Grenzwerte und Stetigkeit Stetigkeit von Funktionen

H. Wuschke

30. August 2021

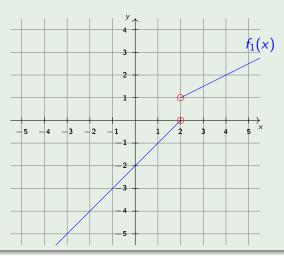
Stetigkeit

Eine Funktion f(x) heißt stetig an einer Stelle x_0 , wenn gilt:

$$f(x_0) = c$$
 und $\lim_{x \to x_0} f(x) = c$

Eine Funktion f(x) heißt stetige Funktion, wenn sie an jeder Stelle stetig ist.

anschauliche Stetigkeit


Anschaulich kann man sagen, dass eine Funktion stetig ist, wenn man sie durchzeichnen kann. Dabei darf man jedoch bei Definitionslücken den Stift absetzen.

Bemerkung

Alle Polynome sind stetig. In der Regel sind die Funktionen, die in der Schule vorkommen stetig.

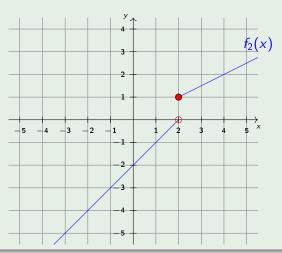
Beispiel Stetigkeit (wenn Sprungstelle nicht im DB ist)

$$f_1(x) = \begin{cases} x - 2, & x < 2\\ \frac{1}{2}x, & x > 2 \end{cases}$$

Begründung Beispiel 1

$$f_1(x) = \begin{cases} x - 2, & x < 2\\ \frac{1}{2}x, & x > 2 \end{cases}$$

Für x < 2 und x > 2 besteht die Funktion aus Polynomen (lineare Funktionen). Dort ist die Funktion also stetig.


Kritisch scheint also nur die Stelle x = 2 zu sein.

Weil aber $f_1(2)$ gar nicht existiert, braucht hier auch keine Untersuchung auf Stetigkeit gemacht werden.

Daher ist also die Funktion $f_1(x)$ stetig auf ihrem Definitionsbereich.

Beispiel Unstetigkeit

$$f_2(x) = \begin{cases} x - 2, & x < 2\\ \frac{1}{2}x, & x \ge 2 \end{cases}$$

Begründung Beispiel 2

$$f_2(x) = \begin{cases} x - 2, & x < 2\\ \frac{1}{2}x, & x \ge 2 \end{cases}$$

Für x < 2 und x > 2 ist $f_2(x)$ stetig. Es ist $f_2(2) = \frac{1}{2} \cdot 2 = 1$.

Für den linksseitigen Grenzwert gilt: $\lim_{x\to 2^-} f_2(x) = 0$.

Für den rechtsseitigen Grenzwert gilt: $\lim_{x \to 2^+} f_2(x) = 1$

Da $\lim_{x\to 2^-} f_2(x) \neq \lim_{x\to 2^+} f_2(x)$ ist, existiert $\lim_{x\to 2} f_2(x)$ nicht.

Daher ist $f_2(x)$ an der Stelle x = 2 unstetig.

Bemerkung

Bei der Stetigkeitsuntersuchung an einer Stelle muss gelten:

Grenzwert an der Stelle = Funktionswert an der Stelle

Aufgaben A1

Überprüfen Sie, ob die nachfolgenden Funktionen stetig sind:

$$f(x) = \begin{cases} -3, & x < 5 \\ x + 2, & x \ge 5 \end{cases}$$
 (unstetig an der Stelle $x = 5$)
$$g(x) = \begin{cases} x^2, & x < -2 \\ x + 6, & -2 \le x < 2 \\ 9, & x \ge 2 \end{cases}$$
 (unstetig an der Stelle $x = 2$)
$$h(x) = \begin{cases} -3x, & x \le 4 \\ x^2 - 6x - 4, & x > 4 \end{cases}$$
 (stetig)

Zwischenwertsatz

Sei f(x) auf dem Intervall [a, b] stetig mit $f(a) < y_0$ und $f(b) > y_0$.

Dann gibt es ein $c \in (a, b)$, sodass gilt:

$$f(c) = y_0$$

Der Satz gilt auch für $f(a) > y_0$ und $f(b) < y_0$.

Nullstellensatz

Sei f(x) auf dem Intervall [a, b] stetig mit f(a) < 0 und f(b) > 0.

Dann gibt es ein $c \in (a, b)$, sodass gilt:

$$f(c) = 0$$

Der Satz gilt auch für f(a) > 0 und f(b) < 0.