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Induced modules are a fundamental tool in representation theory of groups and algebras. If
B is a subring of a ring A and V is a left B-module, then the left A-module A⊗B V with action
defined by a0(a⊗ v) := a0a⊗ v is called induced module of V.

Let B ⊂ A be associative algebras over C with involution ∗ and let V be a Hermitian B-
module. That is, we have 〈bx, y〉 = 〈x, b∗y〉 for all x, y ∈ V and b ∈ B. In the first part of the
thesis we investigate the problem of defining a corresponding induced Hermitian module. In
order to do so, we have to introduce an appropriate inner product on the space A⊗B V or on
some quotient space.

This is done by means of conditional expectations. Let A be a unital ∗-algebra and let B
be a unital ∗-subalgebra of A. A linear mapping p : A → B is called a conditional expectation
from A onto B if the following conditions are satisfied:

(i) p(a∗) = p(a)∗, p(b1ab2) = b1p(a)b2 for all a ∈ A, b1, b2 ∈ B, p(1A) = 1B.
(ii) p(

∑
A2) ⊆ B ∩

∑
A2,

where
∑
A2 denotes the cone of all finite sums of elements a∗a, a ∈ A.

If there exists a conditional expectation p from a ∗-algebra A onto a ∗-subalgebra B and if a
unitary space (V, 〈·, ·〉) is a hermitian B-module, then there exists a sesquilinear form 〈·, ·〉0 on
A⊗B V defined by

〈a1 ⊗ v1, a2 ⊗ v2〉0 := 〈p(a∗2a1)v1, v2〉.(1)

The module V is called inducible if the form (1) is positive semidefinite. In this case the
quotient space of A ⊗B V by the null space of the form 〈·, ·〉0 is a Hermitian A-module D. It
extends uniquely to a ∗-representation of A on the Hilbert space completion of D.

A standard method for the construction of conditional expectations of C∗-algebra is based
on groups of ∗-automorphisms. We develop an analogue of this method for general ∗-algebras.
Let G be a compact group acting by ∗-automorphisms αg, g ∈ G, on a ∗-algebra A and let µ
be the normalized Haar measure of G. We say that the action αg is locally finite-dimensional
if for every a ∈ A the linear hull of the set {αg(a), g ∈ G} is finite-dimensional. Then the map
a 7→

∫
αg(a)dµ, a ∈ A, is a well-defined conditional expectation from A onto the ∗-subalgebra

B of G-stable elements.

An important class of algebras where conditional expectations arise in a natural manner are
group graded ∗-algebras. Let G be a discrete group. We say that a ∗-algebra A is a G-graded
if A is a direct sum of subspaces Ag, g ∈ G, such that

Ag · Ah ⊆ Ag·h and (Ag)∗ ⊆ Ag−1 for all g, h ∈ G.
For any subgroup H ⊆ G the canonical projection pH from A onto AH = ⊕g∈HAg is a con-
ditional expectation. In this context we develop a theory of induced representations. Among
others we prove various versions of the Imprimitivity Theorem.

In this thesis we are dealing with unbounded ∗-representations of ∗-algebras on Hilbert
space. There is a striking difference to the theory of bounded representations: the problem of
classifying all irreducible unbounded ∗-representations of a general ∗-algebra is not well-posed.
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The second part of the thesis deals with ”well-behaved” ∗-representations. The context in
which we define well-behaved representations is the following. We take a G-graded unital ∗-
algebra A = ⊕g∈GAg. Further we assume that the ∗-subalgebra B := Ae is commutative. We

denote by B̂+ the space of all characters on B which are nonnegative on the cone
∑
A2 ∩ B.

We will also assume that all characters χ ∈ B̂+ satisfy the following condition:

χ(c∗d)χ(d∗c) = χ(c∗c)χ(d∗d) for all χ ∈ B̂+, g ∈ G, and c, d ∈ Ag.

Then we define a partial action of the group G on the set B̂+. Let χ ∈ B̂+, g ∈ G. We say that
χg is defined if there exists an element ag ∈ Ag such that χ(a∗gag) > 0. In this case we put

χg(b) :=
χ(a∗gbag)

χ(a∗gag)
, b ∈ B.

Using this partial action we define a notion of well-behaved representations of A. An essen-
tial part of the thesis is devoted to studying of fundamental properties of these well-behaved
representations. Some of the properties are collected in the following

Theorem. Let π be a ∗-representation of A, let H be a subgroup of G and let ρ be a ∗-
representation of AH . Then the following statements hold.

(i) If π is bounded, then π is well-behaved.
(ii) If π is well-behaved, then π is self-adjoint and any self-adjoint sub-representation π0 ⊆ π

is well-behaved. In particular, every well-behaved sub-representation of π has a well-
behaved complement.

(iii) If π is a well-behaved representation with metrizable graph topology, then π can be de-
composed into a direct orthogonal sum of cyclic well-behaved representations.

(iv) If ρ is a well-behaved representation with metrizable graph topology, then ρ is inducible
via pH if and only ρ is

∑
A2 ∩ AH-positive.

(v) If ρ is a well-behaved inducible representation with metrizable graph topology, then the
induced representation IndAH↑A(ρ) is well-behaved.

In this context we develop an analogue of the Mackey normal subgroup analysis. First we
associate irreducible well-behaved representations to orbits under the partial action of G on

B̂+. A central result of our Mackey analysis is the following

Theorem. Let χ ∈ B̂+ and let H ⊆ G be its stabilizing subgroup. Then every irreducible
well-behaved representation π associated to Orbχ is induced from a bounded irreducible ∗-
representation ρ of the algebra AH satisfying the following condition:

ResBρ corresponds to a multiple of the character χ.(2)

Moreover, the representation ρ is uniquely by π and χ up to unitary equivalence.

It is shown that large classes of important examples fit into the latter context. Among them
are Weyl algebras, enveloping algebras of su(2) and su(1, 1), quantized enveloping algebras
Uq(su(2)) and Uq(su(1, 1)), quotients of the enveloping algebra of the Virasoro algebra, ∗-
algebras associated with dynamical systems, quantum disc algebras, Podles’ quantum spheres,
quantum algebras, and others.


