Unbounded Induced *-Representations.

Summary of Dissertation, Universität Leipzig

BY YURIY SAVCHUK.

Induced modules are a fundamental tool in representation theory of groups and algebras. If \mathcal{B} is a subring of a ring \mathcal{A} and V is a left \mathcal{B} -module, then the left A-module $\mathcal{A} \otimes_{\mathcal{B}} V$ with action defined by $a_0(a \otimes v) := a_0 a \otimes v$ is called *induced module* of V.

Let $\mathcal{B} \subset \mathcal{A}$ be associative algebras over \mathbb{C} with involution * and let V be a Hermitian \mathcal{B} module. That is, we have $\langle bx, y \rangle = \langle x, b^*y \rangle$ for all $x, y \in V$ and $b \in \mathcal{B}$. In the first part of the
thesis we investigate the problem of defining a corresponding induced *Hermitian* module. In
order to do so, we have to introduce an appropriate inner product on the space $\mathcal{A} \otimes_{\mathcal{B}} V$ or on
some quotient space.

This is done by means of conditional expectations. Let \mathcal{A} be a unital *-algebra and let \mathcal{B} be a unital *-subalgebra of \mathcal{A} . A linear mapping $p: \mathcal{A} \to \mathcal{B}$ is called a *conditional expectation* from \mathcal{A} onto \mathcal{B} if the following conditions are satisfied:

- (i) $p(a^*) = p(a)^*$, $p(b_1 a b_2) = b_1 p(a) b_2$ for all $a \in \mathcal{A}$, $b_1, b_2 \in \mathcal{B}$, $p(\mathbf{1}_{\mathcal{A}}) = \mathbf{1}_{\mathcal{B}}$.
- (ii) $p(\sum A^2) \subseteq B \cap \sum A^2$,

where $\sum A^2$ denotes the cone of all finite sums of elements a^*a , $a \in A$.

If there exists a conditional expectation p from a *-algebra \mathcal{A} onto a *-subalgebra \mathcal{B} and if a unitary space $(V, \langle \cdot, \cdot \rangle)$ is a hermitian \mathcal{B} -module, then there exists a sesquilinear form $\langle \cdot, \cdot \rangle_0$ on $\mathcal{A} \otimes_{\mathcal{B}} V$ defined by

$$(1) \qquad \langle a_1 \otimes v_1, a_2 \otimes v_2 \rangle_0 := \langle p(a_2^* a_1) v_1, v_2 \rangle.$$

The module V is called *inducible* if the form (1) is positive semidefinite. In this case the quotient space of $\mathcal{A} \otimes_{\mathcal{B}} V$ by the null space of the form $\langle \cdot, \cdot \rangle_0$ is a Hermitian \mathcal{A} -module \mathcal{D} . It extends uniquely to a *-representation of \mathcal{A} on the Hilbert space completion of \mathcal{D} .

A standard method for the construction of conditional expectations of C^* -algebra is based on groups of *-automorphisms. We develop an analogue of this method for general *-algebras. Let G be a compact group acting by *-automorphisms α_g , $g \in G$, on a *-algebra \mathcal{A} and let μ be the normalized Haar measure of G. We say that the action α_g is locally finite-dimensional if for every $a \in \mathcal{A}$ the linear hull of the set $\{\alpha_g(a), g \in G\}$ is finite-dimensional. Then the map $a \mapsto \int \alpha_g(a) d\mu$, $a \in \mathcal{A}$, is a well-defined conditional expectation from \mathcal{A} onto the *-subalgebra \mathcal{B} of G-stable elements.

An important class of algebras where conditional expectations arise in a natural manner are group graded *-algebras. Let G be a discrete group. We say that a *-algebra \mathcal{A} is a G-graded if \mathcal{A} is a direct sum of subspaces \mathcal{A}_g , $g \in G$, such that

$$\mathcal{A}_g \cdot \mathcal{A}_h \subseteq \mathcal{A}_{g \cdot h}$$
 and $(\mathcal{A}_g)^* \subseteq \mathcal{A}_{g^{-1}}$ for all $g, h \in G$.

For any subgroup $H \subseteq G$ the canonical projection p_H from \mathcal{A} onto $\mathcal{A}_H = \bigoplus_{g \in H} \mathcal{A}_g$ is a conditional expectation. In this context we develop a theory of induced representations. Among others we prove various versions of the Imprimitivity Theorem.

In this thesis we are dealing with unbounded *-representations of *-algebras on Hilbert space. There is a striking difference to the theory of bounded representations: the problem of classifying all irreducible unbounded *-representations of a general *-algebra is not well-posed.

The second part of the thesis deals with "well-behaved" *-representations. The context in which we define well-behaved representations is the following. We take a G-graded unital *-algebra $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$. Further we assume that the *-subalgebra $\mathcal{B} := \mathcal{A}_e$ is commutative. We denote by $\widehat{\mathcal{B}}^+$ the space of all characters on \mathcal{B} which are nonnegative on the cone $\sum \mathcal{A}^2 \cap \mathcal{B}$. We will also assume that all characters $\chi \in \widehat{\mathcal{B}}^+$ satisfy the following condition:

$$\chi(c^*d)\chi(d^*c) = \chi(c^*c)\chi(d^*d)$$
 for all $\chi \in \widehat{\mathcal{B}}^+$, $g \in G$, and $c, d \in \mathcal{A}_g$.

Then we define a partial action of the group G on the set $\widehat{\mathcal{B}}^+$. Let $\chi \in \widehat{\mathcal{B}}^+$, $g \in G$. We say that χ^g is defined if there exists an element $a_g \in \mathcal{A}_g$ such that $\chi(a_g^*a_g) > 0$. In this case we put

$$\chi^g(b):=\frac{\chi(a_g^*ba_g)}{\chi(a_q^*a_g)},\ b\in\mathcal{B}.$$

Using this partial action we define a notion of well-behaved representations of \mathcal{A} . An essential part of the thesis is devoted to studying of fundamental properties of these well-behaved representations. Some of the properties are collected in the following

Theorem. Let π be a *-representation of \mathcal{A} , let H be a subgroup of G and let ρ be a *-representation of \mathcal{A}_H . Then the following statements hold.

- (i) If π is bounded, then π is well-behaved.
- (ii) If π is well-behaved, then π is self-adjoint and any self-adjoint sub-representation $\pi_0 \subseteq \pi$ is well-behaved. In particular, every well-behaved sub-representation of π has a well-behaved complement.
- (iii) If π is a well-behaved representation with metrizable graph topology, then π can be decomposed into a direct orthogonal sum of cyclic well-behaved representations.
- (iv) If ρ is a well-behaved representation with metrizable graph topology, then ρ is inducible via p_H if and only ρ is $\sum A^2 \cap A_H$ -positive.
- (v) If ρ is a well-behaved inducible representation with metrizable graph topology, then the induced representation $\operatorname{Ind}_{\mathcal{A}_H\uparrow\mathcal{A}}(\rho)$ is well-behaved.

In this context we develop an analogue of the Mackey normal subgroup analysis. First we associate irreducible well-behaved representations to orbits under the partial action of G on $\widehat{\mathcal{B}}^+$. A central result of our Mackey analysis is the following

Theorem. Let $\chi \in \widehat{\mathcal{B}}^+$ and let $H \subseteq G$ be its stabilizing subgroup. Then every irreducible well-behaved representation π associated to $\operatorname{Orb}\chi$ is induced from a bounded irreducible *-representation ρ of the algebra \mathcal{A}_H satisfying the following condition:

(2) Res_B ρ corresponds to a multiple of the character χ .

Moreover, the representation ρ is uniquely by π and χ up to unitary equivalence.

It is shown that large classes of important examples fit into the latter context. Among them are Weyl algebras, enveloping algebras of su(2) and su(1,1), quantized enveloping algebras $U_q(su(2))$ and $U_q(su(1,1))$, quotients of the enveloping algebra of the Virasoro algebra, *-algebras associated with dynamical systems, quantum disc algebras, Podles' quantum spheres, quantum algebras, and others.