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1 Introduction

In critical point theory several topological index theories are introduced for
functionals which are invariant under the action of a compact Lie group G.
The index of a topological space with a G–action is a non–negative integer.
The index satisfies the axioms of subadditivity, monotony and continuity.
It is used to derive lower bounds for the number of critical orbits of a G–
invariant functional on this space.

We are interested in the index introduced by Fadell–Rabinowitz [4] using
the equivariant (Borel-) cohomology. Via a classifying map the cohomology
ringH∗(BG) of a classifying space is a subring of the equivariant cohomology
H∗G(X) of the G–space X. For a characteristic class η ∈ H∗(BG) the Fadell–
Rabinowitz index indexηX of X is the smallest non–negative integer k with
ηk = 0 in H∗G(X). Hence the classes ηj , j = 0, . . . , indexηX − 1 define
a sequence of subordinate cohomology classes. Fadell–Rabinowitz use this
index to study the bifurcation of time periodic solutions from an equilibrium
solution for Hamiltonian systems of ordinary differential equations.

Ekeland–Hofer [3] use this index for the group S1 and for rational coef-
ficients to derive relations between symplectic invariants of periodic orbits
of convex Hamiltonian energy surfaces in IR2n. In particular they can show
that there are at least two geometrically distinct periodic orbits. If there are
only finitely many geometrically distinct periodic orbits then there are two
geometrically distinct ones for which certain symplectic invariants coincide.
This phenomenon can be interpreted as a resonance relation.

∗1991 Mathematics subject classification: 53 C 22 ; 55 N 91 ; 58 E 10
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In this paper we are concerned with the existence of closed geodesics on
compact Riemannian manifolds. They can be characterized as the critical
points of positive energy of the energy functional E on the free loop space
Λ = ΛM of M . Λ carries a canonical S1– resp. IO(2)–action leaving E
invariant. For the theory of closed geodesics we refer to Klingenberg’s book
[6] and to Bangert’s survey article [2].

Let ind(c) be the morse–theoretic index of the closed geodesic c. If c is
a closed geodesic then the iterates cm , m ≥ 1 are closed geodesics, too. We
say c is prime if it is not an iterate of a shorter closed geodesic. Two closed
geodesics c1, c2 : S1 → M are geometrically equivalent if c1(S1) = c2(S1).
If c is prime, then the set IO(2) · cm,m ≥ 1 is the set of geometrically
equivalent closed geodesics. We associate to c the average index αc :=
limm→∞(indcm/m) and the mean average index αc := αc/L(c), where L(c)
is the length of c. If ± exp(πiλ), λ ∈ [0, 1] is an eigenvalue of the linearized
Poincaré map, then the average index depends linearly on λ.

In the case of a bumpy Riemannian metric (i.e. all closed geodesics
are non–degenerate) with only finitely many geometrically distinct prime
closed geodesics c1, . . . , ck the author shows in [9] the following: The sum∑k
i=1 γiα

−1
i is a topological invariant of the manifold. Here γi ∈ {±1/2,±1}

is another invariant of ck . It controls the orientability of the negative normal
bundle of the orbits S1 · cmi ,m ≥ 1 and the parity of the sequence ind(cm).
We will derive here a lower bound for the sum

∑
α−1
c for arbitrary metrics.

The Fadell–Rabinowitz index of the sublevel sets Λa := {γ ∈ Λ |E(γ) ≤
a2/2} is infinite since the fixed point set Λ0 is contained in Λa. Therefore
we modify the Fadell–Rabinowitz index. We use that the relative cohomo-
logy H∗S1(Λ,Λ0) with the rationals as coefficient field is also a module over
H∗(BS1) = IQ[η] where dim η = 2.

For simplicity we restrict ourselves in this introduction to the following
case: Let M = Md,m be the compact simply–connected rank one symmetric
space (CROSS) whose cohomology ring is generated by a d–dimensional
class x with the relation xm+1 = 0. Hence Md,1 = Sd is the d–dimensional
sphere, M2,m = ICPm (resp. M4,m = IHPm) is the m–dimensional complex
(resp. quaternionic) projective space and M8,2 is the Cayley plane.

Hingston remarks in [5] that H∗S1(Λ,Λ0) is not a torsion module for an
odd–dimensional sphere. Here arguments carry over to the manifolds Md,m,
i.e. there is a class z ∈ H∗S1(Λ,Λ0) with ηi · z 6= 0 for all i. For a > 0 we
define the number dz(a) as the smallest integer k such that ηk · z restricted
to H∗S1(Λa,Λ0) is trivial. The function dz(a) grows almost linearly, hence
we can introduce the global indices

σz := lim inf
a→∞

dz(a)
a

, σz := lim sup
a→∞

dz(a)
a

of z and obtain 0 < σz ≤ σz <∞ , see remarks 4.3 and 5.4.
Analogous to results in [3] we can show in theorem 6.2 and theorem 6.4:
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Theorem 1.1 Let g be any Riemannian metric on Md,m and let [σz, σz] be
the global index interval of the class z which we introduced above.

a) If t ∈ [σz, σz] then there is a sequence ci of prime closed geodesics
whose mean average indices αi converge to 2t.

b) For every ε > 0 we have the following estimate:

∑
c

1
αc
≥ 1

2
,

where we sum over all prime geometrically distinct closed geodesics c whose
mean average index αc satisfies: αc ∈ (2σz − ε , 2σz + ε).

In the proof – in particular in the proof of theorem 5.9 – we approximate
the given metric by bumpy metrics. In contrast to [3] we cannot use a finite–
dimensional subspace of Λ since the finite–dimensional approximation of Λa

by spaces of broken geodesics which already Morse used carries only a ZZk–
but not a S1–action. Theorem 5.9 deserves independent interest since no
assumption on the critical set is needed.

Corollary 1.2 If there are only finitely many geometrically distinct closed
geodesics for a metric on Md,m, then σz = σz = σ and

∑
α−1
c ≥ 1/2, where

we sum over all prime geometrically distinct closed geodesics with αc = 2σ.

For metrics with positive sectional curvature one can estimate the av-
erage index by standard comparison arguments and by Klingenberg’s in-
jectivity radius estimate. In the following corollary we obtain a sufficient
condition for the existence of at least two distinct closed geodesics whose
mean average indices are arbitrarily close in the general case resp. coincide
if there are only finitely many geometrically distinct closed geodesics:

Corollary 1.3 If on M = Md,m with even dimension dimM = dm we have
a metric with sectional curvature K satisfying k2/(dm − 1)2 < K ≤ 1 for
k ∈ {1, 2, . . . , dm− 2} then the following holds:

For every ε > 0 there are k + 1 geometrically distinct closed geodesics
c1, . . . , ck+1 with mean average indices α1, . . . , αk+1 satisfying |αi − αj | < ε
for every pair i, j.

In particular if there are only finitely many closed geodesics on M , then
there are k+ 1 geometrically distinct closed geodesics c1, . . . , ck+1 with α1 =
. . . = αk+1 = 2σ.

The last statement of the corollary can be interpreted as a resonace
relation between the k+ 1 closed geodesics. In [1, 3.4] the existence of k+ 1
geometrically distinct closed geodesics on a homology ZZ2–sphere under the
above pinching condition together with bounds for their lengths is shown.
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Using local pertubation arguments due to Klingenberg–Takens (cf. [8]
and [10]) one can show that for a C2–generic metric two geometrically dis-
tinct closed geodesics have distinct mean average indices. Hence a C2–
generic metric on Md,m with sectional curvature (dm − 1)−2 < K ≤ 1 has
infinitely many geometrically distinct closed geodesics. In [10] the author
shows that a C2–generic Riemannian metric on a compact simply–connected
manifold has infinitely many geometrically distinct closed geodesics. In the
proof the relation between the average indices of the closed geodesics of a
bumpy metric with only finitely many geometrically distinct closed geodesics
derived in [9] is used.

As in [3] it is an open question, whether there are metrics with σz 6= σz. If
there is a metric on Md,m with σz 6= σz, then there is an open neighborhood
of this metric with infinitely many geometrically distinct closed geodesics.

The theorem also holds for Finsler metrics. This is interesting since there
are examples of non–symmetric Finsler metrics with only finitely many geo-
metrically distinct closed geodesics due to Katok, cf. [12] and example 6.7.
In these examples there are geometrically distinct closed geodesics satisfying
the resonance relation.

Acknowledgment: I am grateful to the referee for his comments and
suggestions. æ

2 A relative version of the Fadell–Rabinowitz in-
dex

We collect some facts about classifying spaces and equivariant (Borel) coho-
mology. Let G be a compact Lie group. A topological space X is a G–space,
if X is Hausdorff and paracompact and if there is a continuous G–action on
X from the left. Then the isotropy subgroup I(x) := {g ∈ G | g · x = x} of
every x ∈ X is compact, the orbit G · x of x in X is closed and the quotient
space X/G is Hausdorff.

An universal G–bundle is a (locally trivial) principal G–bundle pG :
EG → BG whose total space EG is contractible. Here G acts on the right
on EG. The base space BG = EG/G is a classifying space for G. These
bundles always exist, BG is unique in the category of CW complexes up to
homotopy equivalence. If p : X → B is a (locally trivial) principal G–bundle
with paracompact base space B then there is a map f : B → BG, called
the classifying map, such that the induced bundle f∗pG is equivalent to the
bundle p. f is unique up to homotopy. The quotient space XG = EG×GX
is the G–homotopy quotient. Here G acts by (g, (e, x)) ∈ G × EG × X 7→
(eg−1, gx) ∈ EG×X.

We denote by H∗ the Alexander–Čech cohomology. For a locally con-
tractible space the Alexander–Čech cohomology and the singular cohomol-
ogy are isomorphic, cf. [11, ch.6.9]. The equivariant cohomology H∗G(X) is
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defined as
H∗G(X) := H∗(XG) .

H∗G satisfies the exactness, homotopy and excisison axioms for cohomology,
but not the dimension axiom. If a one point space {p} is considered as
G–space with the trivial G–action we have

H∗G({p}) ∼= H∗(BG) .

The homotopy quotient is the base of the principal G–bundle EG×X →
XG. Via a classifying map f : XG → BG of this bundle the equivariant
cohomology has the structure of an H∗(BG)–module. H∗G is a functor from
the category of G–spaces to H∗(BG)–modules.

Now we fix a cohomology class η ∈ H∗(BG) where we take any coefficient
field, i.e. η is a characteristic class. Then the Fadell–Rabinowitz index
indexηX of a G–space X is defined as

indexηX := inf{k ∈ IN0 | f∗(ηk) = 0} ,

cf. [4]. Here we allow indexηX =∞, i.e. indexηX ∈ IN0 ∪ {∞} .
H∗G(X) and H∗(BG) are rings with the cup product as multiplicative

structure and f∗ is a ring homomorphism. We set x0 = 1, so if X 6= ∅ then
f∗(1) = 1 i.e. indexηX ≥ 1. Let indexη∅ = 0. Then we list the following
properties, which are proved in [4].

Proposition 2.1 The Fadell–Rabinowitz index indexηX ∈ IN0 ∪ {∞} of a
G–space X satisfies the following properties:

a) indexηX = 0 iff X = ∅.

b) (normalization) indexηG = 1.

c) (monotonicity) If g : X → Y is a G–map, then indexηX ≤ indexηY .

d) (continuity) If A is an invariant subset of the G–space X then there
is a closed invariant neighborhood V of A such that indexηV = indexηA.

e)(subadditivity) Let X be a G–space and A,B be closed invariant sub-
sets of X with X = A ∪B. Then

indexη(A ∪B) ≤ indexηA+ indexηB .

f) (dimension) Let F = IQ be the field of rational numbers. If all isotropy
subgroups I(x), x ∈ X are finite, then the covering dimension of X/G, cf.
[11, p.152] satisfies:

(indexηX − 1) dim η ≤ dimX/G .
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æ We introduce a relative version of the Fadell–Rabinowitz index. We
make the following assumptions: Let X be a G–space, A ⊂ X a closed
invariant subset. We fix a coefficient field F and a characteristic class η ∈
H∗(BG). Let f∗ : H∗(BG) → H∗G(X) be the homomorphism induced by a
classifying map f : XG → BG. Then the cohomology ring H∗G(X,A) has
the structure of an H∗(BG)–module as follows:

The cup product defines a homomorphism

H∗G(X)⊗H∗G(X,A)→ H∗G(X,A) , (ζ, z) 7→ ζ ∪ z .

For γ ∈ H∗(BG), z ∈ H∗G(X,A) let γ ·z := f∗(γ)∪z. Then for z ∈ H∗G(X,A)
the order ordηz with respect to η is defined by

ordηz := inf{k ∈ IN ∪ {∞} | ηk · z = 0} .

If z 6= 0 then η0 · z = z, hence ordηz ≥ 1. If z = 0 we set ordηz = 0.
The Fadell–Rabinowitz index indexηX is a special case of this order, since
indexηX = ordη1 = ordη(f∗(η)) − 1, where 1 ∈ H∗G(X) is an unit element
(A = ∅).

Now we list properties of the order:

Proposition 2.2 Let X resp. Y be a G–space, A ⊂ X resp. B ⊂ Y be
closed invariant, z ∈ H∗G(X,B).

a) If φ : (Y,B) → (X,A) a G–map with induced homomorphism φ∗ :
H∗G(X,A)→ H∗G(Y,B), then ordηφ∗(z) ≤ ordηz.

b) If A ⊂ B ⊂ X are closed invariant subsets, then there exists a closed
invariant neighborhood N of B with the following property: If jB : (B,A)→
(X,A) and jN : (N,A) → (X,A) are the inclusions, then ordηj∗N (z) =
ordηj∗B(z).

c) Let A,B,C be closed invariant subsets of X with A ⊂ B and X =
B ∪ C. Let jB : (B,A)→ (X,A) be the inclusion and z ∈ H∗G(X,A). Then

ordηz ≤ ordηj∗B(z) + indexηC .

The proofs are analogous to [4, (3.3)], [4, (3.5)] and [4, (3.6)] and are
therefore omitted.

æ

3 On the equivariant cohomology of the free loop
space

We consider compact simply–connected manifolds M whose rational coho-
mology algebra H∗(M ; IQ) is generated by exactly one element. Hence there
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are two numbers d,m such that H∗(M) = Td,m+1(x), here Td,m+1(x) =
IQ[x]/(xm+1) is the truncated polynomial algebra generated by an element
x of degree d and height m + 1. If d is odd then m = 1, M is rational
homotopy equivalent to the odd–dimensional sphere Sd. The compact rank
one symmetric spaces (CROSS’es) Md,m are also examples. Here Md,1 = Sd

is the d–dimensional sphere, M2,m = ICPm is the m–dimensional complex
projective space, M4,m = IHPm is the m–dimensional quaternionic projec-
tive space and M8,2 = ICaP 2 is the Cayley plane. Due to Sullivan there are
infinitely many other rational homotopy types of simply–connected compact
manifolds in this class besides these examples.

Let (M, g) be a compact Riemannian manifold. Then we consider the
free loop space

Λ = ΛM =
{
γ : S1 →M | γ absolutely continuous ,

∫ 1

0
g(γ̇, γ̇) <∞

}
with the canonical S1 resp. IO(2)–action, cf. [6], [5].

E : Λ→M , E(γ) :=
1
2

∫ 1

0
g(γ̇, γ̇)

is the IO(2)–invariant energy functional. We denote for a > 0 the sublevel
sets

Λa :=
{
γ ∈ Λ |E(γ) ≤ 1

2
a2
}
.

In particular the set Λ0 of point curves which can be identified with M is the
fixed point set of the S1– resp. IO(2)–action. Λ is an infinite–dimensional Rie-
mannian manifold modelled after the the Hilbert space H1(S1, IRn). Hence
Λ is paracompact and Hausdorff, so we can apply the results of section 2.
It also follows that for the free loop space Λ and for the sublevel sets Λa the
singular and the Alexander–Čech cohomology are isomorphic, since every
point has a contractible neighborhood.

Throughout this paper we will always use the field of the rationals as
coefficient field for cohomology. Let η ∈ H2(BS1) be a generator, i.e.
H∗(BS1) = IQ[η]. Since Λ0 ∼= M is the fixed point set of the S1–action,
we have

H∗S1(Λ0) ∼= H∗(BS1)⊗H∗(M) .

Proposition 3.1 (cf. [5, p.105],[9, 2.4]) Let M be simply–connected and
compact, H∗(M) ∼= Td,m+1(x) , H∗(BS1) = IQ[η]. Then there is an element
z ∈ Hd+1

S1 (Λ,Λ0) of infinite order, i.e. ordη(z) =∞.

Proof. We consider the long exact cohomolgy sequence

i∗ ∂∗

. . .→ H∗S1(Λ) −→ H∗S1(Λ0) −→ H∗+1
S1 (Λ,Λ0)→ . . .
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Since i∗ is an H∗(BS1) map and H∗S1(Λ0) as a H∗(BS1)–module is generated
by H∗(M) ∼= Td,m+1(x) it follows that H∗(BS1) ∼= IQ[η] lies in the image of
i∗.

If d is even it follows from a model for the homotopy quotient ΛS1 given
by Haefliger that the Poincaré polynomial of H∗S1(Λ) is given by

PS1(Λ)[t] =
1

1− t2
+

td−1

1− td(m+1)−2
· 1− tdm

1− td
,

see [9, thm. 2.4]. In particular dimH2k
S1(Λ) = 1 for all k ≥ 1. Hence

Image i∗ = IQ[η] and the elements ηi⊗xl ∈ H∗(BS1)⊗H∗(M) for 1 ≤ l ≤ m
and i ≥ 0 do not lie in the kernel of ∂∗. Hence in particular ordη(∂∗(x)) =∞.

If d is odd then M is rational homotopy equivalent to Sd. Using Morse
theory for the energy functional E with the standard metric one can show
[5] that the Poincaré polynomial of H∗S1(Λ,Λ0) is given by

PS1(Λ,Λ0)[t] = td−1

(
1

1− t2
+

td−1

1− td−1

)
.

Using again Haefliger’s model for ΛS1 one can show [5, p.105]

PS1(Λ)[t] =
1

1− t2
+

td−1

1− td−1
,

in particular dimH2k−1(Λ) = 0 for all k ≥ 1. Hence ∂∗ : H∗S1(Λ0) →
H∗+1
S1 (Λ,Λ0) is injective for odd ∗, i.e. ∂∗(ηix) 6= 0 for all i ≥ 0. So we

proved ordη(∂∗(x)) =∞ 2

æ

4 The mean average index of a closed geodesic

Closed geodesics on a compact Riemannian manifold M with metric g can be
characterized as the critical points of positive energy of the energy functional
E : Λ → IR . E is a differentiable function. The metric g induces a metric
g1 on Λ. Then E satisfies the Palais–Smale condition. The canonical IO(2)–
action on Λ leaves E invariant. It is an isometric action with respect to the
metric g1.

If c is a closed geodesic, then also the iterates cm,m ∈ IN are closed
geodesics, here cm(t) := c(mt). If there is no curve c0 ∈ Λ with c = cm0 for
some m > 1 we call c prime. If c = cm0 for a prime curve c0 then we call
m = mul(c) the multiplicity of c.

At a closed geodesic c one considers the Hessian (or index form)

d2E(c)(X,Y ) =
∫ 1

0
{g(∇X,∇Y )− g(R(X, ċ)ċ, Y )} dt .
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Here ∇ denotes the covariant derivative along c and R is the Riemannian
curvature tensor. X,Y are piecewise smooth vector fields along c, i.e. ele-
ments of the tangent space TcΛ of Λ at c. Let Ac be the self–adjoint operator
on the tangent space TcΛ of Λ at c with g1(AcX,Y ) = d2E(c)(X,Y ). Since
Ac = id + kc where kc is a compact operator the dimension of the subspace
of TcΛ with negative eigenvalues is finite. This number ind(c) we call the
index of the closed geodesic c. Also the dimension dc of the kernel of Ac
is finite, we call null(c) := dc − 1 the nullity of c. c is non–degenerate if
null(c) = 0. The nullity equals the dimension of periodic Jacobi fields along
c, i.e. null(c) ≤ 2n− 2. The sequence (ind(cm))m≥1 plays an important role
in our further studies. Using a formula of Bott one can show

Proposition 4.1 [9] If c is a closed geodesic on an n–dimensional Rieman-
nian manifold then the average index

αc := lim
m→∞

ind(cm)
m

exists. αc = 0 iff ind(cm) = 0 for all m and the inequality

|ind(cm)−mαc| ≤ n− 1

holds for all m ≥ 1.

Definition 4.2 If c is a closed geodesic with average index αc and length
L(c) then we call αc := αc/L(c) the mean average index of c.

æ

Remark 4.3 One can give estimates for the index ind(c) of a closed geodesic
c if bounds for the length L(c) and for the sectional curvature K of the
manifold are given. These estimates follow from the comparison theorem by
Morse–Schoenberg, cf. [7, 2.6.2]. If the Ricci curvature Ric is positive one
can give another estimate using the proof of Myers’ theorem. As an imme-
diate consequence one obtains the following estimates for the mean average
index αc = αc/L(c) of a closed geodesic c on an n–dimensional manifold:

a) If K ≤ ∆2 for some ∆ > 0 then αc ≤ ∆(n− 1)/π.
b) If K ≥ δ2 for some δ > 0 then αc ≥ δ(n− 1)/π.
c) If Ric ≥ δ2(n− 1) for some δ > 0 then αc ≥ δ/π.

æ

5 The global index interval of a cohomology class
and the local homology of critical sets

Let (M, g) be a simply–connected compact Riemannian manifold and let
z ∈ H∗S1(Λ,Λ0) be a class with ordηz = ∞. Here H∗(BS1) = IQ[η]. We
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denote by ja : (Λa,Λ0) → (Λ,Λ0) the inclusion and define the function
dz : IR≥0 → IN ∪ {∞}:

dz(a) := ordη(j∗a(z)) .

Definition 5.1 For z ∈ H∗S1(Λ,Λ0) with ordηz = ∞ the upper (resp.
lower) index σz (resp. σz) is given by:

σz := lim inf
a→∞

dz(a)
a

(
resp.σz := lim sup

a→∞

dz(a)
a

)
.

We call [σz, σz] the global index interval of z.

æ Another consequence of the Morse–Schoenberg comparison theorem
resp. the proof of Myers’ theorem are the following estimates for the global
index interval in terms of the curvature, cf. remark 4.3:

Proposition 5.2 Let z ∈ H∗S1(Λ,Λ0) be a class with ordη(z) =∞.
a) If K ≤ ∆2 then σz ≤ ∆(n− 1)/(2π) .
b) If K ≥ δ2 then σz ≥ δ(n− 1)/(2π) .
c) If Ric ≥ δ2(n− 1) then σz ≥ δ/(2π).

Proof. We give the proof of the first estimate, the other proofs are
analogous. We can choose a sequence (gi) of bumpy metrics converging in the
strong C2–topology to g due to the bumpy metrics theorem. Here a metric is
bumpy if all closed geodesics are non–degenerate. Let Ei(γ) = 1/2

∫ 1
0 gi(γ̇, γ̇)

be the energy functional and Λbi := E−1
i [0, b2/2].

Choose a sequence (ai) ⊂ IR with a = limi→∞ ai and Λa ⊂ Λaii for all
i. We can choose a sequence (∆i) ⊂ IR such that the sectional curvature
of gi is bounded from above by ∆2

i and ∆ = limi→∞∆i. It follows from
the Morse–Schoenberg comparison theorem that the index ind(c) of a closed
geodesic c of the metric gi with length ≤ ai satisfies

ind(c) ≤
(
ai
π

∆i + 1
)

(n− 1) =: ki .

Hence it follows from the Morse–lemma [6, ch.2.4] that Hk
S1(Λaii ,Λ

0) = 0 for
all k > ki. Since Λa ⊂ Λaii it follows from the composition

Hk
S1(Λ,Λ0)→ Hk

S1(Λaii ,Λ
0)→ Hk

S1(Λa,Λ0)

of restriction homomorphisms that ηk · j∗a(z) = 0 for all k with k > (ki −
dim z)/2. Hence dz(a) ≤ (limi→∞ ki − dim z)/2 2

Example 5.3 Let (Md,m, gS) be a simply connected compact rank one sym-
metric space with the following normalization. In section 3 we introduced
the notation Md,m. For Md,1 = Sd gS is the metric of constant sectional
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curvature K ≡ 1. For M2,m = ICPm , M4,m = IHPm or M8,2 = ICaP 2 gS is
the metric with sectional curvature in the interval [1/4, 1].

It follows from proposition 3.1 that there is a class z ∈ H∗S1(Λ,Λ0) with
ordη(z) = ∞. The critical set Cr of Λ is the disjoint union

⋃
j≥1Bj , where

Bj := {cj | c ∈ B} and B is the submanifold of great circles in Λ, i.e. the set
of prime closed geodesics. If c ∈ B then L(c) = 2π, ind(cj) = j ·αc + 1−md
with αc = d(m+ 1)− 2 and dimB/S1 = 2md− 2. It follows that

σz = σz =
1
2
α =

d(m+ 1)− 2
4π

.

Remark 5.4 Let g, g∗ be two metrics on a compact manifold with

g∗(X,Y )
D2

≤ g(X,Y ) ≤ D2g∗(X,Y )

for all tangent vectors X,Y and some D > 1. Let [σz, σz] , [σ∗z, σ
∗
z] be the

global index intervals of the cohomology class z with respect to the metrics
g, g∗. Then one can show that D−1σz ≤ σ∗z ≤ Dσz resp. D−1σz ≤ σ∗z ≤
Dσz. This shows that the functions σz , σz : G0 → IR are continuous on the
space G0 of metrics with the strong C0–topology. It also shows that if σz > 0
for some metric, then σz is positive for all metrics on M . It follows from
remark 4.3 c) that σz > 0 if there is a metric with positive Ricci curvature
on M . Another consequence is the following observation: If there is a metric
g with σz < σz then there is a neighborhood of g in G0 with σz < σz.

æ We study the discontinuity points of the function dz(a) in detail.

Lemma 5.5 a) The function dz : IR≥0 → IN0 is non–decreasing.

b) lima↘b dz(a) = dz(b).

Proof. a) dz(a) is finite by the Morse–Schoenberg comparison theorem.
The monotony of dz(a) follows from the definition.

b) Let V be a closed IO(2)–invariant neighborhood of Λb with dz(b) =
ordη(j∗b (z)) = ordη(j∗V (z)) where jb : (Λb,Λ0)→ (Λ,Λ0) resp. jV : (V,Λ0)→
(Λ,Λ0) are the inclusions, cf. proposition 2.2. Then there exist an ε > 0
and ε̄ > 0 such that for all γ ∈ Λb+ε − (Λb−ε ∪ V ) the gradient gradE of the
energy functional E satisfies ‖gradE(γ)‖1 ≥ ε̄, cf. [6, 1.4.8]. Hence there is
a T > 0 such that ΦT (Λb+ε) ⊂ V ∪Λb−ε where Φt : Λ→ Λ is the flow of the
vector field −gradE on the free loop space Λ. From the properties of ordη
it follows that

dz(b) = ordη(j∗b (z)) = ordη(j∗V (z)) ≥ ordη(j∗b+ε(z)) = dz(b+ ε) ,

cf. proposition 2.2, hence dz(b) = dz(b+ ε) 2
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Let Cr be the critical set of E with positive energy, i.e the set of closed
geodesics. For a > 0 let Cr(a) := Cr ∩ E−1(a2/2) = Cr ∩ L−1(a) i.e. Cr(a)
is the set of closed geodesics of length a. We use the notation

dz(a−) := lim
ε↘0

dz(a− ε) ,

hence at discontinuity point a of dz we have dz(a) − dz(a−) ≥ 1. Since
dz(a) < ∞ for all a, there are only finitely many discontinuity points in a
given interval [0, a].

Lemma 5.6 For a > 0 we have: indexηCr(a) ≥ dz(a)− dz(a−) .

Proof. Assume dz(a)−dz(a−) ≥ 1, let V be a closed invariant neighbor-
hood of Cr(a) with indexη(V ) = indexηCr(a) which exists by proposition 2.1
e). Then there exist an ε > 0 such that Λa−ε∪V is a S1–deformation retract
of Λa+ε, i.e.

H∗S1(V ∪ Λa−ε,Λ0) ∼= H∗S1(Λa+ε,Λ0) .

and dz(a) = dz(a+ε) , dz(a−) = dz(a−ε). Let j1 : (V ∪Λa−ε,Λ0)→ (Λ,Λ0)
be the inclusion. Then it follows from proposition 2.2 that

dz(a) = dz(a+ ε) = ordη(j∗1(z)) ≤ ordη(j∗a−ε(z)) + indexη(V )
= dz(a−) + indexηCr(a)

2

Corollary 5.7 For a > 0 we have for the covering dimension of the set
Cr(a) of closed geodesics of length a the following estimate:

dim Cr(a) ≥ 2 (dz(a)− dz(a−)− 1) .

In particular, if dz(a) − dz(a−) ≥ 2 then there are infinitely many distinct
IO(2)–orbits IO(2) · c of closed geodesics c with length a.

Proof. Let ρ > 0 be the injectivity radius of M , hence we have for a
closed geodesic c : L(c) ≥ 2ρ. Hence if L(c) = a then mul(c) ≤ a/(2ρ), so
we can apply proposition 2.1 f). Since a finite set has dimension 0, it follows
from dz(a)−dz(a−) ≥ 2 that there are infinitely many IO(2)–orbits of closed
geodesics in Cr(a) 2

Lemma 5.8 Let k := dz(a)− dz(a−) ≥ 1.

a) If all closed geodesics of length a are non–degenerate, then k = 1 and
there is a closed geodesic c ∈ Cr(a) with ind(c) = 2dz(a) + dim z − 2.

b) If all closed geodesics of length a are isolated (i.e. their S1–orbits are
isolated in Λ) then k = 1 and there is a closed geodesic c with

0 ≤ 2dz(a) + dim(z)− 2− ind(c) ≤ 2n− 2 .

Here n is the dimension of the manifold.
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Proof. Non–degenerate closed geodesics are isolated, hence in a) and b)
we have dim Cr(a) = 0, hence k = 1 by corollary 5.7.

Let ε > 0 be sufficiently small such that a is the only critical value of E
in [a− ε, a+ ε]. Hence l := dz(a− ε) = dz(a−) = dz(a)− 1 = dz(a+ ε)− 1.
It follows that ηl−1j∗a+ε(z) 6= 0 but ηl−1j∗a−ε(z) = 0. Here jb : (Λb,Λ0) →
(Λ,Λ0) is the inclusion. Therefore it follows from the exactness of

H∗S1(Λa+ε,Λa−ε)→ H∗S1(Λa+ε,Λ0)→ H∗S1(Λa−ε,Λ0)

that Hq
S1(Λa+ε,Λa−ε) 6= 0 for q := 2(l − 1) + dim z = 2dz(a)− 2 + dim z.

a) If there is no closed geodesic c ∈ Cr(a) with ind(c) = q thenHq
S1(Λa+ε,Λa−ε) =

0 by the Morse inequalities [6, ch.2.4].

b) If there is no closed geodesic c ∈ Cr(a) with 0 ≤ q − ind(c) ≤ 2n− 2
then Hq

S1(Λa+ε,Λa−ε) = 0 follows from the generalized Morse lemma, cf. [6,
4.2] 2

Now we are going to study the case that Cr(a) contains orbits which are
not isolated in Cr(a).

Theorem 5.9 If d = dz(a−) and dz(a) = d+k , k ≥ 1 then there is a closed
geodesic c with length a and index ind(c) satisfying

0 ≤ q − ind(c) ≤ 2n− 2

with q := 2d− 2 + dim z.
If k ≥ 2 then c can be chosen such that the orbit IO(2) · c is not isolated

in Cr(a).

Proof. By corollary 5.7 the subset C1 of critical orbits in Cr(a) which
are not isolated in Cr(a) is non–empty if k ≥ 2. C1 is a closed subset of Λ.
Choose a closed invariant neighborhood V1 of C1. Then C2 := Cr(a) − V1

contains only finitely many orbits since Cr(a) is compact. Choose pairwise
distinct closed invariant neighborhoods of these orbits as in proposition 2.1
d) which do not intersect V1. We denote the union of these neighborhoods
by V2. Then V0 = V1 ∪ V2 is a closed invariant neighborhood of Cr(a) and
indexηV2 = 1.

There is a sufficiently small ε > 0 such that the following holds: If

j0 : (V0 ∪ Λa−ε,Λ0) −→ (Λ,Λ0)

is the inclusion, let h′0 := j∗0(ηd−1 · z) ∈ Hq
S1(V0 ∪Λa−ε,Λ0). Then η · h′0 6= 0

since k ≥ 1. Since d = dz(a−) , dz(a) = d + k ≥ d + 1 there is a class h0

with j∗1h0 = h′0. Here

j1 : (V0 ∪ Λa−ε,Λ0) −→ (V0 ∪ Λa−ε,Λa−ε) .

13



Since V0 = V1 ∪ V2 , V1 ∩ V2 = ∅ and V1, V2 are closed the homomorphism

j∗2 : Hq
S1(V0 ∪ Λa−ε,Λa−ε)→ Hq

S1(V1 ∪ Λa−ε,Λa−ε)⊕Hq
S1(V2 ∪ Λa−ε,Λa−ε)

is an isomorphism. We denote by p1 resp. p2 the projection onto the first
resp. second factor. Let h1 := p1(h0) and h2 := p2(h0). If k ≥ 2 then h1 6= 0
since indexηV2 = indexηC2.

Due to the bumpy metrics theorem we can choose a sequence gi of bumpy
Riemannian metrics converging to the given metric g. Let Ei be the corre-
sponding energy functionals and let Λbi := E−1

i [0, b2/2]. If k ≥ 2 we set V :=
V1 , h := h1 otherwise V := V0 , h := h0. Let jb :

(
(Λbi ∩ V ) ∪ Λa−ε,Λa−ε

)
→(

V ∪ Λa−ε,Λa−ε
)

be the inclusion and let ai := sup{b > 0 | j∗b (h) 6= 0}.
Then a = limi→∞ ai and for sufficiently large i the set V ∩Cri(ai) of closed
geodesics in V of length ai of the metric gi lies in the interior of V . Let
Λb−i := E−1

i [0, b2/2). Then it follows from the definition of ai that

Hq
S1(Λaii ∩ V,Λ

ai−
i ∩ V ) 6= 0 .

Hence there is a sequence (ci) of closed geodesics in V of the metric gi with
length ai and index q, cf. lemma 5.8. A subsequence (ci) converges to a
closed geodesic c in V of the metric g of length a and with index:

q − (2n− 2) ≤ ind(c) ≤ q .

Hence we are done if k = 1.
If k ≥ 2 then V = V2. Now the orbit IO(2) · c of c could be isolated in

Cr(a). But by choosing V1 as small as we want we obtain a closed geodesic
c̃ of the metric g with a non–isolated orbit in Cr(a) and with q− (2n− 2) ≤
ind(c) ≤ q 2

Now we can argue as in [3].
The discontinuity sequence(ak)k≥0 of dz is the non–decreasing sequence

of discontinuity points a repeated according to the jump dz(a)−dz(a−). We
denote by P := { IO(2) · c | c prime closed geodesic} the set of critical orbits
of prime closed geodesics.

æ

Definition 5.10 An orbit IO(2) · c ∈ P is called k–essential if there is an
l ∈ IN with L(cl) = lL(c) = ak and if∣∣∣ ind(cl)− (dim z + 2k)

∣∣∣ ≤ 2n− 2 .

Theorem 5.11 There is a sequence ( IO(2) ·ck)k≥1 ⊂ P of k–essential closed
geodesics. If aj = aj+1 = . . . = aj+k for some k ≥ 1 then the orbits
IO(2) · cj , . . . , IO(2) · cj+k can be chosen pairwise distinct.
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Proof. By theorem 5.9 we find for all j an orbit IO(2) · cj ∈ P and
l ∈ IN with L(clj) = aj and 0 ≤ dim z + 2j − ind(c) ≤ 2n − 2. If aj =
aj+1 = . . . = aj+k with k ≥ 1 then by theorem 5.9 we find a critical orbit
IO(2) · c̃j ∈ P and l ∈ IN whose critical orbit IO(2) · c̃lj is not isolated in
Cr(aj) and 0 ≤ dim z+ 2j − ind(clj) ≤ 2n− 2. Hence there are in particular
orbits IO(2) · cj , . . . , IO(2) · cj+k ∈ P and numbers lj , . . . , lj+k ∈ IN such that
IO(2) ·clj+1

j+1 , . . . , IO(2) ·clj+kj+k lie in an arbitrarily small neighborhood of IO(2) ·cljj
in Cr(aj) and such that IO(2) · cj , . . . , IO(2) · cj+k are pairwise distinct. For
a sufficiently small neighborhood the assumptions of definition 5.10 can be
satisfied 2

æ

Lemma 5.12 If IO(2) · c ∈ P is k–essential then we have the following
estimate for the mean average index αc :∣∣∣∣αc − 2k

ak

∣∣∣∣ ≤ 3n− 3 + dim z

ak
.

Proof. By definition 5.10 there is an l ≥ 1 with L(c) = ak/l and |ind(cl)−
2k| ≤ 2n − 2 + dim z. Since |ind(cl) − lαc| ≤ n − 1, cf. proposition 4.1 the
claim follows 2

Lemma 5.13 For all a > 0 we have the following upper bound for the jump
of dz:

dz(a)− dz(a−) ≤ n .

Proof. Assume that there is an a ∈ (0,∞) with dz(a) − dz(a−) > n.
Then indexηCr(a) ≥ n + 1. Since 2 (indexη(Cr(a) − 1) ≤ dim Cr(a)/S1 by
proposition 2.1 f) it follows that dim Cr(a)/S1 ≥ 2n. But we can consider
Cr(a) as a closed subset of the compact (2n− 1)–dimensional unit tangent
bundle, hence dim Cr(a) ≤ 2n− 2 2

6 The mean average index and the global index
interval

We have the following relation between the discontinuity sequence (ak)k of
dz(a) and the global indices of z:

Lemma 6.1 σz = lim infk→∞ k
ak
, σz = lim supk→∞

k
ak

.

Proof. Let ak ≤ a ≤ ak+1 then by lemma 5.13

k + 1− n
ak+1

=
dz(ak+1)− n

ak+1
≤ dz(a)

a
≤ dz(ak) + n

ak
=
k + n

ak
.

From this estimate the claim follows 2
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Theorem 6.2 If t ∈ [σz, σz] then there is a sequence IO(2) · ck ∈ P with
t = 1/2 limk→∞ αck .

Proof. (cf.[3, thm.2 ii)]) If σz = σz it follows from lemma 6.1 that
t = limk→∞ k/ak. From lemma 5.12 the claim follows.

So assume σz < σz. We assume that t is not in the closure of the set
A := {αck/2 | k ∈ IN}. Then there is ε > 0 such that |αck/2 − t| ≥ ε for all
k > 0. Choose j ≥ 1 with j/aj ≤ t− ε ; aj > ε−1. Then it follows from

k + 1
ak+1

− k

ak
≤ 1
ak+1

that k/ak ≤ t− ε for all k ≥ j. This contradicts the definition of σz 2

Corollary 6.3 If there are only finitely many geometrically distinct closed
geodesics (i.e. #P <∞) then σz = σz.

Theorem 6.4 Let M be a simply–connected compact Riemannian manifold
with a cohomology class z ∈ H∗S1(Λ,Λ0) of infinite order and let σz > 0. We
define for ε > 0: Pε := { IO(2) · c ∈ P |αc ∈ (2σz − ε, 2σz + ε)}. Then for
every ε > 0: ∑

IO(2)·c∈Pε

1
αc
≥ 1

2
.

Proof.(cf.[3, thm.2 ii)]) By theorem 5.11 there is a sequence IO(2) ·ck ∈ P
of k–essential closed geodesics. If ak = ak+1 = . . . = ak+j then ck, ck+1, . . . , ck+j
are geometrically distinct. By lemma 5.12 there is a k0 = k0(ε) > 0 such
that for k ≥ k0: |αk − (2k/ak)| < ε/2 with αk := αck . Hence

k − k0 ≤
∑

IO(2)·c∈Pε

ak
L(c)

resp.

1− k0

k
≤

∑
IO(2)·c∈Pε

ak
k

1
L(c)

.

Choose δ ∈ (0, σz) and let kl be a monotonic sequence with kl/akl ≥ σz − δ,
then

1− k0

kl
≤

∑
IO(2)·c∈Pε

1
L(c)

1
σz − δ

.

For l→∞ it follows that

1 ≤ 1
σz

∑
IO(2)·c∈Pε

1
L(c)

,
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since δ > 0 is arbitrary. For c ∈ Pε we have αc ≤ 2σz + ε, hence

1
2
≤

∑
IO(2)·c∈Pε

1
L(c)

1
αc − ε

.

Since αc − ε ≥ (1− ε
2σz−ε

)αc we obtain

1
2

(
1− ε

2σz − ε

)
≤

∑
IO(2)·c∈Pε

1
αc
.

Choose ε1 ∈ (0, ε) then

1
2

(
1− ε1

2σz − ε1

)
≤

∑
IO(2)·c∈Pε1

1
αc
≤

∑
IO(2)·c∈Pε

1
αc
.

For ε1 → 0 the claim follows 2

Corollary 6.5 If there are only finitely many geometrically distinct closed
geodesics (i.e. P < ∞) then: σz = σz =: σ, cf. corollary 5.7. Let Pσ :=
{ IO(2) · c ∈ P |αc = 2σ}, then

∑
IO(2)·c∈Pσ

1
αc
≥ 1

2
.

In particular, if for every c we know αc > 2 then there are two geomet-
rically distinct closed geodesics c1, c2 which satisfy the resonance relation
α1 = α2.

From the estimates in remark 4.3 and from Klingenberg’s injectivity
radius estimate [7, ch.2.6] one can give a sufficient pinching condition for
the existence of at least two distinct closed geodesics c1, c2 which are almost
resonant. If there are only finitely many closed geodesics on M then they
are resonant.

Proposition 6.6 Let M be a n–dimensional compact simply–connected man-
ifold with a cohomology class z ∈ H∗S1(Λ,Λ0) of infinite order. Let M carry
a Riemannian metric whose sectional curvature K satisfies k2/(n − 1)2 ≤
K ≤ 1 for some k = 1, . . . , n− 2 and let either n be even or k ≥ (n− 1)/2.

Then for every ε > 0 there are k + 1 closed geodesics c1, . . . , ck+1 with
|αi − αj | < ε for all pairs i, j ∈ {1, . . . , k + 1}.

In particular if there are only finitely many closed geodesics on M , then
there are k+ 1 geometrically distinct closed geodesics c1, . . . , ck+1 with α1 =
. . . = αk+1 = 2σ.

The theorem also holds for Finsler metrics, cf. [12] [9]. If the Finsler
metric is non–symmetric one has to replace IO(2) in the definition of Pε
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by S1, but everything else remains the same. An analogous statememt as
proposition 6.6 also holds for Finsler metrics with the following changes: the
sectional curvature is the sectional curvature of an osculating metric along
a geodesic. One has also to add the assumption that the length of a closed
geodesic is bounded from below by 2π.

Example 6.7 In every C∞–neighborhood of the standard metric on the
sphere Sn there is a non–symmetric Finsler metric F with only finitely many
geometrically distinct closed geodesics. If n is even then there are exactly n
closed geodesics, if n is odd then there are n + 1. This examples were first
discovered by Katok, their geometry was investigated by Ziller in [12].

Hence for every ε > 0 there is a Finsler metric C∞–near the standard
metric such that the average index of a closed geodesic is bounded from
below by 2n − 2 − ε, cf. example 5.3. Then by the theorem there are for
ε < 1 at least n−1 geometrically distinct closed geodesics c1, . . . , cn−1 whose
mean average indices satisfy the resonance relations α1 = . . . = αn−1 = σ.
By choosing F sufficiently near the standard metric we can get σ arbitrarily
close to (2n− 2)/(4π), cf. example 5.3 and remark 5.4.

Remark 6.8 Let M be a compact manifold. We define the following subset
G̃ of the set G of Riemannian metrics with the strong C2–topology:

G̃ := {g ∈ G | IO(2) · c1 , IO(2) · c2 ∈ P, α1 = α2 ⇒ IO(2) · c1 = IO(2) · c2} .

Then one can show that G̃ is a residual subset in G using a local pertubation
argument due to Klingenberg–Takens [8] as in [10].

Then it follows from proposition 6.6 and from corollary 6.3 that a C2–
generic metric on an even–dimensional simply–connected compact manifold
and with sectional curvature (n − 1)−1 < K ≤ 1 there are infinitely many
geometrically distinct closed geodesics.

æ
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