3. Lineare Algebra und Analytische Geometrie 3.1 Matrizen, LGS & Gaußalgorithmus

H. Wuschke

14. November 2019

Ziele der Sitzung

- Matrizen schreiben können
- Erweiterte Koeffizientenmatrix aufstellen
- Lineare Gleichungssysteme mit Gaußalgorithmus lösen
- Lösung von Gleichungssystemen angeben

Matrix

Seien $m, n \in \mathbb{N}$

(a) Eine $m \times n$ Matrix $\mathbb A$ über $\mathbb R$ ist eine Anordnung von $m \cdot n$ reellen Zahlen in ein rechteckiges Schema aus m Zeilen und n Spalten:

$$\mathbb{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{n1} \\ a_{21} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \qquad \begin{array}{l} a_{ij} \in \mathbb{R}, \\ i = 1, \dots, m \\ j = 1, \dots, n \end{array}$$

Andere Notation:
$$\mathbb{A} = (a_{ij})_{\substack{i=1,\dots,m\\j=1,\dots,n}}$$

Die Menge aller $m \times n$ Matrizen über $\mathbb R$ wird mit $\mathbb R^{m \times n}$ bezeichnet.

Transponierte Matrix

Seien $m, n \in \mathbb{N}$

(b) Ist $\mathbb{A} = (a_{ij}) \in \mathbb{R}^{m \times n}$ und ist $a_{ij}^{T} := a_{ji}$, so heißt die Matrix

$$\mathbb{A}^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

heißt transponierte Matrix von A.

Beispiel

$$\mathbb{A} = \begin{pmatrix} 1 & 0 \\ 2 & 8 \\ 3 & 15 \end{pmatrix} \in \mathbb{R}^{3 \times 2}, \quad \mathbb{A}^{T} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 8 & 15 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

• Gegeben sind folgende Matrizen:

$$\mathbb{A} = \left(\begin{array}{cc} 4 & -2 \\ 5 & 3 \\ 11 & 32 \end{array} \right), \mathbb{B} = \left(\begin{array}{cc} 9 & 0, 3 & -2 \\ 12 & 4, 8 & -4 \\ 0 & 1 & 16 \end{array} \right),$$

$$\mathbb{C} = \left(\begin{array}{ccccc} 7 & 8 & 4 & 1 & 2 \\ -2 & -3 & -1 & 0 & -10 \\ 0, 9 & 4, 8 & 3, 2 & 1, 2 & 5 \end{array}\right)$$

Geben Sie jeweils den euklidischen Vektorraum an, aus dem diese Matrizen kommen sowie die transponierten Matrizen \mathbb{A}^T , \mathbb{B}^T , \mathbb{C}^T .

- Geben Sie jeweils zwei Matrizen aus den folgenden euklidischen Vektorräumen an:
 - \bullet $\mathbb{R}^{2\times4}$
 - $\mathbf{2} \mathbb{R}^{5 \times 3}$
 - $\mathbf{o} \mathbb{R}^{3 \times 1}$

Addition und skalare Multiplikation

Auf $\mathbb{R}^{m \times n}$ definiert man eine Addition durch

$$+: \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}, \quad (a_{ij}) + (b_{ij}) := (a_{ij} + b_{ij})$$

und eine Skalarmultiplikation durch

$$\cdot: \mathbb{R} \times \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}, \quad \lambda \cdot (a_{ii}) := (\lambda \cdot a_{ii})$$

Beispiel

$$\mathbb{A} = \begin{pmatrix} 1 & -4 \\ 2 & 2 \\ 1 & 0 \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} -2 & 0 \\ 0 & 3 \\ 4 & 1 \end{pmatrix}$$

$$\mathbb{A} + \mathbb{B} = \begin{pmatrix} -1 & -4 \\ 2 & 5 \\ 5 & 1 \end{pmatrix}, \quad -3 \cdot \mathbb{A} = \begin{pmatrix} -3 & 12 \\ -6 & -6 \\ -3 & 0 \end{pmatrix}$$

Matrizenmultiplikation

Wir multiplizieren Matrizen durch das Prinzip "Zeile · Spalte"

$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 0 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 3 + 2 \cdot 0 & 1 \cdot (-1) + 2 \cdot 2 \\ 3 \cdot 3 + 2 \cdot 0 & 3 \cdot (-1) + 2 \cdot 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 9 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & -1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 6 & 4 \end{pmatrix}$$

Matrizenmultiplikation ist nicht kommutativ!

Matrizenmultiplikation

Matrizen müssen für die Multiplikation "verkettet" sein.

$$\underbrace{\mathbb{A}}_{\in \mathbb{R}^{m \times n}} \cdot \underbrace{\mathbb{B}}_{\in \mathbb{R}^{n \times p}} = \underbrace{\mathbb{AB}}_{\in \mathbb{R}^{m \times p}}$$

Beispiel

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & 4 \end{pmatrix}}_{\in \mathbb{R}^{2 \times 3}} \cdot \underbrace{\begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 4 & 5 \end{pmatrix}}_{\in \mathbb{R}^{3 \times 2}} = \underbrace{\begin{pmatrix} 11 & 16 \\ 11 & 19 \end{pmatrix}}_{\in \mathbb{R}^{2 \times 2}}$$

Hinführung zu Gleichungssystemen

Multiplizieren wir eine Matrix

$$\mathbb{A} = \begin{pmatrix} a_{11} & + & a_{12} & + & \cdots & + & a_{1n} \\ a_{21} & + & a_{22} & + & \cdots & + & a_{2n} \\ \vdots & & \vdots & & & \vdots \\ a_{m1} & + & a_{m2} & + & \cdots & + & a_{mn} \end{pmatrix} \text{ mit } x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

so erhält man eine Koeffizientenmatrix.

Lineares Gleichungssystem

Das lineare Gleichungssystem

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$

besteht aus m Gleichungen, n Unbekannten und den Koeffizienten a_{ij} $(i=1,...,m;\ j=1,...,n)$.

Es heißt homogen, wenn $b_i = 0$, sonst heißt es inhomogen. Ein geordnetes n-Tupel $(y_1, ..., y_n)$ reeller Zahlen ist ein Element der Lösungsmenge, wenn es gleichzeitig die m Gleichungen löst.

Es gibt eine eindeutige Lösung, unendlich Lösungen (Lösungsschar mit Parametern) oder keine Lösung.

Erweiterte Koeffizientenmatrix

Jedes LGS kann auch als erweiterte Koeffizientenmatrix dargestellt werden:

$$\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\
a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} & b_m
\end{pmatrix}$$

Äquivalente Umformungen bei LGS

Beim Vereinfachen des LGS, dürfen folgende Schritte gemacht werden:

- Eine Gleichung mit einem reellen Faktor (außer 0) multiplizieren.
- 2 Zwei Gleichungen miteinander vertauschen.
- 3 Eine Gleichung zu einer anderen aufaddieren.

• Geben Sie zu dem gegebenen Gleichungssystemen die erweiterte Koeffizientenmatrix an.

② Geben Sie zu der gegebenen erweiterten Koeffizientenmatrix jeweils das Gleichungssystem an.

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \left(\begin{array}{ccc|c}
-3 & 12 & 4 \\
-6 & -6 & 2
\end{array}\right) \left(\begin{array}{ccc|c}
1 & 1 & 0 & 5 & 3 \\
0 & 1 & 1 & 3 & 6 \\
0 & 0 & 2 & 2 & 7 \\
0 & 0 & 8 & 15 & 3
\end{array}\right)$$

Gaußalgorithmus

Ziel des Gaußalgorithmus: Ein zum Ausgangssystem äquivalentes "gestrafftes" System zu konstruieren.

Dreiecksgestalt (eindeutige Lösung)

Trapezgestalt (unendlich viele Lösungen)

andere Gestalt (keine Lösung)

Carl Friedrich Gauß (1777-1855)

Abbildung: CC0

- Verfahren schon vorher bekannt,
 z.B. Logistica (1559) von
 J. Buteo (frz. Math.; 1492–1572)
- vielseitig begabt in verschiedenen Bereichen der Mathematik, aber auch in Physik, Astronomie oder Geographie
- Gauß systematisiert und überträgt das Verfahren auf Matrizen
- 1801 Disquisitiones arithmeticae

Beispiel 1 – eindeutige Lösung

$$\Rightarrow \mathcal{L} = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

Beispiel 2 – keine Lösung

$$x + y + z = 3$$

 $2x + 4y + 4z = 10$
 $x + y + z = 6$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 2 & 4 & 4 & 10 \\ 1 & 1 & 1 & 6 \end{array}\right) \stackrel{II-2I}{\rightarrow} \left(\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 0 & 2 & 2 & 4 \\ 1 & 1 & 1 & 6 \end{array}\right)$$

$$\overset{III-I}{\to} \left(\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 0 & 2 & 2 & 4 \\ 0 & 0 & 0 & 3 \end{array} \right) \quad 0 = 3 \text{ ist ein Widerspruch}$$

$$\Rightarrow$$
 $\mathcal{L} = \emptyset = \{\}$

Die Lösungsmenge ist leer.

Beispiel 3 - mehrdeutige Lösung

$$\rightarrow \left(\begin{array}{ccc|ccc|c} 1 & 1 & 1 & 3 \\ 1 & 2 & 2 & 5 \\ -2 & -2 & -2 & -6 \end{array}\right) \stackrel{II-I}{\rightarrow} \left(\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\stackrel{I-II}{\to} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right) \to x = 1 \text{ und } y + z = 2.$$

Setze
$$z = t \in \mathbb{R}$$
 \Rightarrow $y + t = 2$ \Leftrightarrow $y = 2 - t$

Berechnen Sie die Lösungsmenge folgender LGS:

3. Lineare Algebra und Analytische Geometrie 3.2 Punkte und Objekte im euklidischen Vektorraum \mathbb{R}^3

H. Wuschke

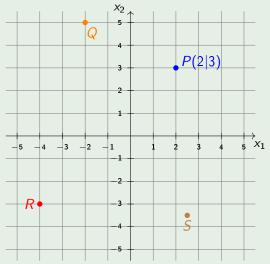
30. Januar 2020

Ziele der Sitzung

- Punkte und Figuren im kartesischen Koordinatensystem eintragen
- Punkte auf den Koordinatenachsen bzw. nach Möglichkeit ablesen
- Begriff des Vektors kennenlernen (phänomenologisch)
- Begriff des Ortsvektors, Richtungsvektors und Gegenvektors beschreiben
- Mittelpunkte bilden

Beispiel für Punkte im \mathbb{R}^2

Lesen Sie die x_1 - und x_2 -Koordinaten der Punkte Q,R und S ab. Beschreiben Sie, wie Sie dabei vorgehen.



Beispiel für Punkte im \mathbb{R}^3

Im dreidimensionalen kartesischen Koordinatensystem erfolgt das Eintragen der Punkte analog, nur mit einer dritten Richtung.

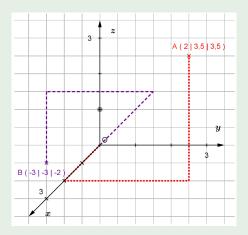


Abbildung: Beispiel von S. Hintze 23.05.2019

Bemerkung

Das Ablesen der Punkte ist selten ohne Weiteres eindeutig möglich, da jeder Punkt nun auch in der Tiefe (x-Richtung oder x_1 -Richtung) verschoben sein kann.

Liegt ein Punkt auf einer der drei Koordinatenachsen, so kann davon ausgegangen werden, dass dieser eindeutig ablesbar ist, auch wenn dies nicht allgemeingültig ist.

Punkt, Vektor, Ortsvektor

Alle Objekte mit einer Länge, Richtung und einem Richtungssinn heißen **Vektoren**. Sie werden häufig durch Pfeile dargestellt. Ein **Punkt** ist ein Objekt eines Raumes. Der **Ortsvektor** beschreibt die Bewegung zu diesem Punkt vom Koordinatenursprung aus.

$$B(-3|-3|-2)$$
 $\overrightarrow{OB} = \begin{pmatrix} -3 \\ -3 \\ -2 \end{pmatrix}$

a) Stellen Sie den folgenden Quader in einem Koordinatensystem dar. Dabei soll A im Koordinatenursprung liegen.

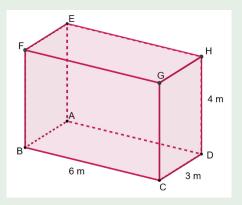


Abbildung: GeoGebra H. Wuschke 29.01.2020, CC0

b) Nun soll ein 1,5 m hohes Dach auf dem Quader errichtet werden. Bestimmen Sie die Koordinaten der Punkte D_1 und D_2 .

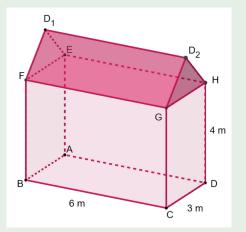


Abbildung: GeoGebra H. Wuschke 29.01.2020, CC0

c) Zum Schluss wird das Haus unterkellert. Die Eckpunkte sind dabei die beiden Mittelpunkte von \overline{AD} und \overline{BC} sowie C und D. Bestimmen Sie wiederum die Koordinaten von P_1 bis P_4 .

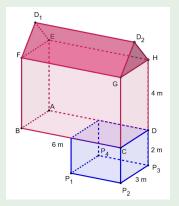


Abbildung: GeoGebra H. Wuschke 29.01.2020, CC0

Mittelpunkt

Ein Mittelpunkt wird koordinatenweise durch das arithmetische Mittel aller zugrundeliegenden Punkte beschrieben.

$$M\left(\frac{x_1 + x_2 + \dots + x_n}{n} \left| \frac{y_1 + y_2 + \dots + y_n}{n} \right| \frac{z_1 + z_2 + \dots + z_n}{n}\right)$$

Bemerkungen

1 Der Mittelpunkt der Strecke AB ist also:

$$M\left(\frac{x_A+x_B}{2}\left|\frac{y_A+y_B}{2}\right|\frac{z_A+z_B}{2}\right)$$

② Der Mittelpunkt oder Schwerpunkt des $\triangle ABC$ ist also:

$$M\left(\frac{x_A+x_B+x_C}{3}\left|\frac{y_A+y_B+y_C}{3}\right|\frac{z_A+z_B+z_C}{3}\right)$$

Richtungsvektor

Ein Richtungsvektor \overrightarrow{AB} beschreibt den Vektor, welcher von Punkt A zu Punkt B verläuft.

$$\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$

Gegenvektor

Der Vektor \overrightarrow{BA} ist der **Gegenvektor** zu \overrightarrow{AB} . Beide haben die gleiche Länge und Richtung, aber einen anderen Richtungssinn. Es gilt:

$$\overrightarrow{AB} = -\overrightarrow{BA}$$

Begründung: nächste Woche

Gegeben sind die Punkte A(2|4|0), B(2|6|2), C(-4|2|4) eines Dreiecks ABC.

- a) Stellen Sie das $\triangle ABC$ in einem kartesischen Koordinatensystem dar.
- b) Zeichnen Sie den Ortsvektor auf C in das Koordinatensystem ein und bezeichnen Sie diesen mit \overrightarrow{OC} .
- Bestimmen Sie die Vektoren \overrightarrow{AB} , \overrightarrow{BC} und \overrightarrow{AC} und zeichnen Sie diese farbig ein.
- d) Geben Sie die Koordinaten des Schwerpunktes S des $\triangle ABC$ an und tragen Sie diesen ebenfalls ein.
 - e) Geben Sie die Koordinaten von $M_{\overline{AB}}$, $M_{\overline{BC}}$ und $M_{\overline{AC}}$ an.

3. Lineare Algebra und Analytische Geometrie 3.3 Vektoren im euklidischen Vektorraum R³

H. Wuschke

06. Februar 2020

Ziele der Sitzung

- Begriff des *Richtungsvektors*, *Gegenvektors* und *Nullvektors* beschreiben können
- Addition und Vielfachbildung von Vektoren ausführen
- Begriff der Linearkombination kennenlernen
- Länge/Betrag/Norm eines Vektors berechnen
- Einheitsvektoren bilden

Richtungsvektor

Ein Richtungsvektor \overrightarrow{AB} beschreibt den Vektor, welcher von Punkt A zu Punkt B verläuft.

$$\overrightarrow{AB} = \left(\begin{array}{c} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{array}\right)$$

Gegenvektor

Der Vektor \overrightarrow{BA} ist der **Gegenvektor** zu \overrightarrow{AB} . Beide haben die gleiche Länge und Richtung, aber einen anderen Richtungssinn. Es gilt:

$$\overrightarrow{AB} = -\overrightarrow{BA}$$

Begründung: Übungsaufgabe

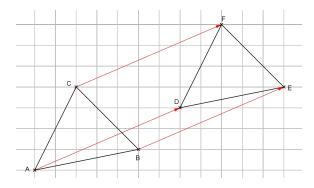


Abbildung: Beispiel von S. Hintze, 23.05.19

Hier sind die Vektoren \overrightarrow{CF} , \overrightarrow{AD} und \overrightarrow{BE} dargestellt. Da alle Vektoren die gleiche Länge, Richtung (parallel) und den gleichen Richtungssinn haben, gilt:

$$\overrightarrow{AD} = \overrightarrow{CF} = \overrightarrow{BE}$$

Aufgabe A2 (letzte Woche)

Gegeben sind die Punkte A(2|4|0), B(2|6|2), C(-4|2|4) eines Dreiecks ABC.

- a) Stellen Sie das $\triangle ABC$ in einem kartesischen Koordinatensystem dar.
- b) Zeichnen Sie den Ortsvektor auf C in das Koordinatensystem ein und bezeichnen Sie diesen mit \overrightarrow{OC} .
- Bestimmen Sie die Vektoren \overrightarrow{AB} , \overrightarrow{BC} und \overrightarrow{AC} und zeichnen Sie diese farbig ein.
- d) Geben Sie die Koordinaten des Schwerpunktes S des $\triangle ABC$ an und tragen Sie diesen ebenfalls ein.
- e) Geben Sie die Koordinaten von $M_{\overline{AB}}$, $M_{\overline{BC}}$ und $M_{\overline{AC}}$ an.

Addition von Vektoren

Die Vektoren \vec{a} und \vec{b} stellen zwei Verschiebungen dar. Die Hintereinanderausführung dieser Verschiebungen wird als Summe

$$\vec{a} + \vec{b} = \begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix} + \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix} = \begin{pmatrix} x_a + x_b \\ y_a + y_b \\ z_a + z_b \end{pmatrix}$$

der beiden Vektoren bezeichnet.

Veranschaulichung der Addition

Abbildung: Beispiel von S. Hintze, 23.05.19

Vielfachbildung eines Vektors

Gegeben seien der Vektor \vec{a} und die Zahl $r \in \mathbb{R}$.

Es gilt:

$$r \cdot \overrightarrow{a} = r \cdot \begin{pmatrix} x_a \\ y_a \\ z_c \end{pmatrix} = \begin{pmatrix} r \cdot x_a \\ r \cdot y_a \\ r \cdot z_a \end{pmatrix}$$

Der neue Vektor $r \cdot \vec{a}$ bezeichnet den Vektor, dessen Pfeile ...

- \bullet ... parallel zu den Pfeilen von \vec{a} sind.
- 3 ... gleich gerichtet zu den Pfeilen von \vec{a} sind, falls $r \ge 0$ und entgegengesetzt gerichtet zu den Pfeilen von \vec{a} sind, falls r < 0.

Veranschaulichung der Vielfachbildung

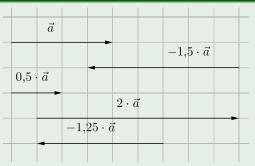


Abbildung: Beispiel von S. Hintze, 23.05.19

Nullvektor

Ist r=0, dann ist $r \cdot \vec{a} = \vec{0}$. Ist $\vec{a} = \vec{0}$, dann ist $r \cdot \vec{a} = \vec{0}$ für alle $r \in \mathbb{R}$. Der Vektor $\vec{0}$ wird auch als **Nullvektor** bezeichnet. Er bildet jeden Punkt auf sich selbst ab.

Subtraktion von Vektoren

Der Gegenvektor von \vec{b} wird mit $-\vec{b}$ bezeichnet.

Die Hintereinanderausführung der Verschiebungen \vec{a} und $-\vec{b}$ ist die Differenz von \vec{a} und \vec{b} :

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}) = \begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix} + \begin{pmatrix} -x_b \\ -y_b \\ -z_b \end{pmatrix} = \begin{pmatrix} x_a - x_b \\ y_a - y_b \\ z_a - z_b \end{pmatrix}$$

Veranschaulichung der Subtraktion

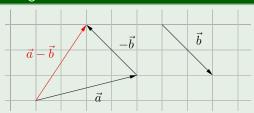


Abbildung: Beispiel von S. Hintze, 23.05.19

Linearkombination

Seien $a_1, a_2, ..., a_n \in \mathbb{R}$ (reelle Skalare/Koeffizienten) und $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_n}$ Vektoren.

Ein Rechenausdruck aus Skalaren und Vektoren wird als Linearkombination bezeichnet.

$$a_1 \cdot \overrightarrow{x_1} + a_2 \cdot \overrightarrow{x_2} + ... + a_n \cdot \overrightarrow{x_n}$$

Aufgabe A3

Gegeben sind die Punkte A(1|1|0), B(4|2|-3) und C(3|5|-1).

- a) Bilden Sie die Vektoren \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{AC} , \overrightarrow{CA} , \overrightarrow{BC} und \overrightarrow{CB}
- b) Berechnen Sie $\overrightarrow{AB} + \overrightarrow{BC}$. Beschreiben Sie, was Ihnen auffällt und begründen Sie dies mit einer Skizze.
- c) Berechnen Sie die Linearkombination $\overrightarrow{OA} + \frac{1}{2} \cdot \overrightarrow{AB}$.
- d) Berechnen Sie $2 \cdot \overrightarrow{AB} + 2 \cdot \overrightarrow{BC} + 2 \cdot \overrightarrow{CA}$

Betrag/Norm eines Vektors

Der **Betrag** oder die **Norm** des Vektors \vec{a} wird mit $|\vec{a}|$ beschrieben. $|\vec{a}|$ gibt die Länge des Vektors \vec{a} an. Für

$$\vec{a} = \begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix}$$

gilt:

$$|\vec{a}| = \sqrt{(x_a)^2 + (y_a)^2 + (z_a)^2}.$$

Der Vektor $\vec{a_0}$ heißt **Einheitsvektor** zum Vektor $\vec{a_0}$ wenn \vec{a} und $\vec{a_0}$ die gleiche Richtung haben und $|\vec{a_0}| = 1$ gilt. Es gilt:

$$\vec{a_0} = \frac{1}{|\vec{a}|} \cdot \vec{a}.$$

Aufgabe A4

Gegeben sind die Punkte A(1|1|0), B(4|2|-3) und C(3|5|-1).

- a) Berechnen Sie die Beträge $|\overrightarrow{AB}|$, $|\overrightarrow{BC}|$ und $|\overrightarrow{AC}|$.
- Ergänzen Sie einen Punkt D so, dass die Figur ABCD ein Parallelogramm ist.
- c) Begründen Sie, dass ABCD keine Raute/kein Rhombus ist.

Aufgabe A5

Bestimmen Sie die Einheitsvektoren $\overrightarrow{a_0}$ und $\overrightarrow{b_0}$ der Vektoren

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$
 und $\vec{b} = \begin{pmatrix} 3 \\ 2 \\ \sqrt{3} \end{pmatrix}$

3. Lineare Algebra und Analytische Geometrie 3.4 Skalarprodukt und Kreuzprodukt von Vektoren

H. Wuschke

27. Februar 2020

Ziele der Sitzung

- Skalarprodukte von Vektoren bilden
- Winkel zwischen Vektoren berechnen
- Eigenschaft orthogonaler Vektoren nennen
- Kreuzprodukt von Vektoren bilden
- den Nutzen des Kreuzproduktes für senkrechte Vektoren und die Fläche des Parallelogramms (eines Dreiecks) beschreiben

Skalarprodukt

Das (euklidische) **Skalarprodukt** $\circ : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ für zwei

Vektoren
$$\vec{a} = \begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix}$$
 und $\vec{b} = \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix}$ wird beschrieben durch:

$$\vec{a} \circ \vec{b} = \begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix} \circ \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix} = x_a \cdot x_b + y_a \cdot y_b + z_a \cdot z_b$$

Beispiel

$$\begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix} \circ \begin{pmatrix} 4 \\ -3 \\ 2 \end{pmatrix} = 3 \cdot 4 + 2 \cdot (-3) + (-5) \cdot 2 = 12 - 6 - 10 = -4$$

Orthogonale Vektoren

Zwei Vektoren \vec{a} und \vec{b} sind orthogonal bzw. senkrecht zueinander, genau dann wenn ihr Skalarprodukt 0 ist.

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \circ \vec{b} = 0$$

Aufgabe A1

Bestimmen Sie p so, dass \vec{a} und \vec{b} orthogonal zueinander sind:

$$\vec{a} = \begin{pmatrix} 3 \\ p \\ 0 \end{pmatrix} \text{ und } \vec{b} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}.$$

Aufgabe A2

Beurteilen Sie, welches Viereck *ABCD* durch die Punkte A(3|4|7), B(5|6|3), C(6|9|4) und D(4|7|8) bestimmt wird.

Rechenregeln für das Skalarprodukt

Für die Vektoren \vec{a} , \vec{b} und \vec{c} sowie eine beliebige Zahl $k \in \mathbb{R}$ gilt:

- $\mathbf{0} \ \overrightarrow{a} \circ \overrightarrow{b} = \overrightarrow{b} \circ \overrightarrow{a} \qquad (Kommutativgesetz)$
- $(k \cdot \vec{a}) \circ \vec{b} = k \cdot (\vec{a} \circ \vec{b})$
- $\vec{a} \circ (\vec{b} + \vec{c}) = \vec{a} \circ \vec{b} + \vec{a} \circ \vec{c} \text{ (Distributivgesetz)}$
- $\vec{a} \circ \vec{a} = |\vec{a}|^2 \text{ beziehungsweise } \sqrt{\vec{a} \circ \vec{a}} = |\vec{a}|$

Winkel zwischen Vektoren

Für den Winkel ϕ , der von zwei Vektoren \overrightarrow{a} und \overrightarrow{b} eingeschlossen wird, gilt:

$$\cos(\phi) = \frac{\overrightarrow{a} \circ \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

Bemerkung

Da der $\cos(90^{\circ}) = 0$ ist, sind Vektoren senkrecht zueinander, wenn ihr Skalarprodukt 0 ist.

Aufgabe A3

Berechnen Sie die Innenwinkel des Vierecks ABCD, welches durch die Punkte A(3|4|7), B(5|6|3), C(6|9|4) und D(4|7|8) beschrieben wird.

Kreuzprodukt/Vektorprodukt

Das Kreuzprodukt $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ für zwei Vektoren \vec{a} und \vec{b} bildet einen dritten Vektor \vec{n} .

$$\vec{a} \times \vec{b} = \begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix} \times \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix} = \begin{pmatrix} y_a \cdot z_b - z_a \cdot y_b \\ z_a \cdot x_b - x_a \cdot z_b \\ x_a \cdot y_b - y_a \cdot x_b \end{pmatrix} = \vec{n}$$

Es gilt dabei: $\vec{n} \perp \vec{a}$ und $\vec{n} \perp \vec{b}$

Beispiel

$$\begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix} \times \begin{pmatrix} 4 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \cdot 2 & - & (-5) \cdot (-3) \\ -5 \cdot 4 & - & 3 \cdot 2 \\ 3 \cdot (-3) & - & 2 \cdot 4 \end{pmatrix} = \begin{pmatrix} -11 \\ -26 \\ -17 \end{pmatrix}$$

Eigenschaften des Vektorproduktes

Neben der Orthogonalität bilden die Vektoren ein Rechtssystem^a.

 $|\vec{a} \times \vec{b}|$ gibt den Flächeninhalt des durch \vec{a} und \vec{b} aufgespannten Parallelogramms an.

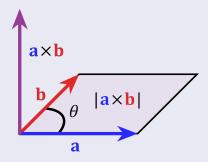


Abbildung: Veranschaulichung CC0

[&]quot;Siehe https://de.wikipedia.org/wiki/Rechtssystem_(Mathematik)

Aufgabe A4

Berechnen Sie die den Flächeninhalt des Vierecks ABCD, welches durch die Punkte A(3|4|7), B(5|6|3), C(6|9|4) und D(4|7|8) beschrieben wird.

Aufgabe A5

In einem kartesischen Koordinatensystem wird das gerade Prisma *ABCDEF* betrachtet. A(0|-4|0), $B(\sqrt{20}|0|0)$ und C(0|4|0) sind die Eckpunkte der Grundfläche.

- (a) Zeigen Sie, dass das Dreieck ABC im Punkt B nicht rechtwinklig ist.
- b) Der Inhalt der Mantelfläche des Prismas ist 60. Bestimmen Sie die Höhe des Prismas.

Aufgabe A6

Begründen Sie, dass gilt:

$$|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin(\phi)$$

Für Vektoren \vec{a} und \vec{b} und den eingeschlossenen Winkel ϕ .

Aufgabe A7

In einem kartesischen Koordinatensystem sind die Punkte A(0|0|1), B(2|6|1) und C(-4|8|5) gegeben.

- **1** Begründen Sie, dass die Gerade AB parallel zur x_1x_2 -Ebene verläuft.
- 2 Weisen Sie nach, dass
 - der Punkt M(-2|4|3) der Mittelpunkt der Strecke \overline{AC} ist;
 - das Dreieck ABC bei B einen rechten Winkel hat.
- Bestimmen Sie die Koordinaten des Punktes D, für den das Viereck ABCD ein Rechteck ist.

- 3. Lineare Algebra und Analytische Geometrie
- 3.5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren

H. Wuschke

19. März 2020

Ziele der Sitzung

- lineare Abhängigkeit grafisch deuten können
- lineare Abhängigkeit bzw. Unabhängigkeit rechnerisch nachweisen
- Begriffe kollinear und komplanar beschreiben und untersuchen

Erinnerung Linearkombination

Seien die Vektoren
$$\vec{a} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$$
 und $\vec{b} = \begin{pmatrix} -0, 5 \\ 7 \\ -3 \end{pmatrix}$ gegeben.

Bilden Sie die Linearkombinationen

$$\vec{c} = 2 \cdot \vec{a} - 4 \cdot \vec{b}$$

und

$$\overrightarrow{d} = -3 \cdot \overrightarrow{a} + 2 \cdot \overrightarrow{b}.$$

Lineare Abhängigkeit/Unabhängigkeit von Vektoren

Für drei Vektoren^a \overrightarrow{a} , \overrightarrow{b} und \overrightarrow{c} gibt es für die Lösung der Linearkombination

$$r \cdot \vec{a} + s \cdot \vec{b} + t \cdot \vec{c} = \vec{0}$$

folgende Möglichkeiten:

- Nur r = s = t = 0 löst die Gleichung. Dann sind die Vektoren linear unabhängig voneinander.
- ② Außer der Lösung r=s=t=0 gibt es noch andere Lösungen. Dann ist mindestens ein Vektor eine Linearkombination der anderen und sie sind linear abhängig voneinander.

 $[\]vec{a} \vec{a} \neq \vec{0}, \vec{b} \neq \vec{0} \text{ und } \vec{c} \neq \vec{0}$

Beispiele

Die folgenden Vektoren sind linear abhängig voneinander:

$$\vec{a} = \begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}, \vec{b} = \begin{pmatrix} -3 \\ -4 \\ 2 \end{pmatrix}, \vec{c} = \begin{pmatrix} 6 \\ 8 \\ -4 \end{pmatrix}, \vec{d} = \begin{pmatrix} -1, 5 \\ -2 \\ 1 \end{pmatrix}$$

Diese Vektoren sind immer linear unabhängig voneinander:

$$\vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Aufgabe A1

Es sind immer drei Vektoren vorgegeben. Bei einer Auswahl handelt es sich um linear unabhängige Vektoren. Begründen Sie dies.

a)
$$\overrightarrow{a_1} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$$
, $\overrightarrow{b_1} = \begin{pmatrix} 0 \\ 6 \\ 10 \end{pmatrix}$, $\overrightarrow{c_1} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$

b)
$$\overrightarrow{a_2} = \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}, \overrightarrow{b_2} = \begin{pmatrix} -2 \\ 0 \\ 6 \end{pmatrix}, \overrightarrow{c_2} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$$

c)
$$\overrightarrow{a_3} = \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}, \overrightarrow{b_3} = \begin{pmatrix} -2 \\ 0 \\ 6 \end{pmatrix}, \overrightarrow{c_3} = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}$$

kollinear, komplanar

Sind zwei Vektoren \vec{a} und \vec{b} linear abhängig voneinander, heißen sie **kollinear** zueinander.

$$r \cdot \vec{a} = \vec{b}$$

Sie liegen dann auf einer Geraden (lat. linea).

Sind drei Vektoren \vec{a} , \vec{b} und \vec{c} linear abhängig voneinander, heißen sie komplanar zueinander.

$$r \cdot \overrightarrow{a} + s \cdot \overrightarrow{b} = \overrightarrow{c}$$

Sie liegen dann in einer Ebene (lat. planus).

Beispiel kollinear

Die folgenden Vektoren sind jeweils kollinear zueinander:

$$\vec{a} = \begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}, \vec{b} = \begin{pmatrix} -3 \\ -4 \\ 2 \end{pmatrix}, \vec{c} = \begin{pmatrix} 6 \\ 8 \\ -4 \end{pmatrix}, \vec{d} = \begin{pmatrix} -1, 5 \\ -2 \\ 1 \end{pmatrix}$$

Denn $-1 \cdot \vec{a} = \vec{b}$ oder $-2 \cdot \vec{b} = \vec{c}$ oder $0, 5 \cdot \vec{b} = \vec{d}$.

Beispiel kompl<u>anar</u>

Die folgenden Vektoren sind zueinander komplanar zueinander (siehe Aufgabe A1).

$$\vec{a_1} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}, \vec{b_1} = \begin{pmatrix} 0 \\ 6 \\ 10 \end{pmatrix}, \vec{c_1} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

Denn: $2 \cdot \overrightarrow{a_1} + (-1) \cdot \overrightarrow{b_1} = \overrightarrow{c_1}$

3. Lineare Algebra und Analytische Geometrie 3.6 Geraden- und Ebenengleichungen

H. Wuschke

26. März 2020

Ziele der Sitzung

- Geradengleichungen in Parameterform angeben
- Punktprobe auf Geraden durchführen
- spezielle Geradengleichungen beschreiben
- Ebenengleichungen in Parameterform angeben
- Punktprobe auf Ebenen durchführen
- spezielle Ebenengleichungen beschreiben

Erinnerung kollinear

Weisen Sie nach, dass die Punkte

A(1|0|4), B(3|8|-2), C(2|4|1), D(-1|-8|10) und E(0|-4|7) auf einer Geraden liegen.

Zeigen Sie dazu, dass alle die Verbindungsvektoren kollinear sind.

Geradengleichungen in Parameterform

Ist ein Punkt A gegeben und eine Richtung \vec{v} ($\vec{v} \neq \vec{0}$), so bestimmen sie eine Geradengleichung.

Durch die Gleichung

$$\overrightarrow{OX} = \overrightarrow{OA} + t \cdot \overrightarrow{V}$$
; $t \in \mathbb{R}$

wird die Menge aller beliebigen Punkte X beschrieben, die auf einer Geraden mit Stützvektor \overrightarrow{OA} und Richtungsvektor \overrightarrow{v} liegen. Um einen Punkt zu erhalten, wird ein fester Wert für t eingesetzt.

Beispiel

Die Gerade, welche durch die Punkte A(1|2|3) und B(2|4|0) verläuft hat zum Beispiel die Gleichung:

$$g: \overrightarrow{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} \; ; \qquad t \in \mathbb{R}$$

Aufgabe A1

Geben Sie vier Punkte auf der Geraden han.

$$h: \overrightarrow{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} \; ; \qquad t \in \mathbb{R}$$

Aufgabe A2 – Streckengleichung

Geben Sie vier Punkte auf der Strecke \overline{AB} mit A(3|0|1) und B(5|4|3) an.

Aufgabe A3 - Punktprobe

Überprüfen Sie, ob die Punkte $P_1(2|3|4)$ und $P_2(8|-7|6)$ auf der Geraden h liegen.

$$h: \overrightarrow{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} \; ; \qquad t \in \mathbb{R}$$

Spezielle Geradengleichungen

Die Koordinatenachsen sind spezielle Geraden mit den folgenden Gleichungen:

$$\underline{x_1\text{-Achse}}: \qquad \overrightarrow{x} = \begin{pmatrix} x_1 \\ 0 \\ 0 \end{pmatrix} = x_1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \; ; \qquad x_1 \in \mathbb{R}$$

$$\underline{x_2\text{-Achse}}: \qquad \overrightarrow{x} = \begin{pmatrix} 0 \\ x_2 \\ 0 \end{pmatrix} = x_2 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \; ; \qquad x_2 \in \mathbb{R}$$

$$\underline{x_3\text{-Achse}}: \qquad \overrightarrow{x} = \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix} = x_3 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \; ; \qquad x_3 \in \mathbb{R}$$

Ebenengleichung in Parameterform

Ist ein Punkt A gegeben und zwei nicht kollineare Richtungen $\overrightarrow{v_1}$ und $\overrightarrow{v_2}$ $(\overrightarrow{v_1}, \overrightarrow{v_2} \neq \overrightarrow{0})$, so bestimmen sie eine Ebenengleichung.

Durch die Gleichung

$$\overrightarrow{OX} = \overrightarrow{OA} + r \cdot \overrightarrow{v_1} + s \cdot \overrightarrow{v_2}$$
; $r, s \in \mathbb{R}$

wird die Menge aller beliebigen Punkte X beschrieben, die auf einer Ebenen mit **Stützvektor** \overrightarrow{OA} und **Richtungsvektoren** $\overrightarrow{v_1}$ und $\overrightarrow{v_2}$ liegen. Um einen Punkt zu erhalten, wird ein fester Wert für r und s eingesetzt.

Beispiel

Die Ebene, welche durch die Punkte A(1|2|3), B(2|4|0) und C(-3|-4|2) verläuft hat zum Beispiel die Gleichung:

$$\varepsilon: \overrightarrow{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + s \cdot \begin{pmatrix} -4 \\ -6 \\ -1 \end{pmatrix} ; \qquad r, s \in \mathbb{R}$$

Aufgabe A4

Geben Sie vier Punkte auf der Ebene arepsilon an.

$$arepsilon: \overrightarrow{x} = egin{pmatrix} 0 \ 1 \ 2 \end{pmatrix} + r \cdot egin{pmatrix} 2 \ -2 \ 1 \end{pmatrix} + s \cdot egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} \; ; \qquad r,s \in \mathbb{R}$$

Aufgabe A5 – Parallelogrammgleichung

Geben Sie drei Punkte innerhalb des Parallelogramms ABCD mit A(3|0|1), B(5|4|3), C(-2|-1|3) und D(-4|-5|1) an.

Aufgabe A6 - Punktprobe

Überprüfen Sie, ob die Punkte $P_1(2|3|4)$ und $P_2(9|-5|9)$ in der Ebene ε liegen.

$$\varepsilon: \overrightarrow{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \; ; \qquad r,s \in \mathbb{R}$$

Spezielle Ebenengleichungen

Die Koordinatenachsen spannen spezielle Ebenen auf mit den folgenden Gleichungen:

$$\underline{x_1 - x_2 \text{-Ebene}}: \ \overrightarrow{x} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = x_1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \ ; \quad x_1, x_2 \in \mathbb{R}$$

$$\underline{x_1\text{-}x_3\text{-Ebene}}: \ \overrightarrow{x} = \begin{pmatrix} x_1 \\ 0 \\ x_3 \end{pmatrix} = x_1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_3 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \ ; \quad x_1, x_3 \in \mathbb{R}$$

$$\underline{x_2 \text{-} x_3 \text{-} \text{Ebene}}: \ \overrightarrow{x} = \begin{pmatrix} 0 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + x_3 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \ ; \quad x_2, x_3 \in \mathbb{R}$$

Darstellung der speziellen Ebenen

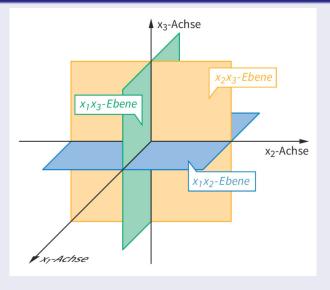


Abbildung: Abbildung aus EdM Sachsen 11, S. 163

 Lineare Algebra und Analytische Geometrie
 1.7 Lagebeziehungen Gerade-Gerade; Gerade-Ebene (in Parameterformen)

H. Wuschke

02. April 2020

Ziele der Sitzung

- Geradengleichungen auf ihre Lagebeziehung überprüfen
- Lagebeziehung Gerade-Ebene beschreiben können
- Schnittpunkte/Durchstoßpunkte Gerade-Ebene berechnen
- Spurpunkte berechnen

Erinnerung kollinear und komplanar

Gegeben sind die folgenden Vektoren \vec{a} bis \vec{d} :

$$\vec{a} = \begin{pmatrix} 1 \\ -4 \\ 0 \end{pmatrix}, \vec{b} = \begin{pmatrix} -3 \\ 12 \\ 0 \end{pmatrix}, \vec{c} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \vec{d} = \begin{pmatrix} 0 \\ -4 \\ -2 \end{pmatrix}$$

- a) Zeigen Sie, dass \vec{a} und \vec{b} zueinander kollinear sind.
- b) Zeigen Sie, dass \overrightarrow{c} und \overrightarrow{d} linear unabhängig sind.
- c) Zeigen Sie, dass \vec{a} , \vec{c} und \vec{d} komplanar sind.

Lagebeziehungen zweier Geraden

Zwei Geraden

$$\mathbf{g}: \overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{a}} + t_1 \cdot \overrightarrow{\mathbf{v}}; \quad t_1 \in \mathbb{R} \quad \text{und} \quad \mathbf{h}: \overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{b}} + t_2 \cdot \overrightarrow{\mathbf{w}}; \quad t_2 \in \mathbb{R}$$

besitzen eine der folgenden vier Lagebeziehungen:

	<mark>v</mark> und w sind kollinear	vund wvsind nicht kollinear
g = h hat eine Lösung	sind identisch	schneiden sich
g=h hat keine Lösung	sind parallel	sind windschief

Wenn die Richtungsvektoren kollinear sind:

Beispiel 1 g und h sind identisch

$$g: \overrightarrow{x} = egin{pmatrix} 2 \ -1 \ 1 \end{pmatrix} + s \cdot egin{pmatrix} -4 \ 4 \ 2 \end{pmatrix} \text{ und } h: \overrightarrow{x} = egin{pmatrix} 0 \ 1 \ 2 \end{pmatrix} + t \cdot egin{pmatrix} 2 \ -2 \ -1 \end{pmatrix} \; ; s,t \in \mathbb{R}$$

Beispiel 2 g und h sind parallel

$$g: \overrightarrow{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} -4 \\ 4 \\ 2 \end{pmatrix}$$
 und $h: \overrightarrow{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$; $s, t \in \mathbb{R}$

Wenn die Richtungsvektoren nicht kollinear sind:

Beispiel 3 g und h schneiden sich

$$g: \overrightarrow{x} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix} \text{ und } h: \overrightarrow{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} \text{ ; } s,t \in \mathbb{R}$$

Beispiel 4 g und h sind windschief

$$g: \overrightarrow{x} = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix}$$
 und $h: \overrightarrow{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$; $s, t \in \mathbb{R}$

Lagebeziehungen Gerade-Ebene

Eine Gerade

$$g: \vec{x} = \vec{a} + t_1 \cdot \vec{v}; \quad t \in \mathbb{R}$$

und eine Ebene

$$\varepsilon: \overrightarrow{x} = \overrightarrow{b} + r \cdot \overrightarrow{w_1} + s \cdot \overrightarrow{w_2}; \quad r, s \in \mathbb{R}$$

besitzen eine der folgenden drei Lagebeziehungen:

	$\overrightarrow{v}, \overrightarrow{w_1}$ und $\overrightarrow{w_2}$ sind komplanar	$\overrightarrow{V}, \overrightarrow{w_1}$ und $\overrightarrow{w_2}$ sind nicht komplanar
g=arepsilon hat eine Lösung	g liegt in $arepsilon$	schneiden sich
${\it g}=arepsilon$ hat keine Lösung	sind parallel	geht nicht

Bemerkung

Schnittpunkte von Geraden und Ebenen heißen auch Durchstoßpunkte.

Wenn die Richtungsvektoren komplanar sind:

Beispiel 5 g liegt in arepsilon

$$g: \overrightarrow{x} = \begin{pmatrix} 5 \\ -1 \\ 8 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}; t \in \mathbb{R}$$

$$arepsilon: \overrightarrow{x} = egin{pmatrix} 0 \ 1 \ 2 \end{pmatrix} + r \cdot egin{pmatrix} 2 \ -2 \ 1 \end{pmatrix} + s \cdot egin{pmatrix} 3 \ 0 \ 5 \end{pmatrix} \; ; r, s \in \mathbb{R}$$

Lösung:

$$\begin{pmatrix} 5 \\ -1 \\ 8 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 0 \\ 5 \end{pmatrix}$$

$$\overset{\mathsf{CAS}}{\Rightarrow} r = -2w + 1; s = 2 + 1; t = w; w \in \mathbb{R} \ \ (\mathsf{L\"{o}sungen} \ \infty)$$
 $\Rightarrow g \in \varepsilon$

Wenn die Richtungsvektoren komplanar sind:

Beispiel 6 $g \parallel \varepsilon$

$$g: \overrightarrow{x} = egin{pmatrix} 0 \ 1 \ 3 \end{pmatrix} + t \cdot egin{pmatrix} -1 \ 4 \ 3 \end{pmatrix}; t \in \mathbb{R}$$

$$arepsilon: \overrightarrow{x} = egin{pmatrix} 0 \ 1 \ 2 \end{pmatrix} + r \cdot egin{pmatrix} 2 \ -2 \ 1 \end{pmatrix} + s \cdot egin{pmatrix} 3 \ 0 \ 5 \end{pmatrix} \; ; r,s \in \mathbb{R}$$

Lösung:

$$\begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 0 \\ 5 \end{pmatrix}$$

 $\overset{\mathsf{CAS}}{\Rightarrow} \ \mathsf{keine} \ \mathsf{L\"{o}sung} \ \Rightarrow g \parallel \varepsilon$

Wenn die Richtungsvektoren <u>nicht</u> komplanar müssen sich Gerade und Ebene schneiden.

Beispiel 7 g und ε schneiden sich

$$g: \overrightarrow{x} = \begin{pmatrix} 5 \\ -1 \\ 8 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}; t \in \mathbb{R}$$

$$\varepsilon: \overrightarrow{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 0 \\ 5 \end{pmatrix} ; r, s \in \mathbb{R}$$

Beispiel 7 g und ε schneiden sich

$$\begin{pmatrix} 5 \\ -1 \\ 8 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 0 \\ 5 \end{pmatrix}$$

$$\overset{\text{CAS}}{\Rightarrow} r = 1, s = 1, t = 0 \Rightarrow g \cap \varepsilon$$

Setzen Sie r=1 und s=1 in ε ein oder t=0 in g ein.

$$\Rightarrow \begin{pmatrix} 5 \\ -2 \\ 8 \end{pmatrix} + \frac{\mathbf{0}}{\mathbf{0}} \cdot \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \\ 8 \end{pmatrix} \Rightarrow S(5|-1|8)$$

Spurpunkte

Die Schnittpunkte einer Geraden g mit den Koordinatenebenen heißen Spurpunkte.

 S_{12} ist der Spurpunkt von g und der x_1 - x_2 -Ebene.

 S_{13} ist der Spurpunkt von g und der x_1 - x_3 -Ebene.

 S_{23} ist der Spurpunkt von g und der x_2 - x_3 -Ebene.

Aufgabe A1

Berechnen Sie die Spurpunkte der Geraden h mit

$$h: \overrightarrow{x} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 8 \\ 15 \end{pmatrix}; \qquad t \in \mathbb{R}$$

3. Lineare Algebra und Analytische Geometrie 3.8 Ebenengleichungen in Koordinatenform

H. Wuschke

23. April 2020

Ziele der Sitzung

- Ebenengleichungen in Koordinatenform aufstellen
- Punktprobe durchführen
- Punkte einer Ebene bestimmen, speziell Spurpunkte

Erinnerung senkrechte Vektoren

Gegeben ist die Ebene ε mit folgender Gleichung:

$$\varepsilon: \overrightarrow{x} = \begin{pmatrix} 1 \\ -4 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \; ; \quad r, s \in \mathbb{R}$$

Bestimmen Sie einen Vektor, der senkrecht auf der Ebene steht.

Normalenvektor einer Ebene

Bei einer Ebene wird der Vektor, welcher durch das Kreuzprodukt der Richtungsvektoren gebildet wird als **Normalenvektor** der **Ebene** (\vec{n}) bezeichnet.

Symbolisch:

$$\varepsilon: \overrightarrow{x} = \overrightarrow{OA} + r \cdot \overrightarrow{AB} + s \cdot \overrightarrow{AC}; \quad r, s \in \mathbb{R} \quad \rightarrow \quad \overrightarrow{n} = \overrightarrow{AB} \times \overrightarrow{AC}$$

Koordinatenform einer Ebene

Sind der Normalenvektor
$$\overrightarrow{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$
 und ein Ortsvektor $\overrightarrow{OX} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

eines beliebigen Punktes $X(x_1|x_2|x_3)$ der Ebene ε gegeben, so lässt sich ε auch durch folgende Gleichung darstellen:

$$\varepsilon: \overrightarrow{n} \circ \overrightarrow{OX} = d \quad \Leftrightarrow \quad \varepsilon: \underline{n_1} \cdot \underline{x_1} + \underline{n_2} \cdot \underline{x_2} + \underline{n_3} \cdot \underline{x_3} = d \; ; \quad d \in \mathbb{R}$$

Dies wird als Koordinatenform der Ebene bezeichnet.

Andere Notation

Manchmal wird auch folgende Notation verwendet:

$$\varepsilon$$
: $ax + by + cz = d$ $\overrightarrow{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Beispiel 1: \vec{n} und Punkt gegeben

Gegeben sind der Normalenvektor
$$\vec{n} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$
 und der Punkt

A(5|0|4) der Ebene ε .

Geben Sie eine Koordinatengleichung von arepsilon an.

Eine mögliche Koordinatenform ist $\varepsilon: 2 \cdot x_1 + 3 \cdot x_2 - x_3 = 6$

Bemerkung

Es gibt unendlich viele mögliche Koordinatengleichungen (ähnlich wie Parameterformen).

Im Beispiel 1 wären

$$\varepsilon: 4 \cdot x_1 + 6 \cdot x_2 - 2 \cdot x_3 = 12$$
 oder

$$\varepsilon: -6 \cdot x_1 - 9 \cdot x_2 + 3 \cdot x_3 = -18$$

mögliche Koordinatengleichungen.

Beispiel 2: Drei Punkte gegeben

Die Punkte A(-4|2|1), B(-1|1|1) und C(0|2|-3) spannen die Ebene ε auf.

Geben Sie eine Koordinatengleichung von ε an.

$$\varepsilon : \overrightarrow{x} = \begin{pmatrix} -4 \\ 2 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 4 \\ 0 \\ -4 \end{pmatrix} ; \quad r, s \in \mathbb{R}$$

$$\overrightarrow{n} = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 4 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 4 \\ 12 \\ 4 \end{pmatrix}$$

$$\varepsilon: \mathbf{4} \cdot x_1 + \mathbf{12} \cdot x_2 + \mathbf{4} \cdot x_3 = 12$$

Punktprobe mit der Koordinatenform

Um zu überprüfen, ob ein Punkt P in einer Ebene ε liegt, muss dieser in die Koordinatengleichung eingesetzt werden.

- **1** Ist die Aussage wahr, so ist $P \in \varepsilon$.
- ② Ist die Aussage falsch, so ist $P \notin \varepsilon$

Für eine Punktprobe ist die Koordinatenform sehr geeignet.

Beispiel 3: Punktprobe

Gegeben ist die Ebene $\varepsilon: 2 \cdot x_1 - 3 \cdot x_2 + \frac{1}{2} \cdot x_3 = 4$

- **1** Es ist $P_1(1|2|16) \in \varepsilon$, weil $2 \cdot 1 3 \cdot 2 + \frac{1}{2} \cdot 16 = 4$ gilt.
- **2** Es ist $P_2(1|1|4) \notin \varepsilon$, weil $2 \cdot 1 3 \cdot 1 + \frac{1}{2} \cdot 4 = 1 \neq 4$ gilt.

Lagebeziehung Gerade-Ebene mit der Koordinatenform

Dafür wird die Geradengleichung von g komponentenweise in die Ebene ε eingesetzt. Es ergeben sich für die Lösung des Parameters t der Geraden drei Fälle:

- **1** t besitzt keine Lösung o $g \parallel arepsilon$
- ② t besitzt eindeutige Lösung o $g \cap \varepsilon$
- **3** t besitzt mehrdeutige Lösung \rightarrow $g \in \varepsilon$

Beispiel 4: $g \parallel \varepsilon$

$$g: \overrightarrow{X} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}; t \in \mathbb{R}$$
$$\varepsilon: -10 \cdot x_1 - 7 \cdot x_2 + 6 \cdot x_3 = 5$$

Lösung:

Beispiel 5: $g \cap \varepsilon$

$$g: \overrightarrow{x} = \begin{pmatrix} 5 \\ -1 \\ 8 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}; t \in \mathbb{R}$$
$$\varepsilon: -10 \cdot x_1 - 7 \cdot x_2 + 6 \cdot x_3 = 5$$

Lösung:

$$-10 \cdot (5+0t) - 7 \cdot (-1+4t) + 6 \cdot (8+0t) = 5$$
$$-50+7-28t+48=5 \implies 5-28t=5 \implies t=0$$

Nun muss t = 0 in die Geradengleichung eingesetzt werden und es ergibt sich der Schnittpunkt S(5|-1|8).

Beispiel 6: g liegt in ε

$$g: \overrightarrow{x} = \begin{pmatrix} 5 \\ -1 \\ 8 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}; t \in \mathbb{R}$$

$$\varepsilon: -10 \cdot x_1 - 7 \cdot x_2 + 6 \cdot x_3 = 5$$

Lösung:

$$-10 \cdot (5 - t) - 7 \cdot (-1 + 4t) + 6 \cdot (8 + 3t) = 5$$

$$-50 + 10t + 7 - 28t + 48 + 18t = 5$$

$$5 = 5 \quad \Rightarrow \quad \text{wahr für alle } t \in \mathbb{R} \quad \Rightarrow \quad g \in \varepsilon$$

Spurpunkte

Die Schnittpunkte einer Ebene ε mit den Koordinatenachsen heißen Spurpunkte der Ebene.

 $S_1(a_1|0|0)$ ist der Spurpunkt von ε und der x_1 -Achse.

 $S_2(0|a_2|0)$ ist der Spurpunkt von ε und der x_2 -Achse.

 $S_3(0|0|a_3)$ ist der Spurpunkt von ε und der x_3 -Achse.

Aufgabe A1

Zeigen Sie, dass die Spurpunkte für

$$\varepsilon$$
: $-10 \cdot x_1 + 7 \cdot x_2 + 25 \cdot x_3 = 5$

folgende Koordinaten haben: $S_1(-\frac{1}{2}|0|0)$, $S_2(0|\frac{5}{7}|0)$ und $S_3(0|0|\frac{1}{5})$.

Koordinatenform für Spurpunkte

Eine Ebene mit den Spurpunkten $S_1(a_1|0|0)$, $S_2(0|a_2|0)$ und $S_3(0|0|a_3)^a$ hat die Koordinatenform

$$\frac{x_1}{a_1} + \frac{x_2}{a_2} + \frac{x_3}{a_3} = 1$$

 $^{a}a_{1}\neq 0, a_{2}\neq 0 \text{ und } a_{3}\neq 0$

Beispiel 7: Drei Achsenschnittpunkte gegeben

Die Punkte A(4|0|0), B(0|-2|0) und C(0|0|-7) spannen die Ebene ε auf.

Geben Sie eine Koordinatengleichung von arepsilon an.

$$\varepsilon: \frac{x_1}{4} - \frac{x_2}{2} - \frac{x_3}{7} = 1$$

Koordinatenebenen in Koordinatenform

Die x_1 - x_2 -Ebene hat die Koordinatenform $\varepsilon: x_3 = 0$

Die x_1 - x_3 -Ebene hat die Koordinatenform $\varepsilon: x_2 = 0$

Die x_2 - x_3 -Ebene hat die Koordinatenform $\varepsilon: x_1=0$

$g \perp \varepsilon$

Ist der Richtungsvektor der Geraden g parallel zum Normalenvektor der Ebene ε , so steht g senkrecht auf der Ebene ε .