proof. Existence.Let H1 = kerF be the null-space of the linear functionalF . H1 is a linear
subspace (sinceF is linear).H1 is closed sinceH1 = F−1({0}) is the preimage of the closed
set{0} under the continuous mapF . By Riesz’s first theorem,H = H1 ⊕H⊥

1 .
Case 1.H⊥

1 = {0}. ThenH = H1 andF (x) = 0 for all x. We can choosey = 0; F (x) =

〈x , 0〉.
Case 2.H⊥

1 6= {0}. Supposeu ∈ H⊥
1 , u 6= 0. ThenF (u) 6= 0 (otherwise,u ∈ H⊥

1 ∩H1 such
that〈u , u〉 = 0 which impliesu = 0). We have

F

(
x− F (x)

F (u)
u

)
= F (x)− F (x)

F (u)
F (u) = 0.

Hencex− F (x)

F (u)
u ∈ H1. Sinceu ∈ H⊥

1 we have

0 =

〈
x− F (x)

F (u)
u , u

〉
= 〈x , u〉 − F (x)

F (u)
〈u , u〉

F (x) =
F (u)

〈u , u〉 〈x , u〉 =

〈
x ,

F (u)

‖u‖2
u

〉
= Fy(x),

wherey =
F (u)

‖u‖2
u.

Uniqueness.Suppose that bothy1, y2 ∈ H give the same functionalF , i. e. F (x) = 〈x , y1〉 =

〈x , y2〉 for all x. This implies

〈y1 − y2 , x〉 = 0, x ∈ H.

In particular, choosex = y1 − y2. This gives‖y1 − y2‖2 = 0; hencey1 = y2.
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(c) Example

Any continuous linear functionals onL2(X,µ) are of the formF (f) =
∫
X
f g dµ with some

g ∈ L2(X,µ). Any continuous linear functional onℓ2 is given by

F ((xn)) =

∞∑

n=1

xnyn, with (yn) ∈ ℓ2.

13.1.4 Orthogonal Sets and Fourier Expansion

Motivation. LetE = Rn be the euclidean space with the standard inner product and standard
basis{e1, . . . , en}. Then we have withxi = 〈x , ei〉

x =
n∑

k=1

xk ek, ‖x‖2 =
n∑

k=1

| xk |2 , 〈x , y〉 =
n∑

k=1

xkyk.

We want to generalize these formulas to arbitrary Hilbert spaces.

(a) Orthonormal Sets

Let (H, 〈· , ·〉) be a Hilbert space.

Definition 13.6 Let {xi | i ∈ I} be a family of elements ofH.
{xi} is called anorthogonal setor OSif 〈xi , xj〉 = 0 for i 6= j.
{xi} is called anorthonormal setor NOSif 〈xi , xj〉 = δij for all i, j ∈ I.

Example 13.4 (a)H = ℓ2, en = (0, 0, . . . , 0, 1, 0, . . . ) with the1 at thenth component. Then
{en | n ∈ N} is an OS inH.
(b)H = L2((0, 2π)) with the Lebesgue measure,〈f , g〉 =

∫ 2π

0
fg dλ. Then

{1, sin(nx), cos(nx) | n ∈ N}
is an OS inH.

{
1√
2π
,

sin(nx)√
π

,
cos(nx)√

π
| n ∈ N} , {

einx

√
2π
| n ∈ N}

to be orthonormal sets ofH.

Lemma 13.9 (The Pythagorean Theorem)Let{x1, . . . , xk} be an OS inH, then

‖x1 + · · ·+ xk‖2 = ‖x1‖2 + · · ·+ ‖xk‖2 .

The easy proof is left to the reader.

Lemma 13.10 Let {xn} be an OS inH. Then
∑∞

k=1 xk converges if and only if
∑∞

k=1 ‖xk‖
2

converges.

The proof is in the appendix.
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(b) Fourier Expansion and Completeness

Throughout this paragraph let{xn | n ∈ N} an NOS in the Hilbert spaceH.

Definition 13.7 The numbers〈x , xn〉, n ∈ N, are calledFourier coefficientsof x ∈ H with
respect to the NOS{xn}.

Example 13.5 Consider the NOS

{
1√
2π
,

sin(nx)√
π

,
cos(nx)√

π
| n ∈ N} from the previous ex-

ample onH = L2((0, 2π)). Let f ∈ H. Then
〈
f ,

sin(nx)√
π

〉
=

1√
π

∫ 2π

0

f(t) sin(nt) dt,

〈
f ,

cos(nx)√
π

〉
=

1√
π

∫ 2π

0

f(t) cos(nt) dt,

〈
f ,

1√
2π

〉
=

1√
2π

∫ 2π

0

f(t) dt,

These are the usual Fourier coefficients—up to a factor. Notethat we have another normaliza-
tion than in Definition 6.3 since the inner product there has the factor1/(2π).

Proposition 13.11 (Bessel’s Inequality)For x ∈ H we have

∞∑

k=1

| 〈x , xk〉 |2 ≤ ‖x‖2 . (13.5)

Proof. Letn ∈ N be a positive integer andyn = x−∑n
k=1 〈x , xk〉 xk. Then

〈yn , xm〉 = 〈x , xm〉 −
n∑

k=1

〈x , xk〉 〈xk , xm〉 = 〈x , xm〉 −
n∑

k=1

〈x , xk〉 δkm = 0

for m = 1, . . . , n. Hence,{yn, 〈x , x1〉x1, . . . , 〈x , xn〉 xn} is an OS. By Lemma 13.9

‖x‖2 =

∥∥∥∥∥yn +

n∑

k=1

〈x , xk〉 xk

∥∥∥∥∥

2

= ‖yn‖2 +

n∑

k=1

| 〈x , xk〉 |2 ‖xk‖2 ≥
n∑

k=1

| 〈x , xk〉 |2 ,

since‖xk‖2 = 1 for all k. Taking the supremum over alln on the right, the assertion follows.

Corollary 13.12 For anyx ∈ H the series
∞∑

k=1

〈x , xk〉 xk converges inH.

Proof. Since{〈x , xk〉xk} is an OS, by Lemma 13.10 the series converges if and only if the
series

∑∞
k=1 ‖〈x , xk〉 xk‖

2 =
∑∞

k=1 | 〈x , xk〉 |
2 converges. By Bessel’s inequality, this series

converges.

We call
∑∞

k=1 〈x , xk〉 xk theFourier seriesof x with respect to the NOS{xk}.
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Remarks 13.1 (a) In general, the Fourier series ofx doesnotconverge tox.
(b) The NOS{ 1√

2π
, sin(nx)√

π
, cos(nx)√

π
} gives the ordinary Fourier series of a functionf which is

integrable over(0, 2π).

Theorem 13.13Let{xk | k ∈ N} be an NOS inH. The following are equivalent:

(a)x =
∞∑

k=1

〈x , xk〉 xk for all x ∈ H, i.e. the Fourier series ofx converges tox.

(b) 〈z , xk〉 = 0 for all k ∈ N impliesz = 0, i. e. the NOS ismaximal.

(c) For everyx ∈ H we have‖x‖2 =
∞∑

k=1

| 〈x , xk〉 |2.

(d) If x ∈ H andy ∈ H, then〈x , y〉 =
∞∑

k=1

〈x , xk〉 〈xk , y〉.

Formula(c) is calledParseval’s identity.

Definition 13.8 An orthonormal set{xi | i ∈ N} which satisfies the above (equivalent) prop-
erties is called acomplete orthonormal system, CNOS for short.

Proof. (a)→ (d): Since the inner product is continuous in both components we have

〈x , y〉 =
〈 ∞∑

k=1

〈x , xk〉 xk ,
∞∑

n=1

〈y , xn〉 xn
〉

=
∞∑

k,n=1

〈x , xk〉 〈y , xn〉 〈xk , xn〉︸ ︷︷ ︸
δkn

=

∞∑

k=1

〈x , xk〉 〈xk , y〉 .

(d)→ (c): Puty = x.
(c)→ (b): Suppose〈z , xk〉 = 0 for all k. By (c) we then have

‖z‖2 =

∞∑

k=1

| 〈z , xk〉 |2 = 0; hence z = 0.

(b)→ (a): Fix x ∈ H and puty =
∑∞

k=1 〈x , xk〉 xk which converges according to Corol-
lary 13.12. Withz = x− y we have for all positive integersn ∈ N

〈z , xn〉 = 〈x− y , xn〉 =

〈
x−

∞∑

k=1

〈x , xk〉 xk , xn
〉

〈z , xn〉 = 〈x , xn〉 −
∞∑

k=1

〈x , xk〉 〈xk , xn〉 = 〈x , xn〉 − 〈x , xn〉 = 0.

This showsz = 0 and thereforex = y, i. e. the Fourier series ofx converges tox.
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Example 13.6 (a) H = ℓ2, {en | n ∈ N} is an NOS. We show that this NOS is complete.
For, let x = (xn) be orthogonal to everyen, n ∈ N; that is,0 = 〈x , en〉 = xn. Hence,
x = (0, 0, . . . ) = 0. By (b), {en} is a CNOS. How does the Fourier series ofx look like? The
Fourier coefficients ofx are〈x , en〉 = xn such that

x =

∞∑

n=1

xn en

is the Fourier series ofx . The NOS{en | n ≥ 2} is not complete.
(b)H = L2 ((0, 2π)),

{
1√
2π
,

sin(nx)√
π

,
cos(nx)√

π
| n ∈ N} , and

{
einx

√
2π
| n ∈ Z}

are both CNOSs inH. This was stated in Theorem6.14

(c) Existence of CNOS in a Separable Hilbert Space

Definition 13.9 A metric spaceE is calledseparableif there exists a countable dense subset
of E.

Example 13.7 (a)Rn is separable.M = {(r1, . . . , rn) | r1, . . . , rn ∈ Q} is a countable dense
set inRn.
(b)Cn is separable.M = {(r1 + is1, . . . , rn + isn) | r1, . . . , rn, s1, . . . , sn ∈ Q} is a countable
dense subset ofCn.
(c) L2([a, b]) is separable. The polynomials{1, x, x2, . . . } are linearly independent inL2([a, b])

and they can be orthonormalized via Schmidt’s process. As a result we get a countable CNOS
in L2([a, b]) (Legendre polynomials in case−a = 1 = b). However,L2(R) contains no polyno-
mial; in this case theHermite functionswhich are of the formpn(x) e−x

2
with polynomialspn,

form a countable CNOS.
More general,L2(G, λn) is separable for any regionG ⊂ Rn with respect to the Lebesgue
measure.
(d) Any Hilbert space is isomorphic to someL2(X,µ) whereµ is the counting measure onX;
X = N givesℓ2. X uncountable gives a non-separable Hilbert space.

Proposition 13.14 (Schmidt’s Orthogonalization Process)Let {yk} be an at most countable
linearly independent subset of the Hilbert spaceH. Then there exists an NOS{xk} such that
for everyn

lin {y1, . . . , yn} = lin {x1, . . . , xn}.
The NOS can be computed recursively,

x1 :=
y1

‖y1‖
, xn+1 = (yn+1 −

n∑

k=1

〈yn+1 , xk〉 xk)/ ‖∼‖

Corollary 13.15 Let {ek | k ∈ N} be an NOS whereN = {1, . . . , n} for somen ∈ N
or N = N. Suppose thatH1 = lin {ek | k ∈ N} is the linear span of the NOS. Then
x1 =

∑
k∈N 〈x , ek〉 ek is the orthogonal projection ofx ∈ H ontoH1.
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Proposition 13.16 (a)A Hilbert spaceH has an at most countable complete orthonormal sys-
tem (CNOS) if and only ifH is separable.
(b) LetH be a separable Hilbert space. ThenH is either isomorphic toKn for somen ∈ N or
to ℓ2.

13.1.5 Appendix

(a) The Inner Product constructed from an Inner Product Norm

Proof of Proposition 13.5. We consider only the caseK = R. Assume that the parallelogram
identity is satisfied. We will show that

〈x , y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2

)

defines a bilinear form onE.
(a) We show Additivity. First note that the parallelogram identity implies

‖x1+x2+y‖2 =
1

2
‖x1+x2+y‖2 +

1

2
‖x1+x2+y‖2

=
1

2

(
2 ‖x1+y‖2 +2 ‖x2‖2−‖x1−x2+y‖2

)
+

1

2

(
2 ‖x2+y‖2 +2 ‖x1‖2−‖x2−x1+y‖2

)

= ‖x1+y‖2 + ‖x2+y‖2 + ‖x1‖2 + ‖x2‖2−
1

2

(
‖x1−x2+y‖2 + ‖x2−x1+y‖2

)

Replacingy by−y, we have

‖x1+x2−y‖2 = ‖x1−y‖2 + ‖x2−y‖2 + ‖x1‖2 + ‖x2‖2−
1

2

(
‖x1−x2−y‖2 + ‖x2−x1−y‖2

)
.

By definition and the above two formulas,

〈x1 + x2 , y〉 =
1

4

(
‖x1 + x2 + y‖2 − ‖x1 + x2 − y‖2

)

=
1

2

(
‖x1 + y‖2 − ‖x1 − y‖2 + ‖x2 + y‖2 − ‖x2 − y‖2

)

= 〈x1 , y〉+ 〈x2 , y〉 ,

that is,〈· , ·〉 is additive in the first variable. It is obviously symmetric and hence additive in the
second variable, too.
(b) We show〈λx , y〉 = λ 〈x , y〉 for all λ ∈ R, x, y ∈ E. By (a), 〈2x , y〉 = 2 〈x , y〉. By
induction onn, 〈nx , y〉 = n 〈x , y〉 for all n ∈ N. Now letλ = m

n
,m,n ∈ N. Then

n 〈λx , y〉 = n
〈m
n
x , y

〉
=
〈
n
m

n
x , y

〉
= m 〈x , y〉

=⇒ 〈λx , y〉 =
m

n
〈x , y〉 = λ 〈x , y〉 .

Hence,〈λx , y〉 = λ 〈x , y〉 holds for all positive rational numbersλ. Supposeλ ∈ Q+, then

0 = 〈x+ (−x) , y〉 = 〈x , y〉+ 〈−x , y〉
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implies 〈−x , y〉 = −〈x , y〉 and, moreover,〈−λx , y〉 = −λ 〈x , y〉 such that the equation
holds for allλ ∈ Q. Suppose thatλ ∈ R is given. Then there exists a sequence(λn), λn ∈ Q
of rational numbers withλn → λ. This impliesλnx → λx for all x ∈ E and, since‖·‖ is
continuous,

〈λx , y〉 = lim
n→∞

〈λnx , y〉 = lim
n→∞

λn 〈x , y〉 = λ 〈x , y〉 .

This completes the proof.

(b) Convergence of Orthogonal Series

We reformulate Lemma 13.10

Let {xn} be an OS inH. Then
∑∞

k=1 xk converges if and only if
∑∞

k=1 ‖xk‖
2

converges.

Note that the convergence of a series
∑∞

i=1 xi of elementsxi of a Hilbert spaceH is defined
to be the limit of the partial sumslimn→∞

∑n
i=1 xi. In particular, the Cauchy criterion applies

sinceH is complete:

The series
∑
yi converges if and only if for everyε > 0 there existsn0 ∈ N such

thatm,n ≥ n0 imply

∥∥∥∥∥
n∑

i=m

yi

∥∥∥∥∥ < ε.

Proof. By the above discussion,
∑∞

k=1 xk converges if and only if‖∑n
k=m xk‖

2 becomes small
for sufficiently largem,n ∈ N. By the Pythagorean theorem this term equals

n∑

k=m

‖xk‖2 ;

hence the series
∑
xk converges, if and only if the series

∑ ‖xk‖2 converges.

13.2 Bounded Linear Operators in Hilbert Spaces

13.2.1 Bounded Linear Operators

Let (E1, ‖·‖1) and(E2, ‖·‖2) be normed linear space. Recall that a linear mapT : E1 → E2 is
calledcontinuousif xn −→ x in E1 impliesT (xn) −→ T (x) in E2.

Definition 13.10 (a) A linear mapT : E1 → E2 is calledboundedif there exist a positive real
numberC > 0 such that

‖T (x)‖2 ≤ C ‖x‖1 , for all x ∈ E1. (13.6)
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(b) Suppose thatT : E1 → E2 is a bounded linear map. Then theoperator normis the smallest
numberC satisfying (13.6) for allx ∈ E1, that is

‖T‖ = inf {C > 0 | ∀x ∈ E1 : ‖T (x)‖2 ≤ C ‖x‖1} .

One can show that

(a) ‖T‖ = sup

{‖T (x)‖2
‖x‖1

| x ∈ E1, x 6= 0

}
,

(b) ‖T‖ = sup {‖T (x)‖2 | ‖x‖1 ≤ 1}
(c) ‖T‖ = sup {‖T (x)‖2 | ‖x‖1 = 1}

Indeed, we may restrict ourselves to unit vectors since

‖T (αx)‖2
‖αx‖1

=
|α | ‖T (x)‖2
|α | ‖x‖1

=
‖T (x)‖2
‖x‖1

.

This shows the equivalence of (a) and (c). Since‖T (αx)‖2 = |α | ‖T (x)‖2, the suprema (b)
and (c) are equal. From The last equality follows from the fact that the least upper bound is the
infimum over all upper bounds. From (a) and (d) it follows,

‖T (x)‖2 ≤ ‖T‖ ‖x‖1 . (13.7)

Also, if E1
S⇒E2

T⇒E3 are bounded linear mappings, thenT ◦S is a bounded linear mapping
with

‖T ◦S‖ ≤ ‖T‖ ‖S‖ .
Indeed, forx 6= 0 one has by (13.7)

‖T (S(x))‖3 ≤ ‖T‖ ‖S(x)‖2 ≤ ‖T‖ ‖S‖ ‖x‖1 .

Hence,‖(T ◦S)(x)‖3 / ‖x‖1 ≤ ‖T‖ ‖S‖.

Proposition 13.17 For a linear mapT : E1 → E2 of a normed spaceE1 into a normed space
E2 the following are equivalent:

(a)T is bounded.
(b) T is continuous.
(c) T is continuous at one point ofE1.

Proof. (a)→ (b). This follows from the fact

‖T (x1)− T (x2)‖ = ‖T (x1 − x2)‖ ≤ ‖T‖ ‖x1 − x2‖ ,

andT is even uniformly continuous onE1. (b) trivially implies (c).
(c) → (a). SupposeT is continuous atx0. To eachε > 0 one can findδ > 0 such that
‖x− x0‖ < δ implies‖T (x)− T (x0)‖ < ε. Let y = x− x0. In other words‖y‖ < δ implies

‖T (y + x0)− T (x0)‖ = ‖T (y)‖ < ε.

Supposez ∈ E1, ‖z‖ ≤ 1. Then‖δ/2z‖ ≤ δ/2 < δ; hence‖T (δ/2z)‖ < ε. By linearity ofT ,
‖T (z)‖ < 2ε/δ. This shows‖T‖ ≤ 2ε/δ.
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Definition 13.11 Let E andF be normed linear spaces. LetL (E,F ) denote the set of all
bounded linear maps fromE toF . In caseE = F we simply writeL (E) in place ofL (E,F ).

Proposition 13.18 LetE andF be normed linear spaces. ThenL (E,F ) is a normed linear
space if we define the linear structure by

(S + T )(x) = S(x) + T (x), (λT )(x) = λT (x)

for S, T ∈ L (E,F ), λ ∈ K. The operator norm‖T‖ makesL (E,F ) a normed linear space.

Note thatL (E,F ) is complete if and only ifF is complete.

Example 13.8 (a) Recall that L (Kn,Km) is a normed vector space with‖A‖ ≤(∑
i,j | aij |

2
) 1

2
, whereA = (aij) is the matrix representation of the linear operatorA, see

Proposition 7.1
(b) The spaceE ′ = L (E,K) of continuous linear functionals onE.
(c)H = L2((0, 1)), g ∈ C([0, 1]),

Tg(f)(t) = g(t)f(t)

defines a bounded linear operator onH. (see homework)
(d)H = L2((0, 1)), k(s, t) ∈ L2([0, 1]× [0, 1]). Then

(Kf)(t) =

∫ 1

0

k(s, t)f(s) ds, f ∈ H = L2([0, 1])

defines a continuous linear operatorK ∈ L (H). We have

| (Kf)(t) |2 =

∣∣∣∣
∫ 1

0

k(s, t)f(s) ds

∣∣∣∣
2

≤
(∫ 1

0

| k(s, t) | | f(s) | ds
)2

≤
C-S-I

∫ 1

0

| k(s, t) |2 ds

∫ 1

0

| f(s) |2 ds

=

∫ 1

0

| k(s, t) |2 ds ‖f‖2H .

Hence,

‖K(f)‖2H ≤
∫ 1

0

(∫ 1

0

| k(s, t) |2 ds

)
dt ‖f‖2H

‖K(f)‖H ≤ ‖k‖L2([0,1]×[0,1]) ‖f‖H .

This showsKf ∈ H and further,‖K‖ ≤ ‖k‖L2([0,1]2). K is called anintegral operator; K is
compact, i. e. it maps the unit ball into a set whose closure iscompact.
(e)H = L2(R), a ∈ R,

(Vaf)(t) = f(t− a), t ∈ R,
defines a bounded linear operator called the shift operator.Indeed,

‖Vaf‖22 =

∫R | f(t− a) |2 dt =

∫R | f(t) |2 dt = ‖f‖22 ;
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since all quotients‖Va(x)‖ / ‖x‖ = 1, ‖Va‖ = 1 .
(f) H = ℓ2. We define theright-shiftS by

S(x1, x2, . . . ) = (0, x1, x2, . . . ).

Obviously,‖S(x)‖ = ‖x‖ =
(∑∞

n=1 |xn |
2) 1

2 . Hence,‖S‖ = 1.
(g) LetE1 = C1([0, 1]) andE2 = C([0, 1]). Define thedifferentiationoperator(Tf)(t) = f ′(t).
Let ‖f‖1 = ‖f‖2 = sup

t∈[0,1]

| f(t) |. ThenT is linear but not bounded. Indeed, letfn(t) = 1− tn.

Then‖fn‖1 = 1 andTfn(t) = ntn−1 such that‖tfn‖2 = n. Thus,‖Tfn‖2 / ‖fn‖1 = n→ +∞
asn→∞. T is unbounded.
However, if we put‖f‖1 = sup

t∈[0,1]

| f(t) |+ sup
t∈[0,1]

| f ′(t) | and‖f‖2 as before, thenT is bounded

since
‖Tf‖2 = sup

t∈[0,1]

| f ′(t) | ≤ ‖f‖1 =⇒ ‖T‖ ≤ 1.

13.2.2 The Adjoint Operator

In this subsectionH is a Hilbert space andL (H) the space of bounded linear operators onH.
Let T ∈ L (H) be a bounded linear operator andy ∈ H. ThenF (x) = 〈T (x) , y〉 defines a
continuous linear functional onH. Indeed,

|F (x) | = | 〈T (x) , y〉 | ≤
CSI
‖T (x)‖ ‖y‖ ≤ ‖T‖ ‖y‖︸ ︷︷ ︸

C

‖x‖ ≤ C ‖x‖ .

Hence,F is bounded and therefore continuous. in particular,

‖F‖ ≤ ‖T‖ ‖y‖

By Riesz’s representation theorem, there exists a unique vectorz ∈ H such that

〈T (x) , y〉 = F (x) = 〈x , z〉 .

Note that by the above inequality

‖z‖ = ‖F‖ ≤ ‖T‖ ‖y‖ . (13.8)

Supposey1 is another element ofH which corresponds toz1 ∈ H with

〈T (x) , y1〉 = 〈x , z1〉 .

Finally, letu ∈ H be the element which corresponds toy + y1,

〈T (x) , y + y1〉 = 〈x , u〉 .

Since the elementu which is given by Riesz’s representation theorem is unique,we haveu =

z + z1. Similarly,
〈T (x) , λy〉 = F (x) = 〈x , λz〉

shows thatλz corresponds toλy.
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Definition 13.12 The above correspondencey 7→ z is linear. Define the linear operatorT∗ by
z = T∗(y). By definition,

〈T (x) , y〉 =
〈
x , T∗(y)

〉
, x, y ∈ H. (13.9)

T∗ is called theadjoint operator toT .

Proposition 13.19 LetT, T1, T2 ∈ L (H). ThenT∗ is a bounded linear operator with
∥∥T∗

∥∥ =

‖T‖. We have

(a) (T1 + T2)
∗ = T∗1 + T∗2 and

(b) (λT )∗ = λT∗.
(c) (T1T2)

∗ = T∗2 T∗1 .

(d) If T is invertible inL (H), so isT∗, and we have(T∗)−1 = (T−1)∗.
(e) (T∗)∗ = T .

Proof. Inequality (13.8) shows that

∥∥T∗(y)
∥∥ ≤ ‖T‖ ‖y‖ , y ∈ H.

By definition, this implies ∥∥T∗
∥∥ ≤ ‖T‖

andT∗ is bounded. Since

〈
T∗(x) , y

〉
= 〈y , T∗(x)〉 = 〈T (y) , x〉 = 〈x , T (y)〉 ,

we get(T∗)∗ = T . We conclude‖T‖ =
∥∥T∗∗

∥∥ ≤
∥∥T∗

∥∥ ; such that
∥∥T∗

∥∥ = ‖T‖.
(a). Forx, y ∈ H we have

〈(T1 + T2)(x) , y〉 = 〈T1(x) + T2(x) , y〉 = 〈T1(x) , y〉+ 〈T2(x) , y〉
=
〈
x , T∗1 (y)

〉
+
〈
x , T∗2 (y)

〉
=
〈
x , (T∗1 + T∗2 )(y)

〉
;

which proves (a).
(c) and (d) are left to the reader.

A mapping∗ : A → A such that the above properties (a), (b), and (c) are satisfiedis called an
involution. An algebra with involution is called a∗-algebra.
We have seen thatL (H) is a (non-commutative)∗-algebra. An example of a commutative
∗-algebra isC(K) with the involutionf∗(x) = f(x).

Example 13.9 (Example 13.8 continued)
(a)H = Cn, A = (aij) ∈ M(n× n,C). ThenA∗ = (bij) has the matrix elementsbij = aji.
(b)H = L2([0, 1]), T∗g = Tg.
(c)H = L2(R), Va(f)(t) = f(t− a) (Shift operator),V ∗a = V−a.
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(d)H = ℓ2. Theright-shiftS is defined byS((xn)) = (0, x1, x2, . . . ). We compute the adjoint
S∗.

〈S(x) , y〉 =

∞∑

n=2

xn−1yn =

∞∑

n=1

xnyn+1 = 〈(x1, x2, . . . ) , (y2, y3, . . . )〉 .

Hence,S∗((yn)) = (y2, y3, . . . ) is theleft-shift.

13.2.3 Classes of Bounded Linear Operators

LetH be acomplexHilbert space.

(a) Self-Adjoint and Normal Operators

Definition 13.13 An operatorA ∈ L (H) is called

(a)self-adjoint, if A∗ = A,

(b) normal, if A∗A = AA∗,
A self-adjoint operatorA is calledpositive, if 〈Ax , x〉 ≥ 0 for all x ∈ H. We writeA ≥ 0. If
A andB are self-adjoint, we writeA ≥ B if A−B ≥ 0.

A crucial role in proving the simplest properties plays thepolarization identitywhich gener-
alizes the polarization identity from Subsection 13.1.2. However, this exist only incomplex
Hilbert spaces.

4 〈A(x) , y〉 = 〈A(x+ y) , x+ y〉 − 〈A(x− y) , x− y〉+
+ i 〈A(x+ iy) , x+ iy〉 − i 〈A(x− iy) , x− iy〉 .

We use the identity as follows

〈A(x) , x〉 = 0 for all x ∈ H implies A = 0.

Indeed, by the polarization identity,〈A(x) , y〉 = 0 for all x, y ∈ H. In particulary = A(x)

yieldsA(x) = 0 for all x; thus,A = 0.

Remarks 13.2 (a)A is normal if and only if‖A(x)‖ =
∥∥A∗(x)

∥∥ for all x ∈ H. Indeed, ifA
is normal, then for allx ∈ H we have

〈
A∗A(x) , x

〉
=
〈
AA∗(x) , x

〉
which imply‖A(x)‖2 =

〈A(x) , A(x)〉 =
〈
A∗(x) , A∗(x)

〉
=
∥∥A∗(x)

∥∥2
. On the other hand, the polarization identity

and
〈
A∗A(x) , x

〉
=
〈
AA∗(x) , x

〉
implies

〈
(A∗A− AA∗)(x) , x

〉
= 0 for all x; hence

A∗A− AA∗ = 0 which proves the claim.
(b) Sums and real scalar multiples of self-adjoint operators are self-adjoint.
(c) The productAB of self-adjoint operators is self-adjoint if and only ifA andB commute
with each other,AB = BA.
(d)A is self-adjoint if and only if〈Ax , x〉 is real for allx ∈ H.
Proof. LetA∗ = A. Then〈Ax , x〉 = 〈x , Ax〉 = 〈Ax , x〉 is real; for the opposite direction
〈A(x) , x〉 = 〈x , A(x)〉 and the polarization identity yields〈A(x) , y〉 = 〈x , A(y)〉 for all
x, y; henceA∗ = A.
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(b) Unitary and Isometric Operators

Definition 13.14 Let T ∈ L (H). ThenT is called

(a)unitary, if T∗T = I = T T∗.
(b) isometric, if ‖T (x)‖ = ‖x‖ for all x ∈ H.

Proposition 13.20 (a) T is isometric if and only ifT∗T = I and if and only if〈T (x) , T (y)〉 =

〈x , y〉 for all x, y ∈ H.
(b) T is unitary, if and only ifT is isometric and surjective.
(c) If S, T are unitary, so areST andT−1. The unitary operators ofL (H) form a group.

Proof. (a)T isometric yields〈T (x) , T (x)〉 = 〈x , x〉 and further
〈
(T∗ T − I)(x) , x

〉
= 0 for

all x. The polarization identity impliesT∗ T = I. This implies
〈
(T∗ T − I)(x) , y

〉
= 0, for

all x, y ∈ H. Hence,〈T (x) , T (y)〉 = 〈x , y〉. Insertingy = x showsT is isometric.
(b) SupposeT is unitary.T∗T = I showsT is isometric. SinceT T∗ = I, T is surjective.
Suppose now,T is isometric and surjective. SinceT is isometric,T (x) = 0 impliesx = 0;
hence,T is bijective with an inverse operatorT−1. Inserty = T−1(z) into 〈T (x) , T (y)〉 =

〈x , y〉. This gives

〈T (x) , z〉 =
〈
x , T−1(z)

〉
, x, z ∈ H.

HenceT−1 = T∗ and thereforeT∗T = T T∗ = I.
(c) is easy (see homework 45.4).

Note that an isometric operator is injective with norm1 (since‖T (x)‖ / ‖x‖ = 1 for all x). In
caseH = Cn, the unitary operators onCn form theunitary groupU(n). In caseH = Rn, the
unitary operators onH form theorthogonal groupO(n).

Example 13.10 (a) H = L2(R). The shift operatorVa is unitary sinceVaVb = Va+b. The
multiplication operatorTgf = gf is unitary if and only if| g | = 1. Tg is self-adjoint (resp.
positive) if and only ifg is real (resp. positive).
(b)H = ℓ2, the right-shiftS((xn)) = (0, x1, x2, . . . ) is isometric but not unitary sinceS is not
surjective.S∗ is not isometric sinceS∗(1, 0, . . . ) = 0; henceS∗ is not injective.
(c) Fourier transform. Forf ∈ L1(R) define

(Ff)(t) =
1√
2π

∫R e−itxf(x) dx.

Let S(R) = {f ∈ C∞(R) | supt∈R ∣∣ tnf (k)(t)
∣∣ < ∞, ∀n, k ∈ Z+}. S(R) is called the

Schwartz spaceafter Laurent Schwartz. We haveS(R) ⊆ L1(R)∩L2(R), for example,f(x) =

e−x
2 ∈ S(R). We will show later thatF : S(R) → S(R) is bijective and norm preserving,

‖F(f)‖L2(R) = ‖f‖L2(R), f ∈ S(R). F has a unique extension to a unitary operator onL2(R).
The inverse Fourier transform is

(F−1f)(t) =
1√
2π

∫R eitxf(x) dx, f ∈ S(R).
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13.2.4 Orthogonal Projections

(a) Riesz’s First Theorem—revisited

LetH1 be a closed linear subspace. By Theorem 13.7 anyx ∈ H has a unique decomposition
x = x1 + x2 with x1 ∈ H1 andx2 ∈ H⊥

1 . The mapPH1(x) = x1 is a linear operator fromH
to H, (see homework 44.1).PH1 is called theorthogonal projection from H onto the closed
subspaceH1. Obviously,H1 is the image ofPH1 ; in particular,PH1 is surjective if and only if
H1 = H. In this case,PH = I is the identity. Since

‖PH1(x)‖2 = ‖x1‖2 ≤ ‖x1‖2 + ‖x2‖2 = ‖x‖2

we have‖PH1‖ ≤ 1. If H1 6= {0}, there exists a non-zerox1 ∈ H1 such that‖PH1(x1)‖ = ‖x1‖.
This shows‖PH1‖ = 1.
Here is the algebraic characterization of orthogonal projections.

Proposition 13.21 A linear operatorP ∈ L (H) is an orthogonal projection if and only if
P 2 = P andP∗ = P .
In this caseH1 = {x ∈ H | P (x) = x}.

Proof. “→”. Suppose thatP = PH1 is the projection ontoH1. SinceP is the identity onH1,
P 2(x) = P (x1) = x1 = P (x) for all x ∈ H; henceP 2 = P .
Let x = x1 + x2 andy = y1 + y2 be the unique decompositions ofx andy in elements ofH1

andH⊥
1 , respectively. Then

〈P (x) , y〉 = 〈x1 , y1 + y2〉 = 〈x1 , y1〉+ 〈x1 , y2〉︸ ︷︷ ︸
=0

= 〈x1 , y1〉 = 〈x1 + x2 , y1〉 = 〈x , P (y)〉 ,

that is,P∗ = P .
“←”. SupposeP 2 = P = P∗ and putH1 = {x | P (x) = x}. First note, that forP 6= 0,H1 6=
{0} is non-trivial. Indeed, sinceP (P (x)) = P (x), the image ofP is part of the eigenspace
of P to the eigenvalues1, P (H) ⊂ H1. Since forz ∈ H1, P (z) = z, H1 ⊂ P (H) and thus
H1 = P (H).
SinceP is continuous and{0} is closed,H1 = (P − I)−1({0}) is a closed linear subspace of
H. By Riesz’s first theorem,H = H1 ⊕H⊥

1 . We have to show thatP (x) = x1 for all x.
SinceP 2 = P , P (P (x)) = P (x) for all x; henceP (x) ∈ H1. We showx− P (x) ∈ H⊥

1 which
completes the proof. For, letz ∈ H1, then

〈x− P (x) , z〉 = 〈x , z〉 − 〈P (x) , z〉 = 〈x , z〉 − 〈x , P (z)〉 = 〈x , z〉 − 〈x , z〉 = 0.

Hencex = P (x) + (I − P )(x) is the unique Riesz decomposition ofx with respect toH1 and
H⊥

1 .

Example 13.11 (a) Let{x1, . . . , xn} be an NOS inH. Then

P (x) =
n∑

k=1

〈x , xk〉 xk, x ∈ H,
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defines the orthogonal projectionP : H → H onto lin {x1, . . . , xn}. Indeed, sinceP (xm) =∑n
k=1 〈xm , xk〉 xk = xm, P 2 = P and since

〈P (x) , y〉 =
n∑

k=1

〈x , xk〉 〈xk , y〉 =

〈
x ,

n∑

k=1

〈xk , y〉xk
〉

= 〈x , P (y)〉 .

Hence,P∗ = P andP is a projection.
(b)H = L2([0, 1]∪ [2, 3]), g ∈ C([0, 1]∪ [2, 3]). Forf ∈ H defineTgf = gf . ThenTg = (Tg)

∗
if and only if g(t) is real for all t. Tg is an orthogonal projection ifg(t)2 = g(t) such that
g(t) = 0 or g(t) = 1. Sinceg is continuous, there are only four solutions:g1 = 0, g2 = 1,
g3 = χ[0,1], andg4 = χ[2,3].
In case ofg3, the subspaceH1 can be identified withL2([0, 1]) sincef ∈ H1 iff Tgf = f iff
gf = f iff f(t) = 0 for all t ∈ [2, 3].

(b) Properties of Orthogonal Projections

Throughout this paragraph letP1 andP2 be orthogonal projections on the closed subspacesH1

andH2, respectively.

Lemma 13.22 The following are equivalent.

(a) P1 + P2 is an orthogonal projection.
(b) P1P2 = 0.
(c) H1 ⊥ H2.

Proof. (a)→ (b). LetP1 + P2 be a projection. Then

(P1 + P2)
2 = P 2

1 + P1P2 + P2P1 + P 2
2 = P1 + P2 + P1P2 + P2P1

!
= P1 + P2,

henceP1P2 + P2P1 = 0. Multiplying this from the left byP1 and from the right byP1 yields

P1P2 + P1P2P1 = 0 = P1P2P1 + P2P1.

This impliesP1P2 = P2P1 and finallyP1P2 = P2P1 = 0.
(b)→ (c). Letx1 ∈ H1 andx2 ∈ H2. Then

0 = 〈P1P2(x2) , x1〉 = 〈P2(x2) , P1(x1)〉 = 〈x2 , x1〉 .

This showsH1 ⊥ H2.
(c)→ (b). Letx, z ∈ H be arbitrary. Then

〈P1P2(x) , z〉 = 〈P2(x) , P1(z)〉 = 〈x2 , z1〉 = 0;

HenceP1P2(x) = 0 and thereforeP1P2 = 0. The same argument works forP2P1 = 0.
(b)→ (a). SinceP1P2 = 0 impliesP2P1 = 0 (viaH1 ⊥ H2),

(P1 + P2)
∗ = P∗1 + P∗2 = P1 + P2,

(P1 + P2)
2 = P 2

1 + P1P2 + P2P1 + P 2
2 = P1 + 0 + 0 + P2.
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Lemma 13.23 The following are equivalent

(a) P1P2 is an orthogonal projection.
(b) P1P2 = P2P1.

In this case,P1P2 is the orthogonal projection ontoH1 ∩H2.

Proof. (b)→ (a). (P1P2)
∗ = P∗2 P∗1 = P2P1 = P1P2, by assumption. Moreover,(P1P2)

2 =

P1P2P1P2 = P1P1P2P2 = P1P2 which completes this direction.
(a)→ (b). P1P2 = (P1P2)

∗ = P∗2 P∗1 = P2P1.
Clearly,P1P2(H) ⊆ H1 andP2P1(H) ⊆ H2; henceP1P2(H) ⊆ H1 ∩ H2. On the other hand
x ∈ H1 ∩H2 impliesP1P2x = x. This showsP1P2(H) = H1 ∩H2.

The proof of the following lemma is quite similar to that of the previous two lemmas, so we
omit it (see homework 40.5).

Lemma 13.24 The following are equivalent.

(a) H1 ⊆ H2, (d) P1 ≤ P2,

(b) P1P2 = P1, (c) P2P1 = P1,

(e) P2 − P1 is an orth. projection, (f) ‖P1(x)‖ ≤ ‖P2(x)‖ , x ∈ H.

Proof. We show (d)⇒ (c). FromP1 ≤ P2 we conclude thatI − P2 ≤ I − P2. Note that both
I − P1 andI − P2 are again orthogonal projections onH⊥

1 andH⊥
2 , respectively. Thus for all

x ∈ H:

‖(I − P2)P1(x)‖2 = 〈(I − P2)P1(x) , (I − P2)P1(x)〉
=
〈
(I − P2)

∗(I − P2)P1(x) , P1(x)
〉

= 〈(I − P2)P1(x) , P1(x)〉
≤ 〈(I − P1)P1(x) , P1(x)〉 = 〈P1(x)− P1(x) , P1(x)〉 = 〈0 , P1(x)〉 = 0.

Hence,‖(I − P2)P1(x)‖2 = 0 which implies(I − P2)P1 = 0 and thereforeP1 = P2P1.

13.2.5 Spectrum and Resolvent

Let T ∈ L (H) be a bounded linear operator.

(a) Definitions

Definition 13.15 (a) Theresolvent setof T , denoted byρ(T ), is the set of allλ ∈ C such that
there exists a bounded linear operatorRλ(T ) ∈ L (H) with

Rλ(T )(T − λI) = (T − λI)Rλ(T ) = I,
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i. e. thereT − λI has a bounded (continuous) inverseRλ(T ). We callRλ(T ) theresolventof T
atλ.
(b) The setC \ ρ(T ) is called thespectrumof T and is denoted byσ(T ).
(c) λ ∈ C is called aneigenvalueof T if there exists a nonzero vectorx, calledeigenvector,
with (T − λI)x = 0. The set of all eigenvalues is thepoint spectrumσp(T )

Remark 13.3 (a) Note that the point spectrum is a subset of the spectrum,σp(T ) ⊆ σ(T ).
Suppose to the contrary, the eigenvalueλ with eigenvectory belongs to the resolvent set. Then
there existsRλ(T ) ∈ L (H) with

y = Rλ(T )(T − λI)(y) = Rλ(T )(0) = 0

which contradicts the definition of an eigenvector; hence eigenvalues belong to the spectrum.
(b) λ ∈ σp(T ) is equivalent toT − λI not being injective. It may happen thatT − λI is not
surjective, which also impliesλ ∈ σ(T ) (see Example 13.12 (b) below).

Example 13.12 (a)H = Cn,A ∈ M(n×n,C). Since in finite dimensional spacesT ∈ L (H)

is injective if and only ifT is surjective,σ(A) = σp(A).
(b)H = L2([0, 1]). (Tf)(x) = xf(x). We have

σp(T ) = ∅.

Indeed, supposeλ is an eigenvalue andf ∈ L 2([0, 1]) an eigenfunction toT , that is(T −
λI)(f) = 0; hence(x − λ)f(x) ≡ 0 a. e. on[0, 1]. Sincex− λ is nonzero a. e. ,f = 0 a. e. on
[0, 1]. That isf = 0 in H which contradicts the definition of an eigenvector. We haveC \ [0, 1] ⊆ ρ(T ).

Supposeλ 6∈ [0, 1]. Sincex − λ 6= 0 for all x ∈ [0, 1], g(x) =
1

x− λ is a continuous (hence

bounded) function on[0, 1]. Hence,

(Rλf)(x) =
1

x− λ f(x)

defines a bounded linear operator which is inverse toT − λI since

(T − λI)
(

1

x− λ f(x)

)
= (x− λ)

(
1

x− λ f(x)

)
= f(x).

We have
σ(T ) = [0, 1].

Suppose to the contrary that there existsλ ∈ ρ(T )∩ [0, 1]. Then there existsRλ ∈ L (H) with

Rλ(T − λI) = I. (13.10)

By homework 39.5 (a), the norm of the multiplication operator Tg is less that or equal to‖g‖∞
(the supremum norm ofg). Choosefε = χ(λ−ε,λ+ε). SinceχM = χ2

M ,

‖(T − λI)fε‖ =
∥∥(x− λ)χUε(λ)(x)fε(x)

∥∥ ≤ sup
x∈[0,1]

∣∣ (x− λ)χUε(λ)(x)
∣∣ ‖fε‖ .
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However,

sup
x∈[0,1]

∣∣ (x− λ)χUε(λ)(x)
∣∣ = sup

x∈Uε(λ)

| x− λ | = ε.

This shows

‖(T − λI)fε‖ ≤ ε ‖fε‖ .

Insertingfε into (13.10) we obtain

‖fε‖ = ‖Rλ(T − λI)fε‖ ≤ ‖Rλ‖ ‖(T − λI)fε‖ ≤ ‖Rλ‖ ε ‖fε‖

which implies‖Rλ‖ ≥ 1/ε. This contradicts the boundedness ofRλ sinceε > 0 was arbitrary.

(b) Properties of the Spectrum

Lemma 13.25 LetT ∈ L (H). Then

σ(T∗) = σ(T )∗, (complex conjugation) ρ(T∗) = ρ(T )∗.

Proof. Suppose thatλ ∈ ρ(T ). Then there existsRλ(T ) ∈ L (H) such that

Rλ(T )(T − λI) = (T − λI)Rλ(T ) = I

(Rλ(T )(T − λI))∗ = ((T − λI)Rλ)
∗ = I

(T ∗ − λI)Rλ(T )∗ = Rλ(t)
∗(T∗ − λI) = I.

This showsRλ(T
∗) = Rλ(T )∗ is again a bounded linear operator onH. Hence,

ρ(T∗) ⊆ (ρ(T ))∗. Since∗ is an involution (T∗∗ = T ), the opposite inclusion follows.
Sinceσ(T ) is the complement of the resolvent set, the claim for the spectrum follows as well.

Forλ, µ, T andS we have

Rλ(T )−Rµ(T ) = (λ− µ)Rλ(T )Rµ(T ) = (λ− µ)Rµ(T )Rλ(T ),

Rλ(T )−Rλ(S) = Rλ(T )(S − T )Rλ(S).

Proposition 13.26 (a)ρ(T ) is open andσ(T ) is closed.
(b) If λ0 ∈ ρ(T ) and|λ− λ0 | < ‖Rλ0(T )‖−1 thenλ ∈ ρ(T ) and

Rλ(T ) =
∞∑

n=0

(λ− λ0)
nRλ0(T )n+1.

(c) If |λ | > ‖T‖, thenλ ∈ ρ(T ) and

Rλ(T ) = −
∞∑

n=0

λ−n−1T n.
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Proof. (a) follows from (b).
(b) For brevity, we writeRλ0 in place ofRλ0(T ). With q = |λ− λ0 | ‖Rλ0(T )‖, q ∈ (0, 1) we
have

∞∑

n=0

|λ− λ0 |n ‖Rλ0‖n+1 =

∞∑

n=0

qn ‖Rλ0‖ =
‖Rλ0‖
1− q converges.

By homework 38.4,
∑
xn converges if

∑
‖xn‖ converges. Hence,

B =

∞∑

n=0

(λ− λ0)
nRn+1

λ0

converges inL (H) with respect to the operator norm. Moreover,

(T − λI)B = (T − λ0I)B − (λ− λ0)B

=
∞∑

n=0

(λ− λ0)
n(T − λ0I)R

n+1
λ0
−

∞∑

n=0

(λ− λ0)
n+1Rn+1

λ0

=
∞∑

n=0

(λ− λ0)
nRn

λ0
−

∞∑

n=0

(λ− λ0)
n+1Rn+1

λ0

= (λ− λ0)
0R0

λ0
= I.

Similarly, one showsB(T − λI) = I. Thus,Rλ(T ) = B.
(c) Since|λ | > ‖T‖, the series converges with respect to operator norm, say

C = −
∞∑

n=0

λ−n−1T n.

We have

(T − λI)C = −
∞∑

n=0

λ−n−1T n+1 +

∞∑

n=0

λ−nT n = λ0T 0 = I.

Similarly,C(T − λI) = I; henceRλ(T ) = C.

Remarks 13.4 (a) By (b),Rλ(T ) is a holomorphic (i. e. complex differentiable) function in
the variableλ with values inL (H). One can use this to show that the spectrum is non-empty,
σ(T ) 6= ∅.
(b) If ‖T‖ < 1, T − I is invertible with inverse−

∑∞
n=0 T

n.

σ(Τ)

r(T)

0

(c) Proposition 13.26 (c) means: Ifλ ∈ σ(T ) then|λ | ≤
‖T‖. However, there is, in general, a smaller disc around
0 which contains the spectrum. By definition, thespec-
tral radiusr(T ) of T is the smallest non-negative number
such that the spectrum is completely contained in the disc
around0 with radiusr(T ):

r(T ) = sup{|λ | | λ ∈ σ(T )}.
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(d) λ ∈ σ(T ) impliesλn ∈ σ(T n) for all non-negative integers. Indeed, supposeλn ∈ ρ(T n),
that isB(T n − λn) = (T n − λn)B = I for some boundedB. Hence,

B

n∑

k=0

T kλn−1−k(T − λ) = (T − λ)CB = I;

thusλ ∈ ρ(T ).
We shall refine the above statement and give a better upper bound for {|λ | | λ ∈ σ(T )} than
‖T‖.

Proposition 13.27 LetT∈L (H) be a bounded linear operator. Then the spectral radius ofT

is

r(T ) = lim
n→∞

‖T n‖
1
n . (13.11)

The proof is in the appendix.

13.2.6 The Spectrum of Self-Adjoint Operators

Proposition 13.28 Let T = T∗ be a self-adjoint operator inL (H). Thenλ ∈ ρ(T ) if and
only if there existsC > 0 such that

‖(T − λI)x‖ ≥ C ‖x‖ .

Proof. Suppose thatλ ∈ ρ(T ). Then there exists (a non-zero) bounded operatorRλ(T ) such
that

‖x‖ = ‖Rλ(T )(T − λI)x‖ ≤ ‖Rλ(T )‖ ‖(T − λI)x‖ .
Hence,

‖(T − λI)x‖ ≥ 1

‖Rλ(T )‖ ‖x‖ , x ∈ H.

We can chooseC = 1/ ‖Rλ(T )‖ and the condition of the proposition is satisfied.
Suppose, the condition is satisfied. We prove the other direction in 3 steps, i. e.T − λ0I has a
bounded inverse operator which is defined on the whole spaceH.
Step 1.T − λI is injective. Suppose to the contrary that(T − λ)x1 = (T − λ)x2. Then

0 = ‖(T − λ)(x1 − x2)‖ ≥ C ‖x1 − x2‖ ,

and‖x1 − x2‖ = 0 follows. That isx1 = x2. Hence,T − λI is injective.
Step 2.H1 = (T − λI)H, the range ofT − λI is closed. Suppose thatyn = (T − λI)xn,
xn ∈ H, converges to somey ∈ H. We want to show thaty ∈ H1. Clearly(yn) is a Cauchy
sequence such that‖ym − yn‖ → 0 asm,n→∞. By assumption,

‖ym − yn‖ = ‖(T − λI)(xn − xm)‖ ≥ C ‖xn − xm‖ .

Thus,(xn) is a Cauchy sequence inH. SinceH is complete,xn → x for somex ∈ H. Since
T − λI is continuous,

yn = (T − λI)xn −→
n→∞

(T − λI)x.
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Hence,y = (T − λI)x andH1 is a closed subspace.
Step 3.H1 = H. By Riesz first theorem,H = H1⊕H⊥

1 . We have to show thatH⊥
1 = {0}. Let

u ∈ H⊥
1 , that is, sinceT∗ = T ,

0 = 〈(T − λI)x , u〉 =
〈
x , (T − λI)u

〉
, for all x ∈ H.

This shows(T − λI)u = 0, henceT (u) = λu. This implies

〈T (u) , u〉 = λ 〈u , u〉 .

However,T = T∗ implies that the left side is real, by Remark 13.2 (d). Henceλ = λ is real.
We conclude,(T − λI)u = 0. By injectivity of T − λI, u = 0. That isH1 = H.
We have shown that there exists a linear operatorS = (T − λI)−1 which is inverse toT − λI
and defined on the whole spaceH. Since

‖y‖ = ‖(T − λI)S(y)‖ ≥ C ‖S(y)‖ ,

S is bounded with‖S‖ ≤ 1/C. Hence,S = Rλ(T ).

Note that for any bounded real functionf(x, y) we have

sup
x,y

f(x, y) = sup
x

(sup
y
f(x, y)) = sup

y
(sup
x
f(x, y)).

In particular,‖x‖ = sup
‖y‖≤1

| 〈x , y〉 | sincey = x/ ‖x‖ yields the supremum and CSI gives the

upper bound. Further,‖T (x)‖ = sup
‖y‖≤1

| 〈T (x) , y〉 | such that

‖T‖ = sup
‖x‖≤1

sup
‖y‖≤1

| 〈T (x) , y〉 | = sup
‖x‖≤1, ‖y‖≤1

| 〈T (x) , y〉 | = sup
‖y‖≤1

sup
‖x‖≤1

| 〈T (x) , y〉 |

In case of self-adjoint operators we can generalize this.

Proposition 13.29 LetT = T∗ ∈ L (H). Then we have

‖T‖ = sup
‖x‖≤1

| 〈T (x) , x〉 | . (13.12)

Proof. LetC = sup
‖x‖≤1

| 〈T (x) , x〉 |. By Cauchy–Schwarz inequality,| 〈T (x) , x〉 | ≤ ‖T‖ ‖x‖2

such thatC ≤ ‖T‖.
For any real positiveα > 0 we have:

‖T (x)‖2 = 〈T (x) , T (x)〉 =
〈
T 2(x) , x

〉
=

1

4

(〈
T (αx+ α−1T (x)) , αx+ α−1T (x)

〉
−

= −
〈
T (αx− α−1T (x)) , αx− α−1T (x)

〉)

≤ 1

4

(
C
∥∥αx+ α−1T (x)

∥∥2
+ C

∥∥αx− α−1T (x)
∥∥2
)

=
P.I.

C

4

(
2 ‖αx‖2 + 2

∥∥α−1T (x)
∥∥2
)

=
C

2

(
α2 ‖x‖2 + α−2 ‖T (x)‖2

)
.
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Insertingα2 = ‖T (x)‖ / ‖x‖ we obtain

=
C

2
(‖T (x)‖ ‖x‖+ ‖x‖ ‖T (x)‖)

which implies‖T (x)‖ ≤ C ‖x‖. Thus,‖T‖ = C.

Let m = inf
‖x‖=1

〈T (x) , x〉 andM = sup
‖x‖=1

〈T (x) , x〉 denote thelower andupperbound ofT .

Then we have
sup
‖x‖≤1

| 〈T (x) , x〉 | = max{|m | ,M} = ‖T‖ ,

and
m ‖x‖2 ≤ 〈T (x) , x〉 ≤M ‖x‖2 , for all x ∈ H.

Corollary 13.30 LetT = T∗ ∈ L (H) be a self-adjoint operator. Then

σ(T ) ⊂ [m,M ].

Proof. Suppose thatλ0 6∈ [m,M ]. Then

C := inf
µ∈[m,M ]

|λ0 − µ | > 0.

Sincem = inf
‖x‖=1

〈T (x) , x〉 andM = sup
‖x‖=1

〈T (x) , x〉 we have for‖x‖ = 1

‖(T − λ0I)x‖ = ‖x‖ ‖(T − λ0I)x‖ ≥
CSI
| 〈(T − λ0I)x , x〉 | =

∣∣∣∣∣∣∣
〈T (x) , x〉︸ ︷︷ ︸

∈[m,M ]

− λ0‖x‖2︸︷︷︸
1

∣∣∣∣∣∣∣
≥ C.

This implies
‖(T − λ0I)x‖ ≥ C ‖x‖ for all x ∈ H.

By Proposition 13.28,λ0 ∈ ρ(T ).

Example 13.13 (a) LetH = L2[0, 1], g ∈ C[0, 1] a real-valued function, and(Tgf)(t) =

g(t)f(t). Let m = inf
t∈[0,1]

g(t), M = sup
t∈[0,1]

g(t). One proves thatm andM are the lower and

upper bounds ofTg such thatσ(Tg) ⊆ [m,M ]. Sinceg is continuous, by the intermediate value
theorem,σ(Tg) = [m,M ].
(b) Let T = T ∗ ∈ L (H) be self-adjoint. Then all eigenvalues ofT are real and eigenvectors
to different eigenvalues are orthogonal to each other.Proof. The first statement is clear from
Corollary 13.30. Suppose thatT (x) = λx andT (y) = µy with λ 6= µ. Then

λ 〈x , y〉 = 〈T (x) , y〉 = 〈x , T (y)〉 = µ 〈x , y〉 = µ 〈x , y〉 .

Sinceλ 6= µ, 〈x , y〉 = 0.

The statement about orthogonality holds for arbitrary normal operators.
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Appendix: Compact Self-Adjoint Operator in Hilbert Space

Proof of Proposition 13.27. From the theory of power series, Theorem 2.34 we know that the
series

−z
∞∑

n=0

‖T n‖ zn (13.13)

converges if| z | < R and diverges if| z | > R, where

R =
1

lim
n→∞

n
√
‖T n‖

. (13.14)

Insertingz = 1/λ and using homework 38.4, we have

−
∞∑

n=0

λ−n−1T n

diverges if|λ | < lim
n→∞

n
√
‖T n‖ (and converges if|λ | > lim

n→∞
n
√
‖T n‖). The reason for the

divergence of the power series is, that the spectrumσ(T ) and the circle with radiuslim
n→∞

n
√
‖T n‖

have points in common; hence
r(T ) = lim

n→∞
n
√
‖T n‖.

On the other hand, by Remark 13.4 (d),λ ∈ σ(T ) impliesλn ∈ σ(T n); hence, by Remark 13.4
(c),

|λn | ≤ ‖T n‖ =⇒ |λ | ≤ n
√
‖T n‖.

Taking the supremum over allλ ∈ σ(T ) on the left and thelim over alln on the right, we have

r(T ) ≤ lim
n→∞

n
√
‖T n‖ ≤ lim

n→∞
n
√
‖T n‖ = r(T ).

Hence, the sequencen
√
‖T n‖ converges tor(T ) asn tends to∞.

Compact operators generalize finite rank operators. Integral operators on compact sets are com-
pact.

Definition 13.16 A linear operatorT ∈ L (H) is calledcompactif the closureT (U1) of the
unit ball U1 = {x | ‖x‖ ≤ 1} is compact inH. In other words, for every sequence(xn),
xn ∈ U1, there exists a subsequence such thatT (xnk

) converges.

Proposition 13.31 For T ∈ L (H) the following are equivalent:

(a)T is compact.
(b) T∗ is compact.
(c) For all sequences(xn) with (〈xn , y〉) −→ 〈x , y〉 converges for ally we have
T (xn) −→ T (x).
(d) There exists a sequence(Tn) of operators of finite rank such that‖T − Tn‖ −→
0.
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Definition 13.17 Let T be an operator onH andH1 a closed subspace ofH. We callH1 an
reducing subspaceif bothH1 andH⊥

1 areT -invariant, i. e.T (H1) ⊂ H1 andT (H⊥
1 ) ⊂ H⊥

1 .

Proposition 13.32 LetT ∈ L (H) be normal.
(a)The eigenspaceker(T −λI) is a reducing subspace forT andker(T −λI) = ker(T −λI)∗.
(b) If λ, µ are distinct eigenvalues ofT , ker(T − λI) ⊥ ker(T − µI).

Proof. (a) SinceT is normal, so isT − λ. Hence‖(T − λ)(x)‖ =
∥∥(T − λ)∗(x)

∥∥. Thus,
ker(T − λ) = ker(T − λ)∗. In particular,T∗(x) = λx if x ∈ ker(T − λI).
We show invariance. Letx ∈ ker(T − λ); thenT (x) = λx ∈ ker(T − αI). Similarly,
x ∈ ker(T − λI)⊥, y ∈ ker(T − λI) imply

〈T (x) , y〉 =
〈
x , T∗(y)

〉
=
〈
x , λy

〉
= 0.

Hence,ker(T − λI)⊥ is T -invariant, too.
(b) LetT (x) = λx andT (y) = µy. Then (a) andT∗(y) = µy ... imply

λ 〈x , y〉 = 〈T (x) , y〉 =
〈
x , T∗(y)

〉
= 〈x , µy〉 = µ 〈x , y〉 .

Thus(λ− µ) 〈x , y〉 = 0; sinceλ 6= µ, x ⊥ y.

Theorem 13.33 (Spectral Theorem for Compact Self-Adjoint Operators) LetH be an infi-
nite dimensional separable Hilbert space andT ∈ L (H) compact and self-adjoint.
Then there exists a real sequence(λn) with λn −→

n→∞
0 and an CNOS{en | n ∈ N} ∪ {fk | k ∈

N ⊂ N} such that

T (en) = λnen, n ∈ N T (fk) = 0, k ∈ N.

Moreover,

T (x) =
∞∑

n=1

λn 〈x , en〉 en, x ∈ H. (13.15)

Remarks 13.5 (a) Since{en}∪{fk} is a CNOS, anyx ∈ H can be written as its Fourier series

x =
∞∑

n=1

〈x , en〉 en +
∑

k∈N
〈x , fk〉 fk.

Applying T usingT (en) = λnen we have

T (x) =
∞∑

n=1

〈x , en〉 λnen +
∑

k∈N
〈x , fk〉 T (fk)︸ ︷︷ ︸

=0

which establishes (13.15). The main point is the existence of a CNOS of eigenvectors{en} ∪
{fk}.
(b) In caseH = Cn (Rn ) the theorem says that any hermitean (symmetric) matrixA is diago-
nalizable with only real eigenvalues.
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Chapter 14

Complex Analysis

Here are some useful textbooks on Complex Analysis: [FL88] (in German), [Kno78] (in Ger-
man), [Nee97], [Rüh83] (in German), [Hen88].
The main part of this chapter deals with holomorphic functions which is another name for a
function which is complex differentiable in an open set. On the one hand, we are already
familiar with a huge class of holomorphic functions: polynomials, the exponential function,
sine and cosine functions. On the other hand holomorphic functions possess quite amazing
properties completely unusual from the vie point ofreal analysis. The properties are very
strong. For example, it is easy to construct a real function which is17 times differentiable but
not 18 times. A complex differentiable function (in a small region) is automatically infinitely
often differentiable.
Good references are Ahlfors [Ahl78], a little harder is Conway [Con78], easier is Howie
[How03].

14.1 Holomorphic Functions

14.1.1 Complex Differentiation

We start with some notations.

Ur {z | | z | < r} open ball of radiusr around0
UR(a) {z | | z − a | < R} open ball of radiusR arounda
Ur {z | | z | ≤ r} closed ball of radiusr around0
◦
U r {z | 0 < | z | < r} punctured ball of radiusr
Sr {z | | z | = r} circle of radiusr around0

Definition 14.1 LetU ⊂ C be an open subset ofC andf : U → C be a complex function.
(a) If z0 ∈ U and the limit

lim
z→z0

f(z)− f(z0)

z − z0
=: f ′(z0)

exists, we callf complex differentiableat z0 andf ′(z0) the derivative off at z0. We callf ′(z0)

thederivativeof f at z0.

363
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(b) If f is complex differentiable for everyz0 ∈ U , we say thatf is holomorphicin U . We call
f ′ the derivative off onU .
(c) f is holomorphicat z0 if it complex differentiable in a certain neighborhood ofz0.

To be quite explicit,f ′(z0) exists if to everyε > 0 there exists someδ > 0 such thatz ∈ Uδ(z0)
implies ∣∣∣∣

f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε.

Remarks 14.1 (a) Differentiability of f at z0 forcesf to be continuous atz0. Indeed,f is
differentiable atz0 with derivativef ′(z0) if and only if, there exists a functionr(z, z0) such that

f(z) = f(z0) + f ′(z0)(z − z0) + (z − z0)r(z, z0),

wherelimz→z0 r(z, z0) = 0, In particular, taking the limitz → z0 in the above equation we get

lim
z→z0

f(z) = f(z0),

which proves continuity atz0.
Complex conjugation is a uniformly continuous function onC since| z − z0 | = | z − z0 | for
all z, z0 ∈ C.
(b) The derivative satisfies the well-known sum, product, and quotient rules, that is, if bothf
andg are holomorphic inU , so aref + g, fg, andf/g, providedg 6= 0 in U and we have

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′,

(
f

g

)′
=
f ′g − fg′

g2
.

Also, the chain rule holds; ifU
f→ V

g→ C are holomorphic, so isg◦f and

(g◦f)′(z) = g′(f(z)) f ′(z).

The proofs are exactly the same as in the real case. Since the constant functionsf(z) = c and
the identityf(z) = z are holomorphic inC, so is every polynomial with complex coefficients
and, moreover, every rational function (quotient of two polynomials)f : U → C, provided the
denominator has no zeros inU . So, we already know a large class of holomorphic functions.
Another bigger class are the convergent power series.

Example 14.1 f(z) = | z |2 is complex differentiable at0 with f ′(0) = 0. f is not differentiable
at z0 = 1. Indeed,

lim
h→0

f(h+ 0)− f(0)

h
= lim

h→0

|h |2
h

= lim
h→0

h = 0.

On the other hand. Letε ∈ R
lim
ε→0

| 1 + ε |2 − 1

ε
= lim

ε→0

2ε+ ε2

ε
= 2

whereas

lim
ε→0

| 1 + iε |2 − 1

iε
= lim

ε→0

1 + ε2 − 1

iε
= 0.

This shows thatf ′(1) does not exist.
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14.1.2 Power Series

Recall from Subsection 2.3.9 that a power series
∑
cnz

n has a radius of convergence

R =
1

lim
n→∞

n
√
| cn |

.

That is, the series converges absolutely for allz with | z | < R; the series diverges for| z | > R,
the behaviour for| z | = R depends on the(cn). Moreover, it converges uniformly on every
closed ballUr with 0 < r < R, see Proposition 6.4.
We already know that a real power series can be differentiated elementwise, see Corollary 6.11.
We will see, that power series are holomorphic inside its radius of convergence.

Proposition 14.1 Leta ∈ C and

f(z) =
∞∑

n=0

cn(z − a)n (14.1)

be a power series with radius of convergenceR. Thenf : UR(a) → C is holomorphic and the
derivative is

f ′(z) =

∞∑

n=1

ncn(z − a)n−1. (14.2)

Proof. If the series (14.1) converges inUR(a), the root test shows that the series (14.2) also
converges there. Without loss of generality, takea = 0. Denote the sum of the series (14.2) by
g(z), fix w ∈ UR(0) and chooser so that|w | < r < R. If z 6= w, we have

f(z)− f(w)

z − w − g(w) =
∞∑

n=0

cn

(
zn − wn
z − w − nwn−1

)
.

The expression in the brackets is0 if n = 1. For n ≥ 2 it is (by direct computation of the
following term)

= (z − w)
n−1∑

k=1

k wk−1 zn−k−1 =
n−1∑

k=1

(
kwk−1 zn−k − kwkzn−k−1

)
, (14.3)

which gives a telescope sum if we shiftk := k+1 in the first summand. If| z | < r, the absolute
value of the sum (14.3) is less than

n(n− 1)

2
rn−2,

so
∣∣∣∣
f(z)− f(w)

z − w − g(w)

∣∣∣∣ ≤ | z − w |
∞∑

n=2

n2 | cn | rn−2. (14.4)

Sincer < R, the last series converges. Hence the left side of (14.4) tends to0 asz → w. This
says thatf ′(w) = g(w), and completes the proof.
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Corollary 14.2 Sincef ′(z) is again a power series with the same radius of convergenceR, the
proposition can be applied tof ′(z). It follows thatf has derivatives of all orders and that each
derivative has a power series expansion arounda

f (k)(z) =
∞∑

n=k

n(n− 1) · · · (n− k + 1)cn (z − a)n−k (14.5)

Insertingz = a implies
f (k)(a) = k!ck, k = 0, 1, . . . .

This shows that the coefficientscn in the power series expansionf(z) =
∑∞

n=0 cn(z − a)n of f
with midpointa are unique.

Example 14.2 The exponential functionez =
∞∑

n=0

zn

n!
is holomorphic on the whole complex

plane with(ez)′ = ez; similarly, the trigonometric functionssin z andcos z are holomorphic inC since

sin z =

∞∑

n=0

(−1)n
z2n+1

(2n+ 1)!
, cos z =

∞∑

n=0

(−1)n
z2n

(2n)!
.

We have(sin z)′ = cos z and(cos z)′ = − sin z.

Definition 14.2 A complex function which is defined onC and which is holomorphic on the
entire complex plane is called anentirefunction.

14.1.3 Cauchy–Riemann Equations

Let us identify the complex fieldC and the two dimensional real planeR2 via z = x+ iy, that
is, every complex numberz corresponds to an ordered pair(x, y) of real numbers. In this way,
a complex functionw = f(z) corresponds to a functionU → R2 whereU ⊂ C is open. We
havew = u + iv whereu = u(x, y) andv = v(x, y) are the real and the imaginary parts of
the functionf ; u = Rew andv = Imw. Problem: What is the relation between complex
differentiability and the differentiability off as a function fromR2 toR2?

Proposition 14.3 Let
f : U → C, U ⊂ C open, a ∈ U

be a function. Then the following are equivalent:

(a)f is complex differentiable ata.

(b) f(x, y) = u(x, y) + iv(x, y) is real differentiable ata as a function
f : U ⊂ R2 → R2, and the Cauchy–Riemann equations are satisfied ata:

∂u

∂x
(a) =

∂v

∂y
(a),

∂u

∂y
(a) = −∂v

∂x
(a).

ux = vy, uy = −vx. (14.6)
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In this case,

f ′ = ux + ivx = vy − iuy.

Proof. (a)→ (b): Suppose thatz = h + ik is a complex number such thata + z ∈ U ; put
f ′(a) = b1 + ib2. By assumption,

lim
z→0

| f(a+ z)− f(a)− zf ′(a) |
| z | = 0.

We shall write this in the real form with real variablesh andk. Note that

zf ′(a) = (h + ik)(b1 + ib2) = hb1 − kb2 + i(hb2 + kb1)

=

(
hb1 − kb2
hb2 + kb2

)
=

(
b1 −b2
b2 b1

)(
h

k

)
.

This implies, with the identificationz = (h, k),

lim
z→0

∥∥∥∥f(a+ z)− f(a)−
(
b1 −b2
b2 b1

)(
h

k

)∥∥∥∥
| z | = 0.

That is (see Subsection 7.2),f is real differentiable ata with the Jacobian matrix

f ′(a) = Df(a) =

(
b1 −b2
b2 b1

)
. (14.7)

By Proposition 7.6, the Jacobian matrix is exactly the matrix of the partial derivatives, that is

Df(a) =

(
ux uy
vx vy

)
.

Comparing this with (14.7), we obtainux(a) = vy(a) = Re f ′(a) anduy(a) = −vx(a) =

Im f ′(a). This completes the proof of the first direction.
(b)→ (a). Sincef = (u, v) is differentiable ata ∈ U as a real function, there exists a linear
mappingDf(a) ∈ L (R2) such that

lim
(h,k)→0

∥∥∥∥f(a+ (h, k))− f(a)−Df(a)

(
h

k

)∥∥∥∥
‖(h, k)‖ = 0.

By Proposition 7.6,

Df(a) =

(
ux uy
vx vy

)
.

The Cauchy–Riemann equations show thatDf takes the form

Df(a) =

(
b1 −b2
b2 b1

)
,
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whereux = b1 andvx = b2. Writing

Df(a)

(
h

k

)
=

(
hb1 − kb2
hb2 + kb2

)
= z(b1 + ib2)

in the complex form withz = h+ik givesf is complex differentiable ata with f ′(a) = b1+ib2.

Example 14.3 (a) We already know thatf(z) = z2 is complex differentiable. Hence, the
Cauchy–Riemann equations must be fulfilled. From

f(z) = z2 = (x+ iy)2 = x2 − y2 + 2ixy, u(x, y) = x2 − y2, v(x, y) = 2xy

we conclude

ux = 2x, uy = −2y, vx = 2y, vy = 2x.

The Cauchy–Riemann equations are satisfied.
(b) f(z) = | z |2. Sincef(z) = x2 + y2, u(x, y) = x2 + y2, v(x, y) = 0. The Cauchy-Riemann
equations yieldux = 2x = 0 = vy anduy = 2y = 0 = −vx such thatz = 0 is the only solution
of the CRE.z = 0 is the only point wheref is differentiable.
f(z) = z is nowhere differentiable sinceu(x, y) = x, v(x, y) = −y; thus

1 = ux 6= vy = −1.

c c

c

1
2

3

A function f : U → C, U ⊂ C open, is calledlocally
constant inU , if for every pointa ∈ U there exists a ball
V with a ∈ V ⊂ U such thatf is constant onV .
Clearly, on every connectedness component ofU , f is
constant. In fact, one candefineU to be connected if for
every holomorphicf : U → C, f is constant.

Corollary 14.4 LetU ⊂ C be open andf : U → C be a holomorphic function onU .
(a) If f ′(z) = 0 for all z ∈ U , thenf is locally constant inU .
(b) If f takes real values only, thenf is locally constant.
(c) If f has a continuous second derivative,u = Re f andv = Im f are harmonic functions,
i. e., they satisfy the Laplace equation∆(u) = uxx + uyy = 0 and∆(v) = 0.

Proof. (a) Sincef ′(z) = 0 for all z ∈ U , the Cauchy–Riemann equations implyux = uy =

vx = vy = 0 in U . From real analysis, it is known thatu andv are locally constant inU (apply
Corollary 7.12 withgrad f(a+ θx) = 0).
(b) Sincef takes only real values,v(x, y) = 0 for all (x, y) ∈ U . This impliesvx = vy = 0 on
U . By the Cauchy–Riemann equations,ux = uy = 0 andf is locally constant by (a).
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(c) ux = vy implies uxx = vyx and differentiatinguy = −vx with respect toy yields
uyy = −vxy. Since bothu and v are twice continuously differentiable (since so isf ), by
Schwarz’ Lemma, the sum isuxx + uyy = vyx − vxy = 0. The same argument works for
vxx + vyy = 0.

Remarks 14.2 (a) We will see soon that the additional differentiability assumption in (c) is
superfluous.
(b) Note, that an inverse statement to (c) is easily proved: If Q = (a, b) × (c, d) is an open
rectangle andu : Q → R is harmonic, then there exists a holomorphic functionf : Q → C
such thatu = Re f .

14.2 Cauchy’s Integral Formula

14.2.1 Integration

The major objective of this section is to prove the converse to Proposition 14.1: Every inD
holomorphic function is representable as a power series inD. The quickest route to this is
via Cauchy’s Theorem and Cauchy’s Integral Formula. The required integration theory will be
developed. It is a useful tool to study holomorphic functions.
Recall from Section 5.4 the definition of the Riemann integral of a bounded complex valued
functionϕ : [a, b] → C. It was defined by integrating both the real and the imaginaryparts of
ϕ. In what follows, apath is always a piecewise continuously differentiable curve.

Z 1

γ

f
C

U

Z 2 Z 3

Z

Z 5

Z 6

4

Definition 14.3 Let U ⊂ C be open and
f : U → C a continuous function onU . Sup-
pose thatγ : [t1, tn] → U is a path inU . The
integral off alongγ is defined as the line inte-
gral

∫

γ

f(z) dz :=
n∑

k=1

tk∫

tk−1

f(γ(t))γ′(t) dt, (14.8)

where γ is continuously differentiable on
[tk−1, tk] for all k = 1, . . . , n.

By the change of variable rule, the integral off alongγ does not depend on the parametrization
γ of the path{γ(t) | t ∈ [t0, t1]}. However, if we exchange the initial and the end point ofγ(t),
we obtain a negative sign.

Remarks 14.3 (Properties of the complex integral)(a) The integral off along γ is linear
overC:

∫

γ

(αf1 + βf2) dz = α

∫

γ

f1 dz + β

∫

γ

f2 dz,

∫

γ−

f(z) dz = −
∫

γ+

f(z) dz,
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whereγ− has the opposite orientation ofγ+.

(b) If γ1 andγ2 are two paths so thatγ1 andγ2 join to formγ, then we have

∫

γ

f(z) dz =

∫

γ1

f(z) dz +

∫

γ2

f(z) dz.

(c) From the definition and the triangle inequality, it follows that for a continuously differen-
tiable pathγ ∣∣∣∣∣∣

∫

γ

f(z) dz

∣∣∣∣∣∣
≤M ℓ,

where| f(z) | ≤ M for all z ∈ γ andℓ is the length ofγ, ℓ =
∫ b
a
| γ′(t) | dt. t ∈ [t0, t1]. Note

that the integral on the right is the length of the curveγ(t).

(d) The integral off overγ generalizes the real integral
b∫
a

f(t) dt. Indeed, letγ(t) = t, t ∈ [a, b],

then
∫

γ

f(z) dz =

b∫

a

f(t) dt.

(e) Letγ be the circleSr(a) of radiusr with centera. We can parametrize thepositively oriented
circle asγ(t) = a + reit, t ∈ [0, 2π]. Then

∫

γ

f(z) dz = ir

2π∫

0

f
(
a + reit

)
eit dt.

Example 14.4 (a) Letγ1(t) = eit, t ∈ [0, π], be the half of the unit circle from1 to−1 via i and
γ2(t) = −t, t ∈ [−1, 1] the segment from1 to−1. Thenγ′1(t) = ieit andγ2(t)

′ = −1. Hence,

∫

γ1

z2 dz = i

∫ π

0

e2iteit dt = i

∫ π

0

e−2it+it dt = i

∫ π

0

e−it dt

=
i

−i
e−it

∣∣∣∣
π

0

= −(−1− 1) = 2.

∫

γ2

z2 dz =
see (b)

−
∫ 1

−1

t2 dt = −2

3
.

In particular, the integral ofz2 is not path independent.

(b)
∫

Sr

dz

zn
=

∫ 2π

0

ireit

rneint
dt = ir−n+1

∫ 2π

0

e−(n−1)it dt =

{
0, n 6= 1,

2πi, n = 1.
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14.2.2 Cauchy’s Theorem

Cauchy’s theorem is the main part in the proof that every ina holomorphic function can be
written as a power series with midpointa. As a consequence of Corollary 14.2, holomorphic
functions have derivatives of all orders.
We start with a very weak form. The additional assumption is,thatf has an antiderivative.

Lemma 14.5 Letf : U → C be continuous, and suppose thatf has an antiderivativeF which
is holomorphic onU , F ′ = f . If γ is any path inU joining z0 andz1 fromU , we have

∫

γ

f(z) dz = F (z2)− F (z1).

In particular, if γ is a closed path inU
∫

γ

f(z) dz = 0.

Proof. It suffices to prove the statement for a continuously differentiable curveγ(t). Puth(t) =

F (γ(t)). By the chain rule

h′(t) =
d

dt
F (γ(t)) = F ′(γ(t))γ′(t) = f(γ(t))γ′(t)

By definition of the integral and the fundamental theorem of calculus (see Subsection 5.5),

∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

h′(t) dt = h(t)|ba = h(b)− h(a) = F (z1)− F (z0).

Example 14.5 (a) ∫ 1−i

2+3i

z3 dz =
(1− i)4

4
− (2 + 3i)4

4
.

(b)
∫ πi

1
ez dz = −1− e.

Theorem 14.6 (Cauchy’s Theorem)LetU be a simply connected region inC and letf(z) be
holomorphic inU . Suppose thatγ(t) is a path inU joining z0 and z1 in U . Then

∫
γ

f(z) dz

depends onz0 andz1 only and not on the choice of the path. In particular,
∫
γ

f(z) dz = 0 for

any closed path inU .

Proof. We give the proof under the weak additional assumption thatf ′ not only exists but is
continuous inU . In this case, the partial derivativesux, uy, vx, andvy are continuous and we can
apply the integrability criterion Proposition 8.3 which was a consequence of Green’s theorem,
see Theorem 10.3. Note that we needU to be simply connected in contrast to Lemma 14.5.
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Without this additional assumption (f ′ is continuous), the proof is lengthy (see [FB93, Lan89,
Jän93]) and starts with triangular or rectangular paths and is generalized then to arbitrary paths.
We have

∫

γ

f(z) dz =

∫

γ

(u+ iv)( dx+ i dy) =

∫

γ

(u dx− v dy) + i

∫

γ

(v dx+ u dy).

We have path independence of the line integral
∫
γ

P dx + Q dy if and only if, the integrability

conditionQx = Py is satisfied if and only ifP dx+Q dy is a closed form.
In our case, the real part is path independent if and only if−vx = uy. The imaginary part is
path independent if and only ifux = vy. These are exactly the Cauchy–Riemann equations
which are satisfied sincef is holomorphic.

Remarks 14.4 (a) The proposition holds under the following weaker assumption: f is contin-
uous in the closureU and holomorphic inU , U is a simply connected region, andγ = ∂U is a
path.
(b) The statement is wrong without the assumption “U is simply connected”. Indeed, consider
the circle of radiusr with centera, that isγ(t) = a + reit. Thenf(z) = 1/(z − a) is singular
ata and we have ∫

Sr(a)

dz

z − a = ir

∫ 2π

0

eit

reit
dt = i

∫ 2π

0

dt = 2πi.

γ

γ

γ

δ
δ

δδ

1

4

2

3

1

2

(c) For a non-simply
connected regionG one
cuts G with pairwise
inverse to each other
paths (in the picture:δ1,
δ2, δ3 andδ4). The re-
sulting regionG̃ is now
simply connected such
that

∫
∂G

f(z) dz = 0 by

(a).
Since the integrals alongδi, i = 1, . . . , 4, cancel, we have∫

γ+γ1+γ2

f(z) dz = 0.

Sr
2

Sr
1

In particular, iff is holomorphic in{z | 0 < | z − a | < R} and0 <

r1 < r2 < R, then
∫

Sr1 (a)

f(z) dz =

∫

Sr2(a)

f(z) dz

if both circles are positively oriented.
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Proposition 14.7 LetU be a simply connected region,z0 ∈ U , U0 = U \ {z0}. Suppose thatf
is holomorphic inU0 and bounded in a certain neighborhood ofz0.
Then ∫

γ

f(z) dz = 0

for every non-selfintersecting closed pathγ in U0.

Proof. Suppose that| f(z) | ≤ C for | z − z0 | < ε0. For anyε with 0 < ε < ε0 we then have by
Remark 14.3 (c) ∣∣∣∣∣∣∣

∫

Sε(z0)

f(z) dz

∣∣∣∣∣∣∣
≤ 2πεC.

By Remark 14.4 (c),
∫

γ

f(z) dz =

∫

Sε0 (z0)

f(z) dz =

∫

Sε(z0)

f(z) dz. Hence

∣∣∣∣∣∣

∫

γ

f(z) dz

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

Sε(z0)

f(z) dz

∣∣∣∣∣∣∣
≤ 2πεC.

Since this is true for all smallε > 0,
∫
γ

f(z) dz = 0.

We will see soon that under the conditions of the proposition, f can be made holomorphic atz0,
too.

14.2.3 Cauchy’s Integral Formula

Theorem 14.8 (Cauchy’s Integral Formula) Let U be a region. Suppose thatf is holomor-
phic inU , andγ a non-selfintersecting positively oriented path inU such thatγ is the boundary
ofU0 ⊂ U ; in particular, U0 is simply connected.
Then for everya ∈ U0 we have

f(a) =
1

2πi

∫

γ

f(z) dz

z − a (14.9)

Proof. a ∈ U0 is fixed. Forz ∈ U we define

F (z) =

{
f(z)−f(a)

z−a , z 6= a

0, z = a.

ThenF (z) is holomorphic inU \ {a} and bounded in a neighborhood ofa sincef ′(a) exists
and therefore, ∣∣∣∣

f(z)− f(a)

z − a − f ′(a)

∣∣∣∣ < ε
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asz approachesa. Using Proposition 14.7 and Remark14.4 (b) we have
∫
γ

F (z) dz = 0, that is

∫

γ

f(z)− f(a)

z − a dz = 0,

such that ∫

γ

f(z) dz

z − a =

∫

γ

f(a) dz

z − a = f(a)

∫

γ

dz

z − a = 2πi f(a).

Remark 14.5 The values of a holomorphic functionf inside a pathγ are completely deter-
mined by the values off onγ.

Example 14.6 Evaluate

Ir :=

∫

Sr(a)

sin z

z2 + 1
dz

in casesa = 1 + i andr = 1
2
, 2, 3.

Solution. We use the partial fraction decomposition ofz2 + 1 to obtain linear terms in the
denominator.

1

z2 + 1
=

1

2i

(
1

z − i
− 1

z + i

)
.

Hence, withf(z) = sin z we have in caser = 3

I3 =

∫

Sr(a)

sin z dz

z2 + 1
=

1

2i

∫

Sr(a)

sin z

z − i
dz − 1

2i

∫

Sr(a)

sin z

z + i
dz

= π(f(i)− f(−i)) = 2π sin(i) = πi(e− 1/e).

In caser = 2, the functionsin z
z+i

is holomorphic inside the circle of radius2 with centera. Hence,

I2 = π sin(i) = I3/2.

In caser = 1
2
, both integrand are holomorphic, such thatI 1

2
= 0.

0 γ

γ
2

R

γ

1

3

45°

Example 14.7 Consider the functionf(z) = eiz2 which
is an entire function. Letγ1(t) = t, t ∈ [0, R], be the
segment from0 to R on the real line; letγ2(t) = Reit,
t ∈ [0, π/4], be the sector of the circle of radiusR with
center0; and let finallyγ3(t) = teiπ/4, t ∈ [0, R], be the
segment from0 toReiπ/4. By Cauchy’s Theorem,

I1 + I2 − I3 =

∫

γ1+γ2−γ3

f(z) dz = 0.
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Obviously, since
(
eiπ/4

)2
= eiπ/2 = i

I1 =

∫ R

0

eit2 dt,

I3 = eiπ/4

∫ R

0

e−t
2

dt

We shall show that| I2(R) | −→
n→∞

0 asR tends to∞. We have

| I2(R) | =
∣∣∣∣∣

∫ π/4

0

ei(R2e2it)Rieit dt

∣∣∣∣∣ ≤ R

∫ π/4

0

∣∣∣ eiR2(cos 2t+i sin 2t)
∣∣∣ dt ≤ R

∫ π/4

0

e−R
2 sin 2t dt.

Note thatsin t is a concave function on[0, π/2], that is, the graph of the sine function is above
the graph of the corresponding linear function through(0, 0) and(π/2, 1); thus,sin t ≥ 2t/π,
t ∈ [0, π/2]. We have

| I2(R) | ≤ R

∫ π/4

0

e−R
24t/π dt = − π

4R

(
e−R

2 − 1
)

=
π

4R

(
1− e−R

2
)
.

We conclude that| I2(R) | tends to0 asR → ∞. By Cauchy’s TheoremI1 + I2 − I3 = 0 for
all R, we conclude

lim
R→∞

I1(R) =

∫ ∞

0

eit2 dt = eiπ/4

∫ ∞

0

e−t
2

dt = lim
R→∞

I3(R).

The integral on the right is
√
π/2 (see below); henceeit2 = cos(t2) + i sin(t2) implies

∫ ∞

0

cos(t2) dt =

√
2π

4
=

∫ ∞

0

sin(t2) dt.

These are the so calledFresnelintegrals. We show thatI =
∫∞
0

e−x
2
dx =

√
π/2. (This was

already done in Homework 41)For, we compute the double integral using Fubini’s theorem:
∞∫

0

∞∫

0

e−x
2−y2 dxdy =

∫ ∞

0

e−x
2

dx

∫ ∞

0

e−y
2

dy = I2.

Passing to polar coordinates yieldsdxdy = r dr, x2 + y2 = r2 such that
∫∫

(R+)2

e−x
2−y2 dxdy = lim

R→∞

∫ π/2

0

dϕ

∫ R

0

e−r
2

r dr.

The change of variablesr2 = t, dt = 2r dr yields

I2 =
1

2

π

2

∫ ∞

0

e−t dt =
π

4
=⇒ I =

√
π

2
.

This proves the claim. In addition, the change of variables
√
x = s also yields

Γ

(
1

2

)
=

∫ ∞

0

e−x√
x

dx =
√
π.
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Theorem 14.9 Let γ be a path in an open setU andg be a continuous function onU . If a is
not onγ, define

h(a) =

∫

γ

g(z)

z − a dz.

Thenh is holomorphic on the complement ofγ in U and has derivatives of all orders. They are
given by

h(n)(a) = n!

∫

γ

g(z)

(z − a)n+1
dz.

b
s

U

z

a

γ

Proof. Let b ∈ U and not onγ. Then there exists
somer > 0 such that| z − b | ≥ r for all pointsz on
γ. Let 0 < s < r. We shall see thath has a power
series expansion in the ballUs(b). We write

1

z − a =
1

z − b− (a− b) =
1

z − b
1

1− a−b
z−b

=
1

z − b

(
1 +

a− b
z − b +

(
a− b
z − b

)2

+ · · ·
)
.

This geometric series converges absolutely and uni-
formly for | a− b | ≤ s because

∣∣∣∣
a− b
z − b

∣∣∣∣ ≤
s

r
< 1.

Sinceg is continuous andγ is a compact set,g(z) is bounded onγ such that by Theorem 6.6,
the series

∑∞
n=0 g(z)

(
a−b
z−b
)n

can be integrated term by term, and we find

h(a) =

∫

γ

∞∑

n=0

g(z)
(a− b)n

(z − b)n+1
dz

=

∞∑

n=0

(a− b)n
∫

γ

g(z)

(z − b)n+1
dz

=
∞∑

n=0

cn(a− b)n,

where

cn =

∫

γ

g(z) dz

(z − b)n+1
.

This proves thath can be expanded into a power series in a neighborhood ofb. By Propo-
sition 14.1 and Corollary 14.2,f has derivatives of all orders in a neighborhood ofb. By the
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formula in Corollary 14.2

h(n)(b) = n!cn = n!

∫

γ

g(z) dz

(z − b)n+1
.

Remark 14.6 There is an easy way to deduce the formula. Formally, we can exchange the
differentiation d

da
and

∫
γ
:

h′(a) =
d

da

∫

γ

g(z)

z − a dz =

∫

γ

d

da

(
g(z)(z − a)−1

)
dz =

∫

γ

g(z)

(z − a)2
dz.

h′′(a) =
d

da

∫

γ

(
g(z)(z − a)−2

)
dz = 2

∫

γ

g(z)

(z − a)3
dz.

Theorem 14.10Suppose thatf is holomorphic inU andUr(a) ⊂ U , thenf has a power series
expansion inUr(a)

f(z) =

∞∑

n=0

cn(z − a)n.

In particular, f has derivatives of all orders, and we have the followingcoefficient formula

cn =
f (n)(a)

n!
=

1

2πi

∫

Sr(a)

f(z) dz

(z − a)n+1
. (14.10)

Proof. In view of Cauchy’s Integral Formula (Theorem 14.8) we obtain

f(a) =
1

2πi

∫

SR(a)

f(z) dz

z − a

Insertingg(z) = f(z)/(2πi) (f is continuous) into Theorem 14.9, we see thatf can be expanded
into a power series with centera and, therefore, it has derivatives of all orders ata,

f (n)(a) =
n!

2πi

∫

SR(a)

f(z) dz

(z − a)n+1
.

14.2.4 Applications of the Coefficient Formula

Proposition 14.11 (Growth of Taylor Coefficients) Suppose thatf is holomorphic inU and
is bounded byM > 0 in Ur(a) ⊂ U ; that is, | z − a | < r implies| f(z) | ≤M .
Let
∑∞

n=0 cn(z − a)n be the power series expansion off at a.
Then we have

| cn | ≤
M

rn
. (14.11)
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Proof. By the coefficient formula (14.10) and Remark 14.3 (c) we have noting that∣∣∣∣
f(z)

(z − a)n+1

∣∣∣∣ ≤
M

rn+1
for z ∈ Sra

| cn | ≤

∣∣∣∣∣∣∣
1

2πi

∫

Sr(a)

f(z)

(z − a)n+1
dz

∣∣∣∣∣∣∣
≤ 1

2π

M

rn+1
ℓ(Sr(a)) =

M

2πrn+1
2πr =

M

rn
.

Theorem 14.12 (Liouville’s Theorem) A bounded entire function is constant.

Proof. Suppose that| f(z) | ≤ M for all z ∈ C. Sincef is given by a power seriesf(z) =∑∞
n=0 cnz

n with radius of convergenceR =∞, the previous proposition gives

| cn | ≤
M

rn

for all r > 0. This showscn = 0 for all n 6= 0; hencef(z) = c0 is constant.

Remarks 14.7 (a) Note that we explicitly assumef to be holomorphic on the entire complex
plane. For example,f(z) = e1/z is holomorphic and bounded outside every ballUε(0). How-
ever,f is not constant.
(b) Note thatf(z) = sin z is an entire function which is not constant. Hence,sin z is unbounded
as a complex function.

Theorem 14.13 (Fundamental Theorem of Algebra)A polynomialp(z) with complex coeffi-
cients of degreedeg p ≥ 1 has a complex root.

Proof. Suppose to the contrary thatp(z) 6= 0 for all z ∈ C. It is known, see Example 3.3, that
lim

| z |→∞
| p(z) | = +∞. In particular there existsR > 0 such that

| z | ≥ R =⇒ | p(z) | ≥ 1.

That is,f(z) = 1/p(z) is bounded by1 if | z | ≥ R. On the other hand,f is a continuous
function and{z | | z | ≤ R} is a compact subset ofC. Hence,f(z) = 1/p(z) is bounded on
UR, too. That is,f is bounded on the entire plane. By Liouville’s theorem,f is constant and so
is p. This contradicts our assumptiondeg p ≥ 1. Hence,p has a root inC.

Now, there is an inverse-like statement to Cauchy’s Theorem.

Theorem 14.14 (Morera’s Theorem) Let f : U → C be a continuous function whereU ⊂ C
is open. Suppose that the integral off along each closed triangular path[z1, z2, z3] in U is 0.
Thenf is holomorphic inU .
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Proof. Fix z0 ∈ U . We show thatf has an anti-derivative in a small neighborhoodUε(z0) ⊂ U .
Fora ∈ Uε(z0) define

F (a) =

a∫

z0

f(z) dz.

a+h

z

a

Note thatF (a) takes the same value for all polygonal paths
from z0 to a by assumption of the theorem. We have

∣∣∣∣
F (a+ h)− F (a)

h
− f(a)

∣∣∣∣ =

∣∣∣∣
1

h

∫ a+h

a

(f(z)− f(a)) dz

∣∣∣∣ ,

where the integral on the right is over the segment forma to
a + h and we used

∫ a+h
a

c dz = ch. By Remark 14.3 (c), the
right side is less than or equal to

≤ 1

| h | sup
z∈Uh(a)

| f(z)− f(a) | | h | = sup
z∈Uh(a)

| f(z)− f(a) | .

Since f is continuous the above term tends to0 as h tends to0. This shows thatF is
differentiable ata with F ′(a) = f(a). SinceF is holomorphic inU , by Theorem 14.10 it has
derivatives of all orders; in particularf is holomorphic.

Corollary 14.15 Suppose that(fn) is a sequence of holomorphic functions onU , uniformly
converging tof onU . Thenf is holomorphic onU .

Proof. Sincefn are continuous and uniformly converging,f is continuous onU . Let γ be any
closed triangular path inU . Since(fn) converges uniformly, we may exchange integration and
limit: ∫

γ

f(z) dz =

∫

γ

lim
n→∞

fn(z) dz = lim
n→∞

∫

γ

fn(z) dz = lim
n→∞

0 = 0

since eachfn is holomorphic. By Morera’s theorem,f is holomorphic inU .

Summary

LetU be a region andf : U → C be a function onU . The following are equivalent:

(a)f is holomorphic inU .

(b) f = u + iv is real differentiable and the Cauchy–Riemann equationsux = vy
anduv = −vx are satisfied inU .

(c) If U is simply connected,f is continuous and for every closed triangular path
γ = [z1, z2, z3] in U ,

∫
γ
f(z) dz = 0 (Morera condition).
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(d) f possesses locally an antiderivative, that is, for everya ∈ U there is a ball
Uε(a) ⊂ U and a holomorphic functionF such thatF ′(z) = f(z) for all z ∈ Uε(a).
(e)f is continuous and for every ballUr(a) with Ur(a) ⊂ U we have

f(b) =
1

2πi

∫

Sr(a)

f(z)

z − b dz, ∀ b ∈ Ur(a).

(f) For a ∈ U there exists a ball with centera such thatf can be expanded in that
ball into a power series.

(g) For every ballB which is completely contained inU , f can be expanded into a
power series inB.

14.2.5 Power Series

Since holomorphic functions are locally representable by power series, it is quite useful to know
how to operate with power series. In case that a holomorphic functionf is represented by a
power series, we say thatf is ananalyticfunction. In other words, every holomorphic function
is analytic and vice versa. Thus, by Theorem 14.10, any holomorphic function is analytic and
vice versa.

(a) Uniqueness

If both
∑
cnz

n and
∑
bnz

n converge in a ball around0 and define the same function then
cn = bn for all n ∈ N0.

(b) Multiplication

If both
∑
cnz

n and
∑
bnz

n converge in a ballUr(0) around0 then

∞∑

n=0

cnz
n ·

∞∑

n=0

bnz
n =

∞∑

n=0

dnz
n, | z | < r,

wheredn =
∑n

k=0 cn−kbk.

(c) The Inverse1/f

Let f(z) =
∞∑

n=0

cnz
n be a convergent power series and

c0 6= 0.

Thenf(0) = c0 6= 0 and, by continuity off , there existsr > 0 such that the power series
converges in the ballUr(0) and is non-zero there. Hence,1/f(z) is holomorphic inUr(0) and
therefore it can be expanded into a converging power series inUr(0), see summary (f). Suppose
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that 1/f(z) = g(z) =

∞∑

n=0

bnz
n, | z | < r. Thenf(z)g(z) = 1 = 1 + 0z + 0z2 + · · · , the

uniqueness and (b) yields

1 = c0b0, 0 = c0b1 + c1b0, 0 = c0b2 + c1b1 + c2b0, · · ·
This system of equations can be solved recursively forbn, n ∈ N0, for example,b0 = 1/c0,
b1 = −c1b0/c0.

(d) Double Series

Suppose that

fk(z) =
∞∑

n=0

ckn(z − a)n, k ∈ N
are converging inUr(a) power series. Suppose further that the series

∞∑

k=1

fk(z)

converges locally uniformly inUr(a) as well. Then
∞∑

k=1

fk(z) =
∞∑

n=0

( ∞∑

k=1

ckn

)
(z − a)n.

In particular, one can form the sum of a locally uniformly convergent series
∑
fk(z) of power

series coefficientwise.Note that a series of functions
∑∞

k=1 fk(z) converges locally uniformlyat b if

there existsε > 0 such that the series converges uniformly inUε(b).

Note that any locally uniformly converging series of holomorphic functions defines a holo-
morphic function (Theorem of Weierstraß). Indeed, since the series converges uniformly, line
integral and summation can be exchanged: Letγ = [z0z1z2] be any closed triangular path inside
U , then by Cauchy’s theorem

∫

γ

f(z) dz =

∫

γ

∞∑

k=1

fk(z) dz =
∞∑

k=1

∫

γ

fk(z) dz =
∞∑

k=1

0 = 0.

By Morera’s theorem,f(z) =
∑∞

k=1 f(z) is holomorphic.

(e) Change of Center

Let f(z) =
∑∞

n=0 cn(z − a)n be convergent inUr(a), r > 0, andb ∈ Ur(a). Thenf can be
expanded into a power series with centerb

f(z) =
∞∑

n=0

bn(z − b)n, bn =
f (n)(b)

n!
,

with radius of convergence at leastr − | b− a |. Also, the coefficients can be obtained by
reordering for powers of(z − b)k using the binomial formula

(z − a)n = (z − b+ b− a)n =
n∑

k=0

(
n

k

)
(z − b)k (b− a)n−k.
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(f) Composition

We restrict ourselves to the case

f(z) = a0 + a1z + a2z
2 + · · ·

g(z) = b1z + b2z
2 + · · ·

whereg(0) = 0 and therefore, the image ofg is a small neighborhood of0, and we assume that
the first power seriesf is defined there; thus,f(g(z)) is defined and holomorphic in a certain
neighborhood of0, see Remark 14.1. Hence

h(z) = f(g(z)) = c0 + c1z + c2z
2 + · · ·

where the coefficientscn = h(n)(0)/n! can be computed using the chain rule, for example,
c0 = f(g(0)) = a0, c1 = f ′(g(0))g′(0) = a1b1.

(g) The Composition Inversef−1

Suppose thatf(z) =
∑∞

n=1 anz
n, a1 6= 0, has radius of convergencer > 0. Then there exists a

power seriesg(z) =
∑∞

n=1 bnz
n converging onUε(0) such thatf(g(z)) = z = g(f(z)) for all

z ∈ Uε(0). Using (f) and the uniqueness, the coefficientsbn can be computed recursively.

Example 14.8 (a) The function

f(z) =
1

1 + z2
+

1

3− z
is holomorphic inC \ {i,−i, 3}. Expandingf into a power series with center1, the closest
singularity to1 is±i. Since the disc of convergence cannot contain±i, the radius of convergence
is | 1− i | =

√
2. Expanding the power series arounda = 2, the closest singularity off is 3;

hence, the radius of convergence is now| 3− 2 | = 1.

1

i

0

i/2

(b) Change of center. We want to expandf(z) =
1

1− z
which is holomorphic inC \ {1} into a power series
aroundb = i/2. For arbitraryb with | b | < 1 we have

1

1− z =
1

1− b− (z − b) =
1

1− b ·
1

1− z−b
1−b

=
∞∑

n=0

1

(1− b)n+1
(z − b)n = f̃(z).

By the root test, the radius of convergence of this series is| 1− b |. In caseb = i/2 we have
r = | 1− i/2 | =

√
1 + 1/4 =

√
5/2. Note that the power series1 + z + z2 + · · · has radius of

convergence1 and a priori defines an analytic (= holomorphic) function in the open unit ball.
However, changing the center we obtain an analytic continuation of f to a larger region. This
example shows that (under certain assumptions) analytic functions can be extended into a larger
region by changing the center of the series.
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14.3 Local Properties of Holomorphic Functions

We omit the proof of the Open Mapping Theorem and refer to [Jän93, Satz 11, Satz 13] see
also [Con78].

Theorem 14.16 (Open Mapping Theorem)LetG be a region andf a non-constant holomor-
phic function onG. Then for every open subsetU ⊂ G, f(U) is open.

The main idea is to show that any at some pointa holomorphic functionf with f(a) = 0 looks
like a power function, that is, there exists a positive integerk such thatf(z) = h(z)k in a small
neighborhood ofa, whereh is holomorphic ata with a zero of order1 ata.

Theorem 14.17 (Maximum Modulus Theorem)Let f be holomorphic in the regionU and
a ∈ U is a point such that| f(a) | ≥ | f(z) | for all z ∈ U . Thenf must be a constant function.

Proof. First proof. Let V = f(U) andb = f(a). By assumption,| b | ≥ |w | for all w ∈ V .
b cannot be an inner point ofV since otherwise, there is somec in the neighborhood ofb with
| c | > | b | which contradict the assumption. Henceb is in the boundary∂V ∩ V . In particular,
V is not open. Hence, the Open Mapping Theorem says thatf is constant.
Second Proof.We give a direct proof using Cauchy’s Integral formula. For simplicity let a = 0

and letUr(0) ⊆ U be a small ball inU . By Cauchy’s theorem withγ = Sr(0), z = γ(t) = reit,
t ∈ [0, 2π], dz = rieit dt we get

f(0) =
1

2πi

∫ 2π

0

f
(
reit
)
rieit

reit
dt =

1

2π

∫ 2π

0

f(reit) dt.

In other words,f(0) is the arithmetic mean of the values off on any circle with center0.
Let M = | f(a) | ≥ | f(z) | be the maximal modulus off on U . Suppose, there existsz0
with z0 = r0e

it0 with r0 < r and | f(z0) | < M . Sincef is continuous, there exists a whole
neighborhood oft ∈ Uε(t0) with

∣∣ f(reit)
∣∣ < M . However, in this case

M = | f(0) | =
∣∣∣∣

1

2π

∫ 2π

0

f(reit) dt

∣∣∣∣ ≤
1

2π

∫ 2π

0

∣∣ f(reit)
∣∣ dt < M

which contradicts the mean value property. Hence,| f(z) | = M is constant in any sufficiently
small neighborhood of0. Let z1 ∈ U be any point inU . We connect0 andz1 by a path in
U . Let d be its distance from the boundary∂U . Let z continuously moving from0 to z1 and
cosider the chain of balls with centerz and radiusd/2. By the above,| f(z) | = M in any such
ball, hence| f(z) | = M in U . It follows from homework 47.2 thatf is constant.

Remark 14.8 In other words, iff is holomorphic inG andU ⊂ G, thensup
z∈U
| f(z) | is attained

on the boundary∂U . Note that both theorems are not true in the real setting: Theimage of the
sine function of the open set(0, 2π) is [−1, 1] which is not open. The maximum off(x) = 1−x2

over(−1, 1) is not attained on the boundary sincef(−1) = f(1) = 0 while f(0) = 1. However
| z2 − 1 | on the complex unit ball attains its maximum inz = ±i—on the boundary.
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Recall from topology:

• An accumulation pointof a setM ⊂ C is a point ofz ∈ C such that for everyε > 0,
Uε(z) contains infinitely many elements ofM . Accumulation points are in the closure of
M , not necessarily in the boundary ofM . The set of accumulation points ofM is closed
(Indeed, suppose thata is in the closure of the set of accumulation points ofM . Then
every neighborhood ofa meets the set of accumulation points ofM ; in particular, every
neighborhood has infinitely many element ofM . Hencea itself is an accumulation point
of M).

• M is connectedif every locally constant function is constant.M is not connected ifM is
the disjoint union of two non-empty subsetsA andB, both are openandclosed inM .

For example,M = {1/n | n ∈ N} has no accumulation point inC \ {0} but it has one
accumulation point,0, inC.

Proposition 14.18 LetU be a region and letf : U → C be holomorphic inU .
If the setZ(f) of the zeros off has an accumulation point inU , thenf is identically0 in U .

Example 14.9 Consider the holomorphic functionf(z) = sin 1
z
, f : U → C, U = C \ {0} and

with the set of zerosZ(f) = {zn = 1
nπ
| n ∈ Z}. The only accumulation point0 of Z(f) does

not belong toU . The proposition does not apply.

Proof. Supposea ∈ U is an accumulation point ofZ(f). Expandf into a power series with
centera:

f(z) =

∞∑

n=0

cn(z − a)n, | z − a | < r.

Sincea is an accumulation point of the zeros, there exists a sequence (zn) of zeros converging
to a. Sincef is continuous ata, limn→∞ f(zn) = 0 = f(a). This showsc0 = 0. The same
argument works with the function

f1(z) = c1 + c2(z − a) + c3(z − a)3 + · · · = f(z)

z − a,

which is holomorphic in the same ball with centera and hasa as an accumulation point of zeros.
Hence,c1 = 0. In the same way we conclude thatc2 = c3 = · · · = cn = · · · = 0. This shows
thatf is identically0 onUr(a). That is, the set

A = {a ∈ U | a is an accumulation point ofZ(f) }
is an open set. Also,

B = {a ∈ U | a is not an accumulation point ofZ(f) }
is open (with every non-accumulation pointz, there is a whole neighborhood ofz not contain-
ing accumulation points ofZ(f)). Now,U is the disjoint union ofA andB, both are open as
well as closed inU . Hence, the characteristic function onA is a locally constant function onU .
SinceU is connected, eitherU = A or U = B. Since by assumptionA is non-empty,A = U ,
that isf is identically0 onU .



14.4 Singularities 385

Theorem 14.19 (Uniqueness Theorem)Suppose thatf andg are both holomorphic functions
onU andU is a region. Then the following are equivalent:

(a)f = g

(b) The setD = {z ∈ U | f(z) = g(z)} wheref andg are equal has an accumu-
lation point inU .
(c) There existsz0 ∈ U such thatf (n)(z0) = g(n)(z0) for all non-negative integers
n ∈ N0.

Proof. (a) ↔ (b). Apply the previous proposition to the functionf − g.
(a) implies (c) is trivial. Suppose that (c) is satisfied. Then, the power series expansion of
f − g at z0 is identically0. In particular, the setZ(f − g) contains a ballBε(z0) which has an
accumulation point. Hence,f − g = 0.

The following proposition is an immediate consequence of the uniqueness theorem.

Proposition 14.20 (Uniqueness of Analytic Continuation)Suppose thatM ⊂ U ⊂ C where
U is a region andM has an accumulation point inU . Let g be a function onM and suppose
thatf is a holomorphic function onU which extentsg, that isf(z) = g(z) onM .
Thenf is unique.

Remarks 14.9 (a) The previous proposition shows a quite amazing propertyof a holomorphic
function: It is completely determined by “very few values”.This is in a striking contrast to
C∞-functions on the real line. For example, the “hat function”

h(x) =

{
e
− 1

1−x2 | x | < 1,

0 | x | ≥ 1

is identically0 on [2, 3] (a set with accumulation points), however,h is not identically0. This
shows thath is not holomorphic.
(b) For the uniqueness theorem, it is an essential point thatU is connected.
(c) It is now clear that the real functionex, sin x, andcosx have a unique analytic continuation
into the complex plane.
(d) The algebraO(U) of holomorphic functions on a regionU is a domain, that is, fg =

0 implies f = 0 or g = 0. Indeed, suppose thatf(z0) 6= 0, thenf(z) 6= 0 in a certain
neighborhood ofz0 (by continuity off ). Theng = 0 on that neighborhood. Since an open set
has always an accumulation point in itself,g = 0.

14.4 Singularities

We consider functions which are holomorphic in a punctured ball
◦
U r(a). From information

about the behaviour of the function near the centera, a number of interesting and useful results
will be derived. In particular, we will use these results to evaluate certain unproper integrals
over the real line which cannot be evaluated by methods of calculus.
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14.4.1 Classification of Singularities

Throughout this subsectionU is a region,a ∈ U , andf : U \ {a} → C is holomorphic.

Definition 14.4 (a) Letf be holomorphic inU \ {a} whereU is a region anda ∈ U . Thena is
said to be anisolated singularity.
(b) The pointa is called aremovable singularityif there exists a holomorphic function
g : Ur(a)→ C such thatg(z) = f(z) for all z with 0 < | z − a | < r.

Example 14.10The functions
sin z

z
, 1
z
, ande1/z all have isolated singularities at0. However,

only f(z) =
sin z

z
has a removable singularity. The holomorphic functiong(z) which coincides

with f onC \ {0} is g(z) = 1 − z2/3! + z4/5! − + · · · . Hence, redefiningf(0) := g(0) = 1

makesf holomorphic inC. We will see later that the other two singularities are not removable.
It is convenient to denote the the new functiong with one more point in its domain (namelya)
also byf .

Proposition 14.21 (Riemann—1851)Suppose thatf : U \ {a} → C, a ∈ U , is holomorphic.
Thena is a removable singularity off if and only if there exists a punctured neighborhood
◦
U r(a) wheref is bounded.

Proof. The necessity of the condition follows from the fact, that aholomorphic functiong is
continuous and the continuous function| g(z) | defined on the compact setUr/2(a) is bounded;
hencef is bounded.
For the sufficiency we assume without loss of generality,a = 0 (if a is non-zero, consider the
function f̃(z) = f(z − a) instead). The function

h(z) =

{
z2f(z), z 6= 0,

0, z = 0

is holomorphic in
◦
U r(0). Moreover,h is differentiable at0 sincef is bounded in a neighborhood

of 0 and

h′(0) = lim
z→0

h(z)− h(0)

z
= lim

z→0
zf(z) = 0.

Thus,h can be expanded into a power series at0,

h(z) = c0 + c1z + c2z
3 + c3z

3 + · · · = c2z
2 + c3z

3 + · · ·

with c0 = c1 = 0 sinceh(0) = h′(0) = 0. For non-zeroz we have

f(z) =
h(z)

z2
= c2 + c3z + c4z

2 + · · · .

The right side defines a holomorphic function in a neighborhood of 0 which coincides withf
for z 6= 0. The settingf(0) = c2 removes the singularity at0.
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Definition 14.5 (a) An isolated singularitya of f is called apoleof f if there exists a positive
integerm ∈ N and a holomorphic functiong : Ur(a)→ C such that

f(z) =
g(z)

(z − a)m

The smallest numberm such that(z − a)mf(z) has a removable singularity ata is called the
orderof the pole.

(b) An isolated singularitya of f which is neither removable nor a pole is called anessential
singularity.

(c) If f is holomorphic ata and there exists a positive integerm and a holomorphic functiong
such thatf(z) = (z − a)mg(z), andg(a) 6= 0, a is called azero of orderm of f .

Note thatm = 0 corresponds to removable singularities. Iff(z) has a zero of orderm at a,
1/f(z) has a pole of orderm ata and vice versa.

Example 14.11The functionf(z) = 1/z2 has a pole of order2 at z = 0 sincez2f(z) = 1 has
a removable singularity at0 andzf(z) = 1/z not. The functionf(z) = (cos z − 1)/z3 has a
pole of order1 at0 since(cos z − 1)/z3 = −/(2z) + z/4!∓ · · · .

14.4.2 Laurent Series

In a neighborhood of an isolated singularity a holomorphic function cannot expanded into a
power series, however, in a so called Laurent series.

Definition 14.6 A Laurent serieswith centera is a series of the form

∞∑

n=−∞
cn(z − a)n

or more precisely the pair of series

f−(z) =
∞∑

n=1

c−n(z − a)−n and f+(z) =
∞∑

n=0

cn(z − a)n.

The Laurent series is said to be convergent if both series converge.
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f(z)  converges
+

R

r r

R

a a a

f(z)  converges
−

Remark 14.10 (a) f−(z) is “a power series in
1

z − a .” Thus, we can derive facts about the

convergence of Laurent series from the convergence of powerseries. In fact, suppose that1/r

is the radius of convergence of the power series
∑∞

n=1 c−nζ
n andR is the radius of convergence

of the series
∑∞

n=0 cnz
n, then the Laurent series

∑
n∈Z cnzn converges in the annulusAr,R =

{z | r < z < R} and defines there a holomorphic function.
(a) The power seriesf+(z) =

∑
n≥0 cn(z − a)n converges in the inner part of the ballUR(a)

whereas the series with negative powers, called theprincipal part of the Laurent series,f−(z) =∑
n<0 cn(z − a)n converges in the exterior of the ballUr(a). Since both series must converge,

f(z) convergence in intersection of the two domains which is the annulusAr,R(a).

The easiest way to determine the type of an isolated singularity is to use Laurent series which
are, roughly speaking, power series with both positive and negative powerszn.

Proposition 14.22 Suppose thatf is holomorphic in the open annulusAr,R(a) =

{z | r < | z − a | < R}. Then f(z) has an expansion in a convergent Laurent series for
z ∈ Ar,R

f(z) =

∞∑

n=0

cn(z − a)n +

∞∑

n=1

c−n
1

(z − a)n (14.12)

with coefficients

cn =
1

2πi

∫

Sρ(a)

f(z)

(z − a)n+1
dz, n ∈ Z, (14.13)

where r < ρ < R. The series converges uniformly on every annulusAs1,s2(a) with
r < s1 ≤ s2 < R.
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Proof.

a

z

γ

s s
1 2

Let z be in the annulusAs1,s2 and letγ be the closed
path aroundz in the annulus consisting of the two cir-
cles−Ss1(a), Ss2(a) and the two “bridges.” By Cauchy’s
integral formula,

f(z) =
1

2πi

∫

γ

f(w)

w − zdw = f1(z) + f2(z) =

=
1

2πi

∫

Ss2 (a)

f(w)

w − zdw − 1

2πi

∫

Ss1 (a)

f(w)

w − zdw

We consider the two functions

f1(z) =
1

2πi

∫

Ss2 (a)

f(w)

w − zdw, f2(z) = − 1

2πi

∫

Ss1 (a)

f(w)

w − zdw

separately.

In what follows, we will see thatf1(z) is a power series
∑∞

n=0 cn(z − a)n and f2(z) =∑∞
n=1 c−n

1
(z−a)n . The first part is completely analogous to the proof of Theorem 14.9.

a

z

w

s2
Case 1.w ∈ Ss2(a). Then| z − a | < |w − a | and| q | =

∣∣∣∣
z − a
w − a

∣∣∣∣ < 1

such that

1

w − z =
1

w − a
1(

1− z−a
w−a
) =

1

w − a

∞∑

n=0

qn =

∞∑

n=0

(z − a)n
(w − a)n+1

.

Sincef(w) is bounded onSs2(a), the geometric series has a converging numerical upper bound.
Hence, the series converges uniformly with respect tow; we can exchange integration and
summation:

f1(z) =
1

2πi

∫

Ss2 (a)

∞∑

n=0

f(w)
(z − a)n

(w − a)n+1
dw =

∞∑

n=0

(z − a)n
2πi

∫

Ss2 (a)

f(w)dw

(w − a)n+1
=

∞∑

n=0

cn(z−a)n,

wherecn = 1
2πi

∫
Ss2 (a)

f(w)dw
(w−a)n+1 are the coefficients of the power seriesf1(z).

a
w

z

s
1

Case 2.w ∈ Ss1(a). Then| z − a | > |w − a | and

∣∣∣∣
w − a
z − a

∣∣∣∣ < 1 such

that

1

w − z = − 1

z − a
1(

1− w−a
z−a
) = − 1

z − a

∞∑

n=0

qn = −
∞∑

n=0

(w − a)n
(z − a)n+1

.

Sincef(w) is bounded onSs1(a), the geometric series has a converging numerical upper bound.
Hence, the series converges uniformly with respect tow; we can exchange integration and
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summation:

f2(z) =
1

2πi

∫

Ss1 (a)

∞∑

n=0

f(w)
(w − a)n

(z − a)n+1
dw =

∞∑

n=0

1

2πi(z − a)n+1

∫

Ss1 (a)

f(w) (w − a)ndw

=
∞∑

n=1

c−n(z − a)−n,

wherec−n = 1
2πi

∫
Ss2 (a)

f(w) (w − a)n−1dw are the coefficients of the seriesf2(z).

Since the integrand
f(w)

(w − a)k , k ∈ Z, is holomorphic in both annuliAs1,ρ andAρ,s2, by Re-

mark 14.4 (c)
∫

Ss2 (a)

f(w)dw

(w − a)k =

∫

Sρ(a)

f(w)dw

(w − a)k , and
∫

Ss1 (a)

f(w)dw

(w − a)k =

∫

Sρ(a)

f(w)dw

(w − a)k ,

that is, in the coefficient formulas we can replace both circlesSs1(a) andSs2(a) by a common
circle Sρ(a). Since a power series converge uniformly on every compact subset of the disc of
convergence, the last assertion follows.

Remark 14.11 The Laurent series off on Ar,R(a) is unique. Its coefficientscn, n ∈ Z are
uniquely determined by (14.13). Another value ofρ with r < ρ < R yields the same valuescn
by Remark 14.4 (c).

Example 14.12Find the Laurent expansion off(z) =
2

z2 − 4z + 3
in the three annuli with

midpoint0
0 < | z | < 1, 1 < | z | < 3, 3 < | z | .

Using partial fraction decomposition,f(z) =
1

1− z +
1

z − 3
, we find in the case

(a) | z | < 1

1

1− z =

∞∑

n=0

zn,
1

3− z =
1

3

(
1

1− z
3

)
=

1

3

∞∑

n=0

(z
3

)n
.

Hence,

f(z) =
∞∑

n=0

(
1− 1

3n+1

)
zn, | z | < 1.

In the case| z | > 1,
1

1− z =
1

z

1

1− 1
z

=

∞∑

n=0

1

zn+1

and as in (a) for| z | < 3

1

3− z =
1

3

∞∑

n=0

(z
3

)n
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such that

f(z) =
∞∑

n=0

−1

zn
+

∞∑

n=0

−1

3n+1
zn.

(c) In case| z | > 3 we have

1

z − 3
=

1

z
(
1− 3

z

) =

∞∑

n=0

3n

zn+1

such that

f(z) =
∞∑

n=1

(3n−1 − 1)
1

zn
.

We want to study the behaviour off in a neighborhood of an essential singularitya. It is
characterized by the following theorem. For the proof see Conway, [Con78, p. 300].

Theorem 14.23 (Great Picard Theorem (1879))Suppose thatf(z) is holomorphic in the an-
nulusG = {z | 0 < | z − a | < r} with an essential singularity ata.
Then there exists a complex numberw1 with the following property. For any complex number
w 6= w1, there are infinitely manyz ∈ G with f(z) = w.

In other words, in every neighborhood ofa the functionf(z) takes all complex values with
possibly one omission. In case off(z) = e1/z the number0 is omitted; in case off(z) = sin 1

z

no complex number is omitted.
We will prove a much weaker form of this statement.

Proposition 14.24 (Casorati–Weierstraß)Suppose thatf(z) is holomorphic in the annulus
G = {z | 0 < | z − a | < r} with an essential singularity ata.
Then the image of any neighborhood ofa in G is dense inC, that is for everyw ∈ C and any
ε > 0 andδ > 0 there existsz ∈ G such that| z − a | < δ and| f(z)− w | < ε.

Proof. For simplicity, assume thatδ < r. Assume to the contrary that there existsw ∈ C and

ε > 0 such that| f(z)− w | ≥ ε for all z ∈
◦
U δ(a). Then the function

g(z) =
1

f(z)− w, z ∈
◦
U δ(a)

is bounded (by1/ε) in some neighborhood ofa; hence, by Proposition 14.21,a is a removable
singularity ofg(z). We conclude that

f(z) =
1

g(z)
+ w

has a removable singularity ata if g(a) 6= 0. If, on the other hand,g(z) has a zero ata of order
m, that is

g(z) =
∞∑

n=m

cn(z − a)n, cm 6= 0,



392 14 Complex Analysis

the function(z − a)mf(z) has a removable singularity ata. Thus,f has a pole of orderm ata.
Both conclusions contradict our assumption thatf has an essential singularity ata.

The Laurent expansion establishes an easy classification ofthe singularity off at a. We sum-
marize the main facts about isolated singularities.

Proposition 14.25 Suppose thatf(z) is holomorphic in the punctured discU =
◦
UR(a) and

possesses there the Laurent expansionf(z) =
∞∑

n=−∞
cn(z − a)n.

Then the singularity ata

(a) is removable ifcn = 0 for all n < 0. In this case,| f(z) | is bounded inU .

(b) is a pole of orderm if c−m 6= 0 andcn = 0 for all n < −m. In this case,limz→a | f(z) | =
+∞.

(c) is an essential singularity ifcn 6= 0 for infinitely manyn < 0. In this case,| f(z) | has no
finite or infinite limit asz → a.

The easy proof is left to the reader. Note that Casorati–Weierstraß implies that| f(z) | has no
limit at a.

Example 14.13f(z) = e1/z has inC \ {0} the Laurent expansion

e
1
z =

∞∑

n=0

1

n!zn
, | z | > 0.

Sincec−n 6= 0 for all n, f has an essential singularity at0.

14.5 Residues

ThroughoutU ⊂ C is an open connected subset ofC.

Definition 14.7 Suppose thatf :
◦
U r(a)→ C, is holomorphic,0 < r1 < r and let

f(z) =
∑

n∈Z cn(z − a)n, cn =
1

2πi

∫

Sr1 (a)

f(z) dz

(z − a)n+1

be the Laurent expansion off in the annulus{z | 0 < | z − a | < r}.
Then the coefficient

c−1 =
1

2πi

∫

Sr1 (a)

f(z) dz

is called theresidueof f ata and is denoted byRes
a

f(z) or Res
a

f .
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Remarks 14.12 (a) If f is holomorphic ata, Res
a

f = 0 by Cauchy’s theorem.

(b) The integral
∫
γ
f(z) dz depends only on the coefficientc−1 in the Laurent expansion off(z)

arounda. Indeed, every summandcn(z − a)n, n 6= 0, has an antiderivative inU \ {a} such that
the integral over a closed path is0.
(c) Res

a
f + Res

a
g = Res

a
f + g andRes

a
λf = λRes

a
f .

Theorem 14.26 (Residue Theorem)Suppose thatf : U \ {a1, . . . , am} → C, a1, . . . , am ∈
U , is holomorphic. Further, letγ be a non-selfintersecting positively oriented closed curvein
U such that the pointsa1, . . . , am are in the inner part ofγ. Then

∫

γ

f(z) dz = 2πi
m∑

k=1

Res
ak

f (14.14)

Proof.

1

2
1

2

γ
δ

γ

γ

1

δδ3 4

2
δ

a
a

As in Remark 14.4 we can replace
∫
γ

by
the sum of integrals over small circles, one
around each singularity. As before, we ob-
tain

∫

γ

f(z) dz =
m∑

k=1

∫

Sε(ak)

f(z) dz,

where all circles are positively oriented. Applying the definition of the residue we obtain the
assertion.

Remarks 14.13 (a) The residue theorem generalizes the Cauchy’s Theorem, see Theorem 14.6.
Indeed, iff(z) possesses an analytic continuation to the pointsa1, . . . , am, all the residues are
zero and therefore

∫
γ
f(z) dz = 0.

(b) If g(z) is holomorphic in the regionU , g(z) =
∞∑

n=0

cn(z − a)n, c0 = g(a), then

f(z) =
g(z)

z − a, z ∈ U \ {a}

is holomorphic inU \ {a} with a Laurent expansion arounda:

f(z) =
c0

z − a + c1 + c2(z − a)2 + · · · ,

wherec0 = g(a) = Res
a

f . The residue theorem gives

∫

Sr(a)

g(z)

z − a dz = 2πi Res
a

f = 2πi c0 = 2πig(a).

We recovered Cauchy’s integral formula.
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14.5.1 Calculating Residues

(a) Pole of order 1

As in the previous Remark, suppose thatf has a pole of order1 ata andg(z) = (z − a)f(z) is
the corresponding holomorphic function inUr(a). Then

Res
a

f = g(a) = lim
z→a,z 6=a

g(z) = lim
z→a

(z − a)f(z). (14.15)

(b) Pole of orderm

Suppose thatf has a pole of orderm ata. Then

f(z) =
c−m

(z − a)m +
c−m+1

(z − a)m−1
+ · · ·+ c−1

z − a + c0 + c1(z − a) + · · · , 0 < | z − a | < r

(14.16)

is the Laurent expansion off arounda. Multiplying (14.16) by(z − a)m yields a holomorphic
function

(z − a)mf(z) = c−m + c−m+1(z − a) + · · · c−1(z − a)m−1 + · · · , | z − a | < r.

Differentiating this(m− 1) times, all terms having coefficientc−m, c−m+1, . . . , c−2 vanish and
we are left with the power series

dm−1

dzm−1
((z − a)mf(z)) = (m− 1)!c−1 +m(m− 1) · · ·2 c0(z − a) + · · ·

Insertingz = a on the left, we obtainc−1. However, on the left we have to take the limitz → a

sincef is not defined ata.
Thus, iff has a pol of orderm ata,

Res
a

f(z) =
1

(m− 1)!
lim
z→a

dm−1

dzm−1
((z − a)mf(z)) . (14.17)

(c) Quotients of Holomorphic Functions

Suppose thatf = p
q

wherep andq are holomorphic ata andq has a zero of order1 ata, that is
q(a) = 0 6= q′(a). Then, by (a)

Res
a

p

q
= lim

z→a
(z − a) p(z)

q(z)
= lim

z→a

p(z)
q(z)−q(a)
z−a

=
lim
z→a

p(z)

lim
z→a

q(z)−q(a)
z−a

=
p(a)

q′(a)
. (14.18)
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a2 a1

i

1 Re

Im

0

Example 14.14Compute
∫

S1(i)
dz

1+z4
. The only singularities of

f(z) = 1/(1 + z4) inside the disc{z | | z − i | < 1} are
a1 = eπi/4 = (1 + i)/

√
2 anda2 = e3πi/4 = (−1 + i)/

√
2. In-

deed,| a1 − i |2 = 2 −
√

2 < 1. We apply the Residue Theorem
and (c) and obtain

∫

S1(i)

dz

1 + z4
= 2πi

(
Res
a1

f + Res
a2

f

)
=

2πi

(
1

4a3
1

+
1

4a3
2

)
= 2πi

−a1 − a2

4
=

√
2π

2
.

14.6 Real Integrals

14.6.1 Rational Functions in Sine and Cosine

Suppose we have to compute the integral of such a function over a full period[0, 2π]. The idea
is to replacet by z = eit on the unit circle,cos t andsin t by (z + 1/z)/2 and(z − 1/z)/(2i),
respectively, and finallydt = dz/(iz).

Proposition 14.27 Supppose thatR(x, y) is a rational function in two variables and
R(cos t, sin t) is defined for allt ∈ [0, 2π]. Then

∫ 2π

0

R(cos t, sin t) dt = 2πi
∑

a∈U1(0)

Res
a

f(z), (14.19)

where

f(z) =
1

iz
R

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))

and the sum is over all isolated singularities off(z) in the open unit ball.

Proof. By the residue theorem,
∫

S1(0)

f(z) dz = 2πi
∑

a∈U1(0)

Res
a

f

Let z = eit for t ∈ [0, 2π]. Rewriting the integral on the left usingdz = eiti dt = iz dt

∫

S1(0)

f(z) dz =

∫ 2π

0

R(cos t, sin t) dt

completes the proof.

Example 14.15For | a | < 1,
∫ 2π

0

dt

1− 2a cos t+ a2
=

2π

1− a2
.
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For a = 0, the statement is trivially true; suppose nowa 6= 0. Indeed, the complex function
corresponding to the integrand is

f(z) =
1

iz(1 + a2 − az − a/z) =
1

i(−az2 − a+ (1 + a2)z)
=

i/a

(z − a)
(
z − 1

a

) .

In the unit disc,f(z) has exactly one pole of order1, namelyz = a. By (14.15), the formula in
Subsection 14.5.1,

Res
a

f = lim
z→a

(z − a)f(z) =
i
a

a− 1
a

=
i

a2 − 1
;

the assertion follows from the proposition:

∫ 2π

0

dt

1− 2a cos t+ a2
= 2πi

i

a2 − 1
=

2π

1− a2
.

SpecializingiR = 1 andr = a ∈ R in Homework 49.1, we obtain the same formula.

14.6.2 Integrals of the form
∫∞

−∞ f(x) dx

(a) The Principal Value

We often compute improper integrals of the form
∫ ∞

−∞
f(x) dx. Using the residue theorem, we

calculate limits

lim
R→∞

∫ R

−R
f(x) dx, (14.20)

which is called theprincipal value(or Cauchy mean value) of the integral overR and we denote
it by

Vp

∫ ∞

−∞
f(x) dx.

The existence of the “coupled” limit (14.20) in general doesnot imply the existence of the
improper integral

∫ ∞

−∞
f(x) dx = lim

r→−∞

∫ 0

r

f(x) dx+ lim
s→∞

∫ s

0

f(x) dx.

For example,Vp
∫∞
−∞x dx = 0 whereas

∫∞
−∞ x dx does not exist since

∫∞
0
x dx = +∞. In

general, the existence of the improper integral implies theexistence of the principal value. Iff
is an even function orf(x) ≥ 0, the existence of the principal value implies the existenceof the
improper integral.

(b) Rational Functions

The main idea to evaluate the integral
∫R f(x) dx is as follows. LetH = {z | Im (z) > 0}

be the upper half-plane andf : H \ {a1, . . . , am} → C be holomorphic. ChooseR > 0 large
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enough such that| ak | < R for all k = 1, . . . , m, that is, all isolated singularities off are in the
upper-plane-half-disc of radiusR around0.

−R R

iR

γ

.
. .

.

.

.

.

R

Consider the path as in the picture which con-
sists of the segment from−R to R on the real
line and the half-circleγR of radiusR. By the
residue theorem,

∫ R

−R
f(x) dx+

∫

γR

f(z) dz = 2πi

m∑

k=1

Res
ak

f(z).

If

lim
R→∞

∫

γR

f(z) dz = 0 (14.21)

the above formula implies

lim
R→∞

∫ R

−R
f(x) dx = 2πi

m∑

k=1

Res
ak

(z).

Knowing the existence of the improper integral
∫ ∞

−∞
f(x) dx one has

∫ ∞

−∞
f(x) dx = 2πi

m∑

k=1

Res
ak

(z).

Suppose thatf = p
q

is a rational function such thatq has no real zeros anddeg q ≥ deg p + 2.
Then (14.21) is satisfied. Indeed, since only the two leadingterms ofp andq determine the the

limit behaviour off(z) for | z | → ∞, there existsC > 0 with

∣∣∣∣
p(z)

q(z)

∣∣∣∣ ≤
C

R2
onγR. Using the

estimateMℓ(γ) from Remark 14.3 (c) we get
∣∣∣∣
∫

γR

p(z)

q(z)
dz

∣∣∣∣ ≤
C

R2
ℓ(γR) =

πC

R
−→
R→∞

0.

By the same reason namely| p(x)/q(x) | ≤ C/x2, for largex, the improper real integral exists
(comparison test) and converges absolutely. Thus, we have shown the following proposition.

Proposition 14.28 Suppose thatp and q are polynomials withdeg q ≥ deg p + 2. Further, q
has no real zeros anda1, . . . , am are all poles of the rational functionf(z) = p(z)

q(z)
in the open

upper half-planeH.
Then ∫ ∞

−∞
f(x) dx = 2πi

m∑

k=1

Res
ak

f.

Example 14.16 (a)
∫∞
−∞

dx
1+x2 . The only zero ofq(z) = z2 +1 inH is a1 = i anddeg(1+z2) =

2 ≥ deg(1) + 2 such that
∫ ∞

−∞

dx

1 + x2
= 2πi Res

i

1

1 + z2
= 2πi

1

1 + z

∣∣∣∣
z=i

= π.
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(b) It follows from Example 14.14 that
∫ ∞

−∞

dx

1 + x4
= 2πi

(
Res
a1

f + Res
a2

f

)
=
π
√

2

2
.

(c) We compute the integral ∫ ∞

0

dt

1 + t6
=

1

2

∫ ∞

−∞

dt

1 + t6
.

aa 1

a2

3

=i

1

The zeros ofq(z) = z6 + 1 in the upper half-plane are
a1 = eiπ/6, a2 = eiπ/2 anda3 = e5iπ/6. They are all of
multiplicity 1 such that Formula (14.18) applies:

Res
ak

1

q(z)
=

1

q′(ak)
=

1

6a5
k

= −ak
6
.

By Proposition 14.28 and noting thata1 + a3 = i,
∫ ∞

0

dt

1 + t6
=

1

2
2πi
−1

6

(
eiπ/6 + i + e5iπ/6

)
= −πi

6
2i =

π

3
.

(c) Functions of Typeg(z) eiαz

Proposition 14.29 Suppose thatp andq are polynomials withdeg q ≥ deg p + 1. Further, q
has no real zeros anda1, . . . , am are all poles of the rational functiong = p

q
in the open upper

half-planeH. Putf(z) = g(z) eiαz, whereα ∈ R is positiveα > 0.
Then ∫ ∞

−∞
f(x) dx = 2πi

m∑

k=1

Res
ak

f.

Proof. (The proof was omitted in the lecture.)

.
. .

.

.

.

.

−r+ir ir r+ir

r−r

Instead of a semi-circle it is more appropriate to
consider a rectangle now.

According to the residue theorem,
∫ r

−r
f(x) dx+

∫ r+ir

r

f(z) dz +

∫ r−ir

r+ir

f(z) dz +

∫ −r

−r+ir

f(z) dz = 2πi

m∑

k=1

Res
ak

f.

Sincedeg q ≥ deg p + 1, limz→∞

∣∣∣ p(z)q(z)

∣∣∣ = 0. Thus,sr = sup
| z |≥r

∣∣∣∣
p(z)

q(z)

∣∣∣∣ exists and tends to0 as

r →∞.



14.6 Real Integrals 399

Consider the second integralI2 with z = r + it, t ∈ [0, r], dz = i dt. On this segment we have
the following estimate ∣∣∣∣

p(z)

q(z)
eiα(r+it)

∣∣∣∣ ≤ sr e−αt

which implies

| I2 | ≤ sr

∫ r

0

e−αt dt =
sr
α

(
1− e−αr

)
≤ sr
α
.

A similar estimate holds for the fourth integral from−r + ir to−r. In case of the third integral
one hasz = t+ ir, t ∈ [−r, r], dz = dt such that

| I3 | ≤
∫ r

−r
sr
∣∣ eiα(t+ri)

∣∣ dt = sre
−αr
∫ r

−r
dt = 2rsre

−αr.

Since2re−αr is bounded andsr → 0 asr → ∞, all three integralsI2, I3, andI4 tend to0 as
r →∞. This completes the proof.

Example 14.17Fora > 0, ∫ ∞

0

cos t

t2 + a2
dt =

π

2a
e−a.

Obviously, ∫ ∞

0

cos t

t2 + a2
dt =

1

2
Re

(∫ ∞

−∞

eit

t2 + a2
dt

)
.

The functionf(z) =
eit

t2 + a2
has a single pole of order1 in the upper half-plane atz = ai. By

formula (14.18)

Res
ai

eiz

z2 + a2
=

eiz

2z

∣∣∣∣
z=ai

=
e−a

2ai
.

Proposition 14.29 gives the result.

(d) A Fourier transformations

Lemma 14.30 For a ∈ R,

1√
2π

∫R e−
1
2
x2−iax dx = e−

1
2
a2 . (14.22)

Proof.

R−R

ai−R+ai R+ai

γ

γ

γ

1

2

3

γ
4

Let f(z) = e−
1
2
z2, z ∈ C and γ the closed

rectangular pathγ = γ1 + γ2 + γ3 + γ4 as in
the picture. Sincef is an entire function, by
Cauchy’s theorem

∫
γ
f(z) dz = 0. Note that

γ2 is parametrized asz = R + ti, t ∈ [0, a],
dz = i dt, such that
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∫

γ2

f(z) dz =

∫ a

0

e−
1
2
(R2+it)2 i dt =

∫ a

0

e−
1
2
(R2+2Rit−t2)i dt

∣∣∣∣
∫

γ2

f(z) dz

∣∣∣∣ ≤
∫ a

0

e−
1
2
R2+ 1

2
t2 dt = e−

1
2
R2

∫ a

0

e
1
2
t2 dt = Ce−

1
2
R2

.

Since e−
1
2
R2

tends to 0 as R → ∞, the above integral tends to0, as well; hence

lim
R→∞

∫

γ2

f(z) dz = 0. Similarly, one can show thatlim
R→∞

∫

γ4

f(z) dz = 0. Since
∫
γ
f(z) dz = 0,

we have
∫

γ1+γ3

f(z) dz = 0, that is

∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
f(x+ ai) dx.

Using ∫R e−
1
2
x2

dx =
√

2π,

which follows from Example 14.7, page 374, or from homework 41.3, we have

√
2π =

∫R e−
1
2
x2

dx =

∫R e−
1
2
(x2+2iax−a2) dx = e

1
2
a2
∫R e−

1
2
x2−iax dx

1√
2π

∫R e−
1
2
x2−iax dx = e−

1
2
a2 .



Chapter 15

Partial Differential Equations I — an
Introduction

15.1 Classification of PDE

15.1.1 Introduction

There is no general theory known concerning the solvabilityof all PDE. Such a theory is ex-
tremely unlikely to exist, given the rich variety of physical, geometric, probabilistic phenomena
which can be modelled by PDE. Instead, research focuses on various particular PDEs that are
important for applications in mathematics and physics.

Definition 15.1 A partial differential equation(abbreviated as PDE) is an equation of the form

F (x, y, . . . , u, ux, uy, . . . , uxx, uxy, . . . ) = 0 (15.1)

whereF is a given function of the independent variablesx, y, . . . of the unknown functionu
and a finite number of its partial derivatives.
We callu asolutionof (15.1) if after substitution ofu(x, y, . . . ) and its partial derivatives (15.1)
is identically satisfied in some regionΩ in the space of the independent variablesx, y, . . . . The
orderof a PDE is the order of the highest derivative that occurs.

A PDE is calledlinear if it is linear in the unknown functionu and their derivativesux, uy, uxy,
. . . , with coefficients depending only on the variablesx, y, . . . . In other words, a linear PDE
can be written in the form

G(u, ux, uy, . . . , uxx, uxy, . . . ) = f(x, y, . . . ), (15.2)

where the functionf on the right depends only on the variablesx, y, . . . andG is linear in all
components with coefficients depending onx, y, . . . . More precisely, the formaldifferential
operatorL(u) = G(u, ux, uy, . . . , uxx, uxy, . . . ) which associates to each functionu(x, y, . . . )
a new functionL(u)(x, y, . . . ) is a linear operator. The linear PDE (15.2) (L(u) = f ) is called
homogeneousif f = 0 and inhomogeneousotherwise. For example,cos(xy2)uxxy − y2ux +

401



402 15 Partial Differential Equations I — an Introduction

u sinx + tan(x2 + y2) = 0 is a linear inhomogeneous PDE of order3, the corresponding
homogeneous linear PDE iscos(xy2)uxxy − y2ux + u sin x = 0.
A PDE is calledquasi-linearif it is linear in all partial derivatives of orderm (the order of the
PDE) with coefficients which depend on the variablesx, y, · · · and partial derivatives of order
less thanm; for exampleuxuxx + u2 = 0 is quasi-linear,uxyuxx + 1 = 0 not. Semi-linear
equations are those quasi-linear equation in which the coefficients of the highest order terms
does not depend onu and its partial derivatives;sin xuxx+u2 = 0 is semi-linear;uxuxx+u2 = 0

not. Sometimes one considerssystemsof PDEs involving one or more unknown functions and
their derivatives.

15.1.2 Examples

(1) TheLaplace equationin n dimensions for a functionu(x1, . . . , xn) is the linear second
order equation

∆u = ux1x1 + · · ·+ uxnxn = 0.

The solutionsu are calledharmonic(or potential) functions. In casen = 2 we associate
with a harmonic functionu(x, y) its “conjugate” harmonic functionv(x, y) such that the
first-order system of Cauchy–Riemann equations

ux = vy, uy = −vx

is satisfied. A real solution(u, v) gives rise to the analytic functionf(z) = u + iv. The
Poisson equationis

∆u = f, for a given function f : Ω → R.
The Laplace equation models equilibrium states while the Poisson equation is impor-
tant in electrostatics. Laplace and Poisson equation always describe stationary processes
(there is no time dependence).

(2) Theheat equation.Here one coordinatet is distinguished as the “time” coordinate, while
the remaining coordinatesx1, . . . , xn represent spatial coordinates. We consider

u : Ω ×R+ → R, Ω open inRn,

whereR+ = {t ∈ R | t > 0} is the positive time axis and pose the equation

kut = ∆u, where ∆u = ux1x1 + · · ·+ uxnxn.

The heat equation models heat conduction and other diffusion processes.

(3) Thewave equation.With the same notations as in (2), here we have the equation

utt − a2∆u = 0.

It models wave and oscillation phenomena.
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(4) TheKorteweg–de Vries equation

ut − 6u ux + uxxx = 0

models the propagation of waves in shallow waters.

(5) TheMonge–Ampère equation

uxxuyy − u2
xy = f

with a given functionf , is used for finding surfaces with prescribed curvature.

(6) TheMaxwell equationsfor the electric field strengthE = (E1, E2, E3) and the magnetic
field strengthB = (B1, B2, B3) as functions of(t, x1, x2, x3):

divB = 0, (magnetostatic law),

Bt + curlE = 0, (magnetodynamic law),

divE = 4πρ, (electrostatic law,ρ = charge density),

Et − curlB = −4πj (electrodynamic law,j = current density)

(7) The Navier–Stokes equationsfor the velocityv(x, t) = (v1, v2, v3) and the pressure
p(x, t) of an incompressible fluid of densityρ and viscosityη:

ρvjt + ρ

3∑

i=1

vi vjxi
− η∆vj = −pxj

, j = 1, 2, 3,

div v = 0.

(8) TheSchrödinger equation

i~ut = − ~2

2m
∆u+ V (x, u)

(m = mass,V = given potential,u : Ω → C) from quantum mechanics is formally
similar to the heat equation, in particular in the caseV = 0. The factori, however, leads
to crucial differences.

Classification

We have seen so many rather different-looking PDEs, and it ishopeless to develop a theory that
can treat all these diverse equations. In order to proceed wewant to look for criteria to classify
PDEs. Here are some possibilities

(I) Algebraically.

(a) Linear equations are (1), (2), (3), (6) which is of first order, and (8)

(b) semi-linear equations are (4) and (7)
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(c) a non-linear equation is (5)

naturally, linear equations are simple than non-linear ones. We shall therefore mostly
study linear equations.

(II) The order of the equation. The Cauchy–Riemann equations and the Maxwell equations
are linear first order equations. (1), (2), (3), (5), (7), (8)are of second order; (4) is of third
order. Equations of higher order rarely occur. The most important PDEs are second order
PDEs.

(III) Elliptic, parabolic, hyperbolic.In particular, for the second order equations the following
classification turns out to be useful: Letx = (x1, . . . , xn) ∈ Ω and

F (x, u, uxi
, uxixj

) = 0

be a second-order PDE. We introduce auxiliary variablespi, pij , i, j = 1, . . . , n, and study
the functionF (x, u, pi, pij). The equation is calledelliptic in Ω if the matrix

Fpij
(x, u(x), uxi

(x), uxixj
(x))i,j=1,...,n

of the first derivatives ofF with respect to the variablespij is positive definite or negative
definite for allx ∈ Ω.

this may depend on the functionu. The Laplace equation is the prominent example of an
elliptic equation. Example (5) is elliptic iff(x) > 0.
The equation is calledhyperbolicif the above matrix has precisely one negative andd−1

positive eigenvalues (or conversely, depending on the choice of the sign). Example (3) is
hyperbolic and so is (5) iff(x) < 0.
Finally, the equation isparabolic if one eigenvalue of the above matrix is0 and all the
other eigenvalues have the same sign. More precisely, the equation can be written in the
form

ut = F (t, x, u, uxi
, uxixj

)

with an ellipticF .

(IV) According tosolvability. We consider the second-order PDEF (x, u, uxi
, uxixj

) = 0 for
u : Ω → R, and wish to impose additional conditions upon the solutionu, typically
prescribing the values ofu or of certain first derivatives ofu on the boundary∂Ω or part
of it.

Ideally such a boundary problem satisfies the three conditions of Hadamard for awell-
posed problem

(a) Existence of a solutionu for the given boundary values;

(b) Uniqueness of the solution;

(c) Stability, meaning continuous dependence on the boundary values.
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Example 15.1 In the following examplesΩ = R2 andu = u(x, y).
(a) Find all solutionsu ∈ C2(R2) with uxx = 0. We first integrate with respect tox and find
thatux is independent onx, sayux = a(y). We again integrate with respect tox and obtain
u(x, y) = xa(y) + b(y) with arbitrary functionsa andb. Note that the ODEu′′ = 0 has the
general solutionax+ b with coefficientsa, b. Now the coefficients arefunctionsony.
(b) Solveuxx + u = 0, u ∈ C2(R2). The solution of the corresponding ODEu′′ + u = 0,
u = u(x), u ∈ C2(R), is a cosx + b sin x such that the general solution of the corresponding
PDE in2 variablesx andy is a(y) cosx+ b(y) sin x with arbitrary functionsa andb.
(c) Solveuxy = 0, u ∈ C2(R2). First integrate ∂

∂y
(ux) = 0 with respect toy. we obtain

ux = f̃(x). Integration with respect tox yieldsu =
∫
f̃(x) dx+ g(y) = f(x) + g(y), wheref

is differentiable andg is arbitrary.

15.2 First Order PDE — The Method of Characteristics

We solve first order PDE by the method ofchracteristics. It applies to quasi-linear equations

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (15.3)

as well as to the linear equation

a(x, y)ux + b(x, y)uy = c0(x, y)u+ c1(x, y). (15.4)

We restrict ourselves to the linear equation with aninitial conditiongiven as a parametric curve
in thexyu-space

Γ = Γ (s) = (x0(s), y0(s), u0(s)), s ∈ (a, b) ⊆ R. (15.5)

The curveΓ will be called theinitial curve. The initial condition then reads

u(x0(s), y0(s)) = u0(s), s ∈ (a, b).

x

y

u

Γ(s)

initial curve 

 characteristic curves

integral
surface

(x(0,s), y(0,s),u(0,s))

initial point

The geometric idea behind this method is the
following. The solutionu = u(x, y) can be
thought as surface inR3 = {(x, y, u) | x, y, u ∈R3}. Starting from a point on the initial curve,
we construct achracteristic curvein the surface
u. If we do so for any point of the initial curve,
we obtain a one-parameter family of character-
istic curves; glueing all these curves we get the
solution surfaceu.

The linear equation (15.4) can be rewritten as

(a, b, c0 u+ c1)·(ux, uy,−1) = 0. (15.6)
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Recall that(ux, uy,−1) is the normal vector to the surface(x, y, u(x, y)), that is, the tangent
equation tou at (x0, y0, u0) is

u− u0 = ux (x− x0) + uy(y − y0) ⇔ (x− x0, y − y0, u− u0)·(ux, uy,−1) = 0.

It follows from (15.6) that(a, b, c0u + c1) is a vector in the tangent plane. Finding a curve
(x(t), y(t), u(t)) with exactely this tangent vector

(a(x(t), y(t)), b(x(t), y(t)), c0(x(t), y(t))u(t) + c1(x(t), y(t)))

is equivalent to solve the ODE

x′(t) = a(x(t), y(t)), (15.7)

y′(t) = b(x(t), y(t)), (15.8)

u′(t) = c0(x(t), y(t))u(t) + c1(x(t), y(t))). (15.9)

This system is called thecharacteristic equations. The solutions are calledcharacteristic curves
of the equation. Note that the above system is autonomous, i.e. there is no explicit dependence
on the parametert.
In order to determine characteristic curves we need an initial condition. We shall require the
initial point to lie on the initial curveΓ (s). Since each curve(x(t), y(t), u(t)) emanates from
a different pointΓ (s), we shall explicitely write the curves in the form(x(t, s), y(t, s), u(t, s)).
The initial conditions are written as

x(0, s) = x0(s), y(0, s) = y0(s), u(0, s) = u0(s).

Notice that we selected the parametert such that the characteristic curve is located at the initial
curve att = 0. Note further that the parametrization(x(t, s), y(t, s), u(t, s)) represents a surface
inR3.
The method of characteristics also applies to quasi-linearequations.
To summarize the method: In the first step we identify the initial curveΓ . In the second step
we select a points onΓ as initial point and solve the characterictic equations using the point
we selected onΓ as an initial point. After preforming the steps for all points onΓ , we obtain
a portion of the solution surface, also calledintegral surface. That consists of the union of the
characteristic curves.

Example 15.2 Solve the equation
ux + uy = 2

subject to the initial conditionu(x, 0) = x2. The characteristic equations and the parametric
initial conditions are

xt(t, s) = 1, yt(t, s) = 1, ut(t, s) = 2,

x(0, s) = s, y(0, s) = 0, u(0, s) = s2.

It is easy to solve the characteristic equations:

x(t, s) = t+ f1(s), y(t, s) = t+ f2(s), u(t, s) = 2t+ f3(s).
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Inserting the initial conditions, we find

x(t, s) = t+ s, y(t, s) = t, u(t, s) = 2t+ s2.

We have obtained a parametric representation of the integral surface. To find an explicit rep-
resentation we have to invert the transformation(x(t, s), y(t, s)) in the form(t(x, y), s(x, y)),
namely, we have to solve fors andt. In the current example, we findt = y, s = x − y. Thus
the explicit formula for the integral surface is

u(x, y) = 2y + (x− y)2.

Remark 15.1 (a) This simple example might lead us to think that each initial value problem
for a first-order PDE possesses a unique solution. But this isnot the case Is the problem(15.3)
together with the initial condition (15.5) well-posed? Under which conditions does there exists
a unique integral surface that contains the initial curve?
(b) Notice that even if the PDE is linear, the characteristicequations are non-linear. It follows
that one can expect at most a local existanece theorem for a first ordwer PDE.
(c) The inversion of the parametric presentation of the integral surface might hide further diffi-
culties. Recall that the implicit function theorem impliesthat the inversion locally exists if the
Jacobian∂(x,y)

∂(t,s)
6= 0. An explicit computation of the Jacobian at a points of the initial curve

gives

J =
∂x

∂t

∂y

∂s
− ∂x

∂s

∂y

∂t
= ay′0 − bx′0 =

∣∣∣∣
a b

x′0 y′0

∣∣∣∣ .

Thus, the Jacobian vanishes at some point if and only if the vectors (a, b) and (x′0, y
′
0) are

linearly dependent. The geometrical meaning ofJ = 0 is that the projection ofΓ into thexy
plane is tangent to the projection of the characteristic curve into thexy plane. To ensure a unique
solution near the initial curve we must haveJ 6= 0. This condition is called thetransersality
condition.

Example 15.3 (Well-posed and Ill-posed Problems)(a) Solveux = 1 subject to the initial
conditionu(0, y) = g(y). The characteristic equations and the inition conditions are given by

xt = 1, yt(t, s) = 0, ut(t, s) = 1,

x(0, s) = 0, y(0, s) = s, u(0, s) = g(s).

The parametric integral surface is(x(t, s), y(t, s), u(t, s)) = (t, s, t+g(s)) such that the explicit
solution isu(x, y) = x+ g(y).
(b) If we keepux = 1 but modify the initial condition intou(x, 0) = h(x), the picture changess
dramatically.

xt = 1, yt(t, s) = 0, ut(t, s) = 1,

x(0, s) = s, y(0, s) = 0, u(0, s) = h(s).

In this case the parametric solution is

(x(t, s), y(t, s), u(t, s)) = (t+ s, 0, t+ h(s)).
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Now, however, the transformationx = t + s, y = 0 cannot be inverted. Geometrically, the
projection of the initial curve is thex axis, but this is also the projection of the characteristic
curve. In the speial caseh(x) = x+ c for some constantc, we obtainu(t, s) = t+ s+ c. Then
it is not necessary to invert(x, y) since we find at onceu = x+ c+f(y) for every differentiable
functionf with f(0) = 0. We have infinitely many solutions —uniqueness fails.
(c) However, for any other choice ofh Existence fails— the problem has no solution at all.
Note that the Jacobian is

J =

∣∣∣∣
a b

x′0 y′0

∣∣∣∣ =

∣∣∣∣
1 0

1 0

∣∣∣∣ = 0.

Remark 15.2 Because of the special role played by theprojecionsof the characteristics on the
xy plane, we also use the term characteristics to denote them. In case of the linear PDE (15.4)
the ODE for the projection is

x′(t) =
dx

dt
= a(x(t), y(t)), y′(t) =

dy

dt
= b(x(t), y(t)), (15.10)

which yieldsy′(x) =
dy

dx
=
b(x, y)

a(x, y)
.

15.3 Classification of Semi-Linear Second-Order PDEs

15.3.1 Quadratic Forms

We recall some basic facts about quadratic forms and symmetric matrices.

Proposition 15.1 (Sylvester’s Law of Inertia) Suppose thatA ∈ Rn×n is a symmetric matrix.
(a) Then there exist an invertible matrixB ∈ Rn×n, r, s, t ∈ N0 with r + s + t = n and a
diagonal matrixD = diag (d1, d2, . . . , dr+s, 0, . . . , 0) with di > 0 for i = 1, . . . , r anddi < 0

for i = r + 1, . . . , r + s and

BAB⊤ = diag (d1, . . . , dr+s, 0, . . . , 0).

We call(r, s, t) thesignature ofA.
(b) The signature does not depend on the change of coordinates, i. e. If there exist another
regular matrixB′ and a diagonal matrixD′ withD′ = B′A(B′)⊤ then the signature ofD′ and
D coincide.

15.3.2 Elliptic, Parabolic and Hyperbolic

Consider the semi-linear second-order PDE inn variablesx1, . . . , xn in a regionΩ ⊂ Rn

n∑

i,j=1

aij(x) uxixj
+ F (x, u, ux1, . . . , uxn) = 0 (15.11)

with continuous coefficientsaij(x). Since we assumeu ∈ C2(Ω), by Schwarz’s lemma we
assume without loss of generality thataij = aji. Using the terminology of the introduction
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(Classification (III), see page 404) we find that the matrixA(x) := (aij(x))i,j=1,...,n, coincides
with the matrix(Fpij

)i,j defined therein.

Definition 15.2 We call the PDE (15.11)elliptic at x0 if the matrixA(x0) is positive definite
or negative definite. We call itparabolicatx0 if A(x0) is positive or negative semidefinite with
exactly one eigenvalue0. We call ithyperbolicif A(x0) has the signature(n− 1, 1, 0), i. e.A is
indefinite withn − 1 positive eigenvalues and one negative eigenvalue and no zero eigenvalue
(or vice versa).

15.3.3 Change of Coordinates

First we study how the coefficientsaij will change if we impose a non-singular transformation
of coordinatesy = ϕ(x);

yl = ϕl(x1, . . . , xn), l = 1, . . . , n;

The transformation is callednon-singularif the Jacobian∂(ϕ1,...,ϕn)
∂(x1,...,xn)

(x0) 6= 0 is non-zero at
any pointx0 ∈ Ω. By the Inverse Mapping Theorem, the transformation possesses locally an
inverse transformation denoted byx = ψ(y)

xl = ψl(y1, . . . , yn), l = 1, . . . , n.

Putting
ũ(y) := u(ψ(y)), then u(x) = ũ(ϕ(x))

and if moreoverϕl ∈ C2(Ω) we have by the chain rule

uxi
=

n∑

l=1

ũyl

∂ϕl
∂xi

,

uxixj
= (uxi

)xj
=

n∑

k,l=1

ũylyk

∂ϕl
∂xi

∂ϕk
∂xj

+

n∑

l=1

ũyl

∂2ϕl
∂xi∂xj

. (15.12)

Inserting (15.12) into (15.11) one has

n∑

k,l=1

ũylyk

n∑

i,j=1

aij
∂ϕl
∂xi

∂ϕk
∂xj

+

n∑

l=1

ũyl

n∑

i,j=1

aij
∂2ϕl
∂xi∂xj

+ F̃ (y, ũ, ũy1, . . . , ũyn) = 0. (15.13)

We denote bỹalk the new coefficients of the partial second derivatives ofũ,

ãlk =
n∑

i,j=1

aij(x)
∂ϕl
∂xi

∂ϕk
∂xj

, (15.14)

and write (15.13) in the same form as (15.11)

n∑

k,l=1

ãlk(y)ũylyk
+ F̃ (y, ũ, ũy1, . . . , ũyn) = 0.
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Equation (15.14) later plays a crucial role in simplifying PDE (15.11). Namely, if we want
some of the coefficients̃alk to be0, the right hand side of (15.14) has to be0. Writing

blj =
∂ϕl
∂xj

, l, j = 1, . . . , n, B = (blj),

the new coefficient matrix̃A(y) = (ãlk(y)) reads as follows

Ã = B·A·B⊤.

By Proposition 15.1,A andÃ have the same signature. We have shown the following proposi-
tion.

Proposition 15.2 The type of a semi-linear second order PDE is invariant underthe change of
coordinates.

Notation.We call the operatorL with

L(u) =

n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+ F (x, u, ux1, . . . , uxn)

differential operator and denote byL2

L2(u) =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj

the sum of its the highest order terms;L2 is a linear operator.

Definition 15.3 The second-order PDEL(u) = 0 hasnormal formif

L2(u) =

m∑

j=1

uxjxj
−

r∑

j=m+1

uxjxj

with some positive integersm ≤ r ≤ n.

Remarks 15.3 (a) It happens that the type of the equation depends on the point x0 ∈ Ω. For
example, theTrichomi equation

yuxx + uyy = 0

is of mixed type. More precisely, it is elliptic ify > 0, parabolic ify = 0 and hyperbolic if
y < 0.
(b) The Laplace equation is elliptic, the heat equation is parabolic, the wave equation is hyper-
bolic.
(c) The classification is not complete in casen ≥ 3; for example, the quadratic form can be of
type(n− 2, 1, 1).
(d) Casen = 2. The PDE

auxx + 2buxy + cuyy + F (x, y, u, ux, uy) = 0

with coefficientsa = a(x, y), b = b(x, y) andc = c(x, y) is elliptic, parabolic or hyperbolic at
(x0, y0) if and only if ac− b2 > 0, ac− b2 = 0 or ac− b2 < 0 at (x0, y0), respectively.
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15.3.4 Characteristics

Suppose we are given the semi-linear second-order PDE inΩ ⊂ Rn

n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+ F (x, u, ux1, . . . , uxn) = 0 (15.15)

with continuousaij ; aij(x) = aji(x).
We define the concept of characteristics which plays an important role in the theory of PDEs,
not only of second-order PDEs.

Definition 15.4 Suppose thatσ ∈ C1(Ω) is continuously differentiable,gradσ 6= 0, and
(a) for some pointx0 of the hypersurfaceF = {x ∈ Ω | σ(x) = c}, c ∈ R, we have

n∑

i,j=1

aij(x0)
∂σ(x0)

∂xi

∂σ(x0)

∂xj
= 0. (15.16)

ThenF is said to becharacteristicatx0.
(b) If F is characteristic at every point ofF, F is called acharacteristic hypersurfaceor simply
a characteristicof the PDE (15.11). Equation (15.16) is called thecharacteristic equationof
(15.11).

In casen = 2 we speak ofcharacteristic lines.
If all hypersurfacesσ(x) = c, a < c < b, are characteristic, this family of hypersurfaces fills
the regionΩ such that for any pointx ∈ Ω there isexactly onehypersurface withσ(x) = c.
This c can be chosen to be one new coordinate. Setting

y1 = σ(x)

we see from (15.14) that̃a11 = 0. That is, the knowledge of one or more characteristic hyper-
surfaces can simplify the PDE.

Example 15.4 (a) The characteristic equation ofuxy = 0 is σxσy = 0 such thatσx = 0 and
σy = 0 define the characteristic lines; the parallel lines to the coordinate axes,y = c1 and
x = c2, are the characteristics.
(b) Find type and characteristic lines of

x2uxx − y2uyy = 0, x 6= 0, y 6= 0.

Sincedet = x2(−y2)−0 = −x2y2 < 0, the equation is hyperbolic. The characteristic equation,
in the most general case, is

aσ2
x + 2bσx σy + cσ2

y = 0.

Sincegradσ 6= 0, σ(x, y) = c is locally solvable fory = y(x) such thaty′ = −σx/σy. Another
way to obtain this is as follows: Differentiating the equationσ(x, y) = c yieldsσx dx+σy dy =

0 or dy/ dx = −σx/σy. Inserting this into the previous equation we obtain a quadratic ODE

a(y′)2 − 2by′ + c = 0,
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with solutions

y′ =
b±
√
b2 − ac
a

, if a 6= 0.

We can see, that the elliptic equation has no characteristiclines, the parabolic equation has one
family of characteristics, the hyperbolic equation has twofamilies of characteristic lines.
Hyperbolic case. In general, ifc1 = ϕ1(x, y) is the first family of characteristic lines and
c2 = ϕ2(x, y) is the second family of characteristic lines,

ξ = ϕ1(x, y), η = ϕ2(x, y)

is the appropriate change of variable which givesã = c̃ = 0. The transformed equation then
reads

2b̃ ũξη + F (ξ, η, ũ, ũξ, ũη) = 0.

Parabolic case.SincedetA = 0, there is only one real family of characteristic hyperplanes,
sayc1 = ϕ1(x, y). We impose the change of variables

z = ϕ1(x, y), y = y.

Sincedet Ã = 0, the coefficients̃b vanish (together with̃a). The transformed equation reads

c̃ ũyy + F (z, y, ũ, ũz, ũy) = 0.

The above two equations are called thecharacteristic formsof the PDE (15.11)
In our case the characteristic equation is

x2(y′)2 − y2 = 0, y′ = ±y/x.

This yields
dy

y
= ± dx

x
, log | y | = ± log | x |+ c0.

We obtain the two families of characteristic lines

y = c1x, y =
c2
x
.

Indeed, in our example
ξ =

y

x
= c1, η = xy = c2

gives

ηx = y, ηy = x, ηxx = 0, ηyy = 0, ηxy = 1,

ξx = − y

x2
, ξy =

1

x
, ξxx = 2

y

x3
, ξyy = 0, ξxy = − 1

x2
.

In our case (15.12) reads

uxx = ũξξ ξ
2
x + 2ũξη ξxηx + ũηη η

2
x + ũξ ξxx + ũη ηxx

uyy = ũξξ ξ
2
y + 2ũξη ξyηy + ũηη η

2
y + ũξ ξyy + ũη ηyy
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Notingx2 = η/ξ, y2 = ξη and inserting the values of the partial derivatives ofξ andη we get

uxx = ũξξ
y2

x4
− 2

y2

x2
ũξη + ũηηy

2 + 2
y

x3
ũξ,

uyy = ũξξ
1

x2
+ 2ũξη + ũηηx

2.

Hence

x2uxx − y2uyy = −4y2ũξη + 2
y

x
ũξ = 0

ũξη −
1

2

1

xy
ũξ = 0.

Sinceη = xy, we obtain the characteristic form of the equation to be

ũξη −
1

2η
ũξ = 0.

Using the substitutionv = ũξ, we obtainvη− 1
2η
v = 0 which corresponds to the ODEv′− 1

2η
v =

0. Hence,v(η, ξ) = c(ξ)
√
η. Integration with respect toξ gives ũ(ξ, η) = A(ξ)

√
η +B(η).

Transforming back to the variablesx andy, the general solution is

u(x, y) = A
(y
x

)√
xy +B(xy).

(c) The one-dimensional wave equationutt−a2uxx = 0. The characteristic equationσ2
t = a2σ2

x

yields

−σt/σx = dx/ dt = ẋ = ±a.

The characteristics arex = at + c1 andx = −at + c2. The change of variablesξ = x − at
andη = x + at yields ũξη = 0 which has general solutioñu(ξ, η) = f(ξ) + g(η). Hence,
u(x, t) = f(x− at) + g(x+ at) is the general solution, see also homework 23.2. .
(d) The wave equation inn dimensions has characteristic equation

σ2
t − a2

n∑

i=1

σ2
xi

= 0.

This equation is satisfied by the characteristic cone

σ(x, t) = a2(t− t(0))2 −
n∑

i=1

(xi − x(0)
i )2 = 0,

where the point(x(0), t(0)) is the peak of the cone. Indeed,

σt = 2a2(t− t(0)), σx1 = −2(xi − x(0)
i )

impliesσ2
t − a2

∑n
i=1(xi − x

(0)
i )2 = 0.
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Further, there are other characteristic surfaces: the hyperplanes

σ(x, t) = at+

n∑

i=1

bixi = 0,

where‖b‖ = 1.
(e) The heat equation has characteristic equation

∑n
i=1 σ

2
xi

= 0 which impliesσxi
= 0 for

all i = 1, . . . , n such thatt = c is the only family of characteristic surfaces (the coordinate
hyperplanes).
(f) The Poisson and Laplace equations have the same characteristic equation; however we have
one variable less (not) and obtaingrad σ = 0 which is impossible. The Poisson and Laplace
equations don’t have characteristic surfaces.

15.3.5 The Vibrating String

(a) The Infinite String on R
We consider the Cauchy problem for an infinite string (no boundary values):

utt − a2uxx = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

whereu0 andu1 are given.
Inserting the initial values into the general solution (seeExample 15.4 (c))
u(x, t) = f(x− at) + g(x+ at) we get

u0(x) = f(x) + g(x), u1(x) = −af ′(x) + ag′(x).

Differentiating the first one yieldsu′0(x) = f ′(x) + g′(x) such that

f ′(x) =
1

2
u′0(x)−

1

2a
u1(x), g′(x) =

1

2
u′0(x) +

1

2a
u1(x).

Integrating these equations we obtain

f(x) =
1

2
u0(x)−

1

2a

∫ x

0

u1(y) dy + A, g(x) =
1

2
u0(x) +

1

2a

∫ x

0

u1(y) dy +B,

whereA andB are constants such thatA + B = 0 (sincef(x) + g(x) = u0(x)). Finally we
have

u(x, t) = f(x− at) + g(x+ at)

=
1

2
(u0(x+ at) + u0(x− at))−

1

2a

∫ x−at

0

u1(y) dy +
1

2a

∫ x+at

0

u1(y) dy

=
1

2
(u0(x+ at) + u0(x− at)) +

1

2a

∫ x+at

x−at
u1(y) dy. (15.17)
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x-at x+at x

t

(x,t)

ξ

It is clear from (15.17) thatu(x, t) is uniquely deter-
mined by the values of the initial functionsu0 andu1

in the interval[x − at, x+ at] whose end points are
cut out by the characteristic lines through the point
(x, t). This interval represents thedomain of depen-
dencefor the solution at pointu(x, t) as shown in the
figure.

Conversely, the initial values at point(ξ, 0) of thex-axis influenceu(x, t) at points(x, t) in the
wedge-shaped region bounded by the characteristics through (ξ, 0), i. e. , forξ−at < x < ξ+at.
This indicates that our “signal” or “disturbance” only moves with speeda.

-a a x

u
1

t=0

We want to give some interpretation of the so-
lution (15.17). Supposeu1 = 0 and

u0(x) =

{
1− | x |

a
, |x | ≤ a,

0, |x | > a.

In this example we consider the vibrating string which is plucked at timet = 0 as in the above
picture (givenu0(x)). The initial velocity is zero (u1 = 0).

x

u

t=1/2

-a/2 a/2-3a/2 3a/2

1/2

x

u

t=1

-2a -a

1/2

a 2a

u

t=2

-2a -a a

1/2

-3a 3a2a

In the pictures one can see the behaviour of
the string. The initial peek is divided into two
smaller peeks with the half displacement, one
moving to the right and one moving to the left
with speeda.

Formula (15.17) is due to d’Alembert (1746). Usually one assumesu0 ∈ C2(R) andu1 ∈
C1(R). In this case,u ∈ C2(R2) and we are able to evaluate theclassicalLaplacian∆(u)

which gives a continuous function. On the other hand, the right hand side of (15.17) makes
sense for arbitrary continuous functionu1 and arbitraryu0. If we want to call theseu(x, t) a
generalized solutionof the Cauchy problem we have to alter the meaning of∆(u). In particular,
we need more general notion of functions and derivatives. This is our main objective of the next
section.

(b) The Finite String over [0, l]

We consider the initial boundary value problem (IBVP)

utt = a2uxx, u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ [0, l], u(0, t) = u(l, t) = 0, t ∈ R.
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Suppose we are given functionsu0 ∈ C2([0, l]) andu1 ∈ C1([0, l]) on [0, l] with

u0(0) = u0(l) = 0, u1(0) = u1(l) = 0, u′′0(0) = u′′0(l) = 0.

To solve the IBVP, we define new functions̃u0 and ũ1 on R as follows: first extend both
functions to[−l, l] asodd functions, that is,̃ui(−x) = −ui(x), i = 0, 1. Then extend̃ui as a
2l-periodic function to the entire real line. The above assumptions ensure that̃u0 ∈ C2(R) and
ũ1 ∈ C1(R). Put

u(x, t) =
1

2
(ũ0(x+ at) + ũ0(x− at)) +

1

2a

∫ x+at

x−at
ũ1(y) dy.

Thenu(x, t) solves the IVP.



Chapter 16

Distributions

16.1 Introduction — Test Functions and Distributions

In this section we introduce the notion of distributions. Distributions are generalized functions.
The class of distributions has a lot of very nice properties:they are differentiable up to arbitrary
order, one can exchange limit procedures and differentiation, Schwarz’ lemma holds. Distri-
butions play an important role in the theory of PDE, in particular, the notion of a fundamental
solution of a differential operator can be made rigorous within the theory of distributions only.

Generalized functions were first used by P. Dirac to study quantum mechanical phenomena.
Systematically he made use of the so calledδ-function (better:δ-distribution). The mathemat-
ical foundations of this theory are due to S. L. Sobolev (1936) and L. Schwartz (1950, 1915 –
2002).

Since then many mathematicians made progress in the theory of distributions. Motivation comes
from problems in mathematical physics and in the theory of partial differential equations.

Good accessible (German) introductions are given in the books of W. Walter [Wal74] and
O. Forster [For81,§ 17]. More detailed explanations of the theory are to be foundin the
books of H. Triebel (in English and German), V. S. Wladimirow(in russian and german) and
Gelfand/Schilow (in Russian and German, part I, II, and III), [Tri92,Wla72,GS69,GS64].

16.1.1 Motivation

Distributions generalize the notion of a function. They arelinear functionals on certain spaces of
test functions. Using distributions one can express rigorously the density of a mass point, charge
density of a point, the single-layer and the double-layer potentials, see [Arn04, pp. 92]. Roughly
speaking, a generalized function is given at a point by the “mean values” in the neighborhood
of that point.

The main idea to associate to each “sufficiently nice” functionf a linear functionalTf (a distri-
bution) on an appropriate function spaceD is described by the following formula.

〈Tf , ϕ〉 =

∫R f(x)ϕ(x) dx, ϕ ∈ D. (16.1)

417
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On the left we adopt the notation of a dual pairing of vector spaces from Definition 11.1. In
general the bracket〈T , ϕ〉 denotes the evaluation of the functionalT on the test functionϕ.
Sometimes it is also written asT (ϕ). It does not denote an inner product; the left and the right
arguments are from completely different spaces.

What we really want ofTf is

(a) The correspondence should beone-to-one, i. e., different functionalsTf andTg corre-
spond to different functionsf and g. To achieve this, we need the function spaceD

sufficiently large.

(b) The class of functionsf shouldcontain at least thecontinuous functions. However, if
f(x) = xn, the functionf(x)ϕ(x) must be integrable overR, that isxnϕ(x) ∈ L1(R).
Since polynomials are not inL1(R), the functionsϕ must be “very small” for large|x |.
Roughly speaking, there are two possibilities to this end. First, take only those functions
ϕ which are identically zero outside a compact set (which depends onϕ). This leads to
the test functionsD(R). ThenTf is well-defined iff is integrable over every compact
subset ofR. These functionsf are calledlocally integrable.

Secondly, we takeϕ(x) to be rapidly decreasing as|x | tends to∞. More precisely, we
want

sup
x∈R |xn ϕ(x) | <∞

for all non-negative integersn ∈ Z+. This concept leads to the notion of the so called
Schwartz spaceS (R).

(c) We want todifferentiate f arbitrarily often, even in case thatf has discontinuities. The
only thing we have to do is to give the expression

∫R f ′(x)ϕ(x) dx, ϕ ∈ D

a meaning. Using integration by parts and the fact thatϕ(+∞) = ϕ(−∞) = 0, the above
expression equals−

∫R f(x)ϕ′(x) dx. That is, instead differentiatingf , we differentiate
the test functionϕ. In this way, the functionalTf ′ makes sense as long asfϕ′ is inte-
grable. Since we want to differentiatef arbitrarily often, we need the test functionϕ to
be arbitrarily differentiable,ϕ ∈ C∞(R).

Note that conditions (b) and (c) make the space of test functions sufficiently small.

16.1.2 Test FunctionsD(Rn) and D(Ω)

We want to solve the problemfϕ to be integrable for all polynomialsf . We use the first
approach and consider only functionsϕ which are0 outside a bounded set. If nothing is stated
otherwise,Ω ⊆ Rn denotes an open, connected subset ofRn.
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(a) The Support of a Function and the Space of Test Functions

Let f be a function, defineds onΩ. The set

supp f := {x ∈ Ω | f(x) 6= 0} ⊂ Rn

is called thesupportof f , denoted bysupp f .

Remark 16.1 (a)supp f is always closed; it is the smallest closed subsetM such thatf(x) = 0

for all x ∈ Rn \M .
(b) A point x0 6∈ supp f if and only if there existsε > 0 such thatf ≡ 0 in Uε(x0). This in
particular implies that forf ∈ C∞(Rn) we havef (k)(x0) = 0 for all k ∈ N.
(c) supp f is compact if and only if it is bounded.

Example 16.1 (a) supp sin = R.
(b) Let letf : (−1, 1)→ R, f(x) = x(1− x). Thensupp f = [−1, 1].
(c)The characteristic functionχM has supportM .
(d) Leth be the hat function onR – note thatsupp h = [−1, 1] andf(x) = 2h(x)−3h(x−10).
Thensupp f = [−1, 1] ∪ [−11,−9].

Definition 16.1 (a) The spaceD(Rn) consists of all infinitely differentiable functionsf onRn with compact support.

D(Rn) = C∞
0 (Rn) = {f ∈ C∞(Rn) | supp f is compact}.

(b) LetΩ be a region inRn. Define D(Ω) as follows

D(Ω) = {f ∈ C∞(Ω) | supp f is compact inRn and supp f ⊂ Ω}.

We callD(Ω) the space oftest functionsonΩ.

−1 1

c/e

h(t)

First of all let us make sure the existence of such
functions. On the real axis consider the “hat”
function (also called bump function)

h(t) =

{
c e

− 1
1−t2 , | t | < 1,

0, | t | ≥ 1.

The constantc is chosen such that
∫R h(t) dt = 1. The functionh is continuous onR. It was

already shown in Example 4.5 thath(k)(−1) = h(k)(1) = 0 for all k ∈ N. Henceh ∈ D(R) is
a test function withsupp h = [−1, 1]. Accordingly, the function

h(x) =

{
cne

− 1

1−‖x‖2 , ‖x‖ < 1,

0, ‖x‖ ≥ 1.
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is an element ofD(Rn) with support being the closed unit ballsupp h = {x | ‖x‖ ≤ 1}. The

constantcn is chosen such that
∫Rn

h(x) dx =

∫

U1(0)

h(x) dx = 1.

For ε > 0 we introduce the notation

hε(x) =
1

εn
h
(x
ε

)
.

Thensupphε = U ε(0) and∫Rn

hε(x) dx =
1

εn

∫

Uε(0)

h
(x
ε

)
dx =

∫

U1(0)

h(y) dy = 1.

So far, we have constructed only one functionh(x) (as well as its scaled relativeshε(x)) which
is C∞ and has compact support. Using this single hat-functionhε we are able

(a) to restrict the support of an arbitrary integrable function f to a given domain by replacing
f by fhε(x− a) which has a support inUε(a),

(b) to makef smooth.

(b) Mollification

In this way, we have an amount ofC∞ functions with compact support which is large enough for
our purposes (especially, to recover the functionf from the functionalTf ). Using the function
hε, S. L. Sobolev developed the followingmollificationmethod.

Definition 16.2 (a) Letf ∈ L1(Rn) andg ∈ D(Rn), define theconvolution productf ∗ g by

(f ∗ g)(x) =

∫Rn

f(y)g(x− y) dy =

∫Rn

f(x− y)g(y) dy = (g ∗ f)(x).

(b) We define themollified functionfε of f by

fε = f ∗ hε.
Note that

fε(x) =

∫Rn

hε(x− y)f(y) dy =

∫

Uε(x)

hε(x− y)f(y) dy. (16.2)

Roughly speaking,fε(x) is the mean value off in theε-neighborhood ofx. If f is continuous
atx0 thenfε(x0) = f(ξ) for someξ ∈ Uε(x0). This follows from Proposition 5.18.

2

1−

1

2+1ε 1+ ε 22− ε ε

In particular letf = χ[1,2] the characteristic
function of the interval[1, 2]. The mollification
fε looks as follows

fε(x) =





0, x < 1− ε,
∗, 1− ε < x < 1 + ε,

1, 1 + ε < x < 2− ε,
∗, 2− ε < x < 2 + ε,

0, 2 + ε < x,
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where∗ denotes a value between0 and1.

Remarks 16.2 (a) Forf ∈ L1(Rn), fε ∈ C∞(Rn),
(b) fε → f in L1(Rn) asε→ 0.
(c) C0(Rn) ⊂ L1(Rn) is dense (with respect to theL1-norm). In other words, for any
f ∈ L1(Rn) andε > 0 there existsg ∈ C(Rn) with supp g is compact and

∫Rn | f − g | dx < ε.

(Sketch of Proof). (A) Any integrable function can be approximated by integrable
functions with compact support. This follows from Example 12.6.
(B) Any integrable function with compact support can be approximated by sim-
ple functions (which are finite linear combinations of characteristic functions) with
compact support.
(C) Any characteristic function with compact support can beapproximated by char-
acteristic functionsχQ whereQ is a finite union of boxes.
(D) Any χQ whereQ is a closed box can be approximated by a sequencefn of
continuous functions with compact support:

fn(x) = max{0, n d(x,Q)}, n ∈ N,
whered(x,Q) denotes the distance ofx from Q. Note thatfn is 1 in Q and 0

outsideU1/n(Q).

(d) C∞
0 (Rn) ⊂ L1(Rn) is dense.

(b) Convergence inD

Notations. Forx ∈ Rn andα ∈ Nn
0 (a multi-index),α = (α1, . . . , αn) we write

|α | = α1 + α2 + · · ·+ αn,

α! = α1! · · ·αn!
xα = xα1

1 x
α2
2 · · ·xαn

n ,

Dαu(x) =
∂|α |u(x)

∂xα1
1 · · ·∂xαn

n

.

It is clear thatD(Rn) is a linear space. We shall introduce an appropriate notion of convergence.

Definition 16.3 A sequence(ϕn(x)) of functions ofD(Rn) convergesto ϕ ∈ D(Rn) if there
exists a compact setK ⊆ Rn such that

(a) suppϕn ⊆ K for all n ∈ N and

(b)
Dαϕn ⇉ Dαϕ, uniformly onK for all multi-indicesα .

We denote this type of convergence byϕn −→
D

ϕ.
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Example 16.2 Let ϕ ∈ D be a fixed test function and consider the sequence(ϕn(x)) given by

(a)

(
ϕ(x)

n

)
. This sequence converges to0 in D sincesuppϕn = suppϕ for all n and the

convergence is uniform for allx ∈ Rn (in fact, it suffices to considerx ∈ suppϕ).

(b)

(
ϕ(x/n)

n

)
. The sequence does not converge to0 in D since the supportssupp (ϕn) =

n supp (ϕ), n ∈ N, are not in any common compact subset.

(c)

(
ϕ(nx)

n

)
has no limit ifϕ 6= 0, see homework 49.2.

Note thatD(Rn) is not a metric space, more precisely, there is no metric onD(Rn) such that
the metric convergence and the above convergence coincide.

16.2 The DistributionsD
′(Rn)

Definition 16.4 A distribution (generalized function) is a continuous linear functional on the
spaceD(Rn) of test functions.
Here, a linear functionalT on D is said to becontinuousif and only if for all sequences(ϕn),
ϕn, ϕ ∈ D, with ϕn −→

D

ϕ we have〈T , ϕn〉 → 〈T , ϕ〉 in C.

The set of distributions is denoted byD′(Rn) or simply byD′.

The evaluation of a distributionT ∈ D′ on a test functionϕ ∈ D is denoted by〈T , ϕ〉. Two
distributionsT1 andT2 are equal if and only if〈T1 , ϕ〉 = 〈T2 , ϕ〉 for all ϕ ∈ D.

Remark 16.3 (Characterization of continuity.) (a) A linear functionalT on D(Rn) is con-
tinuous if and only ifϕn −→

D

0 implies 〈T , ϕn〉 → 0 in C. Indeed,T continuous, trivially

implies the above statement. Suppose now, thatϕn −→
D

ϕ. Then (ϕn − ϕ) −→
D

0; thus

〈T , ϕn − ϕ〉 → 0 asn → ∞. SinceT is linear, this shows〈T , ϕn〉 → 〈T , ϕ〉 andT is
continuous.
(b) A linear functionalT on D is continuous if and only if for all compact setsK there exist a
constantC > 0 andl ∈ Z+ such that for all

| 〈T , ϕ〉 | ≤ C sup
x∈K, |α |≤l

|Dαϕ(x) | , ∀ϕ ∈ D with suppϕ ⊂ K. (16.3)

We show that the criterion (16.3) in implies continuity ofT . Indeed, letϕ −→
D

0. Then there

exists compact subsetK ⊂ Rn such thatsuppϕn ⊆ K for all n. By the criterion, there is a
C > 0 and anl ∈ Z+ with | 〈T , ϕn〉 | ≤ C sup |Dαϕn(x) |, where the supremum is taken over
all x ∈ K and multiindicesα with |α | ≤ l. SinceDαϕn ⇉ 0 onK for all α, we particularly
havesup |Dαϕn(x) | −→ 0 asn→∞. This shows〈T , ϕn〉 → 0 andT is continuous.
For the proof of the converse direction, see [Tri92, p. 52]

16.2.1 Regular Distributions

A large subclass of distributions ofD′ is given by ordinary functions via the correspondence

f ↔ Tf given by〈Tf , ϕ〉 =

∫R f(x)ϕ(x) dx. We are looking for a class which is as large as
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possible.

Definition 16.5 Let Ω be an open subset ofRn. A function f(x) onΩ is said to belocally
integrableoverΩ if f(x) is integrable over every compact subsetK ⊆ Ω; we write in this case
f ∈ L1

loc(Ω).

Remark 16.4 The following are equivalent:

(a) f ∈ L1
loc(Rn).

(b) For anyR > 0, f ∈ L1(UR(0)).

(c) For anyx0 ∈ Rn there existsε > 0 such thatf ∈ L1(Uε(x0)).

Lemma 16.1 If f is locally integrablef ∈ L1
loc(Ω), Tf is a distribution,Tf ∈ D′(Ω).

A distributionT which is of the formT = Tf with some locally integrable functionf is called
regular.

Proof. First, Tf is linear functional onD since integration is a linear operation. Secondly, if
ϕm −→

D

0, then there exists a compact setK with suppϕm ⊂ K for all m. We have the

following estimate:
∣∣∣∣
∫Rn

f(x)ϕm(x) dx

∣∣∣∣ ≤ sup
x∈K
|ϕm(x) |

∫

K

| f(x) | dx = C sup
x∈K
|ϕm(x) | ,

whereC =
∫
K
| f | dx exists sincef ∈ L1

loc. The expression on the right tends to0 sinceϕm(x)

uniformly tends to0. Hence〈Tf , ϕm〉 → 0 andTf belongs toD′.

Example 16.3 (a)C(Ω) ⊂ L1
loc(Ω), L1(Ω) ⊆ L1

loc(Ω).

(b) f(x) =
1

x
is in L1

loc((0, 1)); however,f 6∈ L1((0, 1)) and f 6∈ L1
loc(R) sincef is not

integrable over[−1, 1].

Lemma 16.2 (Du Bois–Reymond, Fund. Lemma of the Calculus of Variation) Let Ω ⊆Rn be a region. Suppose thatf ∈ L1
loc(Rn) and〈Tf , ϕ〉 = 0 for all ϕ ∈ D(Ω).

Thenf = 0 almost everywhere inΩ.

Proof. For simplicity we consider the casen = 1, Ω = (−π, π). Fix ε with 0 < ε < π. Let
ϕn(x) = e−inx hε(x), n ∈ Z. Thensuppϕn ⊂ [−π, π]. Since both,ex andhε areC∞-functions,
ϕn ∈ D(Ω) and

cn = 〈Tf , ϕn〉 =

∫ π

−π
f(x)e−inxhε(x) dx = 0, n ∈ Z;

and all Fourier coefficients off hε ∈ L2[−π, π] vanish. From Theorem 13.13 (b) it follows that
fhε is 0 in L2(−π, π). By Proposition 12.16 it follows thatfhε is 0 a.e. in(−π, π). Since
hε > 0 on (−π, π), f = 0 a.e. on(−π, π).
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Remark 16.5 The previous lemma shows, iff1 andf2 are locally integrable andTf1 = Tf2 then
f1 = f2 a.e.; that is, the correspondence is one-to-one. In this waywe can identifyL1

loc(Rn) ⊆
D′(Rn) the locally integrable functions as a subspace of the distributions.

16.2.2 Other Examples of Distributions

Definition 16.6 Every non-regular distribution is calledsingular. The most important example
of singular distribution is theδ-distributionδa defined by

〈δa , ϕ〉 = ϕ(a), a ∈ Rn, ϕ ∈ D.

It is immediate thatδa is a linear functional onD. Suppose thatϕn −→
D

0 thenϕn(x) → 0

pointwise. Hence,δa(ϕn) = ϕn(a) → 0; the functional is continuous onD and therefore a
distribution. We will also use the notationδ(x− a) in place ofδa andδ or δ(x) in place ofδ0.

Proof that δa is singular. If δa ∈ D′ were regular there would exist a functionf ∈ L1
loc such that

δa = Tf , that isϕ(a) =
∫Rn f(x)ϕ(x) dx. First proof. LetΩ ⊂ Rn be an open such thata 6∈ Ω.

Let ϕ ∈ D(Ω), that is,suppϕ ⊂ Ω. In particularϕ(a) = 0. That is,
∫
Ω
f(x)ϕ(x) dx = 0 for

all ϕ ∈ D(Ω). By Du Bois-Reymond’s Lemma,f = 0 a.e. inΩ. SinceΩ was arbitrary,f = 0

a.e. inRn \ {a} and therefore,f = 0 a.e. inRn. It follows thatTf = 0 in D′(Rn), however
δa 6= 0 – a contradiction.

Second Proof fora = 0. Sincef ∈ L1
loc there existsǫ > 0 such that

d :=

∫

Uǫ(0)

| f(x) | dx < 1.

Putting ϕ(x) = h(x/ε) with the bump functionh we have suppϕ = Uε(0) and
supx∈Rn |ϕ(x) | = ϕ(0) > 0 such that

∣∣∣∣
∫Rn

f(x)ϕ(x) dx

∣∣∣∣ ≤ sup |ϕ(x) |
∫

Uε(0)

| f(x) | dx = ϕ(0)d < ϕ(0).

This contradicts
∣∣ ∫Rn f(x)ϕ(x) dx

∣∣ = |ϕ(0) | = ϕ(0).

In the same way one can show that the assignment

〈T , ϕ〉 = Dαϕ(a), a ∈ Rn, ϕ ∈ D

defines an element ofD′ which is singular.

The distribution

〈T , ϕ〉 =

∫Rn

f(x)Dαϕ(x) dx, f ∈ L1
loc,

may be regular or singular which depends on the properties off .

Locally integrable functions as well asδa describe mass, force, or charge densities. That is why
L. Schwartz named the generalized functions “distributions.”
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16.2.3 Convergence and Limits of Distributions

There are a lot of possibilities to approximate the distribution δ by a sequence ofL1
loc functions.

Definition 16.7 A sequence(Tn), Tn ∈ D′(Rn), is said to beconvergentto T ∈ D′(Rn) if and
only if for all ϕ ∈ D(Rn)

lim
n→∞

Tn(ϕ) = T (ϕ).

Similarly, let Tε, ε > 0, be a family of distributions inD′, we say thatlimε→0 Tε = T if
limε→0 Tε(ϕ) = T (ϕ) for all ϕ ∈ D.

Note thatD′(Rn) with the above notion of convergence is complete, see [Wal02, p. 39].

Example 16.4 Let f(x) = 1
2
χ[−1,1] and fε = 1

ε
f
(
x
ε

)
be the scaling off . Note thatfε =

1/(2ε)χ[−ε,ε]. We will show thtfε → δ in D′(R). Indeed, forϕ ∈ D(R), by the Mean Value
Theorem of integration,

Tfε(ϕ) =
1

2ε

∫R χ[−ε,ε]ϕ dx =
1

2ε

∫ ε

−ε
ϕ(x) dx =

1

2ε
2εϕ(ξ) = ϕ(ξ), ξ ∈ [−ε, ε],

for someξ. Sinceϕ is continuous at0, ϕ(ξ) tends toϕ(0) asε→ 0 such that

lim
ε→0

Tfε(ϕ) = ϕ(0) = δ(ϕ).

This proves the calaim.

The following lemma generalizes this example.

Lemma 16.3 Suppose thatf ∈ L1(R) with
∫R f(x) dx = 1. For ε > 0 define the scaled

functionfε(x) = 1
ε
f
(
x
ε

)
.

Then lim
ε→0+0

Tfε = δ in D′(R).

Proof. By the change of variable theorem,
∫R fε(x) dx = 1 for all ε > 0. To prove the claim we

have to show that for allϕ ∈ D

∫R fε(x)ϕ(x) dx −→ ϕ(0) =

∫R fε(x)ϕ(0) dx asε→ 0;

or, equivalently, ∣∣∣∣
∫R fε(x)(ϕ(x)− ϕ(0)) dx

∣∣∣∣ −→ 0, asε→ 0.

Using the new coordinatey with x = εy, dx = ε dy the above integral equals
∣∣∣∣
∫R εfε(εy)(ϕ(εy)− ϕ(0)) dy

∣∣∣∣ =

∣∣∣∣
∫R f(y)(ϕ(εy)− ϕ(0)) dy

∣∣∣∣ .

Sinceϕ is continuous at0, for every fixedy, the family of functions(ϕ(εy) − ϕ(0)) tends to
0 asε → 0. Hence, the family of functionsgε(y) = f(y)(ϕ(εy) − ϕ(0)) pointwise tends to
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0. Further,gε has an integrable upper bound,2C | f |, whereC = sup
x∈R |ϕ(x) |. By Lebesgue’s

theorem about the dominated convergence, the limit of the integrals is0:

lim
ε→0

∫R | f(y) | |ϕ(εy)− ϕ(0) | dy =

∫R | f(y) | lim
ε→0
|ϕ(εy)− ϕ(0) | dy = 0.

This proves the claim.

The following sequences of locally integrable functions approximateδ asε→ 0.

fε(x) =
1

πεx2
sin2 x

ε
, fε(x) =

1

π

ε

x2 + ε2
, (16.4)

fε(x) =
1

2ε
√
π

e−
x2

4ε2 , fε(x) =
1

πx
sin

x

ε

The first three functions satisfy the assumptions of the Lemma, the last one not since
∣∣ sinx

x

∣∣ is
not in L1(R). Later we will see that the above lemma even holds if

∫∞
−∞ f(x) dx = 1 as an

improper Riemann integral.

16.2.4 The distributionP
1

x

Since the function1
x

is not locally integrable in a neighborhood of0, 1/x is not a regular
distribution. However, we can define a substitute that coincides with1/x for all x 6= 0.
Recall that theprincipal value(or Cauchy mean value) of an improper Riemann integral is
defined as follows. Supposef(x) has a singularity atc ∈ [a, b] then

Vp

∫ b

a

f(x) dx := lim
ε→0

(∫ c−ε

a

+

∫ b

c+ε

)
f(x) dx.

For example,Vp
∫ 1

−1
dx

x2n+1 = 0, n ∈ N.
Forϕ ∈ D define

F (ϕ) = Vp

∫ ∞

−∞

ϕ(x)

x
dx = lim

ε→0

(∫ −ε

−∞
+

∫ ∞

ε

)
ϕ(x)

x
dx.

ThenF is obviously linear. We have to show, thatF (ϕ) is finite and continuous onD. Suppose
thatsuppϕ ⊆ [−R,R]. Define the auxiliary function

ψ(x) =

{
ϕ(x)−ϕ(0)

x
, x 6= 0

ϕ′(0), x = 0.

Sinceϕ is differentiable at0, ψ ∈ C(R). Since1/x is odd,
∫ ε
−ε dx/x = 0 and we get

F (ϕ) = lim
ε→0

(∫ −ε

−∞
+

∫ ∞

ε

)
ϕ(x)

x
dx = lim

ε→0

(∫ −ε

−R
+

∫ R

ε

)
ϕ(x)− ϕ(0)

x
dx

= lim
ε→0

(∫ −ε

−R
+

∫ R

ε

)
ψ(x) dx =

∫ R

−R
ψ(x) dx.
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Sinceψ is continuous, the above integral exists.
We now prove continuity ofF . By Taylor’s theorem,ϕ(x) = ϕ(0) + xϕ′(ξx) for some valueξx
betweenx and0. Therefore

|F (ϕ) | =
∣∣∣∣ limε→0

(∫ −ε

−∞
+

∫ ∞

ε

)
ϕ(x)

x
dx

∣∣∣∣

=

∣∣∣∣ limε→0

(∫ −ε

−R
+

∫ R

ε

)
ϕ(0) + xϕ′(ξx)

x
dx

∣∣∣∣

≤
∫ R

−R
|ϕ′(ξx) | dx ≤ 2R sup

x∈R |ϕ′(x) | .

This shows that the condition (16.3) in Remark 16.3 is satisfied withC = 2R andl = 1 such
thatF is a continuous linear functional onD(R), F ∈ D′(R). We denote this distribution by
P

1
x
.

In quantum physics one needs the so called Sokhotsky’s formulas, [Wla72, p.76]

lim
ε→0+0

1

x+ εi
= −πiδ(x) + P

1

x
,

lim
ε→0+0

1

x− εi = πiδ(x) + P
1

x
.

Idea of proof: Show the sum and the difference of the above formulas instead.

lim
ε→0+0

2x

x2 + ε2
= 2P

1

x
, lim

ε→0+0

−2iε

x2 + ε2
= −2πiδ.

The second limit follows from (16.4).

16.2.5 Operation with Distributions

The distributions are distinguished by the fact that in manycalculations they are much easier to
handle than functions. For this purpose it is necessary to define operations on the setD′. We
already know how to add distributions and how to multiply them with complex numbers since
D′ is a linear space. Our guiding principle to define multiplication, derivatives, tensor prod-
ucts, convolution, Fourier transform is always the same: for regular distributions, i.e. locally
integrable functions, we want to recover the old well-knownoperation.

(a) Multiplication

There is no notion of a productT1T2 of distributions. However, we can definea·T = T ·a,
T ∈ D′(Rn), a ∈ C∞(Rn). What happens in case of a regular distributionT = Tf?

〈aTf , ϕ〉 =

∫Rn

a(x)f(x)ϕ(x) dx =

∫Rn

f(x) a(x)ϕ(x) dx = 〈Tf , a ϕ〉 . (16.5)

Obviously,aϕ ∈ D(Rn) sincea ∈ C∞(Rn) andϕ has compact support; thus,aϕ has compact
support, too. Hence, the right hand side of (16.5) defines a linear functional onD(Rn). We
have to show continuity. Suppose thatϕn −→

D

0 thenaϕn −→
D

0. Then〈T , aϕn〉 → 0 sinceT

is continuous.
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Definition 16.8 Fora ∈ C∞(Rn) andT ∈ D′(Rn) we defineaT ∈ D′(Rn) by

〈aT , ϕ〉 = 〈T , aϕ〉

and callaT theproductof a andT .

Example 16.5 (a)xP 1
x

= 1. Indeed, forϕ ∈ D(Rn),

〈
xP

1

x
, ϕ

〉
=

〈
P

1

x
, xϕ(x)

〉
= Vp

∫ ∞

−∞

xϕ(x)

x
dx =

∫R ϕ(x) dx = 〈1 , ϕ〉 .

(b) If f(x) ∈ C∞(Rn) then

〈f(x)δa , ϕ〉 = 〈δa , f(x)ϕ(x)〉 = f(a)ϕ(a) = f(a) 〈δa , ϕ〉 .

This showsf(x)δa = f(a)δa.
(c) Note that multiplication of distribution is no longer associative:

(δ · x) P
1

x
=
(b)

0 ·P 1

x
= 0, δ

(
x ·P 1

x

)
=
(a)
δ · 1 = δ.

(b) Differentiation

Considern = 1. Suppose thatf ∈ L1
loc is continuously differentiable. Suppose further that

ϕ ∈ D with suppϕ ⊂ (−a, a) such thatϕ(−a) = ϕ(a) = 0. We want to define(Tf)′ to beTf ′ .
Using integration by parts we find

〈Tf ′ , ϕ〉 =

∫ a

−a
f ′(x)ϕ(x) dx = f(x)ϕ(x)|a−a −

∫ a

−a
f(x)ϕ′(x) dx

= −
∫ a

−a
f(x)ϕ′(x) dx = −〈Tf , ϕ′〉 ,

where we used thatϕ(−a) = ϕ(a) = 0. Hence, it makes sense to define
〈
T ′
f , ϕ

〉
= −〈Tf , ϕ′〉.

This can easily be generalized to arbitrary partial derivativesDαTf .

Definition 16.9 ForT ∈ D′(Rn) and a multi-indexα ∈ Nn
0 defineDαT ∈ D′(Rn) by

〈DαT , ϕ〉 = (−1)|α | 〈T , Dαϕ〉 .

We have to make sure thatDαT is indeed a distribution. The linearity ofDαT is obvious. To
prove continuity letϕn −→

D

0. By definition, this impliesDαϕn −→
D

0. SinceT is continuous,

〈T , Dαϕn〉 → 0. This shows〈DαT , ϕn〉 → 0; henceDαT is a continuous linear functional
onD.
Note, that exactly the factDαT ∈ D′ needs the complicated looking notion of convergence in
D,Dαϕn → Dαϕ. Further, a distribution has partial derivatives of all orders.
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Lemma 16.4 Leta ∈ C∞(Rn) andT ∈ D′(Rn). Then
(a) DifferentiationDα : D′ → D′ is continuous inD′, that is,Tn → T in D′ impliesDαTn →
DαT in D′.
(b)

∂

∂xi
(a T ) =

∂a

∂xi
T + a

∂T

∂xi
, i = 1, . . . , n (product rule).

(c) For any two multi-indicesα andβ

Dα+βT = Dα(DβT ) = Dβ(DαT ) (Schwarz’s Lemma).

Proof. (a) Suppose thatTn → T in D′, that is〈Tn , ψ〉 → 〈T , ψ〉 for all ψ ∈ D. In particular,
for ψ = Dαϕ, ϕ ∈ D, we get

(−1)|α | 〈DαTn , ϕ〉 = 〈Tn , Dαϕ〉 −→ 〈T , Dαϕ〉 = (−1)|α | 〈DαT , ϕ〉 .

Since this holds for allϕ ∈ D, the assertion follows.
(b) This follows from

〈
a
∂T

∂xi
, ϕ

〉
=

〈
∂T

∂xi
, a ϕ

〉
= −

〈
T ,

∂

∂xi
(aϕ)

〉

= −〈T , axi
(x)ϕ〉 −

〈
T , a

∂ϕ

∂xi

〉
= −〈axi

T , ϕ〉 −
〈
aT ,

∂ϕ

∂xi

〉

= −〈axi
T , ϕ〉+

〈
∂

∂xi
(aT ) , ϕ

〉
=

〈
−axi

T +
∂

∂xi
(aT ) , ϕ

〉
.

“Cancelling”ϕ on both sides proves the claim.
(c) The easy proof usesDα+βϕ = Dα(Dβϕ) for ϕ ∈ D.

Example 16.6 (a) Leta ∈ Rn, f ∈ L1
loc(Rn), ϕ ∈ D. Then

〈Dαδa , ϕ〉 = (−1)|α | 〈δa , Dαϕ〉 = (−1)|α |Dαϕ(a)

〈Dαf , ϕ〉 = (−1)|α |
∫Rn

f Dαϕ dx.

(b) Recall that the so-calledHeaviside functionH(x) is defined as the characteristic function of
the half-line(0,+∞). We compute its derivative inD′:

〈T ′
H , ϕ(x)〉 = −

∫RH(x)ϕ′(x) dx = −
∫ ∞

0

ϕ(x)′ dx = −ϕ(x)|∞0 = ϕ(0) = 〈δ , ϕ〉 .

This showsT ′
H = δ.

c

h f(x) (c) More generally, letf(x) be differentiable onG =R \ {c} = (−∞, c) ∪ (c,∞) with a discontinuity of the
first kind atc.
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The derivative ofTf in D′ is

T ′
f = Tf ′ + hδc, where h = f(c+ 0)− f(c− 0),

is the difference between the right-handed and left-handedlimits of f at c. Indeed, forϕ ∈ D

we have

〈
T ′
f , ϕ

〉
=

(
−
∫ c

−∞
−
∫ ∞

c

)
f(x)ϕ′(x) dx

= −f(c− 0)ϕ(c) + f(c+ 0)ϕ(c) +

∫

G

f ′(x)ϕ(x) dx

=
〈
(f(c+ 0)− f(c− 0))δc + Tf ′(x) , ϕ

〉

= 〈h δc + Tf ′ , ϕ〉 .

(d) We prove thatf(x) = log |x | is in L1
loc(R) (see homework 50.4, and 51.5) and compute its

derivative inD′(R).
Proof. Sincef(x) is continuous onR \ {0}, the only critical point is0. Since the integral
(improper Riemann or Lebesgue)

∫ 1

0
log x dx = −

∫ 0

−∞ et dt = −1 existsf is locally integrable
at 0 and therefore defines a regular distribution. We will show that f ′(x) = P

1
x
. We use the

fact that
∫∞
−∞ =

∫ −ε
−∞ +

∫ ε
−ε +

∫∞
ε

for all positiveε > 0. Also, the limitε→ 0 of the right hand
side gives the

∫∞
−∞. By definition of the derivative,

〈log′ |x | , ϕ(x)〉 = −〈log | x | , ϕ′(x)〉 =

∫ ∞

−∞
log | x | ϕ′(x) dx

= −
((∫ −ε

−∞
+

∫ ε

−ε
+

∫ ∞

ε

)
log |x | ϕ′(x) dx

)
.

Since
∣∣∣
∫ 1

−1
log |x |ϕ′(x) dx

∣∣∣ <∞, the middle integral
∫ ε
−ε log |x |ϕ′(x) dx tends to0 asε→ 0

(Apply Lebesgue’s theorem to the family of functionsgε(x) = χ[−ε,ε](x) log | x |ϕ′(x) which
pointwise tends to0 and is dominated by the integrable functionlog |x |ϕ′(x)). We consider
the third integral. Integration by parts andϕ(+∞) = 0 gives

∫ ∞

ε

log xϕ′(x) dx = log xϕ(x)|∞ε −
∫ ∞

ε

ϕ(x)

x
dx = log εϕ(ε)−

∫ ∞

ε

ϕ(x)

x
dx.

Similarly,
∫ −ε

−∞
log(−x)ϕ′(x) dx = − log ε ϕ(−ε)−

∫ −ε

−∞

ϕ(x)

x
dx.

The sum of the first two (non-integral) terms tends to0 asε→ 0 sinceε log ε→ 0. Indeed,

log ε ϕ(ε)− log ε ϕ(−ε) = log ε
ϕ(ε)− ϕ(−ε)

2ε
2ε −→ 2 lim

ε→0
ε log ε ϕ′(0) = 0.

Hence,

〈f ′ , ϕ〉 = lim
ε→0

(∫ −ε

−∞
+

∫ ∞

ε

)
ϕ(x)

x
dx =

〈
P

1

x
, ϕ

〉
.
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(c) Convergence and Fourier Series

Lemma 16.5 Suppose that(fn) converges locally uniformly to some functionf , that is,fn ⇉ f

uniformly on every compact set; assume further thatfn is locally integrable for alln, fn ∈
L1

loc(Rn).
(a) Thenf ∈ L1

loc(Rn) andTfn → Tf in D′(Rn).
(b)DαTfn → DαTf in D′(Rn) for all multi-indicesα.

Proof. (a) LetK be a compact subset ofRn, we will show thatf ∈ L1(K). Sincefn converge
uniformly onK to 0, by Theorem 6.6f is integrable andlimn→∞

∫
K
fn(x) dx =

∫
K
f dx. such

thatf ∈ L1
loc(Rn).

We show thatTfn → Tf in D′. Indeed, for anyϕ ∈ D with compact supportK, again by
Theorem 6.6 and uniform convergence offnϕ onK,

lim
n→∞

Tfn(ϕ) = lim
n→∞

∫

K

fn(x)ϕ(x) dx

=

∫

K

(
lim
n→∞

fn(x)
)
ϕ(x) dx =

∫

K

f(x)ϕ(x) dx = Tf(ϕ);

we are allowed to exchange limit and integration since(fn(x)ϕ(x)) uniformly converges onK.
Since this is true for allϕ ∈ D, it follows thatTfn → Tf .
(b) By Lemma 16.4 (a), differentiation is a continuous operation in D′. ThusDαTfn → DαTf .

Example 16.7 (a) Suppose thata, b > 0 andm ∈ N are given such that| cn | ≤ a |n |m + b for
all n ∈ Z. Then the Fourier series ∑

n∈Z cneinx,

converges inD′(R).
First consider the series

c0x
m+2

(m+ 2)!
+

∑

n∈Z,n 6=0

cn
(ni)m+2

einx. (16.6)

By assumption, ∣∣∣∣
cn

(ni)m+2
einx

∣∣∣∣ =

∣∣∣∣
cn

(ni)m+2

∣∣∣∣ ≤
a |n |m + b

|n |m+2 ≤ ã

|n |2
.

Since
∑

n 6=0
ã

|n |2 < ∞ , the series (16.6) converges uniformly onR by the criterion of Weier-
straß (Theorem 6.2). By Lemma 16.5, the series (16.6) converges inD′, too and can be differ-
entiated term-by-term. The(m+ 2)nd derivative of (16.6) is exactly the given Fourier series.

π2−π π

−1/2

1/2 The2π-periodic functionf(x) = 1
2
− x

2π
, x ∈

[0, 2π) has discontinuities of the first kind at
2πn, n ∈ Z; the jump has height1 since
f(0 + 0)− f(0− 0) = 1

2
+ 1

2
= 1.
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Therefore inD′

f ′(x) = − 1

2π
+
∑

n∈Z δ(x− 2πn).

The Fourier series off(x) is

f(x) ∼ 1

2πi

∑

n 6=0

1

n
einx.

Note thatf and the Fourier seriesg on the right are equal inL2(0, 2π). Hence
∫ 2π

0
| f − g |2 = 0.

This impliesf = g a. e. on[0, 2π]; moreoverf = g a. e. onR. Thusf = g in L1
loc(R) andf

coincides withg in D′(R).

f(x) =
1

2πi

∑

n 6=0

1

n
einx in D′(R).

By Lemma 16.5 the series can be differentiated elementwise up to arbitrary order. Applying
Example 16.6 we obtain:

f ′(x) +
1

2π
=
∑

n∈Z δ(x− 2πn) =
1

2π

∑

n∈Z einx in D′(R).

(b) A solution ofxmu(x) = 0 in D′ is

u(x) =

m−1∑

n=0

cnδ
(n)(x), cn ∈ C.

Since for everyϕ ∈ D andn = 0, . . . , m− 1 we have
〈
xmδ(n)(x) , ϕ

〉
= (−1)n

〈
δ , (xmϕ(x))(n)

〉
= (xmϕ(x))(n)

∣∣
x=0

= 0;

thus, the givenu satisfiesxmu = 0. One can show, that this is the general solution, see [Wla72,
p. 84].
(c) The general solution of the ODEu(m) = 0 in D′ is a polynomial of degreem− 1.
Proof. We only prove thatu′ = 0 implies u = c in D′. The general statement follows by
induction onm.
Suppose thatu′ = 0. That is, for allψ ∈ D we have0 = 〈u′ , ψ〉 = −〈u , ψ′〉. In particular,
for ϕ, ϕ1 ∈ D we have

ψ(x) =

∫ x

−∞
(ϕ(t)− ϕ1(t)I) dt, where I = 〈1 , ϕ〉 ,

belongs toD since bothϕ andϕ1 do; ϕ1 plays an auxiliary role. Since〈u , ψ′〉 = 0 and
ψ′ = ϕ− I ϕ1 we obtain

0 = 〈u , ψ′〉 = 〈u , ϕ− ϕ1 I〉 = 〈u , ϕ〉 − 〈u , ϕ1〉 〈1 , ϕ〉
= 〈u , ϕ〉 − 〈1 〈u , ϕ1〉 , ϕ〉
= 〈u− 1 〈u , ϕ1〉 , ϕ〉 = 〈u− c 1 , ϕ〉 ,

wherec = 〈u , ϕ1〉. Since this is true for all test functionsϕ ∈ D(Rn), we obtain0 = u− c or
u = c which proves the assertion.



16.3 Tensor Product and Convolution Product 433

16.3 Tensor Product and Convolution Product

16.3.1 The Support of a Distribution

Let T ∈ D′ be a distribution. We say thatT vanishes atx0 if there existsε > 0 such that
〈T , ϕ〉 = 0 for all functionsϕ ∈ D with suppϕ ⊆ Uε(x0). Similarly, we say that two
distributionsT1 andT2 are equal atx0, T1(x0) = T2(x0), if T1 − T2 vanishes atx0. Note that
T1 = T2 if and only if T1 = T2 ata ∈ Rn for all pointsa ∈ Rn.

Definition 16.10 Let T ∈ D′ be a distribution. Thesupportof T , denoted bysupp T , is the set
of all pointsx such thatT does not vanish atx, that is

supp T = {x | ∀ ε > 0 ∃ϕ ∈ D(Uε(x)) : 〈T , ϕ〉 6= 0}.

Remarks 16.6 (a) If f is continuous, thensupp Tf = supp f ; for an arbitrary locally integrable
function we have, in generalsupp Tf ⊂ supp f . The support of a distribution is closed. Its
complement is the largest open subsetG of Rn such thatT ↾G = 0.
(b) supp δa = {a}, that is,δa vanishes at all pointsb 6= a. suppTH = [0,+∞), supp TχQ = ∅.

16.3.2 Tensor Products

(a) Tensor product of Functions

Let f : Rn → C, g : Rm → C be functions. Then thetensor productf ⊗ g : Rn+m → C is
defined viaf⊗g(x, y) = f(x)g(y), x ∈ Rn, y ∈ Rm.
If ϕk ∈ D(Rn) and ψk ∈ D(Rm), k = 1, . . . , r, we call the functionϕ(x, y) =∑r

k=1 ϕk(x)ψk(y) which is defined onRn+m thetensor productof the functionsϕk andψk. It is
denoted by

∑
k ϕk⊗ψk. The set of such tensors

∑r
k=1 ϕk⊗ψk is denoted byD(Rn)⊗D(Rm).

It is a linear space.
Note first that under the above assumptions onϕk andψk the tensor productϕ =

∑
k ϕk ⊗

ψk ∈ C∞(Rn+m). Let K1 ⊂ Rn andK2 ⊂ Rm denote the common compact supports of
the families{ϕk} and{ψk}, respectively. Thensuppϕ ⊂ K1 × K2. Since bothK1 andK2

are compact, its productK1 × K2 is agian compact. Hence,ϕ(x, y) ∈ D(Rn+m). Thus,
D(Rn)⊗D(Rm) ⊂ D(Rn+m). Moreover,D(Rn)⊗D(Rm) is a dense subspace inD(Rn+m).
That is, for anyη ∈ D(Rn+m) there exist positive integersrk ∈ N and test functionsϕ(m)

k , ψ(m)
k

such that
rm∑

l=1

ϕ
(m)
k ⊗ ψ(m)

k −→
D

η asm→∞.

(b) Tensor Product of Distributions

Definition 16.11 Let T ∈ D′(Rn) andS ∈ D′(Rm) be two distributions. Then there exists a
unique distributionF ∈ D′(Rn+m) such that for allϕ ∈ D(Rn) andψ ∈ D(Rm)

F (ϕ⊗ ψ) = T (ϕ)S(ψ).

This distributionF is denoted byT ⊗ S.
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Indeed, T ⊗ S is linear on D(Rn) ⊗ D(Rn) such that (T ⊗ S)(
∑r

k=1 ϕk ⊗ ψk) =∑r
k=1 T (ϕk)S(ψk). By continuity it is extended fromD(Rn) ⊗ D(Rn) to D(Rn+m). For

example, ifa ∈ Rn, b ∈ Rm thenδa ⊗ δb = δ(a,b). Indeed, forϕ ∈ D(Rn) andψ ∈ D(Rm) we
have

(δa ⊗ δb)(ϕ⊗ ψ) = ϕ(a)ψ(b) = (ϕ⊗ ψ)(a, b) = δ(a,b)(ϕ⊗ ψ).

Lemma 16.6 LetF = T ⊗ S be the unique distribution inD′(Rn+m) whereT ∈ D(Rn) and
S ∈ D(Rm) andη(x, y) ∈ D(Rn+m).
Thenϕ(x) = 〈S(y) , η(x, y)〉 is in D(Rn), ψ(y) = 〈T (x) , η(x, y)〉 is in D(Rm) and we have

〈(T ⊗ S) , η〉 = 〈S , 〈T , η〉〉 = 〈T , 〈S , η〉〉 .

For the proof, see [Wla72, II.7].

Example 16.8 (a) Regular Distributions. Let f ∈ L1
loc(Rn) andg ∈ L1

loc(Rm). Thenf ⊗ g ∈
L1

loc(Rn+m) andTf ⊗ Tg = Tf⊗g. Indeed, by Fubini’s theorem, for test functionsϕ andψ one
has

〈(Tf ⊗ Tg) , ϕ⊗ ψ〉 = 〈Tf , ϕ〉 〈Tg , ψ〉 =

∫Rn

f(x)ϕ(x) dx

∫Rm

g(y)ψ(y) dy

=

∫Rn+m

f(x)g(y)ϕ(x)ψ(y) dxdy = 〈Tf⊗g , ϕ⊗ ψ〉 .

(b) 〈δx0 ⊗ T , η〉 = 〈T , η(x0, y)〉. Indeed,

〈δx0 ⊗ T , ϕ(x)ψ(y)〉 = 〈δx0 , ϕ(x)〉 〈T , ψ〉 = ϕ(x0) 〈T , ψ(y)〉 = 〈T , ϕ(x0)ψ(y)〉 .

In particular,

(δa ⊗ Tg)(η) =

∫Rm

g(y)η(a, y) dy.

(c) For anyα ∈ Nn
0 , β ∈ Nm

0 ,

Dα+β(T ⊗ S) = (Dα
xT )⊗ (Dβ

yS) = Dβ((DαT )⊗ S) = Dα(T ⊗DβS).

Idea of proof in casen = m = 1. Let ϕ, ψ ∈ D(R). Then

∂

∂x
(T ⊗ S) (ϕ⊗ ψ) = − (T ⊗ S)

(
∂

∂x
(ϕ⊗ ψ)

)

= −(T ⊗ S)(ϕ′ ⊗ ψ) = −T (ϕ′)S(ψ) = T ′(ϕ)S(ψ)

= (T ′ ⊗ S)(ϕ⊗ ψ).

16.3.3 Convolution Product

Motivation: Knowing the fundamental solutionE of a linear differential operatorL, that is
L(E) = δ, one can immediately has the solution of the equationL[u] = f for an arbitrary
f , namelyu = E ∗ f where the∗ is the convolution product already defined for functions in
Definition 16.2.
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(a) Convolution Product of Functions

The main problem with convolutions is: we run into trouble with the support. Even in case that
f andg are locally integrable,f ∗ g need not to be a locally integrable function. However, there
are three cases where all is fine:

1. One of the two functionsf or g has compact support.

2. Both functions have support in[0,+∞).

3. Both functions are inL1(R).

In the last case(f ∗ g)(x) =
∫
f(y)g(x− y) dy is again integrable. The convolution product is

a commutative and associative operation onL1(Rn).

(b) Convolution Product of Distributions

Let us consider the case of regular distributions. Suppose that If f, g, f ∗ g ∈ L1
loc(Rn).

As usual we want to haveTf ∗ Tg = Tf∗g. Letϕ ∈ D(Rn),

〈Tf∗g , ϕ〉 =

∫R(f ∗ g)(x)ϕ(x) dx =

∫∫R2

f(y)g(x− y)ϕ(x) dxdy

=
t=x−y

∫∫R2

f(y)g(t)ϕ(y + t) dy dt = Tf⊗g(ϕ̃), (16.7)

whereϕ̃(y, t) = ϕ(y + t).
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x

supp ϕ (x+y)

There are two problems: (a) in generalϕ̃ is not
a test function since it has unbounded support
in R2n. Indeed,(y, t) ∈ supp ϕ̃ if y + t = c ∈
suppϕ, which is a family of parallel lines form-
ing an unbounded strip. (b) the integral does not
exist. We overcome the second problem if we
impose the condition that the set

Kϕ = {(y, t) ∈ R2n | y ∈ supp Tf , t ∈ supp Tg,

y + t ∈ suppϕ}

is bounded for anyϕ ∈ D(Rn); then the inte-
gral (16.7) makes sense.

We want to solve the problem (a) by “cutting”̃ϕ. Define

Tf∗g(ϕ) = lim
k→∞

(Tf ⊗ Tg)(ϕ(y + t)ηk(y, t)),

whereηk −→
n→∞

1 ask → ∞ andηk ∈ D(R2n). Such a sequence exists; letη(y, t) ∈ D(R2n)

with η(y, t) = 1 for ‖y‖2+‖t‖2 ≤ 1. Putηk(y, t) = η
(
y
k
, t
k

)
, k ∈ N. Thenlimk→∞ ηk(y, t) = 1

for all (y, t) ∈ R2n.
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Definition 16.12 LetT, S ∈ D′(Rn) be distributions and assume that for everyϕ ∈ D(Rn) the
set

Kϕ := {(x, y) ∈ R2n | x+ y ∈ suppϕ, x ∈ suppT, y ∈ suppS}
is bounded. Define

〈T ∗ S , ϕ〉 = lim
k→∞
〈T ⊗ S , ϕ(x+ y)ηk(x, y)〉 . (16.8)

T ∗ S is called theconvolution productof the distributionsS andT .

Remark 16.7 (a) The sequence (16.8) becomes stationary for largek such that the limit exists.
Indeed, for fixedϕ, the setKϕ is bounded, hence there existsk0 ∈ N such thatηk(x, y) = 1 for
all x, y ∈ Kϕ and allk ≥ k0. That isϕ(x+ y)ηk(x, y) does not change fork ≥ k0.
(b) The limit is a distribution inD′(Rn)

(c) The limit does not depend on the special choice of the sequenceηk.

Remarks 16.8 (Properties)(a) If S or T has compact support, thenT ∗ S exists. Indeed,
suppose thatsupp T is compact. Thenx + y ∈ suppϕ andx ∈ suppT imply y ∈ suppϕ −
supp T = {y1 − y2 | y1 ∈ suppϕ, y2 ∈ supp T}. Hence,(x, y) ∈ Kϕ implies

‖(x, y)‖ ≤ ‖x‖+ ‖y‖ ≤ ‖x‖+ ‖y1‖+ ‖y2‖ ≤ 2C +D

if suppT ⊂ UC(0) andsuppϕ ⊂ UD(0). That is,Kϕ is bounded.
(b) If S ∗ T exists, so doesT ∗ S andS ∗ T = T ∗ S.
(c) If T ∗ S exists, so doDαT ∗ S, T ∗DαS,Dα(T ∗ S) and they coincide:

Dα(T ∗ S) = DαT ∗ S = T ∗DαS.

Proof. For simplicity letn = 1 andDα = d
dx

. Suppose thatϕ ∈ D(R) then

〈(S ∗ T )′ , ϕ〉 = −〈S ∗ T , ϕ′〉 = − lim
k→∞
〈S ⊗ T , ϕ′(x+ y) ηk(x, y)〉

= − lim
k→∞

〈
S ⊗ T , ∂

∂x
(ϕ(x+ y)ηk(x, y))− ϕ(x+ y)

∂ηk
∂x

〉

= lim
k→∞
〈S ′ ⊗ T , ϕ(x+ y)ηk(x, y)〉 − lim

k→∞

〈
S ⊗ T , ϕ(x+ y)

∂ηk
∂x︸︷︷︸

=0=0=0 for largek

〉

= 〈S ′ ∗ T , ϕ〉

The proof of the second equality uses commutativity of the convolution product.

(d) If suppS is compact andψ ∈ D(Rn) such thatψ(y) = 1 in a neighborhood ofsuppS.
Then

(T ∗ S)(ϕ) = 〈T ⊗ S , ϕ(x+ y)ψ(y)〉 , ∀ϕ ∈ D(Rn).

(e) If T1, T2, T3 ∈ D′(Rn) all have compact support, thenT1 ∗ (T2 ∗ T3) and(T1 ∗ T2) ∗ T3 exist
andT1 ∗ (T2 ∗ T3) = (T1 ∗ T2) ∗ T3.
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16.3.4 Linear Change of Variables

Suppose thaty = Ax + b is a regular, linear change of variables; that is,A is a regularn × n
matrix. As usual, consider first the case of a regular distributionf(x). Let f̃(x) = f(Ax + b)

with y = Ax+ b, x = A−1(y − b), dy = detA dx. Then
〈
f̃(x) , ϕ(x)

〉
=

∫
f(Ax+ b)ϕ(x) dx

=

∫
f(y)ϕ(A−1(y − b)) 1

| detA | dy

=
1

| detA |
〈
f(y) , ϕ(A−1(y − b))

〉
.

Definition 16.13 Let T ∈ D′(Rn), A a regularn × n-matrix andb ∈ Rn. ThenT (Ax + b)

denotes the distribution

〈T (Ax+ b) , ϕ(x)〉 :=
1

| detA |
〈
T (y) , ϕ(A−1(y − b))

〉
.

For example,T (x) = T , 〈T (x− a) , ϕ(x)〉 = 〈T , ϕ(x+ a)〉, in particular,δ(x− a) = δa.

〈δ(x− b) , ϕ(x)〉 = 〈δ(x) , ϕ(x+ b)〉 = ϕ(0 + b) = ϕ(b) = 〈δb , ϕ〉 .

Example 16.9 (a)δ ∗S = S ∗ δ = S for all S ∈ D′. The existence is clear sinceδ has compact
support.

〈(δ ∗ S) , ϕ〉 = lim
k→∞
〈δ(x)⊗ S(y) , ϕ(x+ y)ηk(x, y)〉

= lim
k→∞
〈S(y) , ϕ(y)ηk(0, y)〉 = 〈S , ϕ〉

(b) δa ∗ S = S(x− a). Indeed,

(δa ∗ S)(ϕ) = lim
k→∞
〈δa ⊗ S , ϕ(x+ y)ηk(x, y)〉

= lim
k→∞
〈S(y) , ϕ(a+ y)ηk(a, y)〉 = 〈S(y) , ϕ(a + y)〉 = 〈S(y − a) , ϕ〉 .

Inparticularδa ∗ δb = δa+b.
(c) Let̺ ∈ L1

loc(Rn) andsupp Tf is compact.

Casen = 2 f(x) = log 1
‖x‖ ∈ L1

loc(R2). We call

V (x) = (̺ ∗ f)(x) =

∫∫R2

̺(y) log
1

‖x− y‖ dy

surface potential with density̺.

Casen ≥ 3 f(x) = 1
‖x‖n−2 ∈ L1

loc(Rn). We call

V (x) = (̺ ∗ f)(x) =

∫Rn

̺(y)
1

‖x− y‖n−2 dy

vector potential with density̺.

(d) Forα > 0 andx ∈ R putfα(x) = 1
α
√

2π
e−

x2

2α2 . Thenfα ∗ fβ = f√
α2+β2 .
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16.3.5 Fundamental Solutions

Suppose thatL[u] is a linear differential operator onRn,

L[u] =
∑

|α |≤k
cα(x)D

αu,

wherecα ∈ C∞(Rn).

Definition 16.14 A distributionE ∈ D′(Rn) is said to be afundamental solutionof the differ-
ential operatorL if

L(E) = δ.

Note thatE ∈ D′(Rn) need not to be unique. It is a general result due to Malgrange and Ehren-
preis (1952) that any linear partial differential operatorwith constant coefficientspossesses a
fundamental solution.

(a) ODE

We start with an example from the theory of ordinary differential equations. Recall thatH =

χ(0,+∞) denotes the Heaviside function.

Lemma 16.7 Suppose thatu(t) is a solution of the following initial value problem for the ODE

L[u] = u(m) + a1(t)u
(m−1) + · · ·+ am(t)u = 0,

u(0) = u′(0) = · · · = u(m−2)(0) = 0,

u(m−1)(0) = 1.

ThenE = TH(t) u(t) is a fundamental solution ofL, that is, it satisfiesL(E) = δ.

Proof. Using Leibniz’ rule, Example 16.5 (b), andu(0) = 0 we find

E′ = δ Tu + THu′ = u(0)δ + THu′ = THu′ .

Similarly, on has

E′′ = THu′′ , . . . ,E
(m−1) = THu(m−1) , E(m) = THu(m) + δ(t).

This yields

L(E) = E(m) + a1(t)E
(m−1) + · · ·+ am(t)E(t) = TH(t)L(u(t)) + δ = T0 + δ = δ.

Example 16.10We have the following example of fundamental solutions:

y′ + ay = 0, E = TH(x)e−ax ,

y′′ + a2y = 0, E = TH(x) sin ax
a
.
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(b) PDE

Here is the main application of the convolution product: knowing the fundamental solution of
a partial differential operatorL one immediately knows a weak solution of the inhomogeneous
equationsL(u) = f for f ∈ D′(Rn).

Theorem 16.8 Suppose thatL[u] =
∑

|α |≤k
cαD

αu is a linear differential operator inRn with

constant coefficientscα. Suppose further thatE ∈ D′(Rn) is a fundamental solution ofL. Let
f ∈ D′(Rn) be a distribution such that the convolution productS = E ∗ f exists.
ThenL(S) = f in D′.
In the set of distributions ofD′ which possess a convolution withE, S is the unique solution of
L(S) = f

Proof. By Remark 16.8 (b) we have

L(S) =
∑

|α |≤k
caD

α(E ∗ f) =
∑

|α |≤k
caD

α(E) ∗ f = L(E) ∗ f = δ ∗ f = f.

Suppose thatS1 andS2 are both solutions ofL(S) = f , i. e.L(S1) = L(S2) = f . Then

S1 − S2 = (S1 − S2) ∗ δ = (S1 − S2) ∗
∑

|α |≤k
caD

αE =

=


∑

|α |≤k
caD

α(S1 − S2)


 ∗ E = (f − f) ∗ E = 0. (16.9)

16.4 Fourier Transformation in S (Rn) and S ′(Rn)

We want to define the Fourier transformation for test functionsϕ as well as for distributions.
The problem withD(Rn) is that its Fourier transformation

Fϕ(ξ) = αn

∫R e−ixξϕ(x) dx

of ϕ is an entire (analytic) function with real supportR. That is,Fϕ does not have compact
support. The only test function inD which is analytic is0. To overcome this problem, we
enlarge the space of test functionD ⊂ S in such a way thatS becomes invariant under the
Fourier transformationF(S ) ⊂ S .

Lemma 16.9 Let ϕ ∈ D(R). Then the Fourier transformg(z) = αn
∫R e−itzϕ(t) dt is holo-

morphic in the whole complex plane and bounded in any half-planeHa = {z ∈ C | Im (z) ≤
a}.
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Proof. (a) We show that the complex limitlimh→0(g(z + h) − g(z))/h exists for allz ∈ C.
Indeed,

g(z + h)− g(z)
h

= αn

∫R e−izt e
−iht − 1

h
ϕ(t) dt.

Since
∣∣∣ e−izt e−iht−1

h
ϕ(t)

∣∣∣ ≤ C for all x ∈ supp (ϕ), h ∈ C, |h | ≤ 1, we can apply Lebesgue’s

Dominated Convergence theorem:

lim
h→0

g(z + h)− g(z)
h

= αn

∫R e−izt lim
h→0

e−iht − 1

h
ϕ(t) dt = αn

∫R e−izt(−it)ϕ(t) dt = F(−itϕ(t)).

(b) Suppose thatIm (z) ≤ a. Then

| g(z) | ≤ αn

∫R ∣∣ e−itRe (z)
∣∣ et Im (z)ϕ(t) dt ≤ αn sup

t∈K
|ϕ(t) |

∫

K

eta dt,

whereK is a compact set which containssuppϕ.

16.4.1 The SpaceS (Rn)

Definition 16.15 S (Rn) is the set of all functionsf ∈ C∞(Rn) such that for all multi-indices
α andβ

pα,β(f) = sup
x∈Rn

∣∣xβDαf(x)
∣∣ <∞.

S is called theSchwartz spaceor thespace of rapidly decreasing functions.
S (Rn) = {f ∈ C∞(Rn) | ∀α, β : Pα,β(f) <∞}.

Roughly speaking, a Schwartz space function is a function decreasing to0 (together with all its

partial derivatives) faster than any rational function
1

P (x)
asx → ∞. In place ofpα,β one can

also use the norms
pk,l(ϕ) =

∑

|α |≤k, |β |≤l,
pα,β(ϕ), k, l ∈ Z+

to describeS (Rn).
The setS (Rn) is a linear space andpα,β are norms onS .
For example,P (x) 6∈ S for any non-zero polynomialP (x); howevere−‖x‖2 ∈ S (Rn).
S (Rn) is an algebra. Indeed, the generalized Leibniz rule ensurespkl(ϕ · ψ) < ∞. For
example,f(x) = p(x)e−ax

2+bx+c, a > 0, belongs toS (R) for p is a polynomial;g(x) = e−|x |

is not differentiable at0 and hence not inS (R).

Convergence inS

Definition 16.16 Letϕn, ϕ ∈ S . We say that the sequence(ϕn) converges inS toϕ, abbrevi-
ated byϕn −→

S

ϕ, if one of the following equivalent conditions is satisfied for all multi-indices
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α andβ:

pα,β(ϕ− ϕn) −→
n→∞

0;

xβDα(ϕ− ϕn)−−→−→ 0, uniformly onRn;

xβDαϕn
−−→−→ xβDαϕ, uniformly onRn.

Remarks 16.9 (a) In quantum mechanics one defines thepositionandmomentum operators
Qk andPk, k = 1, . . . , n, by

(Qkϕ)(x) = xkϕ(x), (Pkϕ)(x) = −i
∂ϕ

∂xk
,

respectively. The spaceS is invariant under both operatorsQk andPk; that isxβDαϕ(x) ∈
S (Rn) for all ϕ ∈ S (Rn).
(b) S (Rn) ⊂ L1(Rn).
Recall that a rational functionP (x)/Q(x) is integrable over[1,+∞) if and only if Q(x) 6= 0

for x ≥ 1 anddegQ ≥ degP + 2. Indeed,C/x2 is then an integrable upper bound. We want
to find a condition onm such that

∫Rn

dx

(1 + ‖x‖2)m
<∞.

For, we use that any non-zerox ∈ Rn can uniquely be written asx = r y wherer = ‖x‖ andy
is on the unit sphereSn−1. One can show thatdx1 dx2 · · · dxm = rn−1 dr dS where dS is the
surface element of the unit sphereSn−1. Using this and Fubini’s theorem,

∫Rn

dx

(1 + ‖x‖2)m
=

∫ ∞

0

∫

Sn−1

rn−1 dr dS

(1 + r2)m
= ωn−1

∫ ∞

0

rn−1 dr

(1 + r2)m
,

whereωn−1 is the(n− 1)-dimensional measure of the unit sphereSn−1. By the above criterion,
the integral is finite if and only if2m− n+ 1 > 1 if and only ifm > n/2. In particular,

∫Rn

dx

1 + ‖x‖n+1 <∞.

In casen = 1 the integral isπ.
By the above argument

∫Rn

|ϕ(x) | dx =

∫Rn

∣∣ (1 + ‖x‖2n)ϕ(x)
∣∣ dx

1 + ‖x‖2n

≤ C p0,2n(ϕ)

∫Rn

dx

1 + ‖x‖2n
<∞.

(c) D(Rn) ⊂ S (Rn); indeed, the supremumpα,β(ϕ) of any test functionϕ ∈ D(Rn) is finite
since the supremum of a continuous function over a compact set is finite. On the other hand,
D ( S sincee−‖x‖2

is in S but not inD.
(d) In contrast toD(Rn), the rapidly decreasing functionsS (Rn) form a metric space. Indeed,
S (Rn) is a locally convex space, that is a linear spaceV such that the topology is given by a
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set of semi-normspα separating the elements ofV , i. e. pα(x) = 0 for all α impliesx = 0.
Any locally convex linear space where the topology is given by a countableset of semi-norms
is metrizable. Let(pn)n∈N be the defining family of semi-norms. Then

d(ϕ, ψ) =
∞∑

n=1

1

2n
pn(ϕ− ψ)

1 + pn(ϕ− ψ)
, ϕ, ψ ∈ V

defines a metric onV describing the same topology. (In our case, use Cantor’s first diagonal
method to write the normspkl, k, l ∈ N, from th array into a sequencepn.)

Definition 16.17 Let f(x) ∈ L1(Rn), then theFourier transformFf of the functionf(x) is
given by

Ff(ξ) = f̂(ξ) =
1√
2π

n

∫Rn

e−ix·ξf(x) dx,

wherex = (x1, . . . , xn), ξ = (ξ1, . . . , ξn), andx · ξ =
∑n

k=1 xkξk.

Let us abbreviate the normalization factor,αn = 1√
2π

n . Caution, Wladimirow, [Wla72] uses

another convention withe+iξ·x under the integral and normalization factor1 in place ofαn.
Note thatFf(0) = αn

∫Rn f(x) dx.

Example 16.11We calculate the Fourier transform Fϕ of the function
ϕ(x) = e−‖x‖2/2 = e−

1
2
x·x, x ∈ Rn.

(a)n = 1. From complex analysis, Lemma 14.30, we know

F

(
e−

x2

2

)
(ξ) =

1√
2π

∫R e−
x2

2 e−ixξ dx = e−
ξ2

2 . (16.10)

(b) Arbitrary n. Thus,

Fϕ(ξ) = ϕ̂(ξ) = αn

∫Rn

e−
1
2

Pn
k=1 x

2
k e−i

Pn
k=1 xkξk dx

= αn

∫Rn

n∏

k=1

e−
1
2
x2

k−ixkξk dx1 · · · dxn

=

n∏

k=1

αn

∫
e−

1
2
x2

k−ixkξk dxk

Fϕ(ξ) =
(16.10)

n∏

k=1

e−
1
2
ξ2k = e−

1
2
ξ2.

Hence, the Fourier transform ofe−
1
2
x2

is the function itself. It follows via scalingx 7→ cx that

F

(
e−

c2x2

2

)
(ξ) =

1

cn
e−

ξ2

2c2 .

Theorem 16.10Letϕ, ψ ∈ S (Rn). Then we have

(i) F(xα ϕ(x)) = i|α |Dα(Fϕ), that isF◦Qk = −Pk◦F, k = 1, . . . , n.
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(ii) F(Dαϕ(x))(ξ) = i|α |ξα (Fϕ)(ξ), that isF◦Pk = Qk◦F, k = 1, . . . , n.

(iii) F(ϕ) ∈ S (Rn), moreoverϕn −→
S

ϕ impliesFϕn −→
S

Fϕ, that is, the Fourier transform

F is a continuous linear operator onS .

(iv) F(ϕ ∗ ψ) = α−1
n F(ϕ) F(ψ).

(v) F(ϕ · ψ) = αn F(ϕ) ∗ F(ψ)

(vi)

F(ϕ(Ax+ b))(ξ) =
1

| detA |e
iA−1b·ξFϕ

(
A−⊤ξ

)
,

whereA is a regularn× n matrix andA−⊤ denotes the transpose ofA−1. In particular,

F(ϕ(λx))(ξ) =
1

|λ |n (Fϕ)

(
ξ

λ

)
,

F(ϕ(x+ b))(ξ) = eib·ξ (Fϕ)(ξ).

Proof. (i) We carry out the proof in caseα = (1, 0, . . . , 0). The general case simply follows.

∂

∂ξ1
(Fϕ)(ξ) = αn

∂

∂ξ1

∫Rn

e−iξ·xϕ(x) dx.

Since ∂
∂ξ1

(
e−iξ·x)ϕ(x) = −ix1e

−iξ·xϕ(x) tends to0 asx→∞, we can exchange partial differ-
entiation and integration, see Proposition 12.23 Hence,

∂

∂ξ1
(Fϕ)(ξ) = −αn

∫Rn

e−iξ·x ix1ϕ(x) dx = F(−ix1ϕ(x))(ξ).

(ii) Without loss of generality we again assumeα = (1, 0, . . . , 0). Using integration by parts,
we obtain

F

(
∂

∂x1
ϕ(x)

)
(ξ) = αn

∫Rn

e−iξ·xϕx1(x) dx = −αn
∫Rn

∂

∂x1

(
e−iξ·x) ϕ(x) dx

= iξ1αn

∫Rn

(
e−iξ·x) ϕ(x) dx = iξ1 (Fϕ)(ξ).

(iii) By (i) and (ii) we have for|α | ≤ k and| β | ≤ l

∣∣ ξαDβFϕ
∣∣ ≤ αn

∫Rn

∣∣Dα(xβϕ(x))
∣∣ dx ≤ c1

∫Rn

(1 + ‖x‖l)
∑

| γ |≤k
|Dγϕ(x) | dx

≤ c2

∫Rn

(1 + ‖x‖l+n+1)

(1 + ‖x‖n+1)

∑

| γ |≤k
|Dγϕ(x) | dx

≤ c3 sup
x∈Rn


(1 + ‖x‖l+n+1)

∑

| γ |≤k
|Dγϕ(x) |




≤ c4 pk,l+n+1(ϕ).
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This impliesFϕ ∈ S (Rn) and, moreoverF : S → S being continuous.
(iv) First note thatL1(Rn) is an algebra with respect to the convolution product where
‖f ∗ g‖L1 ≤ ‖f‖L1 ‖g‖L1 . Indeed,

‖f ∗ g‖L1 =

∫Rn

| f ∗ g | dx =

∫Rn

(∫Rn

| f(y)g(x− y) | dy
)

dx

≤
∫Rn

| f(y) |
(∫Rn

| g(x− y) | dx
)

dy

≤ ‖g‖L1

∫Rn

| f(y) | dy = ‖f‖L1 ‖g‖L1 .

This in particular shows that| f ∗ g(x) | < ∞ is finite a.e. onRn. By definition and Fubini’s
theorem we have

F(ϕ ∗ ψ)(ξ) = αn

∫Rn

e−ix·ξ
∫Rn

ϕ(y)ψ(x− y) dy dx

= α−1
n

∫Rn

(
αn

∫Rn

e−i(x−y)·ξψ(x− y) dx

)
αne

−iy·ξϕ(y) dy

=
z=x−y

α−1
n Fψ(ξ) Fϕ(ξ).

(v) will be done later, after Proposition 16.11.
(vi) is straightforward using〈A−1(y) , ξ〉 =

〈
y , A−⊤(ξ)

〉
.

Remark 16.10 Similar properties asF has the operatorG which is also defined onL1(Rn):

Gϕ(ξ) = ϕ̌(ξ) = αn

∫Rn

e+ix·ξ ϕ(x) dx.

Putϕ−(x) := ϕ(−x). Then

Gϕ = Fϕ− = F(ϕ) and Fϕ = Gϕ− = G(ϕ).

It is easy to see that (iv) holds forG, too, that is

G(ϕ ∗ ψ) = α−1
n G(ϕ)G(ψ).

Proposition 16.11 (Fourier Inversion Formula) The Fourier transformation is a one-to-one
mapping ofS (Rn) ontoS (Rn). The inverse Fourier transformation is given byGϕ:

F(Gϕ) = G(Fϕ) = ϕ, ϕ ∈ S (Rn).

Proof. Letψ(x) = e−
x·x
2 andΨ (x) = ψ(εx) = e−

ε2x2

2 . ThenΨε(x) := FΨ (x) = 1
εnψ

(
x
ε

)
. We

have

αn

∫Rn

Ψε(x) dx = αn

∫Rn

1

εn
ψ
(x
ε

)
dx = αn

∫Rn

ψ(x) dx = ψ̂(0) = 1.
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Further,

1√
2π

n

∫Rn

Ψε(x)ϕ(x) dx =
1√
2π

n

∫Rn

ψ(x)ϕ(εx) dx −→
ε→0

1√
2π

n

∫Rn

ψ(x)ϕ(0) dx = ϕ(0).

(16.11)

In other words,αnΨε(x) is aδ-sequence.
We computeG(FϕΨ )(x). Using Fubini’s theorem we have

G(FϕΨ )(x) =
1√
2π

n

∫Rn

(Fϕ)(ξ)Ψ (ξ)eix·ξdξ =
1

(2π)n

∫Rn

Ψ (ξ)eix·ξ
∫Rn

e−i ξ·yϕ(y) dydξ

=
1√
2π

n

∫Rn

ϕ(y)
1√
2π

n

∫Rn

e−i(y−x)·ξΨ (ξ)dξ dy

=
1√
2π

n

∫Rn

ϕ(y) (FΨ )(y − x) dy

=
z:=y−x

1√
2π

n

∫Rn

FΨ (z)ϕ(z + x) dz =
1√
2π

n

∫Rn

Ψε(z)ϕ(z + x) dz

−→
asε→ 0, see (16.11)

ϕ(x).

On the other hand, by Lebesgue’s dominated convergence theorem,

lim
ε→0

G(Fϕ · Ψ )(x) = αn

∫Rn

(Fϕ)(ξ)ψ(0)eix·ξdξ = αn

∫Rn

(Fϕ)(ξ)eix·ξdξ = G(Fϕ)(x).

This proves the first part. The second partF(Gϕ) = ϕ follows from G(ϕ) = F(ϕ), F(ϕ) =

G(ϕ), and the first part.

We are now going to complete the proof of Theorem 16.10 (v). For, letϕ = Gϕ1 andψ = Gψ1

with ϕ1, ψ1 ∈ S . By (iv) we have

F(ϕ · ψ) = F(G(ϕ1)G(ψ1)) = F(αnG(ϕ1 ∗ ψ1)) = αnϕ1 ∗ ψ1 = αnFϕ ∗ Fψ.

Proposition 16.12 (Fourier–Plancherel formula) For ϕ, ψ ∈ S (Rn) we have
∫Rn

ϕψ dx =

∫Rn

F(ϕ) F(ψ) dx,

In particular,‖ϕ‖L2(Rn) = ‖F(ϕ)‖L2(Rn)

Proof. First note that

F(ψ)(−y) = αn

∫Rn

eix·yψ(x) dx = αn

∫Rn

e−ix·yψ(x) dx = F(ψ)(y). (16.12)

By Theorem 16.10 (v),
∫Rn

ϕ(x)ψ(x) dx = α−1
n F(ϕ · ψ)(0) = (F(ϕ) ∗ F(ψ))(0)

=

∫Rn

F(ϕ)(y) F(ψ)(0− y) dy =
(16.12)

∫Rn

F(ϕ)(y) F(ψ)(y)dy.
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Remark 16.11 S (Rn) ⊂ L2(Rn) is dense. Thus, the Fourier transformation has a unique
extension to a unitary operatorF : L2(Rn) → L2(Rn). (To a givenf ∈ L2 choose a sequence
ϕn ∈ S converging tof in theL2-norm. SinceF preserves theL2-norm,‖Fϕn − Fϕm‖ =

‖ϕn − ϕm‖ and(ϕn) is a Cauchy sequence inL2, (Fϕn) is a Cauchy sequence, too; hence it
converges to someg ∈ L2. We defineF(f) = g.)

16.4.2 The SpaceS ′(Rn)

Definition 16.18 A tempered distribution(or slowly increasing distribution) is a continuous
linear functionalT on the spaceS (Rn). The set of all tempered distributions is denoted by
S ′(Rn).
A linear functionalT onS (Rn) is continuous if for all sequencesϕn ∈ S with ϕn −→

S

0,

〈T , ϕn〉 → 0.

For ϕn ∈ D with ϕn −→
D

0 it follows thatϕn −→
S

0. So, every continuous linear functional

onS (restricted toD) is continuous onD. Moreover, the mappingι : S ′ → D′, ι(T ) = T ↾D

is injective sinceT (ϕ) = 0 for all ϕ ∈ D impliesT (ψ) = 0 for all ψ ∈ S which follows
from D ⊂ S is dense and continuity ofT . Using the injectionι, we can identifyS ′ with as a
subspace ofD′, S ′ ⊆ D′. That is, every tempered distribution “is” a distribution.

Lemma 16.13 (Characterization ofS ′) A linear functionalT defined onS (Rn) belongs to
S ′(Rn) if and only if there exist non-negative integersk and l and a positive numberC such
that for allϕ ∈ S (Rn)

|T (ϕ) | ≤ C pkl(ϕ),

wherepkl(ϕ) =
∑

|α |≤k |β |≤l,
pαβ(ϕ).

Remarks 16.12 (a) With the usual identificationf ↔ Tf of functions and regular distributions,
L1(Rn) ⊆ S ′(Rn), L2(Rn) ⊆ S ′(Rn).
(b) L1

loc 6⊂ S ′, for exampleTf 6∈ S ′(R), f(x) = ex
2
, sinceTf (ϕ) is not well-defined for all

Schwartz functionϕ, for exampleTex2

(
e−x

2
)

= +∞.

(c) If T ∈ D′(Rn) andsupp T is compact thenT ∈ S
′(Rn).

(d) Letf(x) be measurable. If there existC > 0 andm ∈ N such that

| f(x) | ≤ C(1 + ‖x‖2)m a. e.x ∈ Rn.

ThenTf ∈ S ′. Indeed, the above estimate and Remark 16.9 imply

| 〈Tf , ϕ〉 | =
∣∣∣∣
∫Rn

f(x)ϕ(x) dx

∣∣∣∣ ≤ C

∫Rn

(1 + ‖x‖2)m (1 + ‖x‖2)n 1

(1 + ‖x‖2)n
|ϕ(x) | dx

≤ Cp0,2m+2n(ϕ)

∫Rn

dx

(1 + ‖x‖2)n
.

By Lemma 16.13,f is a tempered regular distribution,f(x) ∈ S ′.
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Operations onS ′

The operations are defined in the same way as in case ofD′. One has to show that the result is
again in the (smaller) spaceS ′. If T ∈ S ′ then
(a)DαT ∈ S ′ for all multi-indicesα.
(b) f ·T ∈ S ′ for all f ∈ C∞(Rn) such thatDαf growth at most polynomially at infinity for all
multi-indicesα, (i. e. for all multi-indicesα there existCα > 0 andkα such that|Dαf(x) | ≤
Cα(1 + ‖x‖)kα. )
(c) T (Ax+ b) ∈ S ′ for any regular realn× n- matrix andb ∈ Rn.
(d) T ∈ S ′(Rn) andS ∈ S ′(Rm) impliesT ⊗ S ∈ S ′(Rn+m).
(e) LetT ∈ S ′(Rn), ψ ∈ S (Rn). Define the convolution product

〈ψ ∗ T , ϕ〉 = 〈(1(x)⊗ T (y)) , ψ(x)ϕ(x+ y)〉 , ϕ ∈ S (Rn)

=

〈
T ,

∫Rn

ψ(x)ϕ(x+ y) dx

〉

Note that this definition coincides with the more general Definition 16.12 since

lim
k→∞

ψ(x)ϕ(x+ y)ηk(x, y) = ψ(x)ϕ(x+ y) ∈ S (R2n).

16.4.3 Fourier Transformation in S ′(Rn)

We are following our guiding principle to define the Fourier transform of a distributionT ∈ S ′:
First consider the case of a regular tempered distribution.We want to defineF(Tf) := TFf .
Suppose thatf(x) ∈ L1(Rn) is integrable. Then its Fourier transformationFf exists and is a
bounded continuous function:

|Ff(ξ) | ≤ αn

∫Rn

∣∣ eiξ·xf(x)
∣∣ dx = αn

∫Rn

| f(x) | dx = αn ‖Tf‖L1 <∞.

By Remark 16.12 (d),Ff defines a distribution inS ′. By Fubini’s theorem

〈TFf , ϕ〉 =

∫Rn

Ff(ξ)ϕ(ξ)dξ = αn

∫∫R2n

f(x)e−iξ·xϕ(ξ)dξ dx

=

∫Rn

f(x) Fϕ(x) dx = 〈Tf , Fϕ〉 .

Hence,〈TFf , ϕ〉 = 〈Tf , Fϕ〉. We take this equation as the definition of the Fourier transfor-
mation of a distributionT ∈ S ′.

Definition 16.19 ForT ∈ S ′ andϕ ∈ S define

〈FT , ϕ〉 = 〈T , Fϕ〉 . (16.13)

We callFT theFourier transformof the distributionT .
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SinceFϕ ∈ S (Rn), FT it is well-defined onS . Further,F is a linear operator andT a
linear functional, henceFT is again a linear functional. We show thatFT is a continuous linear
functional onS . For, letϕn −→

S

ϕ in S . By Theorem 16.10,Fϕn −→
S

Fϕ. SinceT is

continuous,
〈FT , ϕn〉 = 〈T , Fϕn〉 −→ 〈T , Fϕ〉 = 〈FT , ϕ〉

which proves continuity.

Lemma 16.14 The Fourier transformationF : S ′(Rn)→ S ′(Rn) is a continuous bijection.

Proof. (a) We show continuity (see also homework 53.3). Suppose thatTn → T in S ′; that is
for all ϕ ∈ S , 〈Tn , ϕ〉 → 〈T , ϕ〉. Hence,

〈FTn , ϕ〉 = 〈Tn , Fϕ〉 −→
n→∞

〈T , Fϕ〉 = 〈FT , ϕ〉

which proves the assertion.
(b) We define a second transformationG : S ′ → S ′ via

〈GT , ϕ〉 := 〈T , Gϕ〉

and show thatF◦G = G◦F = id onS ′. Taking into account Proposition 16.11 we have

〈G(FT ) , ϕ〉 = 〈FT , Gϕ〉 = 〈T , F(Gϕ)〉 = 〈T , ϕ〉 ;

thus,G◦F = id . The proof of the directionF◦G = id is similar; hence,F is a bijection.

Remark 16.13 All the properties of the Fourier transformation as stated in Theorem 16.10 (i),
(ii), (iii), (iv), and (v) remain valid in case ofS ′. In particular,F(xα T ) = i|α |Dα(FT ).
Indeed, forϕ ∈ S (Rn), by Theorem 16.10 (ii)

F(xαT )(ϕ) = 〈xαT , Fϕ〉 = 〈T , xαFϕ〉 =
〈
T , (−i)|α |F(Dαϕ)

〉

= (−1)|α |(−i)|α | 〈Dα(FT ) , ϕ〉 =
〈
i|α |DαT , ϕ

〉
.

Example 16.12 (a) Leta ∈ Rn. We computeF δa. Forϕ ∈ S (Rn),

Fδa(ϕ) = δa(Fϕ) = (Fϕ)(a) = αn

∫Rn

e−ix·aϕ(x) dx = Tαne−ix·a(ϕ).

Hence,Fδa is the regular distribution corresponding tof(x) = αne
−ix·a. In particular,F(δ) =

Tαn1 is the constant function. Note thatF(δ) = G(δ) = 1√
2π

nT1. Moreover,F(T1) = G(T1) =

α−1
n δ.

(b) n = 1, b > 0.

F(H(b− |x |)) = α1

∫R e−ixξH(b− |x |) dx

= α1

∫ b

−b
e−ixξ dx =

2√
2π

sin(bξ)

ξ
.
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(c) The single-layer distribution.Suppose thatS is a compact, regular, piecewise differentiable,
non self-intersecting surface inR3 and̺(x) ∈ L1

loc(R3) is a function onS (a density function
or distribution—in the physical sense). We define the distribution ̺δS by the scalar surface
integral

〈̺δS , ϕ〉 =

∫∫

S

̺(x)ϕ(x) dS.

The support of̺ δS is S, a set of measure zero with respect to the3-dimensional Lebesgue
measure. Hence,̺δS is a singular distribution.
Similarly, one defines thedouble-layer distribution(which comes from dipoles) by

〈
− ∂

∂~n
(̺δS) , ϕ

〉
=

∫∫

S

̺(x)
∂ϕ(x)

∂~n
dS,

where~n denotes the unit normal vector to the surface.
We compute the Fourier transformation of the single layerF(̺δS) in case of a sphere of radius
r, Sr = {x ∈ R3 | ‖x‖ = r} and density̺ = 1. By Fubini’s theorem,

〈FδSr , ϕ〉 =
〈
δSr(0) , Fϕ

〉 1
√

2π
3

∫∫

Sr

(∫R3

e−ix·ξϕ(x) dx

)
dSξ

=
1
√

2π
3

∫R3



∫∫

Sr

(cos(x · ξ)− i sin(x · ξ)) dSξ︸ ︷︷ ︸
is 0


ϕ(x) dx

Using spherical coordinates onSr, wherex is fixed to be thez-axis andϑ is the angle between
x andξ ∈ Sr, we havedS = r2 sin ϑ dϕ dϑ andx · ξ = r ‖x‖ cos ϑ. Hence, the inner (surface)
integral reads

=

∫ 2π

0

∫ π

0

cos(‖x‖ r cos ϑ)r2 sinϑdϑdϕ, s = ‖x‖ r cosϑ, ds = −‖x‖ r sinϑdϑ

= 2π

∫ −‖x‖r

‖x‖r
− cos s

r

‖x‖ ds = 4π
r

‖x‖ sin(‖x‖ r).

Hence,

〈FδSr , ϕ〉 =
2r√
2π

∫R3

ϕ(x)
sin(r ‖x‖)
‖x‖ dx;

the Fourier transformation ofδSr is the regular distribution

FδSr(x) =
2r√
2π

sin(r ‖x‖)
‖x‖ .

(d) The Resolvent of the Laplacian−∆. Consider the Hilbert spaceH = L2(Rn) and its dense
subspaceS (Rn). Forϕ ∈ S there is defined the Laplacian−∆ϕ. Recall that the resolvent of
a linear operatorA at λ is the bounded linear operator onH, given byRλ(A) = (A − λI)−1.
Given f ∈ H we are looking foru ∈ H with Rλ(A) f = u. This is equivalent to solve
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f = (A − λI)(u) for u. In case ofA = −∆ we can apply the Fourier transformation to solve
this equation. By Theorem 16.10 (ii)

−∆u− λu = f, −F

(
n∑

k=1

∂2

∂x2
k

u

)
− λFu = Ff,

n∑

k=1

ξ2
k(Fu)(ξ)− λFu(ξ) = (Fu)(ξ)(ξ2 − λ) = Ff(ξ)

Fu(ξ) =
Ff(ξ)

ξ2 − λ

u(x) = G

(
1

ξ2 − λ Ff(ξ)

)
(x)

Hence,

Rλ(−∆) = F−1
◦

1

ξ2 − λ
◦F,

where in the middle is the multiplication operator by the function1/(ξ2 − λ). One can see that
this operator is bounded inH if and only if λ ∈ C \R+ such that the spectrum of−∆ satisfies
σ(−∆) ⊂ R+.

16.5 Appendix—More about Convolutions

Since the following proposition is used in several places, we make the statement explicit.

Proposition 16.15 LetT (x, t) andS(x, t) be distributions inD′(Rn+1) with suppT ⊂ Rn ×R+ andsuppS ⊂ Γ+(0, 0). HereΓ+(0, 0) = {(x, t) ∈ Rn+1 | ‖x‖ ≤ at} denotes the forward
light cone at the origin.
Then the convolutionT ∗ S exists inD′(Rn+1) and can be written as

〈T ∗ S , ϕ〉 = 〈T (x, t)⊗ S(y, s) , η(t)η(s)η(as− ‖y‖)ϕ(x+ y, t+ s)〉 , (16.14)

ϕ ∈ D(Rn+1), whereη ∈ D(R) with η(t) = 1 for t > −ε and ε > 0 is any fixed positive
number. The convolution(T ∗S)(x, t) vanishes fort < 0 and is continuous in both components,
that is
(a) If Tk → T in D′(Rn+1) andsupp fk, f ⊆ Rn ×R, thenTk ∗ S → T ∗ S in D′(Rn+1).
(b) If Sk → S in D′(Rn+1) andsuppSk, S ⊆ Γ+(0, 0), thenT ∗ Sk → T ∗ S in D′(Rn+1).

Proof. Sinceη ∈ D(R), there existsδ > 0 with η(x) = 0 for x < −δ. Letϕ(x, t) ∈ D(Rn+1)

with suppϕ ∈ UR(0) for someR > 0. Let ηK(x, t, y, s), K → R2n+2, be a sequence in
D(R2n+2) converging to1 in R2n+2, see before Definition 16.12. For sufficiently largeK we
then have

ψK := η(s)η(t)η(as− ‖y‖)ηK(x, t, y, s)ϕ(x+ y, t+ s)

= η(s)η(t)η(at− ‖y‖)ϕ(x+ y, t+ s) =: ψ.
(16.15)
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To prove this it suffices to show thatψ ∈ D(R2n+2). Indeed,ψ is arbitrarily often differentiable
and its support is contained in

{(x, t, y, s) | s, t ≥ −δ, as− ‖y‖ ≥ −δ, ‖x+ y‖2 + | r + s |2 ≤ R2},

which is a bounded set.
Sinceη(t) = 1 in a neighborhood ofsupp T andη(s)η(as − ‖y‖) = 1 in a neighborhood of
suppS, T (x, t) = η(x)T (x, t) andS(y, s) = η(s)η(as− ‖y‖)S(y, s). Using (16.15) we have

〈T ∗ S , ϕ〉 = lim
K→R2n+2

〈T (x, t)⊗ S(y, s) , ηK(x, t, y, s)ϕ(x+ y, t+ s)〉

= lim
K→R2n+2

〈T (x, t)⊗ S(y, s) , ψK〉 , ϕ ∈ D(R2n+2).

This proves the first assertion.
We now prove that the right hand side of (16.14) defines a continuous linear functional on
D(Rn+1). Letϕk −→

D

ϕ ask →∞. Then

ψk := η(t)η(s)η(as− ‖y‖)ϕk(x+ y, t+ s) −→
D

ψ

ask →∞. Hence,

〈T ∗ S , ϕk〉 = 〈T (x, t)⊗ S(y, s) , ψk〉 → 〈T (x, t)⊗ S(y, s) , ψ〉 = 〈T ∗ S , ϕ〉 , k →∞,

andT ∗ S is continuous.
We show thatT ∗S vanishes fort < 0. For, letϕ ∈ D(Rn+1) with suppϕ ⊆ Rn× (−∞,−δ1].
Choosingδ > δ1/2 one has

η(t)η(s)η(as− ‖y‖)ϕ(x+ y, t+ s) = 0,

such that〈T ∗ S , ϕ〉 = 0. Continuity of the convolution product follows from the continuity
of the tensor product.
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Chapter 17

PDE II — The Equations of Mathematical
Physics

In this chapter we study in detail the Laplace equation, waveequation as well as the heat equa-
tion. Firstly, for all space dimensionsn we determine the fundamental solutions to the corre-
sponding differential operators; then we consider initialvalue problems and initial boundary
value problems. We study eigenvalue problems for the Laplace equation.
Recall Green’s identities, see Proposition 10.2,

∫∫∫

G

(u∆(v)− v∆(u)) dxdydz =

∫∫

∂G

(
u
∂v

∂~n
− v ∂u

∂~n

)
dS,

∫∫∫

G

∆(u) dxdydz =

∫∫

∂G

∂u

∂~n
dS. (17.1)

We also need that forx ∈ Rn \ {0},

∆

(
1

‖x‖n−2

)
= 0, n ≥ 3, ∆(log ‖x‖) = 0, n = 2,

see Example 7.5.

17.1 Fundamental Solutions

17.1.1 The Laplace Equation

Let us denote byωn the measure of the unit sphereSn−1 inRn, that is,ω2 = 2π, ω3 = 4π.

Theorem 17.1 The function

En(x) =

{
1
2π

log ‖x‖ , n = 2,

− 1
(n−2)ωn

1
‖x‖n−2 , n ≥ 3

is locally integrable; the corresponding regular distribution En satisfies the equation∆En = δ,
and hence is a fundamental solution for the Laplacian inRn.

453
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Proof. Step 1.Example 7.5 shows that∆(E(x)) = 0 if x 6= 0.

Step 2.By homework 50.4,log ‖x‖ is in L1
loc(R2) and1/ ‖x‖α ∈ L1

loc(Rn) if and only ifα < n.
Hence,En, n ≥ 2, define regular distributions inRn.

Let n ≥ 3 andϕ ∈ D(Rn). Using that1/ ‖x‖n−2 is locally integrable and Example 12.6 (a),
ψ ∈ D implies ∫Rn

ψ(x)

rn−2
dx = lim

ε→0

∫

‖x‖≥ε

ψ(x)

rn−2
dx.

Abbreviatingβn = −1/((n− 2)ωn) we have

〈∆En , ϕ〉 = βn

∫Rn

∆ϕ(x) dx

‖x‖n−2

= βn lim
ε→0

∫

‖x‖≥ε

∆ϕ(x) dx

‖x‖n−2 .

We compute the integral on the right usingv(x) = 1
rn−2 , which is harmonic for‖x‖ ≥ ε,

∆v = 0. Applying Green’s identity, we have

βn

∫

‖x‖≥ε

∆ϕ(x) dx

‖x‖n−2 = βn

∫

‖x‖=ε

(
1

rn−2

∂

∂r
ϕ(x)− ϕ(x)

∂

∂r

(
1

rn−2

))
dS

Let us consider the first integral asε → 0. Note thatϕ and gradϕ are both bounded by a
constantC since hϕ is a test function. We make use of the estimate

∣∣∣∣
∫

‖x‖=ε

∂

∂r
ϕ(x)

dS

rn−2

∣∣∣∣ ≤
1

εn−2

∫

‖x‖=ε

∣∣∣∣
∂ϕ(x)

∂r
dS

∣∣∣∣ ≤
c

εn−2

∫

‖x‖=ε
dS =

c′εn−1

εn−2
= c′ε

which tends to0 asε→ 0.

\
\vn

Hence we are left with computing the second integral. Note
that the outer unit normal vector to the sphere is~n = − x

‖x‖
such that ∂

∂~n

(
1

‖x‖n−2

)
= (n− 2) 1

rn−1 and we have

second integral= βn

∫

‖x‖=ε
ϕ(x)

−(n− 2)

rn−1
dS =

1

ωn

1

εn−1

∫

‖x‖=ε
ϕ(x) dS.

Note thatωnεn−1 is exactly the(n− 1)-dimensional measure of the sphere of radiusε. So, the
integral is the mean value ofϕ over the sphere of radiusε. Sinceϕ is continuous at0, the mean
value tends toϕ(0). This proves the assertion in casen ≥ 3.

The proof in casen = 2 is quite analogous.
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Corollary 17.2 Suppose thatf(x) is a continuous function with compact support. ThenS =

E ∗ f is a regular distribution and we have∆S = f in D′. In particular,

S(x) =
1

2π

∫∫R2

log ‖x− y‖ f(y) dy, n = 2;

S(x) = − 1

4π

∫∫∫R3

f(y)

‖x− y‖ dy, n = 3.

(17.2)

Proof. By Theorem 16.8,S = E ∗ f is a solution ofLu = f if E is a fundamental solution of
the differential operatorL. Inserting the fundamental solution of the Laplacian forn = 2 and
n = 3 and using thatf has compact support, the assertion follows.

Remarks 17.1 (a) The given solution (17.2) is even aclassicalsolutions of the Poisson equa-
tion. Indeed, we can differentiate the parameter integral as usual.
(b) The functionG(x, y) = En(x− y) is called theGreen’s functionof the Laplace equation.

17.1.2 The Heat Equation

Proposition 17.3 The function

F (x, t) =
1

(4πa2t)
n
2

H(t) e−
‖x‖2

4a2t

defines a regular distributionE = TF and a fundamental solution of the heat equation
ut − a2∆u = 0, that is

Et − a2 ∆xE = δ(x)⊗ δ(t). (17.3)

Proof. Step 1.The functionF (x, t) is locally integrable sinceF = 0 for t ≤ 0 andF ≥ 0 for
t > 0 and

∫Rn

F (x, t) dx =
1

(4πa2t)n/2

∫Rn

e−
r2

4a2t dx =
n∏

k=1

(
1√
π

∫R e−ξ
2
kdξk

)
= 1. (17.4)

Step 2.For t > 0, F ∈ C∞ and therefore

∂F

∂t
=

(
x2

4a2t2
− n

2t

)
F,

∂F

∂xi
= − xi

2a2t
F ;

∂2F

∂x2
i

=

(
x2
i

4a4t2
− 1

2a2t

)
,

∂F

∂t
− a2∆F = 0. (17.5)

See also homework 59.2.
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We give a proof using the Fourier transformation with respect to the spatial variables. Let
E(ξ, t) = (FxF )(ξ, t). We apply the Fourier transformation to (17.3) and obtain a first order
ODE with respect to the time variablet:

∂

∂t
E(ξ, t) + a2ξ2E(ξ, t) = αn1(ξ)δ(t).

Recall from Example 16.10, thatu′ + bu = δ has the fundamental solutionu(t) = H(t) e−bt;
hence

E(ξ, t) = H(t)αne
−a2ξ2t

We want to apply the inverse Fourier transformation with respect to the spatial variables. For,
note that by Example 16.11,

F−1

(
e−

ξ2

2c2

)
= cne−

c2x2

2 ,

where, in our case,1
2c2

= a2t or c = 1√
2a2t

. Hence,

E(x, t) = H(t)αnF
−1
(
e−a

2ξ2t
)

=
1

(2π)
n
2

· 1

(2a2t)
n
2

e−
x2

2·2a2t =
1

(4πa2t)
n
2

e−
x2

4a2t .

Corollary 17.4 Suppose thatf(x, t) is a continuous function onRn × R+ with compact sup-
port. Let

V (x, t) = H(t)
1

(4a2π)
n
2

∫ t

0

∫Rn

e
− ‖x−y‖2

4a2(t−s)

(t− s)n
2

f(y, s) dy ds

ThenV (x, t) is a regular distribution inD′(Rn × R+) and a solution ofut − a2∆u = f in
D′(Rn ×R+).

Proof. This follows from Theorem 16.8.

17.1.3 The Wave Equation

We shall determine the fundamental solutions for the wave equation in dimensionsn = 3,
n = 2, andn = 1. In casen = 3 we again apply the Fourier transformation. For the other
dimensions we use themethod of descent.

(a) Casen = 3

Proposition 17.5

E(x, t) = δSat ⊗
H(t)

4πa2t
∈ D′(R4)

is a fundamental solution for the wave operator2au = utt − a2(ux1x1 + ux2x2 + ux3x3) where
δSat denotes the single-layer distribution of the sphere of radiusa·t around0.
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Proof. As in case of the heat equation letE(ξ, t) = FE(ξ, t) be the Fourier transform of the
fundamental solutionE(x, t). ThenE(ξ, t) satisfies

∂2

∂t2
E + a2ξ2E = α31(ξ)δ(t)

Again, this is an ODE of order2 in t. Recall from Example 16.10 thatu′′ + a2u = δ, a 6= 0, has
a solutionu(t) = H(t) sinat

a
. Thus,

E(ξ, t) = α3H(t)
sin(a ‖ξ‖ t)
a ‖ξ‖ ,

whereξ is thought to be a parameter. Apply the inverse Fourier transformationF−1
x to this

function. Recall from Example 16.12 (b), the Fourier transform of the single layer of the sphere
of radiusat around0 is

FδSat(ξ) =
2at√
2π

sin(at ‖ξ‖)
‖ξ‖ .

This shows

E(x, t) =
1

2π

1

2at
H(t)δSat(x)

1

a
=

1

4πa2t
H(t)δSat(x)

Let’s evaluate〈E3 , ϕ(x, t)〉. Using dx1 dx2 dx3 = dSr dr wherex = (x1, x2, x3) andr = ‖x‖
as well as the transformationr = at, dr = a dt and dS is the surface element of the sphere
Sr(0), we obtain

〈E3 , ϕ(x, t)〉 =
1

4πa2

∫ ∞

0

1

t

∫∫

Sat

ϕ(x, t) dS dt (17.6)

=
1

4πa2

∫ ∞

0

a

r

∫∫

Sr

ϕ
(
x,
r

a

)
dS

dr

a

=
1

4πa2

∫R3

ϕ
(
x, ‖x‖

a

)

‖x‖ dx. (17.7)

(b) The Dimensionsn = 2 and n = 1

To construct the fundamental solutionE2(x, t), x = (x1, x2), we use the so-called method of
descent.

Lemma 17.6 A fundamental solutionE2 of the2-dimensional wave operator2a,2 is given by

〈E2 , ϕ(x1, x2, t)〉 = lim
k→∞
〈E3(x1, x2, x3, t) , ϕ(x1, x2, t)ηk(x3)〉 ,

whereE3 denotes a fundamental solution of the3-dimensional wave operator2a,3 and ηk ∈
D(R) is the function converging to1 ask →∞.
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Proof. Letϕ ∈ DR2). Noting thatη′′k → 0 uniformly onR ask →∞, we get

〈2a,2E2 , ϕ(x1, x2, t)〉 = 〈E2 , 2a,2ϕ(x1, x2, t)〉
= lim

k→∞
〈E3 , 2a,2(ϕ(x1, x2, t)ηk(x3))〉

= lim
k→∞
〈E3 , 2a,2ϕ(x1, x2, t)·ηk(x3)+ϕ·η′′k(x3)〉

= lim
k→∞

〈
E3 , 2a,3

(
ϕ(x1, x2, t) ηk(x3)

)〉

= lim
k→∞
〈2a,3E3 , ϕ(x1, x2, t)ηk(x3)〉 =

lim
k→∞
〈δ(x1, x2, x3)δ(t) , ϕ(x1, x2, t)ηk(x3)〉

= ϕ(0, 0, 0) = 〈δ(x1, x2, t) , ϕ(x1, x2, t)〉 .

In the third line we used that∆x1,x2,x3

(
ϕ(x1, x2, t)·η(x3)

)
= ∆x1,x2ϕ(x1, x2, t) η + ϕ η′′(x3).

Proposition 17.7 (a)For x = (x1, x2) ∈ R2 andt ∈ R, the regular distribution

E2(x, t) =
1

2πa

H(at− ‖x‖)√
a2t2 − x2

=

{
1

2πa
1√

a2t2−x2 , at > ‖x‖ ,
0, at ≤ ‖x‖

is a fundamental solution of the2-dimensional wave operator.
(b) The regular distribution

E1(x, t) =
1

2a
H(at− |x |) =

{
1
2a
, |x | < at,

0, |x | ≥ at

is a fundamental solution of the one-dimensional wave operator.

Proof. By the above lemma,

〈E2 , ϕ(x1, x2, t)〉 = 〈E3 , ϕ(x1, x2, t)1(x3)〉 =
1

4πa2

∫ ∞

0

1

t

∫∫

Sat

ϕ(x1, x2, t) dS dt.

We compute the surface element of the sphere of radiusat around0 in terms ofx1, x2. The
surface is the graph of the functionx3 = f(x1, x2) =

√
a2t2 − x2

1 − x2
2. By the formula before

Example 10.4,dS =
√

1 + f 2
x1

+ f 2
x2

dx1 dx2. In case of the sphere we have

dSx1,x2 =
at dx1 dx2√
a2t2 − x2

1 − x2
2

Integration over both the upper and the lower half-sphere yields factor2,

= 2
1

4πa2

∫ ∞

0

1

t

∫∫

x2
1+x

2
2≤a2t2

atϕ(x1, x2, t)√
a2t2 − x2

1 − x2
2

dx1 dx2 dt

=
1

2πa

∫ ∞

0

∫∫

‖x‖≤at

ϕ(x1, x2, t)√
a2t2 − x2

1 − x2
2

dx1 dx2 dt.
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This shows thatE2(x, t) is a regular distribution of the above form.
One can show directly thatE2 ∈ L1

loc(R3). Indeed,
∫∫∫R2×[−R,R]

E2(x1, x2, t) dx dt <∞ for all

R > 0.
(b) It was already shown in homework 57.2 thatE1 is the fundamental solution to the one-
dimensional wave operator. A short proof is to be found in [Wla72, II.§6.5 Example g)].

Use the method of descent to complete this proof. Letϕ ∈ D(R2). Since∫R |E2(x1, x2, t) | dx2 < ∞ and
∫R E2(x1, x2, t) dx2 again defines a locally integrable func-

tion, we have as in Lemma 17.6

E1(ϕ) = lim
k→∞
〈E2(x1, x2, t) , ϕ(x1, t)ηk(x2)〉 = lim

k→∞

∫R3

E2(x1, x2, t)ηk(x2)ϕ(x1, t) dx1 dx2 dt.

Hence, the fundamental solutionE1 is the regular distribution

E1(x1, t) =

∫ ∞

−∞
E2(x1, x2, t) dx2

17.2 The Cauchy Problem

In this section we formulate and study the classical and generalized Cauchy problems for the
wave equation and for the heat equation.

17.2.1 Motivation of the Method

To explain the method, we first apply the theory of distribution to solve an initial value problem
of a linear second order ODE.
Consider the Cauchy problem

u′′(t) + a2u(t) = f(t), u |t=0+= u0, u′ |t=0+= u1, (17.8)

wheref ∈ C(R+). We extend the solutionu(t) as well asf(t) by 0 for negative values oft,
t < 0. We denote the new function bỹu andf̃ , respectively. Sincẽu has a jump of heightu0

at 0, by Example 16.6,̃u′(t) = {u′(t)} + u0δ(t). Similarly, u′(t) jumps at0 by u1 such that
ũ′′(t) = {u′′(t)}+ u0δ

′(t) + u1δ(t). Hence,̃u satisfies onR the equation

ũ′′ + a2ũ = f̃(t) + u0δ
′(t) + u1δ(t). (17.9)

We construct the solutioñu. Since the fundamental solutionE(t) = H(t) sin at/a as well as the
right hand side of (17.9) has positive support, the convolution product exists and equals

ũ = E ∗ (f̃ + u0δ
′(t) + u1δ(t)) = E ∗ f̃ + u0E

′(t) + u1E(t)

ũ =
1

a

∫ t

0

f(τ) sin a(t− τ)dτ + u0E
′(t) + u1E(t).

Since in caset > 0, ũ satisfies (17.9) and the solution of the Cauchy problem is unique, the
above formula gives the classical solution fort > 0, that is

u(t) =
1

a

∫ t

0

f(τ) sin a(t− τ)dτ + u0 cos at+ u1
sin at

a
.
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17.2.2 The Wave Equation

(a) The Classical and the Generalized Initial Value Problem—Existence, Uniqueness, and
Continuity

Definition 17.1 (a) The problem

2au = f(x, t), x ∈ Rn, t > 0, (17.10)

u|t=0+ = u0(x), (17.11)

∂u

∂t

∣∣∣∣
t=0+

= u1(x), (17.12)

where we assume that

f ∈ C(Rn ×R+), u0 ∈ C1(Rn), u1 ∈ C(Rn).

is called theclassical initial value problem(CIVP, for short) to the wave equation.
A functionu(x, t) is calledclassical solutionof the CIVP if

u(x, t) ∈ C2(Rn ×R+) ∩ C1(Rn ×R+),

u(x, y) satisfies the wave equation (17.10) fort > 0 and the initial conditions (17.11) and
(17.12) ast→ 0 + 0.
(b) The problem

2aU = F (x, t) + U0(x)⊗ δ′(t) + U1(x)⊗ δ(t)

with F ∈ D′(Rn+1), U0, U1 ∈ D′(Rn), and suppF ⊂ Rn × [0,+∞) is called
generalized initial value problem(GIVP). A generalized functionU ∈ D′(Rn+1) with
suppU⊂ Rn × [0,+∞) which satisfies the above equation is called a (generalized,weak) so-
lution of the GIVP.

Proposition 17.8 (a) Suppose thatu(x, t) is a solution of the CIVP with the given dataf , u0,
and u1. Then the regular distributionTu is a solution of the GIVP with the right hand side
Tf +Tu0⊗δ′(t)+Tu1⊗δ(t) provided thatf(x, t) andu(x, t) are extended by0 into the domain
{(x, t) | (x, t) ∈ Rn+1, t < 0}.
(b)Conversely, suppose thatU is a solution of the GIVP. Let the distributionsF = Tf ,U0 = Tu0 ,
U1 = Tu1 andU = Tu be regular and they satisfy the regularity assumptions of the CIVP.
Then,u(x, t) is a solution of the CIVP.

Proof. (b) Suppose thatU is a solution of the GIVP; letϕ ∈ D(Rn+1). By definition of the
tensor product and the derivative,

〈
Utt − a2∆U , ϕ

〉
= 〈F , ϕ〉+ 〈U0 ⊗ δ′ , ϕ〉+ 〈U1 ⊗ δ , ϕ〉

=

∫ ∞

0

∫Rn

f(x, t)ϕ(x, t) dx dt−
∫Rn

u0(x)
∂ϕ

∂t
(x, 0) dx+

∫Rn

u1(x)ϕ(x, 0) dx. (17.13)
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Applying integration by parts with respect tot twice, we find
∫ ∞

0

uϕtt dt = uϕt|∞0 −
∫ ∞

0

utϕt dt

= −u(x, 0)ϕt(x, 0)− utϕ|∞0 +

∫ ∞

0

uttϕ dt

= −u(x, 0)ϕt(x, 0) + ut(x, 0)ϕ(x, 0) +

∫ ∞

0

uttϕ dt.

SinceRn has no boundary andϕ has compact support, integration by parts with respect to the
spatial variablesx yields no boundary terms.
Hence, by the above formula and

∫∫
u∆ϕ dt dx =

∫∫
∆uϕ dt dx, we obtain

〈
Utt − a2∆U , ϕ

〉
=
〈
U , ϕtt − a2∆ϕ

〉
=

∫Rn

∫ ∞

0

u(x, t)
(
ϕtt − a2∆ϕ

)
dt dx

=

∫Rn

∫ ∞

0

(
utt − a2∆u

)
ϕ(x, t) dx dt−

∫Rn

(u(x, 0)ϕt(x, 0)− ut(x, 0)ϕ(x, 0)) dx.

(17.14)

For any ϕ ∈ D(Rn × R+), suppϕ is contained inRn × (0,+∞) such that
ϕ(x, 0) = ϕt(x, 0) = 0. From (17.13) and (17.14) it follows that

∫Rn

∫ ∞

0

(
f(x, t)− utt + a2∆u

)
ϕ(x, t) dt dx = 0.

By Lemma 16.2 (Du Bois Reymond) it follows thatutt−a2∆u = f onRn×R+. Inserting this
into (17.13) and (17.14) we have

∫Rn

(u0(x)− u(x, 0))ϕt(x, 0) dx−
∫Rn

(u1(x)− ut(x, 0))ϕ(x, 0) dx = 0.

If we setϕ(x, t) = ψ(x)η(t) whereη ∈ D(R) andη(t) = 1 is constant in a neighborhood of0,
ϕt(x, 0) = 0 and therefore

∫Rn

(u1(x)− ut(x, 0))ψ(x) = 0, ψ ∈ D(Rn).

Moreover, ∫Rn

(u0(x)− u(x, 0))ψ(x) dx = 0, ψ ∈ D(Rn)

if we setϕ(x, t) = tη(t)ψ(x). Again, Lemma 16.2 yields

u0(x) = u(x, 0), u1(x) = ut(x, 0)

andu(x, t) is a solution of the CIVP.
(a) Conversely, ifu(x, t) is a solution of the CIVP then (17.14) holds with

U(x, t) = H(t) u(x, t).
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Comparing this with (17.13) it is seen that

Utt − a2∆U = F + U0 ⊗ δ′ + U1 ⊗ δ
whereF (x, t) = H(t)f(x, t), U0(x) = u(x, 0) andU1(x) = ut(x, 0).

Corollary 17.9 Suppose thatF , U0, andU1 are data of the GIVP. Then there exists a unique
solutionU of the GIVP. It can be written as

U = V + V (0) + V (1)

where

V = En ∗ F, V (1) = En ∗x U1, V (0) =
∂En
∂t
∗x U0.

HereEn ∗xU1 := En ∗(U1(x)⊗δ(t)) denotes the convolution product with respect to the spatial
variablesx only. The solutionU depends continuously in the sense of the convergence inD′ on
F , U0, andU1. HereEn denote the fundamental solution of then-dimensional wave operator
2a,n.

Proof. The supports of the distributionsU0 ⊗ δ′ andU1 ⊗ δ are contained in the hyperplane
{(x, t) ∈ Rn+1 | t = 0}. Hence the support of the distributionF +U0⊗δ′+U1⊗δ is contained
in the half spaceRn ×R+.
It follows from Proposition 16.15 below that the convolution product

U = En ∗ (F + U0 ⊗ δ′ + U1 ⊗ δ)
exists and has support in the positive half spacet ≥ 0. It follows from Theorem 16.8 thatU is a
solution of the GIVP. On the other and, any solution of the GIVP has support inRn ×R+ and
therefore,
by Proposition 16.15, posses the convolution withEn. By Theorem 16.8, the solutionU is
unique.
Suppose thatUk −→ U1 ask →∞ in D′(Rn+1) thenEn ∗Uk −→ En ∗ U1 by the continuity of
the convolution product inD′ (see Proposition 16.15).

(b) Explicit Solutions for n = 1, 2, 3

We will make the above formulas from Corollary 17.9 explicit, that is, we compute the above
convolutions to obtain the potentialsV , V (0), andV (1).

Proposition 17.10 Let f ∈ C2(Rn × R+), u0 ∈ C3(Rn), andu1 ∈ C2(Rn) for n = 2, 3; let
f ∈ C1(R+), u0 ∈ C2(R), andu1 ∈ C1(R) in casen = 1.
Then there exists a unique solution of the CIVP. It is given incasen = 3 by Kirchhoff ’s formula

u(x, t) =
1

4πa2



∫∫∫

Uat(x)

f
(
y, t−

∥∥x−y
a

∥∥)

‖x− y‖ dy +
1

t

∫∫

Sat(x)

u1(y) dSy +
∂

∂t


1

t

∫∫

Sat(x)

u0(y) dSy





 .

(17.15)
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The first termV is calledretarded potential.
In casen = 2, x = (x1, x2), y = (y1, y2), it is given by Poisson’s formula

u(x, t) =
1

2πa

∫ t

0

∫∫

Ua(t−s)(x)

f(y, s) dy ds√
a2(t− s)2 − ‖x− y‖2

+
1

2πa

∫∫

Uat(x)

u1(y) dy√
a2t2 − ‖x− y‖2

+
1

2πa

∂

∂t

∫∫

Uat(x)

u0(y) dy√
a2t2 − ‖x− y‖2

. (17.16)

In casen = 1 it is given by d’Alembert’s formula

u(x, t) =
1

2a

∫ t

0

∫ x+a(t−s)

x−a(t−s)
f(y, s) dy ds+

1

2a

∫ x+at

x−at
u1(y) dy +

1

2
(u0(x+ at) + u0(x− at)) .

(17.17)

The solutionu(x, t) depends continuously onu0, u1, andf in the following sense: If
∣∣∣ f − f̃

∣∣∣ < ε, |u0 − ũ0 | < ε0, |u1 − ũ1 | < ε1, ‖ grad (u0 − ũ0)‖ < ε′0

(where we impose the last inequality only in casesn = 3 andn = 2), then the corresponding
solutionsu(x, t) and ũ(x, t) satisfy in a strip0 ≤ t ≤ T

| u(x, t)− ũ(x, y) | < 1

2
T 2ε+ Tε1 + ε0 + (aTε′0),

where the last term is omitted in casen = 1.

Proof. (idea of proof) We show Kirchhoff’s formula.
(a)The potential term withf .
By Proposition 16.15 below, the convolution productE3 ∗ f exists. It is shown in [Wla72, p.
153] that for a locally integrable functionf ∈ L1

loc(Rn+1) with supp f ⊂ Rn ×R+, En ∗ Tf is
again a locally integrable function.
Formally, the convolution product is given by

(E3 ∗ f)(x, t) =

∫R4

E3(y, s)f(x− y, t− s) dy ds =

∫R4

E3(x− y, t− s) f(y, s) dy ds,

where the integral is to be understood the evaluation ofE3(y, s) on the shifted functionf(x −
y, t− s). Sincef has support on the positive time axis, one can restrict oneselves tos > 0 and
t− s > 0, that is to0 < s < t. That is formula (17.6) gives

E3 ∗ f(x, t) =
1

4πa2

∫ t

0

1

s

∫∫

Sas

f(x− y, t− s) dS(y) ds

Usingr = as, dr = a ds, we obtain

V (x, t) =
1

4πa2

∫ at

0

∫∫

Sr

1

r
f
(
x− y, t− r

a

)
dS(y) dr.



464 17 PDE II — The Equations of Mathematical Physics

Using dy1 dy2 dy3 = dr dS as well as‖y‖ = r = as we can proceed

V (x, t) =
1

4πa2

∫∫∫

Uat(0)

f
(
x− y, t− ‖y‖

a

)

‖y‖ dy1 dy2 dy3.

The shiftz = x− y, dz1 dz2 dz3 = dy1 dy2 dy3 finally yields

V (x, t) =
1

4πa2

∫∫∫

Uat(x)

f
(
z, t− ‖x−z‖

a

)

‖x− z‖ dz.

This is the first potential term of Kirchhoff’s formula.
(b) We computeV (1)(x, t). By definition,

V (1) = E3 ∗ (u1 ⊗ δ) = E3 ∗x u1.

Formally, this is given by,

V (1)(x, t) =
1

4πa2t

∫∫∫R3

δSat(y) u1(x− y) dy =
1

4πa2t

∫∫

Sat

u1(x− y) dS(y)

=
1

4πa2t

∫∫

Sat(x)

u1(y) dS(y).

(c) Recall that(DαS) ∗ T = Dα(S ∗ T ), by Remark 16.8 (b). In particular

E3 ∗ (u0 ⊗ δ′) =
∂

∂t
(E3 ∗x u0) ;

which immediately gives (c) in view of (b).

Remark 17.2 (a) The stronger regularity (differentiability) conditions onf, u0, u1 are neces-
sary to proveu ∈ C2(Rn ×R+) and to show stability.
(b) Proposition 17.10 and Corollary 17.9 show that the GIVP for the wave wave equation is a
well-posed problem (existence, uniqueness, stability).

17.2.3 The Heat Equation

Definition 17.2 (a) The problem

ut − a2∆u = f(x, t), x ∈ Rn, t > 0 (17.18)

u(x, 0) = u0(x), (17.19)

where we assume that
f ∈ C(Rn ×R+), u0 ∈ C(Rn)
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is called theclassical initial value problem(CIVP, for short) to the heat equation.
A functionu(x, t) is calledclassical solutionof the CIVP if

u(x, t) ∈ C2(Rn × (0,+∞)) ∩ C(Rn × [0,+∞)),

andu(x, t) satisfies the heat equation (17.18) and the initial condition (17.19).
(b) The problem

Ut − a2∆U = F + U0 ⊗ δ
with F ∈ D′(Rn+1), U0 ∈ D′(Rn), andsuppF ⊂ Rn × R+ is calledgeneralized initial
value problem(GIVP). A generalized functionU ∈ D′(Rn+1) with suppU ⊂ Rn×R+ which
satisfies the above equation is called ageneralized solutionof the GIVP.

The fundamental solution of the heat operator has the following properties:
∫Rn

E(x, t) dx = 1,

E(x, t) −→ δ(x), as t→ 0 + .

The fundamental solution describes the heat distribution of a point-source at the origin(0, 0).
SinceE(x, t) > 0 for all t > 0 and allx ∈ Rn, the heat propagates with infinite speed. This is in
contrast to our experiences. However, for short distances,the heat equation is gives sufficiently
good results. For long distances one uses the transport equation. We summarize the results
which are similar to that of the wave equation.

Proposition 17.11 (a) Suppose thatu(x, t) is a solution of the CIVP with the given dataf
and u0. Then the regular distributionTũ is a solution of the GIVP with the right hand side
Tf̃ + Tu−0⊗ δ provided thatf(x, t) andu(x, t) are extended tõf(x, t) andũ(x, t) by0 into the
left half-space{(x, t) | (x, t) ∈ Rn+1, t < 0}.
(b)Conversely, suppose thatU is a solution of the GIVP. Let the distributionsF = Tf ,U0 = Tu0,
andU = Tu be regular and they satisfy the regularity assumptions of the CIVP.
Then,u(x, t) is a solution of the CIVP.

Proposition 17.12 Suppose thatF andU0 are data of the GIVP. Suppose further thatF andU0

both have compact support. Then there exists a solutionU of the GIVP which can be written as

U = V + V (0)

where
V = E ∗ F, V (0) = E ∗x U0.

The solutionU varies continuously withF andU0.

Remark 17.3 The theorem differs from the corresponding result for the wave equation in that
there is no proposition on uniqueness. It turns out that the GIVP cannot be solved uniquely. A.
Friedman, Partial differential equations of parabolic type, gave an example of a non-vanishing
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distribution which solves the GIVP withF = 0 andU0 = 0.
However, if all distributions are regular and we place additional requirements on the growth for
t, ‖x‖ → ∞ of the regular distribution, uniqueness can be achieved.

For existence and uniqueness we introduce the following class of functions

M = {f ∈ C(Rn ×R+) | f is bounded on the stripRn × [0, T ] for all T > 0},
Cb(Rn) = {f ∈ C(Rn) | f is bounded on Rn}

Corollary 17.13 (a) Let f ∈ M and u0 ∈ Cb(Rn). Then the two potentialsV (x, t) as in
Corollary 17.4 and

V (0)(x, t) = E ∗ Tu0 ⊗ δ =
H(t)

(4πa2t)
n
2

∫Rn

u0(y)e
− ‖x−y‖2

4a2t dy

are regular distributions andu = V + V (0) is a solution of the GIVP.
(b) In casef ∈ C2(Rn × R+) with Dαf ∈ M for all α with |α | ≤ 1 (first order partial
derivatives), the solution in(a) is a solution of the CIVP. In particular,V (0)(x, t) −→ u0(x) as
t→ 0+.
(c) The solutionu of the GIVP is unique in the classM.

17.2.4 Physical Interpretation of the Results
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Definition 17.3 We introduce the two cones inRn+1

Γ−(x, t) = {(y, s) | ‖x− y‖ < a(t− s)}, s < t,

Γ+(x, t) = {(y, s) | ‖x− y‖ < a(s− t)}, s > t,

which are calleddomain of dependence(backward light cone) anddomain of influence(forward
light cone), respectively.

Recall that the boundaries∂Γ+ and∂Γ− are characteristic surfaces of the wave equation.
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(a) Propagation of Waves in Space

Consider the fundamental solution

E3(x, t) =
1

4πa2
δSat ⊗ T 1

t

of the3-dimensional wave equation.

Sat

Disturbance is on a sphere of radius at

It shows that the disturbance at timet > 0 effected by a
point sourceδ(x)δ(t) in the origin is located on a sphere
of radius at around0. The disturbance moves like a
spherical wave,‖x‖ = at, with velocity a. In the be-
ginning there is silence, then disturbance (on the sphere),
and afterwards, again silence. This is calledHuygens’
principle.

It follows by the superposition principle that the solutionu(x0, t0) of an initial disturbance
u0(x)δ

′(t) + u1(x)δ(t) is completely determined by the values ofu0 andu1 on the sphere of
the backwards light-cone att = 0; that is by the valuesu0(x) andu1(x) at all valuesx with
‖x− x0‖ = at0.

K

silence

silence

disturbance

M(K) M(K)

Now, let the disturbance be situated in a com-
pact setK rather than in a single point. Sup-
pose thatd andD are the minimal and maximal
distances ofx from K. Then the disturbance
starts to act inx at time t0 = d/a it lasts for
(D − d)/a; and again, fort > D/a = t1 there
is silence atx. Therefore, we can observe a for-
ward wave front at timet0 and a backward wave
front at timet1.

This shows that the domain of influenceM(K) of compact setK is the union of all boundaries
of forward light-conesΓ+(y, 0) with y ∈ K at timet = 0.

M(K) = {(y, s) | ∃x ∈ K : ‖x− y‖ = as}.

(b) Propagation of Plane Waves

Consider the fundamental solution

E2(x, t) =
H(at− ‖x‖)

2πa
√
a2t2 − ‖x‖2

, x = (x1, x2)

of the2-dimensional wave equation.
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It shows that the disturbance effected by a point
sourceδ(x)δ(t) in the origin at time0 is a disc
Uat of radiusat around0. One observes a for-
ward wave front moving with speeda. In con-
trast to the3-dimensional picture, there exists
no back front. The disturbance is permanently
present fromt0 on. We speak of wavediffusion;
Huygens’ principle does not hold.

Diffusion can also be observed in case of arbitrary initial disturbanceu0(x)δ
′(t) + u1(x)δ(t).

Indeed, the superposition principle shows that the domain of dependence of a compact initial
disturbanceK is the union of all discsUat(y) with y ∈ K.

(c) Propagation on a Line

Recall thatE1(x, t) = 1
2a
H(at − |x |). The disturbance at timet > 0 which is effected by a

point sourceδ(x)δ(t) is the whole closed interval[−at, at]. We have two forward wave “fronts”
one at the pointx = at and one atx = −at; one moving to the right and one moving to the left.
As in the plane case, there does not exist a back wave font; we observe diffusion.

For more details, see the discussion in Wladimirow, [Wla72,p. 155 – 159].

17.3 Fourier Method for Boundary Value Problems

A good, easy accessable introduction to the Fourier method is to be found in [KK71].

In this section we use Fourier series to solve BEVP to the Laplace equation as well as initial
boundary value problems to the wave and heat equations.

Recall that the following sets are CNOS in the Hilbert spaceH

{
1√
2π

eint | n ∈ Z,} , H = L2(a, a + 2π),

{
1√
b− a

e
2πi
b−a

nt | n ∈ Z} , H = L2(a, b),

{
1√
2π
,

1√
π

sin(nt),
1√
π

cos(nt) | n ∈ N} , H = L2(a, a+ 2π),

{
1√
b− a

,

√
2

b− a sin

(
2π

b− a nt
)
,

√
2

b− a cos

(
2π

b− a nt
)
| n ∈ N} , H = L2(a, b),

For any functionf ∈ L1(0, 2π) one has an associated Fourier series

f ∼
∑

n∈Z cn eint, cn =
1√
2π

∫ 2π

0

f(t)e−int dt.
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Lemma 17.14 Each of the following two sets forms a CNOS inH = L2(0, π) (on the half
interval).

{√
2

π
sin(nt) | n ∈ N} , {√

2

π
cos(nt) | n ∈ N0

}
.

Proof. To check that they form an NOS is left to the reader. We show completeness of the first
set. Letf ∈ L2(0, π). Extendf to an odd functionf̃ ∈ L2(−π, π), that isf̃(x) = f(x) and
f̃(−x) = −f(x) for x ∈ (0, π). Sincef̃ is an odd function, in its Fourier series

a0

2
+

∞∑

n=1

an cos(nt) + bn sin(nt)

we havean = 0 for all n. Since the Fourier series
∑∞

n=1 bn sin(nt) converges tõf in L2(−π, π),
it converges tof in L2(0, π). Thus, the sine system is complete. The proof for the cosine
system is analogous.

17.3.1 Initial Boundary Value Problems

(a) The Homogeneous Heat Equation, Periodic Boundary Conditions

We consider heat conduction in a closed wire loop of length2π. Let u(x, t) be the temperature
of the wire at positionx and timet. Since the wire is closed (a loop),u(x, t) = u(x + 2π, t);
u is thought to be a2π periodic function onR for every fixedt. Thus, we have the following
periodic boundary conditions

u(0, t) = u(2π, t), ux(0, t) = ux(2π, t), t ∈ R+. (PBC)

The initial temperature distribution at timet = 0 is given such that the BIVP reads

ut − a2uxx = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(PBC).

(17.20)

Separation of variables.We are seeking solutions of the form

u(x, t) = f(x) · g(t)

ignoring the initial conditions for a while. The heat equation then takes the form

f(x)g′(t) = a2f ′′(x)g(t) ⇐⇒ 1

a2

g′(t)

g(t)
=
f ′′(x)

f(x)
= κ = const.

We obtain the system of two independent ODE only coupled byκ:

f ′′(x)− κf(x) = 0, g′(t)− a2κg(t) = 0.
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The periodic boundary conditions imply:

f(0)g(t) = f(2π)g(t), f ′(x)g(t) = f ′′(2π)g(t)

which for nontrivialg givesf(0) = f(2π) andf ′(0) = f ′(2π). In caseκ = 0, f ′′(x) = 0 has
the general solutionf(x) = ax + b. The only periodic solution isf(x) = b = const. Suppose
now thatκ = −ν2 < 0. Then the general solution of the second order ODE is

f(x) = c1 cos(νx) + c2 sin(νx).

Sincef is periodic with period2π, only adiscreteset of valuesν are possible, namelyνn = n,
n ∈ Z. This impliesκn = −n2, n ∈ N.
Finally, in caseκ = ν2 > 0, the general solution

f(x) = c1e
νx + c2e

−νx

provides no periodic solutionsf . So far, we obtained a set of solutions

fn(x) = an cos(nx) + bn sin(nx), n ∈ N0,

corresponding toκn = −n2. The ODE forgn(t) now reads

g′n(t) + a2n2gn(t) = 0.

Its solution isgn(t) = ce−a
2n2t, n ∈ N. Hence, the solutions of the BVP are given by

un(x, t) = e−a
2n2t(an cos(nx) + bn sin(nx)), n ∈ N, u0(x, t) =

a0

2

and finite or “infinite” linear combinations:

u(x, t) =
a0

2
+

∞∑

n=0

e−a
2n2t(an cos(nx) + bn sin(nx)), (17.21)

Consider now the initial value, that ist = 0. The corresponding series is

u(x, 0) =
a0

2
+

∞∑

n=0

an cos(nx) + bn sin(nx), (17.22)

which gives the ordinary Fourier series ofu0(x). That is, the Fourier coefficientan andbn of
the initial functionu0(x) formallygive a solutionu(x, t).

1. If the Fourier series ofu0 pointwise converges tou0, the initial conditions are satisfied by
the functionu(x, t) given in (17.21)

2. If the Fourier series ofu0 is twice differentiable (with respect tox), so is the function
u(x, t) given by (17.21).
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Lemma 17.15 Consider the BIVP(17.20). (a) Existence.Suppose thatu0 ∈ C4(R) is periodic.
Then the functionu(x, t) given by(17.21)is in C2,1

x,t([0, 2π]×R+) and solves the classical BIVP
(17.20).
(b) Uniqueness and Stability.In the class of functionsC2,1

x,t([0, 2π] × R+) the solution of the
above BIVP is unique.

Proof. (a) The Fourier coefficients ofu(4)
0 are bounded such that the Fourier coefficients ofu0

have growth1/n4 (integrate the Fourier series ofu(4)
0 four times). Then the series foruxx(x, t)

andut(x, t) both are dominated by the series
∞∑

n=0

1

n2
; hence they converge uniformly. This

shows that the seriesu(x, t) can be differentiated term by term twice w.r.t.x and once w.r.t.t.
(b) For any fixedt ≥ 0, u(x, t) is continuous inx. Considerv(t) := ‖u(x, t)‖2L2(0,2π). Then

v′(t) =
d

dt

(∫ 2π

0

u(x, t)2 dx

)
= 2

∫ 2π

0

u(x, t)ut(x, t) dx = 2

∫ 2π

0

u(x, t)a2uxx(x, t) dx

= 2

(
a2ux u

∣∣2π
0
− a2

∫ 2π

0

(ux(x, t))
2 dx

)
= −2a2

∫ 2π

0

u2
x dx ≤ 0.

This shows thatv(t) is monotonically decreasing int.
Suppose nowu1 andu2 both solve the BIVP in the given class. Thenu = u1 − u2 solves
the BIVP in this class with homogeneous initial values, thatis u(x, 0) = 0, hence,v(0) =

‖u(x, 0)‖2L2 = 0. Sincev(t) is decreasing fort ≥ 0 and non-negative,v(t) = 0 for all t ≥ 0;
henceu(x, t) = 0 in L2(0, 2π) for all t ≥ 0. Sinceu(x, t) is continuous inx, this implies
u(x, t) = 0 for all x andt. Thus,u1(x, t) = u2(x, t)—the solution is unique.
Stability. Sincev(t) is decreasing

sup
t∈R+

‖u(x, t)‖L2(0,2π) ≤ ‖u0‖L2(0,2π) .

This shows that small changes in the initial conditionsu0 imply small changes in the solution
u(x, t). The problem is well-posed.

(b) The Inhomogeneous Heat Equation, Periodic Boundary Conditions

We study the IBVP

ut − a2uxx = f(x, t),

u(x, 0) = 0,

(PBC).

(17.23)

Solution. Let en(x) = einx/
√

2π, n ∈ Z, be the CNOS inL2(0, 2π). These functions are all
eigen functions with respect to the differential operatord2

dx2 , e′′n(x) = −n2 en(x). Let t > 0 be
fixed and

f(x, t) ∼
∑

n∈Z cn(t) en(x)
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be the Fourier series off(x, t) with coefficientscn(t). Foru, we try the following ansatz

u(x, t) ∼
∑

n∈Z dn(t) en(x) (17.24)

If f(x, t) is continuous inx and piecewise continuously differentiable with respect tox, its
Fourier series converges pointwise and we have

ut − a2uxx =
∑

n∈Z (en d′(t) + a2n2end(t)
)

= f(x, t) =
∑

n∈N cn(t)en.
For eachn this is an ODE int

d′n(t) + a2n2dn(t) = cn(t), dn(0) = 0.

From ODE the solution is well-known

dn(t) = e−a
2n2t

∫ t

0

ea
2n2scn(s) ds.

Under certain regularity and growth conditions onf , (17.24) solves the inhomogeneous IBVP.

(c) The Homogeneous Wave Equation with Dirichlet Conditions

Consider the initial boundary value problem of the vibrating string of lengthπ.

(E) utt − a2uxx = 0, 0 < x < π, t > 0;

(BC) u(0, t) = u(π, t) = 0,

(IC) u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 < x < π.

The ansatzu(x, t) = f(x)g(t) yields

f ′′

f
= κ =

g′′

a2g
, f ′′(x) = κf(x), g′′ = κa2g.

The boundary conditions implyf(0) = f(π) = 0. Hence, the first ODE has the only solutions

fn(x) = cn sin(nx), κn = −n2, n ∈ N.
The corresponding ODEs forg then read

g′′n + n2a2gn = 0,

which has the general solutionan cos(nat) + bn sin(nat). Hence,

u(x, t) =
∞∑

n=1

(an cos(nat) + bn sin(nat)) sin(nx)
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solves the boundary value problem in the sense ofD′(R2) (choose anyan, bn of polynomial
growth). Now, insert the initial conditions,t = 0:

u(x, 0) =

∞∑

n=1

an sin(nx)
!
= ϕ(x), ut(x, 0) =

∞∑

n=1

nabn sin(nx)
!
= ψ(x).

Since{
√

2
π

sin(nx) | n ∈ N} is a CNOS inL2(0, π), we can determine the Fourier coefficients
of ϕ andψ with respect to this CNOS and obtainan andbn, respectively.
Regularity. Suppose thatϕ ∈ C4([0, π]), ψ ∈ C3([0, π]). Then the Fourier-Sine coefficientsan
andanbn of ϕ andψ have growth1/n4 and1/n3, respectively. Hence, the series

u(x, t) =

∞∑

n=1

(an cos(nat) + bn sin(nat)) sin(nx) (17.25)

can be differentiated twice with respect tox or t since the differentiated series have a summable
upper bound

∑
c/n2. Hence, (17.25) solves the IBVP.

(d) The Wave Equation with Inhomogeneous Boundary Conditions

Consider the following problem inΩ ⊂ Rn

utt − a2∆u = 0,

u(x, 0) = ut(x, 0) = 0

u |∂Ω = w(x, t).

Idea.Find an extensionv(x, t) of w(x, t), v ∈ C2(Ω ×R+), and look for functions̃u = u− v.
Thenũ has homogeneous boundary conditions and satisfies the IBVP

ũtt − a2∆ũ = −vtt + a2∆v,

ũ(x, 0) = −v(x, 0), ũt(x, 0) = −vt(x, 0)

ũ |∂Ω = 0.

This problem can be split into two problems, one with zero initial conditions and one with
homogeneous wave equation.

17.3.2 Eigenvalue Problems for the Laplace Equation

In the previous subsection we have seen that BIVPs using Fourier’s method often lead to bound-
ary eigenvalue problems (BEVP) for the Laplace equation.
We formulate the problems. Letn = 1 andΩ = (0, l). One considers the following types of
BEVPs to the Laplace equation;f ′′ = λf :

• Dirichlet boundary conditions:f(0) = f(l) = 0.

• Neumann boundary conditions:f ′(0) = f ′(l) = 0.
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• Periodic boundary conditions :f(0) = f(l), f ′(0) = f ′(l).

• Mixed boundary conditions:α1f(0) + α2f
′(0) = 0, β1f(l) + β2f

′(l) = 0.

• Symmetric boundary conditions: Ifu andv are function satisfying these boundary condi-
tions, then(u′v − uv′)|l0 = 0. In this case integration by parts gives

∫ l

0

(u′′v − uv′′) dx = u′v − v′u|l0 −
∫ l

0

(u′v′ − v′u′) dx = 0.

That isu′′·v = u·v′′ and the Laplace operator becomes symmetric.

Proposition 17.16 LetΩ ⊂ Rn. The BEVP with Dirichlet conditions

∆u = λu, u |∂Ω= 0, u ∈ C2(Ω) ∩ C1(Ω) (17.26)

has countably many eigenvaluesλk. All eigenvalues are negative and of finite multiplicity. Let
0 > λ1 > λ2 > · · · then sequence( 1

λk
) tends to0. The eigenfunctionsuk corresponding toλk

form a CNOS inL2(Ω).

Sketch of proof.(a) LetH = L2(Ω). We use Green’s1st formula withu = v , u |∂Ω= 0,
∫

Ω

u∆u dx+

∫

Ω

(∇u)2 dx = 0.

to show that all eigenvalues of∆ are negative. Let∆u = λu. First note, thatλ = 0 is not an
eigenvalue of∆. Suppose to the contrary∆u = 0, that is,u is harmonic. Sinceu |∂Ω= 0, by
the uniqueness theorem for the Dirichlet problem,u = 0 in Ω. Then

λ ‖u‖2 = λ 〈u , u〉 = 〈λu , u〉 = 〈∆u , u〉 =
∫

Ω

u∆u dx = −
∫

Ω

(∇u)2 dx < 0.

Hence,λ is negative.
(b) Assume that a Green’s functionG for Ω exists. By (17.34), that is

u(y) =

∫

Ω

G(x, y) ∆u(x) dx+

∫

∂Ω

u(x)
∂G(x, y)

∂~nx
dS(x),

u |∂Ω= 0 implies

u(y) =

∫

Ω

G(x, y) ∆u(x) dx.

This shows that the integral operatorA : L2(Ω)→ L2(Ω) defined by

(Av)(y) :=

∫

Ω

G(x, y)v(x) dx

is inverse to the Laplacian. SinceG(x, y) = G(y, x) is real,A is self-adjoint. By (a), its
eigenvalues,1/λk are all negative. If

∫∫

Ω×Ω

|G(x, y) |2 dxdy <∞,



17.3 Fourier Method for Boundary Value Problems 475

A is acompactoperator.
We want to justify the last statement. Let(Kf)(x) =

∫
Ω
k(x, y)f(y) dy be an integral operator

onH = L2(Ω), with kernelk(x, y) ∈ H = L2(Ω × Ω). Let {un | n ∈ N} be a CNOS inH;
then{un(x)um(y) | n,m ∈ N} is a CNOS inH. Let knm be the Fourier coefficients ofk with
respect to the basis{un(x)um(y)} in H. Then

(Kf)(x) =

∫

Ω

f(y)
∑

n,m

knmun(x)um(y) dy

=
∑

n

un(x)

(∑

m

knm

∫

Ω

um(y)f(y) dy

)

=
∑

n

un(x)
∑

m

knm 〈f , um〉 =
∑

n,m

knm 〈f , um〉 un.

This in particular shows that

‖Kf‖2 =
∑

m,n

k2
mn 〈f , um〉2 ≤

∑

m,n

k2
mn ‖f‖2 = ‖f‖2

∫

Ω×Ω
k(x, y)2 dxdy = ‖f‖2

∑

n

‖Kun‖2

‖K‖2 ≤
∑

n

‖Kun‖2

We show thatK is approximated by the sequence(Kn) defined by

Kn f =
∑

m

n∑

r=1

krm 〈f , um〉 ur

of finite rank operators. Indeed,

‖(K −Kn)f‖2 =
∑

m

∞∑

r=n+1

k2
rm | 〈f , um〉 |2 ≤ sup

m

∞∑

r=n+1

k2
rm ‖f‖2

such that

‖K −Kn‖2 = sup
m

∞∑

r=n+1

k2
rm −→ 0

asn→∞. Hence,K is compact.
(c) By (a) and (b),A is a negative, compact, self-adjoint operator. By the spectral theorem for
compact self-adjoint operators, Theorem 13.33, there exists an NOS(uk) of eigenfunctions to
1/λk of A. The NOS(uk) is complete since0 is not an eigenvalue ofA.

Example 17.1 Dirichlet Conditions on the Square.Let Q = (0, π) × (0, π) ⊂ R2. The
Laplace operator with Dirichlet boundary conditions onΩ has eigenfunctions

umn(x, y) =
2

π
sin(mx) sin(ny),

corresponding to the eigenvaluesλmn = −(m2 + n2). The eigenfunctions{umn | m,n ∈ N}
form a CNOS in the Hilbert spaceL2(Ω).
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Example 17.2 Dirichlet Conditions on the ball U1(0) in R2. We consider the BEVP with
Dirichlet boundary conditions on the ball.

−∆u = λu, u |S1(0)= 0.

In polar coordinatesu(x, y) = ũ(r, ϕ) this reads,

∆ũ(r, ϕ) =
1

r

∂

∂r
(r ũr) +

1

r2
ũϕϕ = −λũ, 0 < r < 1, 0 ≤ ϕ < 2π.

Separation of variables.We try the ansatz̃u(r, ϕ) = R(r)Φ(ϕ). We have the boundary condi-
tionR(1) = 0 and inR(r) is bounded in a neighborhood ofr = 0. Also,Φ is periodic. Then
∂
∂r
ũ = R′Φ and

∂

∂r
(rũr) =

∂

∂r
(rR′Φ) = (R′ + rR′′)Φ, ũϕϕ = RΦ′′.

Hence,∆u = −λu now reads
(
R′

r
+R′′

)
Φ +

R

r2
Φ′′ = −λRΦ

R′

r
+R′′

R
+

1

r2

Φ′′

Φ
= −λ

rR′ + r2R′′

R
+ λr2 = −Φ

′′

Φ
= µ.

In this way, we obtain the two one-dimensional problems

Φ′′ + µΦ = 0, Φ(0) = Φ(2π);

r2R′′ + rR′ + (λr2 − µ)R = 0, |R(0) | <∞, R(1) = 0. (17.27)

The eigenvalues and eigenfunctions to the first problem are

µk = k2, Φk(ϕ) = eikϕ, k ∈ Z.
Equation (17.27) is the Bessel ODE. Forµ = k2 the solution of (17.27) bounded inr = 0 is
given by the Bessel functionJk(r

√
λ). Recall from homework 21.2 that

Jk(x) =

∞∑

n=0

(−1)n
(
x
2

)2n+k

n!(n + k)!
, k ∈ N0.

To determine the eigenvaluesλ we use the boundary conditionR(1) = 0 in (17.27), namely
Jk(
√
λ) = 0. Hence,

√
λ = µkj, whereµkj, j = 1, 2, . . . , denote the positive zeros ofJk. We

obtain
λkj = µ2

kj, Rkj(r) = Jk(µkj r), j = 1, 2, · · · .
The solution of the BEVP is

λkj = µ2
kj, ukj(x) = J| k |(µ| k |jr)e

ikϕ, k ∈ Z, j = 1, 2, · · · .

Note that the Bessel functions{Jk | k ∈ Z+} and the system{eikt | k ∈ Z} form a complete
OS inL2((0, 1), r dr) and in inL2(0, 2π), respectively. Hence, the OS{ukl | k ∈ Z, l ∈ Z+} is
a complete OS inL2(U1(0)). Thus, there are no further solutions to the given BEVP. For more
details on Bessel functions, see [FK98, p. 383].
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17.4 Boundary Value Problems for the Laplace and the Pois-
son Equations

Throughout this section (if nothing is stated otherwise) wewill assume thatΩ is a bounded
region inRn, n ≥ 2. We suppose further thatΩ belongs to the classC2, that is, the boundary
∂Ω consists of finitely many twice continuously differentiable hypersurfaces;Ω′ := Rn \Ω is
assumed to be connected (i. e. it is a region, too). All functions are assumed to be real valued.

17.4.1 Formulation of Boundary Value Problems

(a) The Inner Dirichlet Problem:

Givenϕ ∈ C(∂Ω) andf ∈ C(Ω), find u ∈ C(Ω) ∩ C2(Ω) such that

∆u(x) = f(x) ∀x ∈ Ω, and

u(y) = ϕ(y), ∀ y ∈ ∂Ω.

(b) The Exterior Dirichlet Problem:

Givenϕ ∈ C(∂Ω) andf ∈ C(Ω′), find u ∈ C(Ω′) ∩ C2(Ω′) such that

∆u(x) = f(x), ∀x ∈ Ω′, and

u(y) = ϕ(y), ∀ y ∈ ∂Ω,
lim

|x |→∞
u(x) = 0.

(c) The Inner Neumann Problem:

y

Ω

x=y−tn

n

Givenϕ ∈ C(∂Ω) andf ∈ C(Ω), find u ∈ C1(Ω) ∩ C2(Ω)

such that

∆u(x) = f(x) ∀x ∈ Ω, and

∂u

∂~n−
(y) = ϕ(y), ∀ y ∈ ∂Ω.

Here ∂u
∂~n−

(y) denotes the limit of directional derivative

∂u

∂~n−
(y) = lim

t→0+0
~n(y) · grad u(y − t~n(y))

and~n(y) is the outer normal toΩ aty ∈ ∂Ω. That is,x ∈ Ω approachesy ∈ ∂Ω in the direction
of the normal vector~n(y). We assume that this limit exists for all boundary pointsy ∈ ∂Ω.
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(d) The Exterior Neumann Problem:

y

Ω

n

x=y+tn

Givenϕ ∈ C(∂Ω) andf ∈ C(Ω′), find u ∈ C1(Ω′) ∩
C2(Ω′) such that

∆u(x) = f(x) ∀x ∈ Ω′, and

∂u

∂~n+
(y) = ϕ(y), ∀ y ∈ ∂Ω

lim
|x |→∞

u(x) = 0.

Here ∂u
∂~n+

(y) denotes the limit of directional derivative

∂u

∂~n+
(y) = lim

t→0+0
~n(y) · gradu(y + t~n(y))

and~n(y) is the outer normal toΩ at y ∈ ∂Ω. We assume that this limit exists for all boundary
pointsy ∈ ∂Ω. In both Neumann problems one can also look for a functionu ∈ C2(Ω)∩C(Ω)

or u ∈ C2(Ω′) ∩ C(Ω
′
), respectively, provided the above limits exist and define continuous

functions on the boundary.
These four problems are intimately connected with each other, and we will obtain solutions to
all of them simultaneously.

17.4.2 Basic Properties of Harmonic Functions

Recall that a functionu ∈ C2(Ω), is said to beharmonicif ∆u = 0 in Ω.
We say that an operatorL on a function spaceV overRn is invariant under a affine transfor-
mationT , T (x) = A(x) + b, whereA ∈ L (Rn), b ∈ Rn, if

L◦T ∗ = T ∗
◦L,

whereT ∗ : V → V is given by(T ∗f)(x) = f(T (x)), f ∈ V . It follows that the Laplacian is
invariant under translations (T (x) = x+b) and rotationsT (i. e. T⊤T = TT⊤ = I). Indeed, for
translations, the matrixB with Ã = BAB⊤ is the identity and in case of the rotation,B = T−1.
SinceA = I, in both cases,̃A = A = I; the Laplacian is invariant.
In this section we assume thatΩ ⊂ Rn is a region where Gauß’ divergence theorem is valid for
all vector fieldsf ∈ C1(Ω) ∩ C(Ω) for :

∫

Ω

div f(x) dx =

∫

∂Ω

f(y) · ~dS(y),

where the dot· denotes the inner product inRn. The term under the integral can be written as

ω(y) = f(y) · ~dS = (f1(y), · · · , fn(y)) · ( dy2 ∧ dy3 ∧ · · · ∧ dyn,− dy1 ∧ dy3 ∧ · · · ∧ dyn,

· · · , (−1)n−1 dy1 ∧ · · · ∧ dyn−1

)

=
n∑

k=1

(−1)k−1fk(y) dy1 ∧ · · · ∧ d̂yk ∧ · · · ∧ dyn,
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where the hat means ommission of this factor. In this wayω(y) becomes a differential(n− 1)-
form. Using differentiation of forms, see Definition 11.7, we obtain

dω = div f(y) dy1 ∧ dy2 ∧ · · · ∧ dyn.

This establishes the above generalized form of Gauß’ divergence theorem. LetU : ∂Ω → R be
a continuous scalar function on∂Ω, one can defineU(y) dS(y) := U(y)~n(y) · ~dS(y), where~n
is the outer unit normal vector to the surface∂Ω.
Recall that we obtain Green’s first formula insertingf(x) = v(x)∇u(x), u, v ∈ C2(Ω):

∫

Ω

v(x)∆u(x) dx+

∫

Ω

∇u(x) · ∇v(x) dx =

∫

∂Ω

v(y)
∂u

∂~n
(y) dS(y).

Interchanging the role ofu andv and taking the difference, we obtain Green’s second formula
∫

Ω

(v(x)∆u(x)− u(x)∆v(x)) dx =

∫

∂Ω

(
v(y)

∂u

∂~n
(y)− u(y)∂v

∂~n
(y)

)
dS(y). (17.28)

Recall that

E2(x) =
1

2π
log ‖x‖ , n = 2,

En(x) = − 1

(n− 2)ωn
‖x‖−n+2 , n ≥ 3

are the fundamental solutions of the Laplacian inRn.

Theorem 17.17 (Green’s representation formula)Letu ∈ C2(Ω).
Then forx ∈ Ω we have

u(x) =

∫

Ω

En(x− y) ∆u(y) dy +

∫

∂Ω

(
u(y)

∂En
∂~ny

(x− y)− En(x− y)
∂u

∂~n
(y)

)
dS(y)

(17.29)

Here ∂
∂~ny

denotes the derivative in the direction of the outer normal with respect to the variable
y.

Note that the distributions{∆u},
(
∂u
∂~n
δ∂Ω
)
, and ∂

∂~n
(u δ∂Ω) have compact support such that the

convolution products withEn exist.
Proof. Idea of proofFor sufficiently smallε > 0, Uε(x) ⊂ Ω, sinceΩ is open. We apply
Green’s second formula withv(y) = En(x − y) andΩ \Uε(x) in place ofΩ. SinceEn(x − y)
is harmonic with respect to the variabley in Ω \ {x} (recall from Example 7.5, thatEn(x) is
harmonic inRn \ {0}), we obtain

∫

Ω \Uε(x)

En(x− y)∆(y) dy =

∫

∂Ω

(
En(x− y)

∂u

∂~n
(y)− u(y)∂En(x− y)

∂~ny

)
dS(y)

+

∫

∂Uε(x)

(
En(x− y)

∂u

∂~n
(y)− u(y)∂En(x− y)

∂~ny

)
dS(y). (17.30)
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In the second integral~n denotes the outer normal toΩ \Uε(x) hence the inner normal ofUε(x).
We wish to evaluate the limits of the individual integrals inthis formula asε → 0. Consider
the left-hand side of (17.30). Sinceu ∈ C2(Ω), ∆u is bounded; sinceEn(x − y) is locally
integrable, the lhs converges to

∫

Ω

En(x− y) ∆u(y) dy.

On∂Uε(x), we haveEn(x− y) = βnε
−n+2, βn = −1/(ωn(n− 2)). Thus asε→ 0,

∣∣∣∣∣∣∣

∫

∂Uε(x)

En(x− y)
∂u

∂~n
(y) dS

∣∣∣∣∣∣∣
≤ |βn |
εn−2

∫

∂Uε(x)

∣∣∣∣
∂u

∂~n
(y)

∣∣∣∣ dS ≤ |βn |
εn−2

sup
Uε(x)

∣∣∣∣
∂u(y)

∂~n

∣∣∣∣
∫

Sε(x)

dS

≤ 1

(n− 2)ωnεn−2
ωnε

n−1 sup
Uε(x)

∣∣∣∣
∂u(y)

∂~n

∣∣∣∣ = Cε −→ 0.

Furthermore, since~n is the interior normal of the ballUε(y), the same calculations as in the
proof of Theorem 17.1 show that∂En(x−y)

∂~ny
= −βn d

dε
(ε−n+2) = −ε−n+1/ωn. We obtain,

−
∫

∂Uε(x)

u(y)
∂En(x− y)

∂~ny
dS(y) =

1

ωnεn−1

∫

Sε(x)

u(y) dS(y)

︸ ︷︷ ︸
spherical mean

−→ u(x).

In the last line we used that the integral is the mean value ofu over the sphereSε(x), andu is
continuous atx.

Remarks 17.4 (a) Green’s representation formula is also true for functions
u ∈ C2(Ω) ∩ C1(Ω). To prove this, consider Green’s representation theorem onsmaller
regionsΩε ⊂ Ω such thatΩε ⊂ Ω.
(b) Applying Green’s representation formula to a test function ϕ ∈ D(Ω), see Definition 16.1,
ϕ(y) = ∂ϕ

∂~n
(y) = 0, y ∈ ∂Ω, we obtain

ϕ(x) =

∫

Ω

En(x− y)∆ϕ(x) dx

(c) We may now draw the following consequence from Green’s representation formula: If one
knows∆u, thenu is completely determined by its values and those of its normal derivative on
∂Ω. In particular, a harmonic function onΩ can be reconstructed from its boundary data. One
may ask conversely whether one can construct a harmonic function for arbitrary given values
of u and ∂u

∂~n
on ∂Ω. Ignoring regularity conditions, we will find out that this is not possible in

general. Roughly speaking, only one of these data is sufficient to describeu completely.
(d) In case of a harmonic functionu ∈ C2(Ω)∩C1(Ω), ∆u = 0, Green’s representation formula
reads (n = 3):

u(x) =
1

4π

∫

∂Ω

(
1

‖x− y‖
∂u(y)

∂~n
− u(y) ∂

∂~ny

1

‖x− y‖

)
dS(y). (17.31)
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In particular, the surface potentialsV (0)(x) andV (1)(x) can be differentiated arbitrarily often
for x ∈ Ω. Outside∂Ω, V (0) andV (1) are harmonic. It follows from (17.31) that any harmonic
function is aC∞-function.

Spherical Means and Ball Means

First of all note thatu ∈ C1(Ω) andu harmonic inΩ implies
∫

∂Ω

∂u(y)

∂~n
dS = 0. (17.32)

Indeed, this follows from Green’s first formula insertingv = 1 andu harmonic,∆u = 0.

Proposition 17.18 (Mean Value Property)Suppose thatu is harmonic inUR(x0) and contin-
uous inUR(x0).
(a)Thenu(x0) coincides with its spherical mean over the sphereSR(x0).

u(x0) =
1

ωnRn−1

∫

SR(x0)

u(y) dS(y) (spherical mean). (17.33)

(b) Further,

u(x0) =
n

ωnRn

∫

UR(x0)

u(x) dx (ball mean).

Proof. (a) For simplicity, we consider only the casen = 3 andx0 = 0. Apply Green’s repre-
sentation formula (17.31) to any ballΩ = Uρ(0) with ρ < R. Noting (17.32) from (17.31) it
follows that

u(0) =
1

4π

(
1

ρ

∫

Sρ(0)

∂u(y)

∂~n
dS −

∫

Sρ(0)

u(y)
∂

∂~ny

1

‖y‖ dS

)

= − 1

4π

∫

Sρ(0)

u(y)
∂

∂~ny

1

‖y‖ dS =
1

4π

∫

Sρ(0)

u(y)
1

ρ2
dS

=
1

4πρ2

∫

Sρ(0)

u(y) dS,

Sinceu is continuous on the closed ball of radiusR, the formula remains valid asρ→ R.
(b) Use dx = dx1 · · · dxn = dr dSr where‖x‖ = r. Multiply both sides of (17.33) by
rn−1 dr and integrate with respect tor from 0 toR:

∫ R

0

rn−1u(x0) dr =

∫ R

0

rn−1

(
1

ωnrn−1

∫

SR(x0)

u(y) dS

)
dr

1

n
Rnu(x0) =

1

ωn

∫

UR(x0)

u(x) dx.

The assertion follows. Note thatRnωn/n is exactly then-dimensional volume ofUR(x0). The
proof in casen = 2 is similar.
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Proposition 17.19 (Minimum-Maximum Principle) Letu be harmonic inΩ and continuous
in Ω. Then

max
x∈Ω

u(x) = max
x∈∂Ω

u(x);

i. e. u attains its maximum on the boundary∂Ω. The same is true for the minimum.

Proof. Suppose to the contrary thatM = u(x0) = max
x∈Ω

u(x) is attained at an inner pointx0 ∈ Ω
andM > m = max

x∈∂Ω
u(x) = u(y0), y0 ∈ ∂Ω.

(a) We show thatu(x) = M is constant in any ballUε(x0) ⊂ Ω aroundx0.
Suppose to the contrary thatu(x1) < M for somex1 ∈ Uε(x0). By continuity ofu, u(x) < M

for all x ∈ Uε(x0) ∩ Uη(x1). In particular

M = u(x0) =
n

ωnεn

∫

Bε(x0)

u(x) dx <
n

ωnεn

∫

Bε(x0)

M dy = M ;

this is a contradiction;u is constant inUε(x0).
(b) u(x) = M is constant inΩ. Let x1 ∈ Ω; we will show thatu(x1) = M . SinceΩ is
connected and bounded, there exists a path fromx0 to x1 which can be covered by a chain of
finitely many balls inΩ. In all balls, starting with the ball aroundx0 from (a),u(x) = M is
constant. Hence,u is constant inΩ. Sinceu is continuous,u is constant inΩ. This contradicts
the assumption; hence, the maximum is assumed on the boundary ∂Ω.
Passing fromu to−u, the statement about the minimum follows.

Remarks 17.5 (a) A stronger proposition holds with “local maximum” in place of “maximum”
(b) Another stricter version of the maximum principle is:

Let u ∈ C2(Ω) ∩ C(Ω) and∆u ≥ 0 in Ω. Then eitheru is constant or

u(y) < max
x∈∂Ω

u(x)

for all y ∈ Ω.

Corollary 17.20 (Uniqueness)The inner and the outer Dirichlet problem has at most one so-
lution, respectively.

Proof. Suppose thatu1 andu2 both are solutions of the Dirichlet problem,∆u1 = ∆u2 = f .
Putu = u1 − u2. Then∆u(x) = 0 for all x ∈ Ω andu(y) = 0 on the boundaryy ∈ ∂Ω.
(a) Inner problem. By the maximum principle,u(x) = 0 for all x ∈ Ω; that isu1 = u2.
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Ω

B(0)r

(b) Suppose thatu 6≡ 0. Without loss of generality we may assume that
u(x1) = α > 0 for somex1 ∈ Ω′. By assumption,|u(x) | → 0 as
x → ∞. Hence, there existsr > 0 such that| u(x) | < α/2 for all
x ≥ r. Sinceu is harmonic inBr(0) \Ω, the maximum principle yields

α = u(x1) ≤ max
x∈SR(0)∪∂Ω

u(x) ≤ α/2;

a contradiction.
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Corollary 17.21 (Stability) Suppose thatu1 andu2 are solutions of the inner Dirichlet prob-
lem ∆u1 = ∆u2 = f with boundary valuesϕ1(y) andϕ2(y) on ∂Ω, respectively. Suppose
further that

|ϕ1(y)− ϕ2(y) | ≤ ε ∀ y ∈ ∂Ω.

Then|u1(x)− u2(x) | ≤ ε for all x ∈ Ω.

A similar statement is true for the exterior Dirichlet problem.
Proof. Putu = u1 − u2. Then∆u = 0 and |u(y) | ≤ ε for all y ∈ ∂Ω. By the Maximum
Principle,| u(x) | ≤ ε for all x ∈ Ω.

Lemma 17.22 Suppose thatu is a non-constantharmonic function onΩ and the maximum of
u(x) is attained aty ∈ ∂Ω.
Then∂u

∂~n
(y) > 0.

For the proof see [Tri92, 3.4.2. Theorem, p. 174].

Proposition 17.23 (Uniqueness)(a)The exterior Neumann problem has at most one solution.
(b) A necessary condition for solvability of the inner Neumann problem is

∫

∂Ω

ϕ dS =

∫

Ω

f(x) dx.

Two solutions of the inner Neumann problem differ by a constant.

Proof. (a) Suppose thatu1 andu2 are solutions of the exterior Neumann problem, thenu =

u1 − u2 satisfies∆u = 0 and
∂u

∂~n
(y) = 0. The above lemma shows thatu(x) = c is constant in

Ω. Sincelim|x |→∞ u(x) = 0, the constantc is 0; henceu1 = u2.
(b) Inner problem. The uniqueness follows as in (a). The necessity of the formula follows from
(17.28) withv ≡ 1, ∆u = f , ∂v

∂~n
= 0.

Proposition 17.24 (Converse Mean Value Theorem)Suppose thatu ∈ C(Ω) and that when-
everx0 ∈ Ω such thatUr(x0) ⊂ Ω we have the mean value property

u(x0) =
1

ωnrn−1

∫

Sr(x0)

u(y) dS(y) =
1

ωn

∫

S1(0)

u(x0 + ry) dS(y).

Thenu ∈ C∞(Ω) andu is harmonic inΩ.

Proof. (a) We show thatu ∈ C∞(Ω). The Mean Value Property ensures that the mollification
hε ∗ u equalsu as long asU1/ε(x0) ⊂ Ω; that is, the mollification does not changeu. By
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homework 49.4,u ∈ C∞ sincehε is. We provehε ∗ u = u. Hereg denotes the1-dimensional
bump function, see page 419.

uε(x) = (u ∗ hε)(x) =

∫Rn

u(y)hε(x− y) dy =

∫Rn

u(x− y)hε(y) dy

=

∫

Uε(0)

u(x− y)h(y/ε)ε−n dy =
zi=

yi
ε

∫

U1(0)

u(x− εz)h(z) dz

=

∫ 1

0

∫

S1(0)

u(x− rεy)g(r)rn−1 dS(y) dr

= ωnu(x)

∫ 1

0

g(r)rn−1 dr = u(x)

∫Rn

h(y) dy = u(x).

Second Part.Differentiating the above equation with respect tor yields
∫
Ur(x)

∆u(y) dy = 0

for any ball inΩ, since the left-hand sideu(x) does not depend onr.

0 =
d

dr

∫

S1(0)

u(x+ ry) dS(y) =

∫

S1(0)

y · ∇u(x+ ry) dS(y)

=

∫

Sr(0)

(r−1z)∇u(x+ z)r1−n dS(z)

= r−n
∫

Sr(0)

~n(z) · ∇u(x+ z) dS(z)

= r−n
∫

Sr(0)

∂u

∂~n
(x+ z) dS(z)

= r−n
∫

Sr(x0)

∂u(y)

∂~n
dS(y) = r−n

∫

Ur(x0)

∆u(x) dx.

In the last line we used Green’s2nd formula withv = 1. Thus∆u = 0. Suppose to the contrary
that∆u(x0) 6= 0, say∆u(x0) > 0. By continuity of∆u(x), ∆u(x) > 0 for x ∈ Uε(x0). Hence∫
Uε(x0)

∆u(x) dx > 0 which contradicts the above equation. We conclude thatu is harmonic in
Ur(x0).

Remark 17.6 A regular distributionu ∈ D′(Ω) is calledharmonicif ∆u = 0, that is,

〈∆u , ϕ〉 =

∫

Ω

u(x) ∆ϕ(x) dx = 0, ϕ ∈ D(Ω).

Weyl’s Lemma: Any harmonic regular distribution is a harmonic function,in particular,u ∈
C∞(Ω).

Example 17.3 Solve

∆u = −2, (x, y) ∈ Ω = (0, a)× (−b/2, b/2),

u |∂Ω = 0.
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Ansatz:u = w + v with ∆w = 0. For example, choosew = −x2 + ax. Then∆v = 0 with
boundary conditions

v(0, y) = v(a, y) = 0, v(x,−b/2) = v(x, b/2) = x2 − ax.

Use separation of variables,u(x, y)) = X(x)Y (y) to solve the problem.

17.5 Appendix

17.5.1 Existence of Solutions to the Boundary Value Problems

(a) Green’s Function

Let u ∈ C2(Ω) ∩ C1(Ω). Let us combine Green’s representation formula and Green’s
2nd formula with a harmonic functionv(x) = vy(x), x ∈ Ω, wherey ∈ Ω is thought to be
a parameter.

u(y) =

∫

Ω

En(x− y) ∆u(x) dx+

∫

∂Ω

(
u(x)

∂En
∂~nx

(x− y)− En(x− y)
∂u

∂~n
(x)

)
dS(x)

0 =

∫

Ω

vy(x)∆u(x) dx+

∫

∂Ω

(
u(x)

∂vy
∂~n

(x)− vy(x)
∂u

∂~n
(x)

)
dS(x)

Adding up these two lines and denotingG(x, y) = En(x− y) + vy(x) we get

u(y) =

∫

Ω

G(x, y) ∆u(x) dx+

∫

∂Ω

(
u(x)

∂G(x, y)

∂~nx
−G(x, y)

∂u

∂~n
(x)

)
dS(x).

Suppose now thatG(x, y) vanishes for allx ∈ ∂Ω then the last surface integral is0 and

u(y) =

∫

Ω

G(x, y) ∆u(x) dx+

∫

∂Ω

u(x)
∂G(x, y)

∂~nx
dS(x). (17.34)

In the above formula,u is completely determined by its boundary values and∆u in Ω. This
motivates the following definition.

Definition 17.4 A functionG : Ω ×Ω → R satisfying

(a)G(x, y) = 0 for all x ∈ ∂Ω, y ∈ Ω, x 6= y.
(b) vy(x) = G(x, y)− En(x− y) is harmonic inx ∈ Ω for all y ∈ Ω.

is called aGreen’s functionof Ω. More precisely,G(x, y) is a Green’s function to the inner
Dirichlet problem onΩ.

Remarks 17.7 (a) The functionvy(x) is in particular harmonic inx = y. SinceEn(x− y) has
a pole atx = y, G(x, y) has a pole of the same order atx = y such thatG(x, y)− En(x − y)
has no singularity.
If such a functionG(x, y) exists, for allu ∈ C2(Ω) we have (17.34).
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In particular, if in addition,u is harmonic inΩ,

u(y) =

∫

∂Ω

u(x)
∂G(x, y)

∂~nx
dS(x). (17.35)

This is the so calledPoisson’s formula forΩ. In general, it is difficult to find Green’s function.
For most regionsΩ it is even impossible to giveG(x, y) explicitely. However, ifΩ has kind
of symmetry, one can use the reflection principle to construct G(x, y) explicitely. Nevertheless,
G(x, y) exists for all “well-behaved”Ω (the boundary is aC2-set and Gauß’ divergence theorem
holds forΩ).

(c) The Reflection Principle

This is a method to calculate Green’s function explicitely in case of domainsΩ with the follow-
ing property: Using repeated reflections on spheres and on hyperplanes occurring as boundaries
of Ω and its reflections, the wholeRn can be filled up without overlapping.

Example 17.4 Green’s function on a ballUR(0). For, we use the reflection on the sphereSR(0).
Fory ∈ Rn put

O y y−

R

.

y :=

{
y R2

‖y‖2 , y 6= 0,

∞, y = 0.

Note that this map has the the propertyy · y = R2 and‖y‖2 y = R2y. Points on the sphere
SR(0) are fix under this map,y = y. LetEn : R+ → R denote the corresponding toEn radial
scalar function withE(x) = En(‖x‖), that isEn(r) = −1/((n − 2)ωnr

n−2), n ≥ 2. Then we
put

G(x, y) =




En(‖x− y‖)− En

(
‖y‖
R
‖x− y‖

)
, y 6= 0,

En(‖x‖)−En(R), y = 0.
(17.36)

Forx 6= y,G(x, y) is harmonic inx, since for‖y‖ < R, ‖y‖ > R and thereforex− y 6= 0. The
functionG(x, y) has only one singularity inUR(0) namely atx = y and this is the same as that
of En(x− y). Therefore,

vy(x) = G(x, y)− En(x− y) =




−En

(
‖y‖
R
‖x− y‖

)
, y 6= 0,

En(R), y = 0.
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is harmonic for allx ∈ Ω. Forx ∈ ∂Ω = SR(0) we have fory 6= 0

G(x, y) = En

((
‖x‖2 + ‖y‖2 − 2x · y

)1
2

)
−En

(‖y‖
R

(
‖x‖2 + ‖y‖2 − 2x · y

) 1
2

)

= En

((
R2 + ‖y‖2 − 2x · y

)1
2

)
−En



(
‖y‖2 +

‖y‖2 ‖y‖2
R2

− 2 ‖y‖2 x · y
R2

) 1
2




= En

((
R2 + ‖y‖2 − 2x · y

)1
2

)
−En

((
‖y‖2 +R2 − 2x · y

) 1
2

)
= 0.

Fory = 0 we have

G(x, 0) = En(‖x‖)−En(R) = En(R)− En(R) = 0.

This proves thatG(x, y) is a Green’s function forUR(0). In particular, the above calculation
shows thatr = ‖x− y‖ andr = ‖y‖

R
‖x− y‖ are equal ifx ∈ ∂Ω.

One can show that Green’s function is symmetric, that isG(x, y) = G(y, x). This is a general
property of Green’s function.

To apply formula (17.34) we have to compute the normal derivative
∂

∂~nx
G(x, y). Note first that

for any constantz ∈ Rn andx ∈ SR(0)

∂

∂~nx
f(‖x− z‖) = ~n · ∇f(‖x− z‖) =

x

‖x‖ · f
′(‖x− z‖) x− z

‖x− z‖ .

Note further that for‖x‖ = R we have

r = ‖x− y‖ =
‖y‖
R
‖x− y‖ , (17.37)

(x− y) · x− ‖y‖
2

R2
(x− y) · x = R2 − ‖y‖2 . (17.38)

Hence, fory 6= 0,

∂

∂~nx
G(x, y) = − 1

(n− 2)ωn

(
∂

∂~nx
‖x− y‖−n+2 − ∂

∂~nx

(
‖y‖−n+2

R−n+2
‖x− y‖−n+2

))

=
1

ωn

(
‖x− y‖−n+1 x− y

‖x− y‖ ·
x

‖x‖ −
‖y‖−n+2

R−n+2
‖x− y‖−n+1 x− y

‖x− y‖ ·
x

‖x‖

)

=
1

ωnrnR

(
(x− y) · x− (x− y)‖y‖

2

R2
· x
)

By (17.38), the expression in the brackets isR2 − ‖y‖2. Hence,

∂

∂~nx
G(x, y) =

R2 − ‖y‖2
ωnR

1

‖x− y‖n .

This formula holds true in casey = 0. Inserting this into (17.34) we have for any harmonic
functionu ∈ C2(UR(0)) ∩ C(UR(0)) we have

u(y) =
R2 − ‖y‖2
ωnR

∫

SR(0)

u(x)

‖x− y‖n dS(x). (17.39)

This is the so calledPoisson’s formula for the ballUR(0).
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Proposition 17.25 Letn ≥ 2. Consider the inner Dirichlet problem inΩ = UR(0) andf = 0.
The function

u(y) =





R2−‖y‖2

ωnR

∫
SR(0)

ϕ(x)
‖x−y‖n dS(x), ‖y‖ < R,

ϕ(y), ‖y‖ = R

is continuous on the closed ballUR(0) and harmonic inUR(0).
In casen = 2 the functionu(y), can be written in the following form

u(y) = Re

(
1

2πi

∫

SR(0)

ϕ(z)
z + y

z − y
dz

z

)
, y ∈ UR(0) ⊂ C.

For the proof of the general statement withn ≥ 2, see [Jos02, Theorem 1.1.2] or [Joh82, p.
107]. We show the last statement forn = 2. Sinceyz − yz is purely imaginary,

Re
z + y

z − y = Re
(z + y)(z − y)
(z − y)(z − y) = Re

| z |2 − | y |2 + yz − yz
| z − y |2

=
R2 − | y |2

| z − y |2
.

Using the parametrizationz = Reit, dt =
dz

iz
we obtain

Re

(
1

2π

∫

SR(0)

ϕ(z)
z + y

z − y
dz

iz

)
=

1

2π

∫ 2π

0

R2 − | y |2

| z − y |2
ϕ(z) dt =

R2 − | y |2
2πR

∫

SR(0)

ϕ(x)

|x− y |2
| dx | .

In the last line we have a (real) line integral of the first kind, usingx = (x1, x2) = x1 +ix2 = z,
x ∈ SR(0) and| dx | = R dt on the circle.
Other Examples. (a) n = 3. The half-spaceΩ = {(x1, x2, x3) ∈ R3 | x3 > 0}. We use the
ordinary reflection map with respect to the planex3 = 0 which is given byy = (y1, y2, y3) 7→
y′ = (y1, y2,−y3). Then Green’s function toΩ is

G(x, y) = E3(x, y)− E3(x, y
′) =

1

4π

(
1

‖x− y′‖ −
1

‖x− y‖

)
.

(see homework 57.1)
(b) n = 3. The half ballΩ = {(x1, x2, x3) ∈ R3 | ‖x‖ < R, x3 > 0}. We use the reflections
y → y′ andy → y (reflection with respect to the sphereSR(0)). Then

G(x, y) = E3(x− y)−
R

‖y‖E3(x− y)− E3(x− y′) +
R

‖y‖E3(x− y′)

is Green’s function toΩ.
(c) n = 3, Ω = {(x1, x2, x3) ∈ R3 | x2 > 0, x3 > 0}. We introduce the reflection
y = (y1, y2, y3) 7→ y∗ = (y1,−y2, y3). Then Green’s function toΩ is

G(x, y) = E3(x− y)− E3(x− y′)− E3(x− y∗) + E3(x− (y∗)′).
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Consider the Neumann problem and the ansatz for Green’s function in case of the Dirichlet
problem:

u(y) =

∫

Ω

H(x, y) ∆u(x) dx+

∫

∂Ω

(
u(x)

∂H(x, y)

∂~nx
−H(x, y)

∂u

∂~n
(x)

)
dS(x). (17.40)

We want to choose a Green’s function of the second kindH(x, y) in such a way that only the
last surface integral remains present.
Insertingu = 1 in the above formula, we have

1 =

∫

∂Ω

∂G(x, y)

∂~nx
dS(x).

Imposing,∂G(x,y)
∂~nx

= α = const. , this constant must beα = 1/vol(∂Ω).
Note, that one defines a Green’s function to the Neumann problem replacingG(x, y) = 0 on
∂Ω by the condition ∂

∂~ny
G(x, y) = const.

Green’s function of second kind (Neumann problem) to the ball of radiusR in R3, UR(0).

H(x, y) = − 1

4π

(
1

‖x− y‖ +
R

‖y‖ ‖x− y‖ +
1

R
log

2R2

R2 − x · y + ‖y‖ ‖x− y‖

)

(c) Existence Theorems

The aim of this considerations is to sketch the method of proving existenceof solutions of the
four BVPs.
Definition. Suppose thatΩ ⊂ Rn, n ≥ 3 and letµ(y) be a continuous function on the boundary
∂Ω, that isµ ∈ C(∂Ω). We call

w(x) =

∫

∂Ω

µ(y) En(x− y) dS(y), x ∈ Rn, (17.41)

asingle-layer potentialand

v(x) =

∫

∂Ω

µ(y)
∂En
∂~n

(x− y) dS(y), x ∈ Rn (17.42)

adouble-layer potential

Remarks 17.8 (a) Forx 6∈ ∂Ω the integrals (17.41) and (17.42) exist.
(b) The single layer potentialu(x) is continuous onRn. The double-layer potential jumps at
y0 ∈ ∂Ω by µ(y0) asx approachesy0, see (17.43) below.

Theorem 17.26LetΩ be a connected bounded region inRn of the classC2 andΩ′ = Rn \Ω

also be connected.
Then the interior Dirichlet problem to the Laplace equationhas a unique solution. It can be
represented in form of a double-layer potential. The exterior Neumann problem likewise has a
unique solution which can be represented in form of a single-layer potential.
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Theorem 17.27Under the same assumptions as in the previous theorem, the inner Neumann
problem to the Laplace equation has a solution if and only if

∫
∂Ω
ϕ(y) dS(y) = 0. If this

condition is satisfies, the solution is unique up to a constant.
The exterior Dirichlet problem has a unique solution.

Remark. LetµID denote the continuous functions which produces the solution v(x) of the inte-

rior Dirichlet problem, i. e.v(x) =
∫
∂Ω
µID(y)K(x, y) dS(y), whereK(x, y) =

∂

∂~ny
En(x−y).

Because of the jump relation forv(x) atx0 ∈ ∂Ω:

lim
x→x0,x∈Ω

v(x)− 1

2
µ(x0) = v(x0) = lim

x→x0,x∈Ω′
v(x) +

1

2
µ(x0), (17.43)

µID satisfies the integral equation

ϕ(x) =
1

2
µID(x) +

∫

∂Ω

µID(y)K(x, y) dS(y), x ∈ ∂Ω.

The above equation can be written asϕ = (A+ 1
2
I)µID, whereA is the above integral operator

in L2(∂Ω). One can prove the following facts:A is compact,A+ 1
2
I is injective and surjective,

ϕ continuous impliesµID continuous. For details, see [Tri92, 3.4].

Application to the Poisson Equation

Consider the inner Dirichlet problem∆u = f , andu = ϕ on ∂Ω. We suppose thatf ∈
C(Ω) ∩ C1(Ω). We already know that

w(x) = (En ∗ f)(x) = − 1

(n− 2)ωn

∫Rn

f(y)

‖x− y‖n−2 dy

is a distributive solution of the Poisson equation,∆w = f . By the assumptions onf , w ∈
C2(Ω) and therefore is a classical solution. To solve the problem we try the ansatzu = w + v.
Then ∆u = ∆w + ∆v = f + ∆v. Hence,∆u = f if and only if ∆v = 0. Thus, the
inner Dirichlet problem for the Poisson equation reduces tothe inner Dirichlet problem for the
Laplace equation∆v = 0 with boundary values

v(y) = u(y)− w(y) = ϕ(y)− w(y) =: ϕ̃(y), y ∈ ∂Ω.

Sinceϕ andw are continuous on∂Ω, so isϕ̃.

17.5.2 Extremal Properties of Harmonic Functions and the Dirichlet
Principle

(a) The Dirichlet Principle

Consider the inner Dirichlet problem to the Poisson equation with given dataf ∈ C(Ω) and
ϕ ∈ C(∂Ω).
Put

C1
ϕ(Ω) := {v ∈ C1(Ω) | v = ϕ on ∂Ω}.
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On this space define theDirichlet integralby

E(v) =
1

2

∫

Ω

‖∇v‖2 dx+

∫

Ω

f · v dx, v ∈ C1
ϕ(Ω). (17.44)

This integral is also calledenergy integral. The Dirichlet principle says that among all functions
v with given boundary valuesϕ, the functionu with ∆u = f minimizes the energy integralE.

Proposition 17.28 A functionu ∈ C1
ϕ(Ω) ∩C2(Ω) is a solution of the inner Dirichlet problem

if and only if the energy integralE attains its minimum onC1
ϕ(Ω) at u.

Proof. (a) Suppose first thatu ∈ C1
ϕ(Ω) ∩ C2(Ω) is a solution of the inner Dirichlet problem,

∆u = f . Forv ∈ C1
ϕ(Ω) letw = v − u ∈ C1

ϕ(Ω). Then

E(v) = E(u+ w) =
1

2

∫

Ω

(∇u+∇w) · (∇u+∇w) dx+

∫

Ω

(u+ w)f dx

=
1

2

∫

Ω

‖∇u‖2 +
1

2

∫

Ω

‖∇w‖2 +

∫

Ω

∇u · ∇w dx+

∫

Ω

(u+ w)f dx

Sinceu andv satisfy the same boundary conditions,w |∂Ω= 0. Further,∆u = f . By Green’s
1st formula,

∫

Ω

∇u · ∇w dx = −
∫

Ω

(∆u)w dx+

∫

∂Ω

∂u

∂~n
w dS = −

∫

Ω

f w dx.

Inserting this into the above equation, we have

E(v) =
1

2

∫

Ω

‖∇u‖2 +
1

2

∫

Ω

‖∇w‖2 −
∫

Ω

fw dx+

∫

Ω

(u+ w)f dx

= E(u) +
1

2

∫

Ω

‖∇w‖2 dx ≥ E(u).

This shows thatE(u) is minimal.
(b) Conversely, letu ∈ C1

ϕ(Ω)∩C2(Ω) minimize the energy integral. In particular, for any test
functionψ ∈ D(Ω), ψ has zero boundary values, the function

g(t) = E(u+ tψ) = E(u) + t

∫

Ω

(∇u · ∇ψ + fψ) dx+
1

2
t2
∫

Ω

‖∇ψ‖2 dx

has a local minimum att = 0. Hence,g′(0) = 0 which is, again by Green’s1st formula and
ψ |∂Ω= 0, equivalent to

0 =

∫

Ω

(∇u · ∇ψ + fψ) dx =

∫

Ω

(−∆u + f) ψ dx.

By the fundamental Lemma of calculus of variations,∆u = f almost everywhere onΩ. Since
both∆u andf are continuous, this equation holds pointwise for allx ∈ Ω.
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(b) Hilbert Space Methods

We want to give another reformulation of the Dirichlet problem. Consider the problem

∆u = −f, u |∂Ω= 0.

OnC1(Ω) define a bilinear map

u·vE =

∫

Ω

∇u · ∇v dx.

C1(Ω) is not yet an inner product space since for any non-vanishingconstant functionu, u·uE =

0. Denote byC1
0(Ω) the subspace of functions inC1(Ω) vanishing on the boundary∂Ω. Now,

u·vE is an inner product onC1
0(Ω). The positive definiteness is a consequence of the Poincaré

inequality below. Its corresponding norm is‖u‖2E =
∫
Ω
‖∇u‖2 dx. Let u be a solution of the

above Dirichlet problem. Then for anyv ∈ C1
0(Ω), by Green’s1st formula

v·uE =

∫

Ω

∇v · ∇u dx = −
∫

Ω

v∆u dx =

∫

Ω

v f dx = v·fL2.

This suggests thatu can be found by representing the known linear functional inv

F (v) =

∫

Ω

v f dx

as an inner productv·uE. To make use of Riesz’s representations theorem, Theorem 13.8, we
have to completeC1

0(Ω) into a Hilbert spaceW with respect to the energy norm‖·‖E and to
prove that the above linear functionalF is bounded with respect to the energy norm. This is
a consequence of the next lemma. We make the same assumtions onΩ as in the beginning of
Section 17.4.

Lemma 17.29 (Poincaŕe inequality) LetΩ ⊂ Rn. Then there existsC > 0 such that for all
u ∈ C1

0(Ω)

‖u‖L2(Ω) ≤ C ‖u‖E .

Proof. LetΩ be contained in the cubeΓ = {x ∈ Rn | |xi | ≤ a, i = 1, . . . , n}. We extendu
by zero outsideΩ. For anyx = (x1, . . . , xn), by the Fundamental Theorem of Calculus

u(x)2 =

(∫ x1

−a
ux1(y1, x2, . . . , xn) dy1

)2

=

(∫ x1

−a
1 · ux1(y1, x2, . . . , xn) dy1

)2

≤
CSI

∫ x1

−a
dy1

∫ x1

−a
u2
x1

dy1 = (x1 + a)

∫ x1

−a
u2
x1

dy1 ≤ 2a

∫ a

−a
u2
x1

dy1.

Since the last integral does not depend onx1, integration with respect tox1 gives
∫ a

−a
u(x)2 dx1 ≤ 4a2

∫ a

−a
u2
x1

dy1.

Integrating overx2, . . . , xn from−a to a we find
∫

Γ

u2 dx ≤ 4a2

∫

Γ

u2
x1

dy.
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The same inequality holds forxi, i = 2, . . . , n in place ofx1 such that

‖u‖2L2 =

∫

Γ

u2 dx ≤ 4a2

n

∫

Γ

(∇u)2 dx = C2 ‖u‖2E ,

whereC = 2a/
√
n.

The Poincaré inequality is sometimes called Poincaré–Friedrich inequality. It remains true for
functionsu in the completionW . Let us discuss the elements ofW in more detail. By definition,
f ∈ W if there is a Cauchy sequence(fn) in C1

0(Ω) such that(fn) “converges tof ” in the
energy norm. By the Poincaré inequality,(fn) is also anL2-Cauchy sequence. SinceL2(Ω)

is complete,(fn) has anL2-limit f . This showsW ⊆ L2(Ω). For simplicity, letΩ ⊂ R1.
By definition of the energy norm,

∫
Ω
| (fn − fm)′ |2 dx → 0, asm,n → ∞; that is(f ′

n) is an
L2-Cauchy sequence, too. Hence,(f ′

n) has also someL2-limit, sayg ∈ L2(Ω). So far,

‖fn − f‖L2 −→ 0, ‖f ′
n − g‖L2 −→ 0. (17.45)

We will show that the above limits implyf ′ = g in D′(Ω). Indeed, by (17.45) and the Cauchy–
Schwarz inequality, for allϕ ∈ D(Ω),

∫

Ω

(fn − f)ϕ′ dx ≤
(∫

Ω

| fn − f |2 dx

) 1
2
(∫

Ω

|ϕ′ |2 dx

) 1
2

−→ 0,

∫

Ω

(f ′
n − g)ϕ dx ≤

(∫

Ω

| f ′
n − g |

2
dx

) 1
2
(∫

Ω

|ϕ |2 dx

) 1
2

−→ 0.

Hence,
∫

Ω

f ′ ϕ dx = −
∫

Ω

f ϕ′ dx = − lim
n→∞

∫

Ω

fn ϕ
′ dx = lim

n→∞

∫

Ω

f ′
n ϕ dx =

∫

Ω

g ϕ dx.

This showsf ′ = g in D′(Ω). One says that the elements ofW provideweak derivatives, that
is, its distributive derivative is anL2-function (and hence a regular distribution).
Also, the inner product···E is positive definite since theL2-inner product is. It turns out thatW
is a separable Hilbert space.W is the so calledSobolev spaceW1,2

0 (Ω) sometimes also denoted
by H1

0(Ω). The upper indices1 and2 in W1,2
0 (Ω) refer to the highest order of partial derivatives

(|α | = 1) and theLp-space (p = 2) in the definition ofW , respectively. The lower index0
refers to the so calledgeneralized boundary values0. For further readings on Sobolev spaces,
see [Fol95, Chapter 6].

Corollary 17.30 F (v) = v·fL2 =
∫
Ω
f v dx defines a bounded linear functional onW .

Proof. By the Cauchy–Schwarz and Poincaré inequalities,

|F (v) | ≤
∫

Ω

| f v | dx ≤ ‖f‖L2 ‖v‖L2 ≤ C ‖f‖L2 ‖v‖E .

Hence,F is bounded with‖F‖ ≤ C ‖f‖L2 .
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Corollary 17.31 Letf ∈ C(Ω). Then there exists a uniqueu ∈W such that

v·uE = v·fL2 , ∀ v ∈W.

Thisu solves

∆u = −f, in D′(Ω).

The first statement is a consequence of Riesz’s representation theorem; note thatF is a bounded
linear functional on the Hilbert spaceW . The last statement follows fromD(Ω) ⊂ C1

0(Ω) and
u·ϕE = −〈∆u , ϕ〉 = f·ϕL2. This is the so calledmodified Dirichlet problem. It remains open
the task to identify the solutionu ∈W with anordinary functionu ∈ C2(Ω).

17.5.3 Numerical Methods

(a) Difference Methods

Since most ODE and PDE are not solvable in a closed form there are a lot of methods to
find approximative solutions to a given equation or a given problem. A general principle is
discretization. One replaces the derivativeu′(x) by one of itsdifference quotients

∂+u(x) =
u(x+ h)− u(x)

h
, ∂−u(x) =

u(x)− u(x− h)
h

,

whereh is called the step size. One can also use a symmetric difference u(x+h)−u(x−h)
2h

. The
Five-Point formula for the Laplacian inR2 is then given by

∆hu(x, y) := (∂−x ∂
+
x + ∂−y ∂

+
y )u(x, y) =

=
u(x− h, y) + u(x+ h, y) + u(x, y − h) + u(x, y + h)− 4u(x, y)

h2

Besides the equation, the domainΩ as well as its boundary∂Ω undergo a discretization: If
Ω = (0, 1)× (0, 1) then

Ωh = {(nh,mh) ∈ Ω | n,m ∈ N}, ∂Ωh = {(nh,mh) ∈ ∂Ω | n,m ∈ Z}.
The discretization of the inner Dirichlet problem then reads

∆hu = f, x ∈ Ωh,

u |∂Ωh
= ϕ.

Also, Neumann problems have discretizations, [Hac92, Chapter 4].

(b) The Ritz–Galerkin Method

Suppose we have a boundary value problem in its variational formulation:

Findu ∈ V , so thatu·vE = F (v) for all v ∈ V ,
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where we are thinking of the Sobolev spaceV = W from the previous paragraph. Of course,
F is assumed to be bounded.
Difference methods arise through discretising the differential operator. Now we wish to leave
the differential operator which is hidden in···E unchanged. The Ritz–Galerkin method consists
in replacing the infinite-dimensional spaceV by a finite-dimensional spaceVN ,

VN ⊂ V, dim VN = N <∞.

VN equipped with the norm‖·‖E is still a Banach space. SinceVN ⊆ V , both the inner product
···E andF are defined foru, v ∈ VN . Thus, we may pose the problem

FinduN ∈ VN , so thatuN·vE = F (v) for all v ∈ VN ,

The solution to the above problem, if it exists, is calledRitz–Galerkin solution(belonging to
VN ).
An introductory example is to be found in [Hac92, 8.1.11, p. 164], see also [Bra01, Chapter 2].
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Mathematik. Teubner, Stuttgart, 1998.
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