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Chapter 1: Introduction

In this class, wewill focus on combinatorics as the field of counting things. This is
a vast area with many different methods and perspectives. After a brief introduc-
tion to some basic techniques, the main focus of the class is on Stanley-Reisner
algebras/rings/ideals. This is an algebraic tool that can be used to prove prop-
erties of certain counts in the context of simplicial complexes. So essentially, we
will introduce abstract simplicial complexes and study themwith algebraic tools.
They appear in nature in discrete geometry (e.g. the boundary complex of a
simplicial polytope and more generally simplicial spheres) and algebraic topol-
ogy (keyword simplicial homology), among other fields of mathematics.

One main point of Stanley-Reisner theory is to connect counts for simplicial
complexes with algebraic invariants in the language of modules over polynomial
rings. We will see Betti numbers and graded algebras. Abstract algebra is there-
fore a prerequisite, basics in commutative algebra are very useful, and familiarity
with computer algebra systems (e.g. Macaulay2 or singular, the latter available in
OSCAR) helps with computing examples.

The main sources for this course are the following.
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Chapter 2: Combinatorics – the
art of counting

Note that the class starts in the third week. First meeting is on April 15!
In Enumerative Combinatorics – also known as the art of counting – the goal

is to systematically count the number of elements in a (countable) family of finite
sets defined by combinatorial conditions. As a basic example, we might be inter-
ested to count the number of all 2-element subsets of the set [𝑛] = {1, 2, . . . , 𝑛}
of all positive integers up to 𝑛 for any 𝑛 ∈ ℕ. (Of course, the answer would be(𝑛
2
)
.) Formally, we have an infinite family 𝑆𝑛 of finite sets indexed by a typically

infinite set 𝐼 (for example, 𝑛 ∈ ℕ) and we record the cardinality of 𝑆𝑛 in a count-
ing function 𝑓 : 𝐼 → ℕ0, 𝑓 (𝑖) = |𝑆𝑖 |. The index set 𝐼 might also live in ℕ × ℕ,
for instance. In this first chapter, we introduce some basic ways to give answers
to such questions. The notion of a generating function is the main point. This
chapter is based on [A]. There are many more examples and interesting results in
that book.

2.1. Generating Functions

The idea of generating functions is very simple but surprising useful. We give a
short introduction based on [A, Sections 2 and 3].

Definition. A function 𝑓 : ℤ≥0 → ℂ can be encoded in terms of a formal power
series called the generating function of 𝑓 defined simply as

𝐹 (𝑧) =
∞∑︁
𝑖=0

𝑓 (𝑖)𝑧𝑖.

This is a formal power series in the sense that we consider it as an algebraic
object in the ring ℂ[[𝑧]] of power series as opposed to an analytic object (essen-
tially, we are not concerned with matters of convergence). The algebraic opera-
tions are defined as usual, namely∑∞

𝑖=0 𝑎𝑖𝑧
𝑖 +∑∞

𝑗=0 𝑏𝑗𝑧
𝑗 =

∑∞
𝑖=0(𝑎𝑖 + 𝑏𝑖)𝑧𝑖 and∑∞

𝑖=0 𝑎𝑖𝑧
𝑖 ·∑∞

𝑗=0 𝑏𝑗𝑧
𝑗 =

∑∞
𝑘=0

(∑
𝑖+𝑗=𝑘 𝑎𝑖𝑏𝑗

)
𝑧𝑘.

Simple rational functions correspond to power series (by taking their Taylor ex-
pansion around 0). We might use the following with convention

(𝑚
𝑖

)
= 0 for

7



8 2. Combinatorics – the art of counting

𝑖 > 𝑚.

1
1 − 𝑧 =

∞∑︁
𝑖=0

𝑧𝑖

1
1 + 𝑧 =

∞∑︁
𝑖=0

(−1) 𝑖𝑧𝑖

1
1 − 𝑧2 =

∞∑︁
𝑖=0

𝑧2𝑖

(1 + 𝑧)𝑚 =

∞∑︁
𝑖=0

(
𝑚

𝑖

)
𝑧𝑖

1
(1 − 𝑧)𝑚 =

∞∑︁
𝑖=0

(
𝑚 + 𝑖 − 1

𝑖

)
𝑧𝑖

𝑧𝑚

(1 − 𝑧)𝑚+1 =

∞∑︁
𝑖=0

(
𝑖

𝑚

)
𝑧𝑖

2.1.1 Exercise. Verify the expansions of rational functions as formal power se-
ries listed above.

2.1.2 Exercise. What are the units of the ring ℂ[[𝑧]] of formal power series
(with respect to the above product)?
Hint: If you know what a discrete valuation ring is, this should lead you to the
answer. Otherwise, analysis courses often give the answer as well (in which case
you want to think of the power series as a convergent power series for intuition).

2.1.3 Exercise. Let 𝐴 and 𝐵 be two formal power series in ℂ[[𝑧]]. Show that
we get a well-defined series 𝐴(𝐵(𝑧)) if

(1) 𝐴 is a polynomial, or
(2) the constant term of 𝐵 is 0.

Furthermore, suppose that 𝐴 =
∑
𝑎𝑖𝑧

𝑖 with 𝑎0 = 0. Show that there exists a
unique series 𝐵 =

∑
𝑏𝑗𝑧

𝑗 with 𝑏0 = 0 and 𝐴(𝐵(𝑧)) = 𝐵(𝐴(𝑧)) = 𝑧 if and only if
𝑎1 ≠ 0.

We might use the following series from analysis.

exp(𝑧) =

∞∑︁
𝑘=0

1
𝑘!
𝑧𝑘

log(1 + 𝑧) =

∞∑︁
𝑘=0

(−1)𝑘+1
𝑘

𝑧𝑘

− log(1 − 𝑧) =

∞∑︁
𝑘=0

1
𝑘
𝑧𝑘

Sometimes it is useful to consider weights in addition to the counting func-
tion 𝑓 : ℤ≥0 → ℂ (called𝑄-series in [A, Section 2.2]). Here is the primary example.

Combinatorics / Rainer Sinn / Uni Leipzig (2024)



2.1. Generating Functions 9

Definition. For a function 𝑓 : ℤ≥0 → ℂ, the exponential generating func-
tion is defined as

𝐹 (𝑧) =
∞∑︁
𝑘=0

1
𝑘!
𝑓 (𝑘)𝑧𝑘.

As an example of the usefulness of exponential generating functions, prove
the binomial inversion formula.

2.1.4 Exercise. Let 𝐴(𝑧) = ∑(𝑎𝑖/𝑖!) · 𝑧𝑖 and 𝐵(𝑧) =
∑(𝑏𝑖/𝑖!) · 𝑧𝑖 be two expo-

nential generating functions for counting functions 𝑎, 𝑏 : ℤ≥0 → ℂ. First, show
that the equality 𝐵(𝑧) = 𝐴(𝑧) exp(𝑧) is equivalent to

𝑏𝑛 =
𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑎𝑘

for all 𝑛. From this, derive the binomial inversion formula which says that the
following two identities are equivalent:

𝑏𝑛 =

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑎𝑘 for all 𝑛 ∈ ℤ≥0

𝑎𝑛 =

𝑛∑︁
𝑘=0

(−1)𝑛−𝑘
(
𝑛

𝑘

)
𝑏𝑘 for all 𝑛 ∈ ℤ≥0.

Wewill also consider the derivative of a formal power series as a formal, linear
operation.

Definition. The formal derivative of 𝐹 (𝑧) =
∑∞
𝑖=0 𝑎𝑖𝑧

𝑖 ∈ ℂ[[𝑧]] , denoted
𝐹′(𝑧) is defined as

𝐹′(𝑧) =
∞∑︁
𝑖=0

(𝑖 + 1)𝑎𝑖+1𝑧𝑖.

2.1.5 Exercise. Show that familiar rules for derivatives also hold for formal deriva-
tives of formal power series, i.e. show (𝐹 + 𝐺)′ = 𝐹′ + 𝐺′, (𝐹𝐺)′ = 𝐹′𝐺 + 𝐹𝐺′,
(𝐹−1)′ = −𝐹′/𝐹2, and 𝐹 (𝐺(𝑧))′ = 𝐹′(𝐺(𝑧))𝐺′(𝑧), whenever the expressions are
defined.

The formal derivative can be used to derive recursion formulas, for instance.

2.1.6 Example. Set 𝐴(𝑧) = ∑∞
𝑖=0

(2𝑖
𝑖

)
𝑧𝑖 and 𝑎𝑖 =

(2𝑖
𝑖

)
. By definition of binomial

coefficients, we have

𝑎𝑖 =

(
2𝑖
𝑖

)
=
2𝑖(2𝑖 − 1)

𝑖2
𝑎𝑖−1

so that 𝑖𝑎𝑖 = 4𝑖𝑎𝑖−1 − 2𝑎𝑖. This is equivalent to the formal identity

𝐹′ = 4(𝑧𝐹)′ − 2𝐹 = 4𝑧𝐹′ + 2𝐹.

Nowweuse some tricks. First, we rewrite the identity as 𝐹 = 1
2 (1−4𝑧)𝐹′. Second,

we solve this using logarithms, namely

(log(𝐹))′ = 𝐹′

𝐹
=

2
1 − 4𝑧

= −1
2
(log(1 − 4𝑧))′ .

Combinatorics / Rainer Sinn / Uni Leipzig (2024)



10 2. Combinatorics – the art of counting

Integrating this identity (whichwe can again do formally, termwise), we get log(𝐹) =
−1

2 log(1 − 4𝑧) – we don’t have to worry about constant terms. Using the usual
logarithmic exponential rule (exercise: this applies also in the setup of formal
power series), we finally see

𝐹 (𝑧) =
∞∑︁
𝑖=0

(
2𝑖
𝑖

)
=

1√
1 − 4𝑧

.

Exercise: Show, by Taylor expansion on the right hand side (or better yet of the
identity 𝐹2 = 1/(1 − 4𝑧)), that this implies for all 𝑛 ≥ 1 the identity

𝑛∑︁
𝑘=0

(
2𝑘
𝑘

) (
2(𝑛 − 𝑘)
𝑛 − 𝑘

)
= 4𝑛.

2.1.7 Exercise. Find the unique sequence (𝑎𝑛)𝑛≥0 of real numbers such that

𝑛∑︁
𝑘=0

𝑎𝑘𝑎𝑛−𝑘 = 1

for all 𝑛 ≥ 0.

Another basic application of generating functions is to recursively defined
sequences. The main result is the following.

2.1.8 Theorem. Let 𝑐1, . . . , 𝑐𝑑 be a sequence of complex numbers for some integer
𝑑 ≥ 1with 𝑐𝑑 ≠ 0 and set 𝑐(𝑧) = 1+𝑐1𝑧+. . .+𝑐𝑑𝑧𝑑 ∈ ℂ[𝑧]. Denote by 𝛼1, . . . , 𝛼𝑘 ∈ ℂ

the distinct roots of the reciprocal polynomial 𝑐𝑅 (𝑧) = 𝑧𝑑𝑐( 1𝑧 ) (in some order) so that

𝑐(𝑧) = (1 − 𝛼1𝑧)𝑑1 · · · (1 − 𝛼𝑘𝑧)𝑑𝑘

for multiplicities 𝑑𝑖 ∈ ℕ. Let 𝑓 : ℤ≥0 → ℂ be a function. The following statements
are equivalent.

(1) The function 𝑓 satisfies the recurrence

𝑓 (𝑛 + 𝑑) + 𝑐1𝑓 (𝑛 + 𝑑 − 1) + . . . + 𝑐𝑑𝑓 (𝑛) = 0

of order 𝑑 for all 𝑛 ≥ 0.
(2) The corresponding generating function is a rational function, namely there is

a polynomial 𝑝 ∈ ℂ[𝑧] of degree less than 𝑑 such that

𝐹 (𝑧) =
∞∑︁
𝑖=0

𝑓 (𝑖)𝑧𝑖 = 𝑝(𝑧)
𝑐(𝑧) .

(3) There are polynomials 𝑝𝑖 ∈ ℂ[𝑧] of degree less than 𝑑𝑖 (𝑖 ∈ [𝑘]) such that

𝑓 (𝑛) =
𝑘∑︁
𝑖=1

𝑝𝑖(𝑛)𝛼𝑛𝑖 .

Combinatorics / Rainer Sinn / Uni Leipzig (2024)



2.1. Generating Functions 11

Proof. The following sketches the main steps in the proof. See [A, Theorem 3.1]
for full details. The proof is based on linear algebra, comparing vector spaces of
dimension 𝑑 over ℂ. We set

𝑉1 = {𝑓 : ℤ≥0 → ℂ : 𝑓 (𝑛 + 𝑑) + 𝑐1𝑓 (𝑛 + 𝑑 − 1) + . . . + 𝑐𝑑𝑓 (𝑛) = 0 for all 𝑛 ≥ 0}

𝑉2 = {𝑓 : ℤ≥0 → ℂ :
∞∑︁
𝑖=0

𝑓 (𝑖)𝑧𝑖 = 𝑝(𝑧)
𝑐(𝑧) for some 𝑝 ∈ ℂ[𝑧]𝑑−1}

𝑉3 = {𝑓 : ℤ≥0 → ℂ : 𝑓 (𝑛) =
𝑘∑︁
𝑖=1

𝑝𝑖(𝑛)𝛼𝑛𝑖 for some 𝑝𝑖 ∈ ℂ[𝑧]𝑑𝑖−1}

with each vector space corresponding to one statement of the theorem. The first
observation is that all three vector spaces have dimension 𝑑 over ℂ. In the first
case, we have 𝑑 initial conditions; in the second, the polynomial 𝑝 has 𝑑 coef-
ficients; and in the third, the polynomials 𝑝𝑖 have 𝑑 coefficients in total. There-
fore, it suffices to prove inclusions of these vector spaces to conclude equality and
therefore the theorem. The inclusion 𝑉2 ⊂ 𝑉1 is direct by comparing coefficients
of the formal power series 𝑐(𝑧)∑∞

𝑖=0 𝑓 (𝑖)𝑧𝑖 = 𝑝(𝑧); so we have𝑉1 = 𝑉2. Finally, to
show 𝑉1 = 𝑉2 ⊂ 𝑉3, we use partial fraction decomposition of the rational func-
tion 𝑝(𝑧)/𝑐(𝑧) to obtain the polynomials 𝑝𝑖. Since the polynomials (1 − 𝛼𝑖𝑧)𝑑𝑖
divide 𝑐(𝑧), we can write

𝑝(𝑧)
𝑐(𝑧) =

𝑘∑︁
𝑖=1

𝑔𝑖(𝑧)
(1 − 𝛼𝑖𝑧)𝑑𝑖

.

Now we need to work a bit and manipulate this algebraically. The important
result is the equality

𝑔𝑖(𝑧)
(1 − 𝛼𝑖𝑧)𝑑𝑖

=

∞∑︁
𝑛=0

©­«
𝑑𝑖−1∑︁
𝑗=0

𝛼
−𝑗
𝑖 · 𝑔𝑖,𝑗 ·

(
𝑛 + 𝑑𝑖 − 𝑗 − 1

𝑑𝑖 − 1

)ª®¬ 𝛼𝑛𝑖 𝑧𝑛
where 𝑔𝑖 =

∑𝑑𝑖−1
𝑗=0 𝑔𝑖,𝑗𝑧

𝑗. Comparing coefficients, we can read off the polynomials

𝑝𝑖(𝑛) =
∑𝑑𝑖−1
𝑗=0 𝛼

−𝑗
𝑖 · 𝑔𝑖,𝑗 ·

(𝑛+𝑑𝑖−𝑗−1
𝑑𝑖−1

)
with the property that 𝑓 (𝑛) = ∑𝑘

𝑖=1 𝑝𝑖(𝑛)𝛼𝑛𝑖 as
claimed in (3). ■

2.1.9 Exercise. Use the above result to give a closed formula for the 𝑛th Fi-
bonacci number defined by the recurrence 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 (𝑛 ≥ 2) of order
2 with initial conditions 𝐹0 = 0 and 𝐹1 = 1. (The golden ratio should appear
in your computations.) What happens if we change the initial conditions? For
instance, can you quickly adapt the solution to 𝐹0 = 10 and 𝐹1 = −5?

Combinatorics / Rainer Sinn / Uni Leipzig (2024)
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Chapter 3: Basics in commuta-
tive algebra

3.1. Noetherian rings and modules

In this section, we discuss some basics in abstract and commutative algebra. A
ring 𝑅 for us here is a commutative ring with unit which means that (𝑅,+) is
an abelian group, (𝑅, ·) is associative, commutative, and has a neutral element
1 ∈ 𝑅, and addition and multiplication are distributive. We will assume that
0 ≠ 1 (so the neutral element for addition and multiplication are distinct). Most
commonly, we will work with polynomial rings 𝑅 = [̨𝑥1, . . . , 𝑥𝑛]. Another good
example to keep in mind is 𝑅 = ℤ.

3.1.1 Exercise. Show that a ring 𝑅 with 0 = 1 is 𝑅 = {0}.
Definition. Let 𝑅 be a ring. A subset 𝐼 ⊂ 𝑅 is an ideal of 𝑅 if is is non-empty
and satisfies 𝐼 + 𝐼 ⊂ 𝐼 and 𝑅 · 𝐼 ⊂ 𝐼 .

3.1.2 Exercise. Show that every ideal is an abelian group with respect to addi-
tion (inherited from 𝑅).

3.1.3 Proposition. The intersection of ideals of a ring is again an ideal. In particu-
lar, for any set𝑀 ⊂ 𝑅, there is a unique smallest ideal containing𝑀 which we denote
by ⟨𝑀⟩ = ⋂

𝐼⊃𝑀 𝐼 . We have

⟨𝑀⟩ =
{

𝑟∑︁
𝑖=1

𝑓𝑖𝑔𝑖 | 𝑟 ∈ ℕ, 𝑓𝑖 ∈ 𝑅, 𝑔𝑖 ∈ 𝑀
}
.

Proof. Exercise. ■

3.1.4 Theorem. Let 𝑘 be a field and 𝑅 = 𝑘[𝑥] be the polynomial ring over 𝑘 in one
variable 𝑥. Then every ideal of 𝑅 is generated by one element.

Proof. This follows from polynomial division with remainder. In other words,
the ring 𝑅 is Euclidean. Let 𝐼 ⊂ 𝑅 be an ideal, 𝐼 ≠ {0}. Then there is a unique
monic polynomial 𝑓 ∈ 𝐼 of smallest degree (so with leading coefficient 1). Indeed,
let 𝑓 be any monic polynomial of smallest degree and pick 𝑔 ∈ 𝐼 . By polynomial
division, we can write

𝑔 = 𝑞 · 𝑓 + 𝑟
with 0 ≤ deg(𝑟) < deg(𝑓 ) or 𝑟 = 0. Since the degree of 𝑓 is minimal over all
elements in 𝐼 and 𝑟 = 𝑔 − 𝑞 · 𝑓 ∈ 𝐼 , we must have 𝑟 = 0 so that 𝑓 divides 𝑔. ■

13



14 3. Basics in commutative algebra

3.1.5 Exercise. Let 𝑘 be a field and 𝑓 , 𝑔 ∈ 𝑘[𝑡] be polynomials. (You can also
start with 𝑅 = ℤ – the arguments are similar.) Show that ⟨𝑓 ⟩ + ⟨𝑔⟩ = ⟨gcd(𝑓 , 𝑔)⟩
(using the Euclidean algorithm). Also show that ⟨𝑓 ⟩ ∩ ⟨𝑔⟩ = ⟨lcm(𝑓 , 𝑔)⟩. Use this
to find an example such that ⟨𝑓 𝑔⟩ ⊊ ⟨𝑓 ⟩ ∩ ⟨𝑔⟩.
Definition. A module 𝑀 over a ring 𝑅 (or 𝑅-module) is an abelian group
(𝑀,+) together with a scalar multiplication 𝑅 × 𝑀 → 𝑀, (𝑎, 𝑚) ↦→ 𝑎 · 𝑚 sat-
isfying the distributive laws 𝑎(𝑥 + 𝑦) = 𝑎𝑥 + 𝑎𝑦 and (𝑎 + 𝑏)𝑥 = 𝑎𝑥 + 𝑏𝑥, the
associative law (𝑎𝑏)𝑥 = 𝑎(𝑏𝑥), and the normalization 1𝑥 = 𝑥.

3.1.6 Example. (1) For any ring 𝑅 and any 𝑛 ∈ ℕ, the 𝑛-fold direct product
𝑅𝑛 is an 𝑅-module with componentwise scalar multiplication (analogous
to the vector space 𝑘𝑛 of column vectors for a field 𝑘).

(2) Any ideal of a ring 𝑅 is an 𝑅-module. In fact, the ideals of 𝑅 are exactly the
𝑅-modules contained in 𝑅.

(3) The ℤ-modules are precisely the abelian groups.
(4) The trivial module over any ring 𝑅 is 𝑀 = {0}.

Definition. A submodule of an 𝑅-module 𝑀 is a subgroup 𝑈 ⊂ 𝑀 that is
closed under scalar multiplication.

3.1.7 Exercise. Show that a subset𝑈 ⊂ 𝑀 of an 𝑅-module 𝑀 is a submodule if
and only if𝑈 ≠ ∅,𝑈 +𝑈 ⊂ 𝑈 , and 𝑅 · 𝑈 ⊂ 𝑈 .

3.1.8 Proposition. Let𝑀 be an 𝑅-module. For any submodules𝑈 and 𝑉 of𝑀, the
set

(𝑈 : 𝑉 ) = {𝑎 ∈ 𝑅 | 𝑎𝑉 ⊂ 𝑈}
is an ideal of 𝑅.

Proof. Exercise. ■

3.1.9 Exercise. What is (𝑈 : 𝑉 ) if 𝑅 = 𝑘 is a field and 𝑀 is a (say finite-dimen-
sional) vector space over 𝑘?

Definition. The annihilator of an 𝑅-module 𝑀 is the ideal

Ann(𝑀) = ({0} : 𝑀) = {𝑎 ∈ 𝑅 | 𝑎𝑥 = 0 for all 𝑥 ∈ 𝑀}.

3.1.10 Exercise. Let 𝑅 be a ring and 𝐼 ⊂ 𝑅 an ideal. Show that 𝑀 = 𝑅/𝐼 is an
𝑅-module (with scalar multiplication (𝑎, 𝑥) ↦→ 𝑎𝑥) and compute the annihilator
of 𝑀. (For simplicity, it might be good to start with 𝑅 = ℤ and 𝐼 = ⟨𝑚⟩.)
3.1.11 Exercise. Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Show the following
claims.

(1) For any ideal 𝐼 ⊂ 𝑅 contained inAnn(𝑀), themodule𝑀 is an 𝑅/𝐼-module
with scalar multiplication 𝑎𝑥 = 𝑎𝑥.

(2) The annihilator of 𝑀 as an 𝑅/Ann(𝑀)-module is {0}.
(3) For any submodules𝑈 and 𝑉 of 𝑀, we have

Ann(𝑈 + 𝑉 ) = Ann(𝑈) ∩ Ann(𝑉 ).
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3.1. Noetherian rings and modules 15

(4) For any submodules𝑈 and 𝑉 of 𝑀, we have

(𝑈 : 𝑉 ) = Ann ((𝑈 + 𝑉 )/𝑈) .

Definition. An 𝑅-module 𝑀 is called noetherian if every ascending chain of
submodules 𝑀0 ⊂ 𝑀1 ⊂ 𝑀2 ⊂ . . . stabilizes, i.e. there exists some 𝑛 ∈ ℕ such
that𝑀𝑛 = 𝑀𝑛+𝑘 for all 𝑘 ∈ ℕ. A ring 𝑅 is called noetherian if it is noetherian as
an 𝑅-module.

3.1.12 Exercise. Show that a ring is noetherian if and only if every ideal is finitely
generated. More generally, an 𝑅-module is noetherian if and only if it is finitely
generated.

Definition. A (homo-)morphism 𝜑 : 𝑀 → 𝑁 of 𝑅-modules (sometimes also
called 𝑅-linear map) is a map satisfying 𝜑(𝑎𝑥 + 𝑏𝑦) = 𝑎𝜑(𝑥) + 𝑏𝜑( 𝑦) for all
𝑎, 𝑏 ∈ 𝑅 and 𝑥, 𝑦 ∈ 𝑀. The image im(𝜑) of 𝜑 is the set {𝜑(𝑥) | 𝑥 ∈ 𝑀}. The
kernel of 𝜑 is the set {𝑥 ∈ 𝑀 | 𝜑(𝑥) = 0}.
3.1.13 Exercise. Both image and kernel of any homomorphism of 𝑅-modules
are 𝑅-modules.

Definition. Let 𝐼 ⊂ ℤ be an interval (meaning 𝐼 = [𝑎, 𝑏] ∩ℤ for some integers
𝑎 < 𝑏). A sequence of 𝑅-modules is a family (𝑀𝑖)𝑖∈𝐼 of 𝑅-modules together with
𝑅-module homomorphisms 𝜑𝑖 : 𝑀𝑖−1 → 𝑀𝑖 for all 𝑖 ∈ 𝐼 such that 𝑖 − 1 ∈ 𝐼 . The
sequence is exact at position 𝑖 ∈ 𝐼 (with 𝑖 − 1, 𝑖 + 1 ∈ 𝐼) if the image of 𝜑𝑖 and
the kernel of 𝜑𝑖+1 are equal, i.e.

im(𝜑𝑖) = ker(𝜑𝑖+1) ⊂ 𝑀𝑖.

A sequence is exact if it is exact in every position. A short exact sequence is an
exact sequence of the form

0 → 𝑁 → 𝑀 → 𝑃 → 0.

3.1.14 Example. (1) The sequence 0 → 𝑁 → 𝑀 is exact at 𝑁 if and only if
the map 𝑁 → 𝑀 is injective.

(2) The sequence 𝑀 → 𝑃 → 0 is exact at 𝑃 if and only if the map 𝑀 → 𝑃 is
surjective.

(3) So the sequence 0 → 𝑁 → 𝑀 → 0 is exact at 𝑀 if and only if the map
𝑁 → 𝑀 is an isomorphism.

3.1.15 Proposition. Given a short exact sequence

0 → 𝑁
𝜑−→ 𝑀

𝜓−→ 𝑃 → 0

of 𝑅-modules, we have that 𝑀 is noetherian if and only if both 𝑁 and 𝑃 are noethe-
rian.

Proof. If𝑀 is noetherian, then a direct argument shows that𝑁 and 𝑃 are noethe-
rian. Indeed, any ascending chain 𝑁0 ⊂ 𝑁1 ⊂ . . . ⊂ 𝑁 of submodules of 𝑁 gives
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16 3. Basics in commutative algebra

the ascending chain 𝜑(𝑁0) ⊂ 𝜑(𝑁1) ⊂ . . . in 𝑀, which stabilizes by noethe-
rianity of 𝑀. This implies that the original chain of submodules also stabilizes
showing that 𝑁 is noetherian. Any ascending chain 𝑃0 ⊂ 𝑃1 ⊂ . . . ⊂ 𝑃 of sub-
modules of 𝑃 again gives the ascending chain 𝜓−1(𝑃0) ⊂ 𝜓−1(𝑃1) ⊂ . . . ⊂ 𝑀 of
submodules of 𝑀, which stabilizes. This shows again that the original chain also
stabilizes and that 𝑃 is noetherian.

Conversely, let 𝑀0 ⊂ 𝑀1 ⊂ 𝑀2 ⊂ . . . be an ascending chain of submod-
ules of 𝑀. Then we get ascending chains in both 𝑁 and 𝑃, namely 𝜑−1(𝑀0) ⊂
𝜑−1(𝑀1) ⊂ . . . ⊂ 𝑁 and 𝜓 (𝑀0) ⊂ 𝜓 (𝑀1) ⊂ . . . ⊂ 𝑃. By noetherianity of
𝑁 and 𝑃, both chains eventually stabilize. So we can choose an 𝑛 ∈ ℕ such
that for any 𝑘 > 𝑛 we have 𝜑−1(𝑀𝑘) = 𝜑−1(𝑀𝑛) and 𝜓 (𝑀𝑘) = 𝜓 (𝑀𝑛). We
show that this implies 𝑀𝑘 = 𝑀𝑛 proving the claim. Pick 𝑥 ∈ 𝑀𝑘 ⊃ 𝑀𝑛. Then
𝜓 (𝑥) ∈ 𝜓 (𝑀𝑘) = 𝜓 (𝑀𝑛) so that there exists a 𝑦 ∈ 𝑀𝑛 with 𝜓 (𝑥) = 𝜓 ( 𝑦). So the
element 𝑥 − 𝑦 ∈ 𝑀𝑘 is in the kernel of 𝜓, which is the image of 𝜑. So there is an
element 𝑧 ∈ 𝜑−1(𝑀𝑘) = 𝜑−1(𝑀𝑛) with 𝜑(𝑧) = 𝑥 − 𝑦. Finally,

𝑥 = (𝑥 − 𝑦) + 𝑦 = 𝜑(𝑧) + 𝑦

shows that 𝑥 ∈ 𝑀𝑛 and therefore 𝑀𝑘 = 𝑀𝑛. ■

3.1.16 Corollary. Every submodule and every quotient module of a noetherian
module is noetherian.

Proof. Exercise: write the correct short exact sequence. ■

3.1.17 Theorem (Hilbert’s basis theorem). The polynomial ring 𝑅[𝑡] over a noe-
therian ring 𝑅 is noetherian. In particular, the polynomial ring 𝑘[𝑥1, . . . , 𝑥𝑛] over a
field is noetherian.

Proof. Let 𝐼 be an ideal of 𝑅[𝑡] and set

𝐽 = {LC(𝑓 ) | 𝑓 ∈ 𝐼}

where LC(𝑓 ) is the leading coefficient of 𝑓 . This set 𝐽 is an ideal of 𝑅 and therefore
finitely generated by assumption, say 𝐽 = ⟨𝑎1, . . . , 𝑎𝑚⟩. For each 𝑖 ∈ [𝑚] pick a
polynomial 𝑓𝑖 ∈ 𝐼 with LC(𝑓𝑖) = 𝑎𝑖 and set 𝐼′ = ⟨𝑓1, . . . , 𝑓𝑚⟩ ⊂ 𝐼 . Let 𝑑 be the
largest degree of the 𝑓𝑖.

We first show that any polynomial 𝑓 ∈ 𝐼 of degree 𝑘 ≥ 𝑑 can be written as
𝑓 = 𝑔 + ℎ for a polynomial ℎ ∈ 𝐼′ and a polynomial 𝑔 of degree less than 𝑑. Write
𝑓 =

∑𝑘
𝑖=0 𝑏𝑖𝑡

𝑖. Then there are 𝑢𝑗 ∈ 𝑅 such that 𝑏𝑘 =
∑𝑚
𝑗=1 𝑢𝑗𝑎𝑗 ∈ 𝐽. This identity

implies that the polynomial

𝑓 −
𝑚∑︁
𝑗=1

𝑢𝑗𝑓𝑗𝑡
𝑘−deg(𝑓𝑗) ∈ 𝐼

has degree less than 𝑘. Iterating this process, we get a representation 𝑓 = 𝑔 + ℎ as
claimed, i.e. ℎ ∈ 𝐼′ and deg(𝑔) < 𝑑.

Set 𝑀 = 𝑅[𝑡]<𝑑 to be the 𝑅-submodule of 𝑅[𝑡] generated by the monomials
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3.1. Noetherian rings and modules 17

1, 𝑡, . . . , 𝑡𝑑−1. The above argument shows that, as 𝑅-modules, we have

𝐼 = (𝐼 ∩ 𝑀) + 𝐼′.

As a finitely generatedmodule over a noetherian ring, themodule𝑀 is noetherian
by Corollary 3.1.16 so that 𝐼∩𝑀 is finitely generated (as an 𝑅-module). If 𝑔1, . . . , 𝑔𝑛
generate 𝐼 ∩ 𝑀, then 𝐼 is finitely generated, namely

𝐼 = ⟨𝑓1, . . . , 𝑓𝑚, 𝑔1, . . . , 𝑔𝑛⟩.

■

3.1.18 Corollary. For any noetherian ring 𝑅 and any 𝑛 ∈ ℕ the polynomial ring
𝑅[𝑥1, . . . , 𝑥𝑛] is noetherian. In particular, 𝑆 = 𝑘[𝑥1, . . . , 𝑥𝑛] is noetherian for any
field 𝑘.

Proof. By induction on 𝑛, using Theorem 3.1.4 as the base case for the second
sentence 𝑆. ■

Let us look at some notions from linear algebra in this more general con-
texts of 𝑅-modules. Note that finitely generated modules over fields are finite-
dimensional vector spaces. So let 𝑅 be a ring and𝑀 an 𝑅-module. LetF = (𝑥𝑖)𝑖∈𝐼
be some family of elements 𝑥𝑖 ∈ 𝑀. An 𝑅-linear relation in F is an identity

𝑎1𝑥𝑖1 + 𝑎2𝑥𝑖2 + . . . + 𝑎𝑘𝑥𝑖𝑘 = 0

for some 𝑘 ∈ ℕ and 𝑎1, . . . , 𝑎𝑘 ∈ 𝑅 and distinct elements 𝑖1, . . . , 𝑖𝑘 ∈ 𝐼 . An 𝑅-linear
relation is called non-trivial if at least one coefficient 𝑎𝑗 is not 0. The family F
of elements of 𝑀 is 𝑅-linearly independent if there is no non-trivial 𝑅-linear
relation in F .

Definition. Let 𝑀 be an 𝑅-module 𝑀. A family F = (𝑥𝑖)𝑖∈𝐼 of elements in 𝑀
is called a basis of 𝑀 if it is a linearly independent generating set. The module
𝑀 is called free if it has a basis.

3.1.19 Example. (1) Vector spaces over a field 𝑘 are free 𝑘-modules (assuming
Zorn’s Lemma; otherwise, at least all finite-dimensional vector spaces are
free 𝑘-modules).

(2) For every ring 𝑅 and every 𝑛 ∈ ℕ, the 𝑅-module 𝑅𝑛 is a free 𝑅-module
with basis 𝑒1, . . . , 𝑒𝑛.

(3) The ℤ-module ℤ/𝑚 is not free for any 𝑚 ∈ ℤ, 𝑚 ≠ 0.

3.1.20 Exercise. Find a minimal generating set ofℤ as aℤ-module that is not a
basis.

We will see free modules later in the context of Betti numbers. As far as 𝑅-
module homomorphisms go, free modules behave much like vector spaces. In
particular, the following result holds.

3.1.21 Theorem. Let 𝑀 be a free 𝑅-module with basis (𝑥𝑖)𝑖∈𝐼 . Let 𝑁 be an 𝑅-
module and choose a family ( 𝑦𝑖)𝑖∈𝐼 of elements in 𝑁 . There is a unique 𝑅-module
homomorphism 𝜑 : 𝑀 → 𝑁 satisfying 𝜑(𝑥𝑖) = 𝑦𝑖 for all 𝑖 ∈ 𝐼 . If ( 𝑦𝑖)𝑖∈𝐼 is a basis
of 𝑁 , then 𝜑 is an isomorphism.
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18 3. Basics in commutative algebra

Proof. Every 𝑥 ∈ 𝑀 has a unique representation 𝑥 =
∑
𝑖∈𝐼 𝑎𝑖𝑥𝑖 as a (finite!) 𝑅-

linear combination of the basis elements of 𝑀. Hence, we must have 𝜑(𝑥) =∑
𝑖∈𝐼 𝑎𝑖 𝑦𝑖. This map is 𝑅-linear and hence uniquely determined by 𝜑(𝑥𝑖) = 𝑦𝑖.
If ( 𝑦𝑖)𝑖∈𝐼 is a basis of 𝑁 , the inverse of 𝜑 is the map 𝜓 : 𝑁 → 𝑀 determined

by 𝜓 ( 𝑦𝑖) = 𝑥𝑖. ■

3.1.22 Exercise. Let𝑀 be an 𝑅-module and 𝑛 ∈ ℕ. Show that the following are
equivalent.

(1) 𝑀 can be generated by (at most) 𝑛 elements.
(2) There is a surjective 𝑅-module homomorphism 𝑅𝑛 → 𝑀.
(3) 𝑀 is isomorphic to a quotient module of 𝑅𝑛.

(For this exercise, we assume homomorphism and isomorphism theorems, as
well as the quotient construction, that is not explicitly explained in these lecture
notes.)

3.1.23 Exercise. Show that the module Hom𝑅 (𝑀, 𝑅) of 𝑅-module homomor-
phisms from 𝑀 to 𝑅 is free for every free 𝑅-module 𝑀.
Hint: dual basis

3.2. Prime ideals and localization

Localization is an important technique in ring theory generalizing the construc-
tion of the fraction field. We will see it here to show some basic results involving
prime ideals.

Definition. An ideal 𝐼 of a ring 𝑅 is prime if 𝐼 ≠ 𝑅 and for all 𝑎, 𝑏 ∈ 𝑅 with
𝑎 · 𝑏 ∈ 𝐼 we have 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼 .
3.2.1 Exercise. Show that a principal ideal ⟨𝑎⟩ ⊂ 𝑅 is prime if and only if the
element 𝑎 is prime. (Recall that an element 𝑎 ∈ 𝑅 is prime if for all 𝑏, 𝑐 ∈ 𝑅 such
that 𝑎 is a divisor of 𝑏 · 𝑐 it follows that 𝑎 divides 𝑏 or 𝑐.)
3.2.2 Exercise. An ideal 𝐼 of 𝑅 is prime if and only if the quotient ring 𝑅/𝐼 is a
domain, i.e. it has no non-trivial zero divisors. (Recall, an element 𝑎 ∈ 𝑅 is called
a zero divisor if there exists a 𝑏 ≠ 0 such that 𝑎 · 𝑏 = 0. The trivial zero divisor
is 0.)

Definition. A set 𝑆 ⊂ 𝑅 in a ring 𝑅 is calledmultiplicative if 1 ∈ 𝑆 and for all
𝑠1, 𝑠2 ∈ 𝑆 we also have 𝑠1𝑠2 ∈ 𝑆.
3.2.3 Example. If 𝑃 ⊂ 𝑅 is a prime ideal, then 𝑆 = 𝑅 \ 𝑃 is multiplicative.

If 𝑅 is a domain and 𝑆 ⊂ 𝑅 is multiplicative with 0 ∉ 𝑆, then the set

𝑅[𝑆−1] =
{
𝑎

𝑠

���� 𝑠 ∈ 𝑆} ⊂ Quot(𝑅)

is a subring of the fraction field of 𝑅. In particular, the elements of 𝑆 are invertible
in 𝑅[𝑆−1].
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3.2.4 Example. (1) In ℤ the set 𝑆 of all odd numbers is multiplicative. The ring
ℤ[𝑆−1] is the subset of ℚ of all fractions that can be written with an odd de-
nominator. Similarly, the set 𝑇 of all even numbers is multiplicative. So the ring
ℤ[𝑇−1] contains all fractions that can be written with an even denominator.

(2) In any ring 𝑅 and any element 𝑠 ∈ 𝑅, the set 𝑆 = {1, 𝑠, 𝑠2, 𝑠3, . . .} of all
powers of 𝑠 is a multiplicative set.

Definition. Let 𝑀 be an 𝑅-module and 𝑆 ⊂ 𝑅 a multiplicative set. On 𝑀 × 𝑆
we define the relation

(𝑥1, 𝑠1) ∼ (𝑥2, 𝑠2) ⇐⇒ ∃𝑡 ∈ 𝑆 : 𝑡(𝑠2𝑥1 − 𝑠1𝑥2) = 0.

(The 𝑡 in this definition is only relevant for rings that have nontrivial zero divi-
sors.)

3.2.5 Proposition. Let 𝑅 be a ring and 𝑆 ⊂ 𝑅 be a multiplicative set.

(1) The relation∼ is an equivalence relation. Writing 𝑥
𝑠 (or 𝑥/𝑠) for the equivalence

class of (𝑥, 𝑠) and 𝑀 [𝑆−1] for the set of these equivalence classes, we define
𝑥

𝑠
+ 𝑦

𝑡
=
𝑡𝑥 + 𝑠𝑦
𝑠𝑡

and 𝑎 · 𝑥
𝑡
=
𝑎𝑥

𝑡
.

This makes 𝑀 [𝑆−1] into an 𝑅-Modul, called the localization of 𝑀 with re-
spect to 𝑆.

(2) The 𝑅-module 𝑅[𝑆−1] with multiplication
𝑎

𝑠
· 𝑏
𝑡
=
𝑎𝑏

𝑠𝑡

is a ring with unit 1
1 and zero element 0

1 , called the localization of 𝑅 with
respect to 𝑆. For any 𝑅-module 𝑀, the 𝑅-module 𝑀 [𝑆−1] becomes a 𝑅[𝑆−1]-
module via

𝑎

𝑠
· 𝑥
𝑡
=
𝑎𝑥

𝑠𝑡
.

Proof. This is mostly direct. The main point is to show that addition (and scalar
multiplication) are well-defined. For addition. suppose 𝑥

𝑠 =
𝑥′
𝑠′ ∈ 𝑀 [𝑆−1] so that

𝑢(𝑠′𝑥 − 𝑠𝑥′) = 0 for some 𝑢 ∈ 𝑆. For 𝑦
𝑡 ∈ 𝑀 [𝑆−1] we then have

𝑡𝑥′ + 𝑠′𝑦
𝑠′𝑡

=
𝑡𝑢𝑥′ + 𝑠′𝑢𝑦

𝑠′𝑡𝑢
=
𝑠𝑡𝑢𝑥′ + 𝑠𝑠′𝑢𝑦

𝑠𝑠′𝑡𝑢
=
𝑠′𝑡𝑢𝑥 + 𝑠𝑠′𝑢𝑦

𝑠𝑠′𝑡𝑢
=
𝑡𝑢𝑥 + 𝑠𝑢𝑦

𝑠𝑡𝑢
=
𝑡𝑥 + 𝑠𝑦
𝑠𝑡

.

Therefore, whenever we want to compute 𝑥
𝑠 +

𝑦
𝑡 , we can first find a common

denominator and replace 𝑥
𝑠 by

𝑥𝑡
𝑠𝑡 and

𝑦
𝑡 by

𝑦𝑠
𝑠𝑡 . Then associativity of addition in

𝑀 [𝑆−1] follows from associativity in 𝑀. To see that 𝑀 [𝑆−1] is still an abelian
group, note

0
1
+ 𝑥

𝑠
=
𝑥

𝑠
und

𝑥

𝑠
+ −𝑥

𝑠
=
0
𝑠
=
0
1

for all 𝑥𝑠 ∈ 𝑀 [𝑆−1]. Associativity (and normalization) of scalar multiplication as
well as the distributive laws follow in the same vein. The remaining details (and
a proof of claim (2)) are left as an exercise. ■
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Localization of an 𝑅-module𝑀 with respect to 𝑆 ⊂ 𝑅 comeswith an 𝑅-linear
map

𝜆𝑆 : 𝑀 → 𝑀 [𝑆−1] , 𝑥 ↦→ 𝑥

1
.

For𝑀 = 𝑅 the map 𝜆𝑆 : 𝑅 → 𝑅[𝑆−1] is also a ring homomorphism. By construc-
tion, the elements of 𝑆 become units in 𝑅[𝑆−1]. Indeed, we have

𝑠

1
· 1
𝑠
=
1
1

in 𝑅[𝑆−1].
In general, 𝜆𝑆 (𝑥) = 0/1 for 𝑥 ∈ 𝑀 if and only if there is a 𝑡 ∈ 𝑆 with 𝑡𝑥 = 0.

So 𝜆𝑆 is injective if and only if no element of 𝑆 annihilates any element of𝑀 \{0}.
In particular, 𝜆𝑆 : 𝑅 → 𝑅[𝑆−1] is injective if and only if 𝑆 does not contain any
zero divisors. We usually will not distinguish between 𝑎 and 𝑎

1 not between 𝑠
−1

and 1
𝑠 even if 𝑅 is not a subring of 𝑅[𝑆−1].

3.2.6 Exercise. What is 𝑅[𝑆−1] if 0 ∈ 𝑆?
3.2.7 Exercise. Show that a ring 𝑅 is a domain if and only if the set 𝑆 = 𝑅 \ {0}
is multiplicative. In this case, 𝑅[𝑆−1] is equal to Quot(𝑅).
3.2.8 Lemma. Let 𝑆 ⊂ 𝑅 be a multiplicative set. For any ideal 𝐼 of 𝑅, the set

𝐼 [𝑆−1] =
{ 𝑎
𝑠
| 𝑎 ∈ 𝐼, 𝑠 ∈ 𝑆

}
is an ideal of 𝑅[𝑆−1]. Any ideal of 𝑅[𝑆−1] is of this form for a suitable ideal 𝐼 of 𝑅.

Proof. That 𝐼 [𝑆−1] is an ideal of 𝑅 is direct from the fact that addition and multi-
plication of 𝑅[𝑆−1] are well-defined. If 𝐽 ⊂ 𝑅[𝑆−1] is an ideal, then 𝐼 = 𝜆−1𝑆 ( 𝐽) ⊂
𝑅 is an ideal of 𝑅 and we have 𝐽 = 𝐼 [𝑆−1]. ■

3.2.9 Theorem. Let 𝑃 ⊂ 𝑅 be a prime ideal and 𝑆 ⊂ 𝑅 be a multiplicative set. If
𝑃 ∩ 𝑆 = ∅, then the ideal 𝑃 [𝑆−1] is a prime ideal of 𝑅[𝑆−1]. Conversely, every prime
ideal of 𝑅[𝑆−1] is of the form 𝑃 [𝑆−1] of a prime ideal 𝑃 of 𝑅 with 𝑃 ∩ 𝑆 = ∅.

Let 𝑆 ⊂ 𝑅 be multiplicative and 𝑈 ⊂ 𝑀 be an 𝑅-submodule of an 𝑅-module
𝑀. We can argue directly that𝑈 [𝑆−1] is a submodule of𝑀 [𝑆−1]. More generally,
any 𝑅-linear map 𝜑 : 𝑀 → 𝑁 induces an 𝑅[𝑆−1]-linear map

𝜑𝑆 : 𝑀 [𝑆−1] → 𝑁 [𝑆−1] , 𝑥
𝑠
↦→ 𝜑(𝑥)

𝑠
.

We have (𝜑◦𝜓)𝑆 = 𝜑𝑆 ◦𝜓𝑆 and (id𝑀)𝑆 = id𝑀 [𝑆−1] . (Put differently,𝑀 ↦→ 𝑀 [𝑆−1]
and 𝜑 ↦→ 𝜑𝑆 gives a functor from the category of𝑅-modules to the category of
𝑅[𝑆−1]-modules.) The next result is about properties of these assignments.

3.2.10 Theorem. For any multiplicative set 𝑆 ⊂ 𝑅 of a ring 𝑅 localization is an
exact functor. Concretely, this means that for all exact sequences

· · · → 𝑀𝑖−1
𝜑𝑖−→ 𝑀𝑖

𝜑𝑖+1−−−→ 𝑀𝑖+1 → · · ·
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of 𝑅-modules the induced sequence

· · · → 𝑀𝑖−1 [𝑆−1]
𝜑𝑖,𝑆−−→ 𝑀𝑖 [𝑆−1]

𝜑𝑖+1,𝑆−−−−→ 𝑀𝑖+1 [𝑆−1] → · · ·

of 𝑅[𝑆−1]-modules is also exact.
Proof. We have to show im(𝜑𝑖,𝑆) = ker(𝜑𝑖+1,𝑆) for each position 𝑖. For 𝑥/𝑠 ∈
𝑀𝑖−1 [𝑆−1] we have 𝜑𝑖+1,𝑆 (𝜑𝑖,𝑆 (𝑥/𝑠)) = 𝜑𝑖+1(𝜑𝑖(𝑥))/𝑠 = 0/𝑠. This shows the
inclusion im(𝜑𝑖,𝑆) ⊂ ker(𝜑𝑖+1,𝑆). So let 𝑦/𝑠 ∈ 𝑀𝑖 [𝑆−1] such that 𝜑𝑖+1,𝑆 ( 𝑦/𝑠) = 0.
Then there is a 𝑡 ∈ 𝑆 with 𝑡𝜑𝑖+1( 𝑦) = 0, so that 𝜑𝑖+1(𝑡 𝑦) = 0. Since we have
ker(𝜑𝑖+1) = im(𝜑𝑖) there is an 𝑥 ∈ 𝑀𝑖−1 with 𝜑𝑖(𝑥) = 𝑡 𝑦. Then 𝑦/𝑠 = 𝑡 𝑦/𝑠𝑡 =
𝜑𝑖(𝑥)/𝑠𝑡 = 𝜑𝑖,𝑆 (𝑥/𝑠𝑡) showing the other inclusion ker(𝜑𝑖+1,𝑆) ⊂ im(𝜑𝑖,𝑆). ■

3.2.11 Exercise. Show that a sequence · · · → 𝑀𝑖−1
𝜑𝑖−→ 𝑀𝑖

𝜑𝑖+1−−−→ 𝑀𝑖+1 → · · ·
is exact if and only if the sequences 0 → ker(𝜑𝑖+1) → 𝑀𝑖 → im(𝜑𝑖+1) → 0 are
exact for all 𝑖 (for which they make sense).

There are some useful, concrete consequences of this general statement. For
instance, it implies that localization commutes with intersection or taking a quo-
tient.

3.2.12 Corollary. Let 𝑆 ⊂ 𝑅 be a multiplicative set.

(1) For any submodule 𝑈 of any 𝑅-module 𝑀 we have

(𝑀/𝑈) [𝑆−1] � 𝑀 [𝑆−1]/𝑈 [𝑆−1].

(2) For any family (𝑈𝑖)𝑖∈𝐼 of submodules of any 𝑅-module 𝑀 we have⋂
𝑖∈𝐼

(
𝑈𝑖 [𝑆−1]

)
=
(⋂

𝑖∈𝐼 𝑈𝑖
) [𝑆−1].

Proof. Exercise: find helpful exact sequences for the two claims. ■

We next look at ideals of the localization 𝑅[𝑆−1] and their relation to ideals
of 𝑅.

3.2.13 Proposition. (1) For any ideal 𝐽 in 𝑅[𝑆−1] we have 𝐽 = (
𝜆−1𝑆 ( 𝐽)) [𝑆−1].

The map 𝐽 ↦→ 𝜆−1𝑆 ( 𝐽) is an injection from the set of ideals in 𝑅[𝑆−1] to the set
of ideals in 𝑅.

(2) The map 𝑄 ↦→ 𝜆−1𝑆 (𝑄) induces a bijection between the set of prime ideals in
𝑅[𝑆−1] and the set of prime ideals 𝑃 of 𝑅 such that 𝑃 ∩ 𝑆 = ∅. The inverse
map is 𝑃 ↦→ 𝑃 [𝑆−1]. This bijection preservers inclusions and intersections.

Proof. Exercise. A useful fact is the statement that the preimage 𝜑−1(𝑄) of any
prime ideal 𝑄 ⊂ 𝑆 and any ring homomorphism 𝜑 : 𝑅 → 𝑆 is a prime ideal of 𝑅.
(Why is that true?) Also, remember that the elements of 𝑆 ⊂ 𝑅 become units in
𝑅[𝑆−1] (for claim (2)). ■

Combining the previous two statements, we get the following special case (for
𝑅-modules𝑈 that are ideals of 𝑅).
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3.2.14 Corollary. Let 𝐼 ⊂ 𝑅 be an ideal and 𝑆 a multiplicative set. There is a
canonical isomorphism

(𝑅/𝐼) [𝑆−1] � 𝑅[𝑆−1]/𝐼 [𝑆−1]
where we write 𝑆 = {𝑠 + 𝐼 | 𝑠 ∈ 𝑆} ⊂ 𝑅/𝐼 . ■

For any prime ideal 𝑃 of 𝑅 the set 𝑅 \ 𝑃 is a multiplicative set. We use the
short notation

𝑅𝑃 = 𝑅[(𝑅 \ 𝑃)−1]
for the localization of 𝑅 with respect to 𝑃. By the discussion above, the rings
obtained in this way have the following special property (by Proposition 3.2.13).

Definition. A ring is called local if it has a unique maximal ideal.

In fact, Proposition 3.2.13 implies the following result.

3.2.15 Corollary. For any prime ideal 𝑃 ⊂ 𝑅 of 𝑅, the set of prime ideals of 𝑅𝑃 is
in bijection with the prime ideals of 𝑅 that are contained in 𝑃. In particular, 𝑅𝑃 is a
local ring with maximal ideal 𝑃𝑅𝑃 . ■

We record just two important observations about local rings (for now...).

3.2.16 Lemma. Let 𝑅 be a local ring with maximal ideal𝔪. We have 𝑅 \𝔪 = 𝑅∗,
which means that the units of 𝑅 are exactly those elements that are not contained in
the maximal ideal𝔪.

Proof. The proof is based on the simple observation that an element 𝑎 ∈ 𝑅 is a
unit if and only if ⟨𝑎⟩ = 𝑅 (and the fact that every proper ideal is contained in a
maximal ideal by Zorn’s Lemma). ■

For domains 𝑅 (in particular polynomial rings over fields), the localizations
𝑅𝑃 are naturally contained in the field Quot(𝑅) (by Theorem 3.2.10). We can re-
cover 𝑅 from its localizations in the following sense.

3.2.17 Lemma. Let 𝑅 be a domain. For any prime ideal 𝑃 of 𝑅 the local ring 𝑅𝑃 is
a subring of Quot(𝑅) and we have

𝑅 =
⋂
𝔪⊂𝑅

maximales Ideal

𝑅𝔪.

Proof. The inclusion 𝑅 ⊂ ⋂
𝑅𝔪 is direct by exactness of localization. For 𝑥 ∈

Quot(𝑅) \𝑅 set 𝐼 = {𝑠 ∈ 𝑅 | 𝑠𝑥 ∈ 𝑅}. Then 𝐼 is an ideal of 𝑅with 1 ∉ 𝐼 . By Zorn’s
Lemma, 𝐼 is contained in a maximal ideal𝔪 of 𝑅. We must have 𝑥 ∉ 𝑅𝔪. Indeed,
if 𝑥 = 𝑎/𝑏 inQuot(𝑅) for 𝑎, 𝑏 ∈ 𝑅, then 𝑏𝑥 = 𝑎 ∈ 𝑅, whichmeans 𝑏 ∈ 𝐼 ⊂ 𝔪. ■

3.3. Primary decomposition

Definition. An ideal 𝐼 of 𝑅 is called primary if 𝐼 ≠ 𝑅 and for all 𝑎, 𝑏 ∈ 𝑅 with
𝑎 · 𝑏 ∈ 𝐼 we have 𝑎 ∈ 𝐼 or there is a 𝑘 ∈ ℕ with 𝑏𝑘 ∈ 𝐼 .
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3.3.1 Example. (1) Every prime ideal of every ring is primary.
(2) In ℤ, the ideals ⟨𝑝𝑘⟩ for any prime 𝑝 ∈ ℤ and any 𝑘 ∈ ℕ are primary.

3.3.2 Exercise. (1) Show that an ideal 𝐼 is primary if and only if for all 𝑎, 𝑏 ∈
𝑅 with 𝑎 · 𝑏 ∈ 𝐼 we have 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼 or there is a 𝑘 ∈ ℕ such that both
𝑎𝑘 and 𝑏𝑘 are in 𝐼 .

(2) Show that an ideal 𝐼 is primary if and only if every zero divisor of 𝑅/𝐼 is
nilpotent.

3.3.3 Exercise. If 𝐼 is a primary ideal of 𝑅, then its radical ideal
√
𝐼 = {𝑎 ∈ 𝑅 | ∃ 𝑘 ∈ ℕ : 𝑎𝑘 ∈ 𝐼}

is a prime ideal of 𝑅. (We usually say that 𝐼 is 𝑃-primary for 𝑃 =
√
𝐼 . e.g. ⟨𝑝𝑘⟩ is

⟨𝑝⟩-primary (or just 𝑝-primary) in ℤ for any 𝑘 ∈ ℕ.)

3.3.4 Example. The converse of the claim in the above exercise is not true: if
the radical of an ideal is prime, it does not need to be primary. Here is a standard
example: Let 𝑅 = 𝑘[𝑥, 𝑦, 𝑧]/⟨𝑥𝑦 − 𝑧2⟩ for a field 𝑘 and consider 𝑃 = ⟨𝑥, 𝑧⟩ ⊂ 𝑅
and 𝐼 = ⟨𝑥2, 𝑥 𝑦, 𝑥𝑧⟩ = 𝑃2 ⊂ 𝑅 so that

√
𝐼 = 𝑃 by construction. The point

is that 𝐼 is not primary. To see this, take 𝑥𝑦 = 𝑧2 ∈ 𝐼 ; since 𝑦𝑘 ∉ 𝐼 for any
𝑘 ∈ ℕ it follows that 𝐼 is not primary. (A primary decomposition of 𝐼 actually is
𝐼 = ⟨𝑥⟩ ∩ ⟨𝑥2, 𝑥𝑧, 𝑦⟩.)

The example shows even more strongly that a power of a prime ideal does
not need to be primary in general. (In ℤ, for example, this statement is true.)

More generally, we consider primary ideals associated to 𝑅-modules in the
following sense.

Definition. Let 𝑅 be a ring and𝑀 be an 𝑅-module. We call a prime ideal 𝑃 ⊂ 𝑅
associated to𝑀 (or an associated prime ideal) if there exists an element 𝑥 ∈ 𝑀
such that 𝑃 = Ann(𝑥), that is

𝑃 = {𝑎 ∈ 𝑅 | 𝑎𝑥 = 0 ∈ 𝑀}.

We write Ass(𝑀) for the set of associated prime ideals.
A prime ideal 𝑃 ⊂ 𝑅 is a minimal prime ideal of 𝑀 if the module 𝑀𝑃 is

non-trivial and 𝑀𝑄 = {0} for each prime ideal 𝑄 ⊂ 𝑅 properly contained in 𝑃.

3.3.5 Exercise. Let 𝐼 ⊂ 𝑅 be an ideal. Show that a prime ideal 𝑃 ⊂ 𝑅 is a
minimal prime ideal of the 𝑅-module 𝑅/𝐼 if and only if 𝐼 ⊂ 𝑃 and there is no
prime ideal 𝑄 properly contained in 𝑃 with 𝐼 ⊂ 𝑄.

If 𝑅 is noetherian and 𝑀 is finitely generated (as an 𝑅-module), then every
minimal prime of 𝑀 is actually an associated prime as well. This statement re-
quires proof (see standard textbooks in commutative algebra, e.g. Matsumura’s
textbook). Here is a somewhat related statement.

3.3.6 Exercise. An ideal 𝐼 ⊂ 𝑅 of a noetherian ring 𝑅 is 𝑃-primary if and only
if Ass(𝑅/𝐼) = {𝑃}. (We will often write Ass(𝐼) instead of Ass(𝑅/𝐼).)
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Chapter 4: Monomial ideals

4.1. Basic properties

Let 𝑘 be a field and write 𝑆 = 𝑘[𝑥1, . . . , 𝑥𝑛] for the polynomial ring over 𝐾 (in 𝑛
variables). The set

Mon(𝑆) = {𝑥𝛼 = 𝑥𝛼11 · . . . · 𝑥𝛼𝑛𝑛 | 𝛼 ∈ ℤ𝑛
≥0}

ofmonomials in 𝑆 is a basis of 𝑆 as a 𝑘-vector space. For a polynomial

𝑓 =
∑︁

𝑢∈Mon(𝑆)
𝑎𝑢 · 𝑢 ∈ 𝑆

the set supp(𝑓 ) = {𝑢 ∈ Mon(𝑆) | 𝑎𝑢 ≠ 0} is the support of 𝑓 .

Definition. An ideal 𝐼 ⊂ 𝑆 is amonomial ideal if 𝐼 can be generated bymono-
mials.

4.1.1 Exercise. What is the monomial ideal ⟨𝑡4, 𝑡7⟩ ⊂ 𝑘[𝑡]? It should be a prin-
cipal ideal since 𝑘[𝑡] is a principal ideal domain.

4.1.2 Proposition. Let 𝐼 ⊂ 𝑆 be a monomial ideal. The set 𝑁 of monomials con-
tained in 𝐼 is a 𝑘-basis of the vector space 𝐼 .

Proof. Exercise. ■

This result has direct, nice consequences. First is an equivalent characteriza-
tion of monomial ideals.

4.1.3 Corollary. Let 𝐼 ⊂ 𝑆 be an ideal. The following are equivalent.

(1) 𝐼 is a monomial ideal.
(2) For every polynomial 𝑓 ∈ 𝑆 we have 𝑓 ∈ 𝐼 if and only if supp(𝑓 ) ⊂ 𝐼 . ■

The second is about the quotient as a 𝑘-vector space.

4.1.4 Corollary. Let 𝐼 ⊂ 𝑆 be a monomial ideal. The residue classes of all mono-
mials that are not contained in 𝐼 form a basis of the 𝑘-vector space 𝑆/𝐼 . ■

Themembership problem formonomials inmonomial ideals given by amono-
mial generating sets is simple.
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4.1.5 Proposition. Let {𝑢1, . . . , 𝑢𝑚} ⊂ Mon(𝑆) be a monomial set of generators
for a monomial ideal 𝐼 ⊂ 𝑆. Then a monomial 𝑣 ∈ Mon(𝑆) is in 𝐼 if and only if
there exists a monomial 𝑤 ∈ Mon(𝑆) and an 𝑖 ∈ [𝑚] such that 𝑣 = 𝑤𝑢𝑖.
Proof. Exercise. ■

This implies that a monomial ideal has a distinguished generating set.

4.1.6 Proposition. Eachmonomial ideal of 𝑆 has a uniqueminimal set of monomial
generators. Concretely, let 𝐺 be the set of monomials in 𝐼 which are minimal with
respect to divisibility. Then 𝐺 is the unique minimal set of monomial generators for
𝐼 .

Proof. Exercise using the previous result on membership test. ■

4.2. Algebraic operations

To recall some results from commutative algebra, we discuss standard algebraic
operations of ideals in the special case of monomial ideals 𝐼 ⊂ 𝑆. For a monomial
ideal 𝐼 ⊂ 𝑆, write 𝐺(𝐼) for the minimal monomial generating set in Proposi-
tion 4.1.6.

4.2.1 Exercise. Let 𝐼, 𝐽 ⊂ 𝑆 be monomial ideals. Show that 𝐺(𝐼 + 𝐽) ⊂ 𝐺(𝐼 ∪
𝐽) and 𝐺(𝐼 𝐽) ⊂ 𝐺(𝐼)𝐺( 𝐽). Conclude that the sum as well as the product of
monomial ideals are monomial ideals.

For two monomials 𝑢, 𝑣 ∈ Mon(𝑆), write gcd(𝑢, 𝑣) for the greatest common
divisor of 𝑢 and 𝑣; write lcm(𝑢, 𝑣) for the least common multiple of 𝑢 and 𝑣.

4.2.2 Proposition. Let 𝐼, 𝐽 ⊂ 𝑆 be monomial ideals. The intersection 𝐼 ∩ 𝐽 is a
monomial ideal generated by {lcm(𝑢, 𝑣) | 𝑢 ∈ 𝐺(𝐼), 𝑣 ∈ 𝐺( 𝐽)}.
Proof. For any 𝑓 ∈ 𝐼 ∩ 𝐽, we have supp(𝑓 ) ⊂ 𝐼 ∩ 𝐽 by Corollary 4.1.3. This
equivalence then also shows that 𝐼 ∩ 𝐽 is actually a monomial ideal.

Now let 𝑤 ∈ supp(𝑓 ) for 𝑓 ∈ 𝐼 ∩ 𝐽 be a monomial occurring in 𝑓 . Then there
is a monomial 𝑢 ∈ 𝐺(𝐼) dividing 𝑤 and a monomial 𝑣 ∈ 𝐺( 𝐽) dividing 𝑤. This
implies that lcm(𝑢, 𝑣) divides 𝑤. ■

4.2.3 Exercise. Is 𝐺(𝐼 ∩ 𝐽) = {lcm(𝑢, 𝑣) | 𝑢 ∈ 𝐺(𝐼), 𝑣 ∈ 𝐺( 𝐽)} for monomial
ideals 𝐼, 𝐽 ⊂ 𝑆?

Definition. For ideals 𝐼, 𝐽 ⊂ 𝑆, the colon ideal is defined as

𝐼 : 𝐽 = {𝑓 ∈ 𝑆 | 𝑓 · 𝐽 ⊂ 𝐼}.

4.2.4 Proposition. For two monomial ideals 𝐼, 𝐽 ⊂ 𝑆, the colon ideal 𝐼 : 𝐽 is also a
monomial ideal. We have

𝐼 : 𝐽 =
⋂

𝑣∈𝐺( 𝐽)
𝐼 : ⟨𝑣⟩

and {𝑢/gcd(𝑢, 𝑣) | 𝑢 ∈ 𝐺(𝐼)} is a monomial generating set of 𝐼 : ⟨𝑣⟩.
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Proof. Again, we can show that 𝐼 : 𝐽 is a monomial ideal by using Corollary 4.1.3.
The essential point this time is that supp(𝑓 )𝑣 = supp(𝑓 𝑣) ⊂ 𝐼 for any polynomial
𝑓 ∈ 𝐼 and monomial 𝑣 ∈ 𝐺( 𝐽).

The presentation 𝐼 : 𝐽 =
⋂
𝑣∈𝐺( 𝐽) 𝐼 : ⟨𝑣⟩ is direct. The monomial set of gen-

erators for 𝐼 : ⟨𝑣⟩ is an elementary argument about greatest common divisors.
These are left as an exercise. ■

Definition. Let 𝔪 = ⟨𝑥1, . . . , 𝑥𝑛⟩ ⊂ 𝑆 the homogeneous maximal ideal of 𝑆.
The saturation of an ideal 𝐼 ⊂ 𝑆 is

𝐼 : 𝔪∞ =

∞⋃
𝑘=1

𝐼 : 𝔪𝑘.

4.2.5 Exercise. Show that 𝐼 : 𝔪∞ is a monomial ideal for every monomial ideal
𝐼 ⊂ 𝑆.

Definition. The radical of an ideal 𝐼 ⊂ 𝑆 is the ideal
√
𝐼 = {𝑓 ∈ 𝑆 | 𝑓 𝑘 ∈ 𝐼 for some 𝑘 ∈ ℕ}.

4.2.6 Proposition. The radial ideal of a monomial ideal is again a monomial ideal.

Proof. We use induction and some basis convex geometry for the proof of this
statement. Let 𝑓 ∈

√
𝐼 be a polynomial such that 𝑓 𝑘 ∈ 𝐼 . Let us list supp(𝑓 ) =

{𝑥𝛼1 , . . . , 𝑥𝛼𝑟 }. After relabelling, we can assume that 𝛼1 is a vertex of the convex
hull of the set {𝛼1, . . . , 𝛼𝑟} ⊂ ℝ𝑛, which means that 𝛼1 is not in the convex hull of
𝛼2, . . . , 𝛼𝑟 . Suppose we could write

(𝑥𝛼1)𝑘 = (𝑥𝛼1)𝑘1 (𝑥𝛼2)𝑘2 · . . . · (𝑥𝛼𝑟 )𝑘𝑟

with 𝑘 = 𝑘1+𝑘2+ . . .+𝑘𝑟 and 𝑘1 < 𝑘. This implies that 𝛼1 is a convex combination
of 𝛼2, . . . , 𝛼𝑟 , namely

𝛼1 =
𝑟∑︁
𝑖=2

𝑘𝑖
𝑘 − 𝑘1 𝛼𝑖 with

𝑟∑︁
𝑖=2

𝑘𝑖
𝑘 − 𝑘1 = 1.

This is a contradiction to the choice of 𝛼1 as a vertex of the convex hull of supp(𝑓 ).
What this means for 𝑓 𝑘 is that the monomial 𝑥𝑘𝛼1 cannot cancel with other terms
in 𝑓 𝑘. Differently put, we have 𝑥𝑘𝛼1 ∈ supp(𝑓 𝑘) ⊂ 𝐼 . This shows, using Corol-
lary 4.1.3, 𝑥𝛼1 ∈

√
𝐼 and hence 𝑓 − 𝑎𝛼1𝑥𝛼1 ∈

√
𝐼 . So we can proceed by induction

on the number of elements of supp(𝑓 ) to show supp(𝑓 ) ⊂
√
𝐼 . The claim then

follows from Corollary 4.1.3. ■

Definition. A monomial 𝑥𝛼 ∈ Mon(𝑆) is called squarefree if 𝛼 ∈ {0, 1}𝑛. For
𝑢 = 𝑥𝛼 ∈ Mon(𝑆), we write √

𝑢 =
∏
𝑖 : 𝛼𝑖≠0

𝑥𝑖.

4.2.7 Example. Thenotation
√
𝑢 for amonomial has nothing to dowith a square

root. For instance, we have
√︃
𝑥31𝑥2𝑥

7
5 = 𝑥1𝑥2𝑥5.
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28 4. Monomial ideals

4.2.8 Proposition. For a monomial ideal 𝐼 , the set {√𝑢 | 𝑢 ∈ 𝐺(𝐼)} is a generating
set for the radical

√
𝐼 . In particular, a monomial ideal is radical if and only if it has

a generating set of squarefree monomials.

Proof. Exercise (using the previous result Proposition 4.2.6). ■

Based on this characterization of monomial radical ideals, we use the follow-
ing term.

Definition. A monomial ideal is called squarefree if it is radical.

4.3. Primary decomposition and associated primes

Here are some general facts from commutative algebra that we will now revisit
for monomial ideals. Every ideal 𝐼 ⊂ 𝑆 has a primary decomposition

𝐼 =
𝑚⋂
𝑖=1

𝑄𝑖

for primary ideals𝑄𝑖 ⊂ 𝑆. Such a decomposition is called irredundant (ormin-
imal) if no ideal in the intersection on the right can be dropped. An ideal 𝑄 ⊂ 𝑆
is primary if for all 𝑎, 𝑏 ∈ 𝑆 the condition 𝑎𝑏 ∈ 𝑄 implies 𝑎 ∈ 𝑄 or 𝑏 ∈ √

𝑄.
The following statements are correct and can be found in standard textbooks on
commutative algebra (e.g. Atiyah, Macdonald): The radical of a primary ideal is
prime. The prime ideals 𝑃𝑖 =

√
𝑄𝑖 in an irredundant primary decomposition of

𝐼 are unique. The primary ideals 𝑄𝑖 in a primary decomposition of 𝐼 with the
property that the corresponding prime ideal 𝑃𝑖 =

√
𝑄𝑖 is minimal among these

prime ideals are unique.
The following statement shows that every monomial ideal has a primary de-

composition into monomial ideals, as we will see throughout this section.

4.3.1 Theorem. Let 𝐼 ⊂ 𝑆 be a monomial ideal. The ideal 𝐼 is the intersection
𝐼 =

⋂𝑚
𝑖=1 𝑄𝑖 of ideals 𝑄𝑖 generated by powers of variables; so each 𝑄𝑖 is of the form

⟨𝑥𝑎1𝑖1 , . . . , 𝑥
𝑎𝑘
𝑖𝑘
⟩. There is one unique irredundant representation of this form.

Proof. Wefirst prove existence constructively. Let𝐺(𝐼) = {𝑢1, . . . , 𝑢𝑟} ⊂ Mon(𝑆)
be the minimal monomial generating set of 𝐼 (see Proposition 4.1.6). If 𝑢1 is not
a power of a variable, then we can write 𝑢1 = 𝑣 · 𝑤 for coprime monomials
𝑣, 𝑤 ∈ Mon(𝑆). For the ideal 𝐼 we get 𝐼 = 𝐼1 ∩ 𝐼2 for 𝐼1 = ⟨𝑣, 𝑢2, . . . , 𝑢𝑟⟩ and
𝐼2 = ⟨𝑤, 𝑢2, . . . , 𝑢𝑟⟩ (Check!). This shows the existence of an irredundant repre-
sentation 𝐼 =

⋂𝑚
𝑖=1 𝑄𝑖 as claimed.

To show uniqueness, suppose
⋂𝑟
𝑖=1 𝑄𝑖 =

⋂𝑠
𝑗=1 𝑄

′
𝑗. It suffices to show for ev-

ery 𝑖 ∈ [𝑟] that there is some 𝑗 ∈ [𝑠] with 𝑄′
𝑗 ⊂ 𝑄𝑖. By symmetry and the

fact that both representations are irredundant, we get 𝑟 = 𝑠 and {𝑄1, . . . , 𝑄𝑟} =

{𝑄′
1, . . . , 𝑄

′
𝑠}.

To simplify notation, fix 𝑖 ∈ [𝑟] and assume 𝑄𝑖 = ⟨𝑥𝑎11 , . . . , 𝑥𝑎𝑘𝑘 ⟩. If 𝑄′
𝑗 ⊄ 𝑄𝑖,

there is a monomial 𝑥𝑏𝑗ℓ 𝑗 ∈ 𝑄′
𝑗 \𝑄𝑖. So we have ℓ 𝑗 ∉ [𝑘] or 𝑏𝑗 < 𝑎𝑗. So in case that
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4.3. Primary decomposition and associated primes 29

𝑄′
𝑗 ⊄ 𝑄𝑖 for any 𝑗 ∈ [𝑠] , set

𝑢 = lcm{𝑥𝑏1ℓ1 , . . . , 𝑥
𝑏𝑠
ℓ𝑠
}.

This monomial is in
⋂𝑠
𝑗=1 𝑄

′
𝑗 by construction and hence in 𝑄𝑖. So 𝑥𝑎𝑖𝑖 divides 𝑢

for some 𝑖 ∈ [𝑟] which is a contradiction. ■

Definition. We call a monomial ideal 𝐼 ⊂ 𝑆 irreducible if it cannot be writ-
ten as the intersection of two other monomial ideals. Otherwise, it is called re-
ducible.

4.3.2 Exercise. Find examples for both reducible as well as irreducible mono-
mial ideals.

UseTheorem4.3.1 to show the following characterization of irreduciblemono-
mial ideals.

4.3.3 Corollary. A monomial ideal is irreducible if and only if it can be generated
by monomials that are all powers of variables. ■

4.3.4 Example. Consider the monomial ideal

𝐼 = ⟨𝑥21𝑥2, 𝑥21𝑥23 , 𝑥22 , 𝑥2𝑥23⟩ ⊂ 𝑘[𝑥1, 𝑥2, 𝑥3].

Following the algorithm in the proof of Theorem 4.3.1, we get

𝐼 = ⟨𝑥21 , 𝑥21𝑥23 , 𝑥22 , 𝑥2𝑥23⟩ ∩ ⟨𝑥2, 𝑥21𝑥23 , 𝑥22 , 𝑥2𝑥23⟩ = ⟨𝑥21 , 𝑥22 , 𝑥2𝑥23⟩ ∩ ⟨𝑥2, 𝑥21𝑥23⟩
=

(⟨𝑥21 , 𝑥22 , 𝑥2⟩ ∩ ⟨𝑥21 , 𝑥22 , 𝑥23⟩
) ∩ (⟨𝑥2, 𝑥21⟩ ∩ ⟨𝑥2, 𝑥23⟩

)
= ⟨𝑥21 , 𝑥22 , 𝑥23⟩ ∩ ⟨𝑥21 , 𝑥2⟩ ∩ ⟨𝑥2, 𝑥23⟩

4.3.5 Exercise. Use the algorithm in the proof of Theorem 4.3.1 to decompose
the monomial ideal 𝐼 = ⟨𝑥1𝑥3, 𝑥2𝑥4, 𝑥3𝑥4, 𝑥2𝑥3⟩ ⊂ 𝑘[𝑥1, 𝑥2, 𝑥3, 𝑥4].

Following the algorithm in the proof of Theorem 4.3.1 for squarefree mono-
mial ideals, we get the following statement.

4.3.6 Corollary. A squarefreemonomial ideal is the intersection ofmonomial prime
ideals. ■

Definition. Aminimal prime ideal (or justminimal prime) of an ideal 𝐼 in a
ring 𝑅 is a prime ideal 𝑃 with 𝐼 ⊂ 𝑃 such that there is no prime ideal𝑄 satisfying
𝐼 ⊂ 𝑄 ⊊ 𝑃. We writeMin(𝐼) for the set of minimal primes of 𝐼 .

4.3.7 Lemma. If an ideal 𝐼 has an irredundant presentation 𝐼 = 𝑃1∩ 𝑃2∩ . . .∩ 𝑃𝑚
for prime ideals 𝑃𝑖, thenMin(𝐼) = {𝑃1, 𝑃2, . . . , 𝑃𝑚}.
Proof. If 𝑃 is a minimal prime of 𝐼 , then 𝑃1 · 𝑃2 · . . . · 𝑃𝑚 ⊂ 𝐼 ⊂ 𝑃 implies that
𝑃𝑖 ⊂ 𝑃 for some 𝑖. The minimality of 𝑃 implies 𝑃𝑖 = 𝑃 so that 𝑃 ∈ Min(𝐼).

To show that every 𝑃𝑖 is indeed minimial, we use localization, which com-
mutes with intersection. This means that

𝐼𝑅𝑃𝑖 = (𝑃1 ∩ . . . ∩ 𝑃𝑚)𝑅𝑃𝑖 = 𝑃𝑖𝑅𝑃𝑖 .
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30 4. Monomial ideals

If 𝑃𝑖 were not a minimal prime ideal, say 𝐼 ⊂ 𝑄 ⊊ 𝑃𝑖, then 𝐼𝑅𝑃𝑖 would be con-
tained in 𝑄𝑅𝑃𝑖 , which would be a proper subset of 𝑃𝑖𝑅𝑃𝑖 , contradiction. ■

This gives us the primary decomposition of radical monomial ideals.

4.3.8 Corollary. Every minimal prime of a squarefree monomial ideal 𝐼 ⊂ 𝑆 is a
monomial ideal so that 𝐼 is the intersection of monomial prime ideals

𝐼 =
⋂

𝑃∈Min(𝐼)
𝑃.

Proof. Combine the previous two results Corollary 4.3.6 and Lemma 4.3.7. ■

More generally, every monomial ideal has a primary decomposition into mo-
nomial ideals. We show this based on Theorem 4.3.1.

4.3.9 Proposition. The irreducible ideal ⟨𝑥𝑎1𝑖1 , . . . , 𝑥
𝑎𝑘
𝑖𝑘
⟩ is primary with radical

⟨𝑥𝑖1 , . . . , 𝑥𝑖𝑘⟩.

Proof. Set 𝑄 = ⟨𝑥𝑎1𝑖1 , . . . , 𝑥
𝑎𝑘
𝑖𝑘
⟩ and 𝑃 = ⟨𝑥𝑖1 , . . . , 𝑥𝑖𝑘⟩. We have 𝑄 ⊂ 𝑃 and also

𝑃𝑚 ⊂ 𝑄 for 𝑚 =
∑𝑘
𝑖=1 𝑎𝑖. So 𝑃 is the only minimal prime ideal of 𝑄. This implies√

𝑄 = 𝑃. What is left is to show that 𝑄 is primary. If the product 𝑢𝑣 is in 𝑄
for two monomials 𝑢, 𝑣 ∈ Mon(𝑆), then 𝑥𝑎𝑗𝑖 𝑗 divides 𝑢𝑣 for some 𝑗 ∈ [𝑘]. If 𝑥𝑎𝑗𝑖 𝑗
divides 𝑢, then 𝑢 ∈ 𝑄. Otherwise, 𝑣 must be divisible by 𝑥𝑖 𝑗 so that 𝑣𝑘 ∈ 𝑄
for some sufficiently large 𝑘. To check the definition more generally, suppose
𝑓 · 𝑔 ∈ 𝑄 for some polynomials 𝑓 , 𝑔 ∈ 𝑄. Since 𝑄 is a monomial ideal, we have
𝑢 · 𝑣 ∈ 𝑄 for all 𝑢 ∈ supp(𝑓 ) and all 𝑣 ∈ supp(𝑔) with 𝑢𝑣 ∈ supp(𝑓 𝑔). If
𝑓 ∉ 𝑄, then we can assume that 𝑢 ∉ 𝑄 for all 𝑢 ∈ supp(𝑓 ) (by replacing 𝑓 by
𝑓 − ∑

𝑢∈supp(𝑓 )∩𝑄 𝑎𝑢𝑢). Then recursion on the monomials in supp(𝑔) shows that
each monomial in supp(𝑔) is divisible by one of the variables 𝑥𝑖 𝑗 , which implies
that 𝑔𝑘 ∈ 𝑄 for some sufficiently large 𝑘 ∈ ℕ. ■

Now we know that every monomial ideal is the intersection of irreducible
monomial ideals by Theorem 4.3.1 and that irreducible monomial ideals are pri-
mary by Proposition 4.3.9. This shows primary decomposition of monomial ide-
als into monomial ideals.

4.3.10 Example. Following the algorithm in the proof of Theorem 4.3.1 for the
monomial ideal

𝐼 = ⟨𝑥31 , 𝑥32 , 𝑥21𝑥23 , 𝑥1𝑥2𝑥23 , 𝑥22𝑥23⟩ ⊂ 𝑘[𝑥1, 𝑥2, 𝑥3]

we get the irredundant presentation as the intersection of irreducible monomial
ideals 𝐼 = ⟨𝑥31 , 𝑥32 , 𝑥23⟩ ∩ ⟨𝑥21 , 𝑥2⟩ ∩ ⟨𝑥1, 𝑥22⟩. The two ideals ⟨𝑥21 , 𝑥2⟩ and ⟨𝑥1, 𝑥22⟩
have the same radical (so that Ass(⟨𝑥21 , 𝑥2⟩) = {⟨𝑥1, 𝑥2⟩} = Ass(⟨𝑥1, 𝑥22⟩)). The
irredundant primary decomposition is therefore

𝐼 = ⟨𝑥31 , 𝑥32 , 𝑥23⟩ ∩ ⟨𝑥21 , 𝑥1𝑥2, 𝑥22⟩.
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The primary decomposition obtained in this way, using the algorithm in the
proof of Theorem 4.3.1 and then coarsening it to an irredundant primary decom-
position, is unique and called the standard primary decomposition. It is in
general not the only one.

4.3.11 Exercise. Find a monomial ideal with at least two primary decomposi-
tions. Determine the standard one and show that there is at least one more. (Re-
call that the primary ideals associated to minimal primes are always unique; the
example needs embedded components for this to have a chance to work.)

Here are a few consequences for primary decompositions ofmonomial ideals.

4.3.12 Corollary. The associated prime ideals of a monomial ideal are also mono-
mial ideals. ■

4.3.13 Corollary. For any monomial ideal 𝐼 ⊂ 𝑆 and any associated prime 𝑃 ∈
Ass(𝐼) there exists a monomial 𝑢 ∈ 𝑆 such that 𝑃 = 𝐼 : ⟨𝑢⟩.
Proof. We use here that for every associated prime ideal 𝑃 ∈ Ass(𝐼) there exists
an element 𝑓 ∈ 𝑆 such that 𝑃 = 𝐼 : ⟨𝑓 ⟩. That we can choose 𝑓 to be a monomial
now follows from the irreducibility of monomial prime ideals as follows. For
each variable 𝑥𝑖 ∈ 𝑃 we have 𝑥𝑖𝑓 ∈ 𝐼 because 𝑃 = 𝐼 : ⟨𝑓 ⟩. Since 𝐼 is a monomial
ideal, this implies that 𝑥𝑖𝑢 ∈ 𝐼 for all 𝑢 ∈ supp(𝑓 ). In terms of colon ideals, this
says

𝑃 = 𝐼 : ⟨𝑓 ⟩ ⊂
⋂

𝑢∈supp(𝑓 )
𝐼 : ⟨𝑢⟩.

Conversely, for 𝑔 ∈ ⋂
𝑢∈supp(𝑓 ) 𝐼 : ⟨𝑢⟩ we have 𝑢𝑔 ∈ 𝐼 for all 𝑢 ∈ supp(𝑓 ) and

hence 𝑓 𝑔 ∈ 𝐼 meaning 𝑔 ∈ 𝐼 : ⟨𝑓 ⟩ = 𝑃. Overall, we have 𝑃 =
⋂
𝑢∈supp(𝑓 ) 𝐼 : ⟨𝑢⟩.

Since 𝑃 is an irreducible ideal, the claim follows. ■

4.4. Squarefree monomial ideals and simplicial com-
plexes

Definition. A simplicial complex on the set [𝑛] = {1, 2, . . . , 𝑛} ⊂ ℕ is a col-
lection Δ of subset of [𝑛] such that for every 𝐹 ∈ Δ and 𝐹′ ⊂ 𝐹 we have 𝐹′ ∈ Δ.
The ground set [𝑛] is called the vertex set of Δ. The elements 𝐹 ∈ Δ are called
the faces of the simplicial complex.

In some sources the additional property {𝑖} ∈ Δ for all 𝑖 ∈ [𝑛] is required for
a simplicial complex. This property naturally holds for many classes of examples,
especially geometric examples.

4.4.1 Example. (1) A central class of examples are triangulations (in alge-
braic topology, for instance). A basic version is given by triangulations of
a convex polytope (e.g. in the plane).

(2) From a graph 𝐺 = ( [𝑛] , 𝐸) we can construct the clique complex of 𝐺.
This is the simplicial complex Δ on [𝑛] with faces 𝐹 ⊂ [𝑛] such that the
induced graph (𝐹, 𝐸|𝐹) is a complete graph (aka clique).

(Draw pictures for these examples!)
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Definition. The dimension (occasionally also rank) dim(𝐹) of a face 𝐹 of a
simplicial complex Δ is the number |𝐹 | − 1 ∈ ℕ0. The dimension dim(Δ) of Δ is
the largest dimension of any face of Δ. Faces of dimension 1 are called edges of
Δ; faces of dimension 0 are called vertices. A facet of Δ is an inclusion maximal
element of Δ ⊂ 2[𝑛] . We write F (Δ) for the set of facets of Δ.

A simplicial complex is called pure if all facets have the same dimension (or
equivalently the same number of elements).

A simplicial complex Δ on [𝑛] is uniquely determined by its facets. Given the
facets 𝐹1, . . . , 𝐹𝑘 of Δwe can directly reconstruct

Δ = {𝐹 ⊂ [𝑛] | ∃ 𝑗 ∈ [𝑘] : 𝐹 ⊂ 𝐹 𝑗}.

More generally, given elements 𝐺1, . . . , 𝐺𝑚 ∈ Δ, we write ⟨𝐺1, . . . , 𝐺𝑚⟩ for the
simplicial complex of subset of the 𝐺 𝑗, i.e.

⟨𝐺1, . . . , 𝐺𝑚⟩ = {𝐺 ⊂ [𝑛] | ∃ 𝑗 ∈ [𝑚] : 𝐺 ⊂ 𝐺 𝑗}.

Definition. A non-face of a simplicial complex on [𝑛] is a subset 𝐹 ⊂ [𝑛] such
that 𝐹 ∉ Δ. We write N(Δ) for the set of minimal non-faces (with respect to
inclusion in 2[𝑛] ).

4.4.2 Example. For Δ ⊂ 2[5] with F (Δ) = {{1, 2, 4}, {1, 2, 5}, {2, 3}, {3, 4}}
we have dim(Δ) = 2 andN(Δ) = {{1, 3}, {3, 5}, {4, 5}, {2, 3, 5}}.

The primary combinatorial data that we are interested in here is the number
faces organized by dimension.

Definition. LetΔ be a simplicial complex on [𝑛] of dimension 𝑑. Wewrite 𝑓𝑖(Δ)
for the number of 𝑖-dimensional faces of Δ. The 𝑓 -vector of Δ is the sequence

𝑓 (Δ) = (𝑓0(Δ), 𝑓1(Δ), . . . , 𝑓𝑑 (Δ)) .

We set 𝑓−1 = 1.

In algebraic topology, triangulations are used to give a definition of the Euler
characteristic 𝜒(𝑋) of a topological space 𝑋 . It is, by definition, the alternating
sum of the entries of the 𝑓 -vector.

4.4.3 Example. Let Δ = 2[𝑛] be the trivial simplicial complex. Topologically,
this is the ball of dimension 𝑛, so it is homotopy equivalent to a point. The 𝑓 -
vector of Δ is given by 𝑓𝑖(Δ) =

( 𝑛
𝑖+1
)
for 𝑖 = 0, 1, . . . , 𝑛−1. It follows that the Euler

characteristic 𝜒(Δ) of Δ is 1 because

𝑛∑︁
𝑖=0

(−1) 𝑖
(
𝑛

𝑖

)
= (1 − 1)𝑛 = 0.

For the Euler characteristic of the sphere of dimension 𝑛−2, we take the simplicial
complex Δ′ on [𝑛] whose facets are the subsets with 𝑛 − 1 elements. In other
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words, N(Δ′) = {[𝑛]}. The Euler characteristic 𝜒(Δ′) of Δ′ can be determined
the same way. Now, however, we have to distinguish whether 𝑛 is even or odd

𝜒(Δ′) =
{
0 if 𝑛 is odd,
2 if 𝑛 is even.

Definition. Let Δ be a simplicial complex on [𝑛] and let 𝑆 = 𝑘[𝑥1, . . . , 𝑥𝑛] be a
polynomial ring in 𝑛 variables over a field 𝑘. For each subset 𝐹 ⊂ [𝑛] we write

𝑥𝐹 =
∏
𝑖∈𝐹

𝑥𝑖

for the monomial corresponding to the indicator function of 𝐹. We define the
Stanley-Reisner ideal of Δ to be

𝐼Δ = ⟨𝑥𝐹 | 𝐹 ∈ N (Δ)⟩

the ideal generated by the monomials corresponding to the minimal non-faces of
Δ. The Stanley-Reisner ring of Δ is the quotient 𝑆/𝐼Δ.
4.4.4 Exercise. Show the following statements. For every non-face 𝐹 of Δ we
have 𝑥𝐹 ∈ 𝐼Δ. For every face 𝐹 of Δwe have 𝑥𝐹 ∉ 𝐼Δ.

In fact we have the following result.

4.4.5 Proposition. The monomials 𝑢 = 𝑥𝛼 ∈ Mon(𝑆) such that {𝑖 ∈ [𝑛] | 𝛼𝑖 ≠
0} ∈ Δ are a basis of the 𝐾-vector space 𝑆/𝐼Δ.
Proof. By Corollary 4.1.4 it suffices to show that 𝑢 = 𝑥𝛼 ∉ 𝐼Δ if and only if 𝐹𝑢 =

{𝑖 ∈ [𝑛] | 𝛼𝑖 ≠ 0} ∈ Δ. We show this by contraposition. So first, let 𝑢 = 𝑥𝛼 ∈
Mon(𝑆) be a monomial such that 𝐹𝑢 ∉ Δ. Then we have 𝑢 ∈ 𝐼Δ because 𝑢 is
then divisible by a monomial 𝑥𝐹 for a non-face 𝐹 of Δ. Indeed, if 𝐹𝑢 ∉ Δ it
contains a minimal non-face 𝐹 ∈ N (Δ); then 𝑢 is a multiple of 𝑥𝐹 . Conversely, if
𝑢 ∈ Mon(𝑆) is in 𝐼Δ, then it is a multiple of a generator of 𝐼Δ by Proposition 4.1.5.
By definition, the generators of 𝐼Δ are the monomials 𝑥𝐹 for 𝐹 ∈ N (Δ) so that
we have 𝑢 = 𝑣 · 𝑥𝐹 for some minimal non-face 𝐹 ∈ N (Δ). This implies 𝐹 ⊂ 𝐹𝑢
and therefore 𝐹𝑢 ∉ Δ. ■

To wrap up this introductory section to monomial ideals, we collect some
exercises to recall some important points.

4.4.6 Exercise. (1) Let 𝐼 ⊂ 𝑆 be a monomial ideal. Show that 𝑆/𝐼 is a finite-
dimensional vector space if and only if for all 𝑖 ∈ [𝑛] there is an 𝑎𝑖 ∈ ℕ

with 𝑥𝑎𝑖𝑖 ∈ 𝐼 .
(2) Compute the dimension of the 𝑘-vector space 𝑆/𝐼 for 𝐼 = ⟨𝑥𝑎11 , 𝑥𝑎22 , . . . , 𝑥𝑎𝑛𝑛 ⟩

as a function of the 𝑎𝑖 ∈ ℕ.
(3) Write 𝑃𝐹 = ⟨𝑥𝑖 | 𝑖 ∈ 𝐹⟩ for any subset 𝐹 ⊂ [𝑛]. For any 𝑑 ∈ [𝑛] find the

minimal monomial generating set 𝐺(𝐼) for

𝐼 =
⋂

𝐹 : |𝐹 |=𝑑
𝑃𝐹 .
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(4) Fix an integer 𝑑 ∈ ℕ and let 𝐼𝑑 ⊂ 𝑆 be the ideal generated by all monomials
𝑥𝛼 with

∑𝑛
𝑖=1 𝛼𝑖 = 𝑑 and 𝛼𝑖 < 𝑑 for all 𝑖. Find the radical

√
𝐼𝑑 of 𝐼𝑑.

(5) Find the standard primary decomposition of the ideals 𝐼𝑑 ⊂ 𝑘[𝑥1, 𝑥2, 𝑥3]
defined in the previous problem for 𝑛 = 3.

4.5. Graded modules and Hilbert functions

Definition. Let 𝑘 be a field and 𝑅 =
⊕

𝑖≥0 𝑅𝑖 a graded 𝑘-algebra. Elements of
𝑅𝑖 are called homogeneous elements of degree 𝑖. We call 𝑅 standard graded
if 𝑅 is a finitely generated 𝑘-algebra and there is a generating set of elements of
degree 1.

4.5.1 Example. The polynomial ring 𝑅 = 𝑘[𝑥1, . . . , 𝑥𝑛] with the usual grading
deg : 𝑘[𝑥1, . . . , 𝑥𝑛] → ℤ≥0, deg(𝑥𝑖) = 1 for 𝑖 = 1, 2, . . . , 𝑛 is a standard graded
𝑘-algebra.

A module 𝑀 over a graded 𝑘-algebra 𝑅 is an 𝑅-module 𝑀 with a decompo-
sition 𝑀 =

⊕
𝑗∈ℤ 𝑀𝑗 as 𝑘-vector spaces such that 𝑓𝑀𝑗 ⊂ 𝑀𝑗+𝑑 for every homo-

geneous element 𝑓 ∈ 𝑅𝑑. Here is an example. Write 𝑆 = 𝑘[𝑥1, . . . , 𝑥𝑛] for the
polynomial ring with its standard degree grading. Recall that an ideal 𝐼 ⊂ 𝑆 is
homogeneous if it is a graded 𝑆-module, i.e. 𝐼 =

⊕
𝑖≥0 𝐼𝑑 , where 𝐼𝑑 = 𝐼 ∩ 𝑆𝑑.

Equivalently, an ideal is homogeneous if it has a generating set of homogeneous
polynomials.

4.5.2 Proposition. Every standard graded 𝑘-algebra 𝑅 is isomorphic to the quo-
tient 𝑘[𝑥1, . . . , 𝑥𝑛]/𝐼 of a suitable polynomial ring modulo a homogeneous ideal 𝐼 ⊂
𝑘[𝑥1, . . . , 𝑥𝑛]. ■

Definition. The Hilbert function of a finitely generated graded module 𝑀
over a standard graded 𝑘-algebra 𝑅 is the (numerical) function 𝐻 (𝑀,−) : ℤ → ℤ,
𝑖 ↦→ dim𝑘(𝑀𝑖), where dim𝑘(𝑀𝑗) is the dimension of the 𝑗th graded piece of𝑀 as
a 𝑘-vector space. The generating (formal Laurent) series of the Hilbert function

𝐻𝑀 (𝑡) =
∑︁
𝑖∈ℤ

𝐻 (𝑀, 𝑖)𝑡𝑖 ∈ 𝑘((𝑡))

is called the Hilbert series of 𝑀.

4.5.3 Exercise. Show that the dimension dim𝑘(𝑀𝑖) is finite for every finitely
generated graded module 𝑀 over a standard graded algebra 𝑘 and every 𝑖 ∈ ℤ.

4.5.4 Example. The Hilbert function of 𝑆 = 𝑘[𝑥1, . . . , 𝑥𝑛] is

𝐻 (𝑆, 𝑑) =
(
𝑛 + 𝑑 − 1

𝑑

)
=

(
𝑛 + 𝑑 − 1
𝑛 − 1

)
.

This implies that (actually is equivalent to) the Hilbert series of 𝑆 is

𝐻𝑆 (𝑡) = 1
(1 − 𝑡)𝑛 .
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Definition. Let 𝑅 be a ring. Then, we define the Krull dimension of 𝑅 as the
supremum of the length of all ascending chains of prime ideals ordered by inclu-
sion. For an 𝑅-module 𝑀 we define its Krull dimension by setting

dim𝑀 = dim
(

𝑅

Ann(𝑀)

)
.

4.5.5 Example. (1) The Krull dimension of any field is 0, as it only contains
two distinct ideals only one of which is prime.

(2) The Krull dimenson ofℂ[𝑡] equals one, as all of the prime ideals are of the
form ⟨𝑡 − 𝑎⟩ for 𝑎 ∈ ℂ. Hence, ⟨0⟩ ⊂ ⟨𝑡 − 𝑎⟩ ⊂ ⟨𝑡 − 𝑏⟩ if and only if 𝑎 = 𝑏.

(3) Let 𝑀 be a faithful ℂ[𝑡] module, that is Ann(𝑀) = {0}. Then, its Krull
dimension is 1, as ℂ[𝑡]/Ann(𝑀) ≃ ℂ[𝑡].

4.5.6 Exercise. (1) What is the Krull dimension of ℤ? What is the Krull di-
mension of any principal ideal domain? What is the dimension of ℤ[𝑡]?

(2) Let𝑀 be a 𝑅module of dimension 𝑑, and 𝑦 of degree one in 𝑅 such that it
is not contained in any minimal prime in Ass(𝑀). What is the dimension
of 𝑀/𝑦𝑀? Hint: Use Krulls principal ideal theorem.

(3) Let 𝑀, and 𝑦 ∈ 𝑅 as above. What is 𝐴𝑛𝑛(𝑀), when we consider 𝑀 as a
𝑘[𝑦] module? What is the dimension of 𝑀?

Now we go on a slight tangent, by introducing a very handy tool to study
dimensions of monomial ideals.

4.5.7 Proposition. Let 𝐼 ⊂ 𝑆 be a proper monomial ideal, then the set of monomials
of 𝑆 not lying in 𝐼 can be written as a finite (but not necessarily disjoint) union of
translates of coordinate subspaces of ℕ𝑛.

4.5.8 Proposition. Let 𝐼 be a proper monomial ideal in 𝑆. Then, for all 𝑖 ∈ ℕ, the
number of monomials not in I of total degree ≤ 𝑖 equals 𝐻 (𝑆/𝐼, 𝑖). In particular, the
Krull dimension of 𝑆/𝐼 is the dimension of the largest subspace of monomials not in
the ideal 𝐼 .

4.5.9 Example. Let 𝐼 = ⟨𝑥2 𝑦5, 𝑥4 𝑦3⟩ ⊂ 𝑘[𝑥, 𝑦]. Then, we can read off from
Figure 4.1, that the set 𝐶(𝐼) of monomials not contained in 𝐼 can be written as

𝐶(𝐼) =[𝑒1] ∪ (𝑒2 + [𝑒1]) ∪ (2𝑒2 + [𝑒1]) ∪ [𝑒2] ∪ (𝑒1 + [𝑒2])
∪ [(3, 4)] ∪ [(3, 3)] ∪ [(2, 4)] ∪ [(2, 3)] ,

where [−] denotes the ℤ span.

Now lets turn to one of Hilbert’s most famous theorems.

4.5.10 Theorem (Hilbert). Let 𝑘 be a field, 𝑅 a standard graded 𝑘-algebra and 𝑀
a nonzero, finitely generated, graded 𝑅-module of (Krull) dimension 𝑑. Then,

(1) there exists a Laurent-polynomial Q𝑀 (𝑡) ∈ ℤ(𝑡) with Q𝑀 (1) > 0 such that

H𝑀 (𝑡) = Q𝑀 (𝑡)
(1 − 𝑡)𝑑 .
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𝑚

𝑛

(2, 5)

(4, 3)

Figure 4.1: Visualisation of monomials under the identification of (𝑚, 𝑛) ↔
𝑥𝑚 𝑦𝑛. Black lattice points in the grey shaded area correspond to monomials in 𝐼 ,
white points to those which do not lie in 𝐼 .

(2) there exists a polynomial P𝑀 (𝑥) ∈ ℚ[𝑥] of degree 𝑑 − 1 (called the Hilbert
polynomial of 𝑀) such that

H(𝑀, 𝑖) = P𝑀 (𝑖)

for all 𝑖 > degQ𝑀 (𝑡) − 𝑑.

Proof. Notice that we can switch to an infinite field by extending 𝑘. We proceed
by induction. If 𝑑 = dim(𝑀) = 0, then𝑀𝑖 = 0 for large 𝑖, and the claims become
trivial.

So, let 𝑑 > 0. Nowwe choose a degree one element 𝑦 in 𝑅 such that it does not
belong to any minimal prime in Ass(𝑀). This means that the multiplication map
𝑦 : 𝑀𝑖−1 → 𝑀𝑖 is injective for 𝑖 large enough. By𝑀 (−1) let us denote themodule
with its grading shifted by −1, further let Ann( 𝑦) = {𝑚 ∈ 𝑀 | 𝑦𝑚 = 0 ∈ 𝑀}.

Then, the exact sequence

0 → Ann( 𝑦) (−1) → 𝑀 (−1) 𝑦−→ 𝑀 → 𝑀/𝑦𝑀 → 0

is graded such that we get the following exact sequence of 𝑘-vector spaces

0 → span𝑘 Ann( 𝑦)𝑖−1 → span𝑘 𝑀𝑖−1
𝑦∗−−→ span𝑘 𝑀𝑖 → span𝑘(𝑀/𝑦𝑀)𝑖 → 0

for all 𝑖 ∈ ℕ. Using the rank-nullity theorem this implies

0 = 𝐻𝑀/𝑦𝑀 (𝑡) − 𝐻𝑀 (𝑡) + 𝑡𝐻𝑀 (𝑡) − 𝐻Ann( 𝑦) (−1) (𝑡).

Therefore,

𝐻𝑀 (𝑡) = 𝐻𝑀/𝑦𝑀 (𝑡) − 𝐻Ann( 𝑦) (−1) (𝑡)
1 − 𝑡 .
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Now, by our choice of 𝑦 and Krull’s principal ideal theorem it follows that the
dimension of (𝑀/𝑦𝑀) equals 𝑑 − 1, because 𝑦 is not contained in any of the
minimal primes. Therefore, we can apply the induction hypothesis to 𝐻𝑀/𝑦𝑀 (𝑡),
so there exists a Laurent polynomial 𝑄𝑀/𝑦𝑀 (𝑡) which evaluates positively on 1,
such that

𝐻𝑀/𝑦𝑀 (𝑡) = 𝑄𝑀/𝑦𝑀 (𝑡)
(1 − 𝑡)𝑑−1 .

Hence, we can define a Laurent polynomial 𝑄𝑀 (𝑡) by setting

𝐻𝑀 (𝑡) = 𝑄𝑀/𝑦𝑀 (𝑡) (1 − 𝑡)𝑑−1 − 𝐻Ann( 𝑦) (−1) (𝑡)
1 − 𝑡 =

𝑄𝑀 (𝑡)
(1 − 𝑡)𝑑 .

This also shows that 𝑄𝑀 (1) > 0 for 𝑑 > 1, so it remains to consider the case
where 𝑑 = 1. Notice this condition holds if and only if the length of Ann( 𝑦) is
smaller than the length of 𝑀/𝑦𝑀. To that end, first notice 𝑀 is a 𝑘[𝑦] module,
and then recall from a previous exercise, that, as such, 𝑀/𝑦𝑀 has finite length,
because 𝑀 is noetherian, implying that 𝑀 is finitely generated. Moreover, 𝑀 is
a one dimensional module over 𝑘[𝑦] , as Ann(𝑀) ⊂ 𝑘[𝑦] is empty, again by our
choice of 𝑦. Then, we may apply the structure theorem for modules over PIDs,
which gives us 𝑀 ≃ 𝑘[𝑦]𝑟 ⊕ ⊕𝑠

𝑗=1 𝑘[𝑦]/⟨𝑦𝑎𝑗⟩ where 𝑎𝑗 ∈ ℕ, and 𝑟 > 0 because
𝑀 is one dimensional. Finally, notice that the length of Ann( 𝑦) is precisely 𝑠, and
that of 𝑀/𝑦𝑀 is 𝑟 + 𝑠. This proves part (1).

For the second claim, we write 𝑄𝑀 (𝑡) = ∑𝑠
𝑖=𝑟 ℎ𝑖𝑡

𝑖 where ℎ𝑖 are integer coeffi-
cient polynomials. Then, using the properties of binomial coefficients, we get

𝐻𝑀 (𝑡) =
∑𝑠
𝑖=𝑟 ℎ𝑖𝑡

𝑖

(1 − 𝑡)𝑑 =

𝑠∑︁
𝑖=𝑟

ℎ𝑖𝑡
𝑖
∑︁
𝑗∈ℕ

(
𝑑 + 𝑗 − 1
𝑑 − 1

)
𝑡 𝑗.

Hence,

𝐻 (𝑀, 𝑖) =
𝑠∑︁
𝑗=𝑟

ℎ𝑗

(
𝑑 + (𝑖 − 𝑗) − 1

𝑑 − 1

)
.

Then, we simply set

𝑃𝑀 (𝑥) =
𝑠∑︁
𝑗=𝑟

ℎ𝑗

(
𝑥 + 𝑑 − 𝑗 − 1

𝑑 − 1

)
,

and notice that this polynomial has the correct properties; that is, it is of degree
𝑑 in 𝑥 and 𝐻 (𝑀, 𝑖) = 𝑃𝑀 (𝑖) for 𝑖 > 𝑠 − 𝑑. This completes the proof. ■

Our next goal will be to discuss Macaulays theorem, but in order to do so we
need a few more notions from commutative algebra.

Definition. A monomial ordering < on 𝑆 is a relation < on ℕ𝑛, or equiva-
lently, a relation on the set of monomials 𝑥𝛼 , 𝛼 ∈ ℕ𝑛 , satisfying:

(1) < is a total (or linear) ordering on ℕ𝑛.
(2) If 𝛼 > 𝛽 and 𝛾 ∈ ℕ𝑛 , then 𝛼 + 𝛾 > 𝛽 + 𝛾 .
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(3) < is a well-ordering on ℕ𝑛. This means that every nonempty subset of ℕ𝑛

has a smallest element under >. In other words, if 𝐴 ⊂ ℕ𝑛 is nonempty,
then there is 𝛼 ∈ 𝐴 such that 𝛽 > 𝛼 for every 𝛽 ≠ 𝛼 ∈ 𝐴.

4.5.11 Example. The standard monomial order is the (graded) lexicographic
ordering. It is defined by setting 𝑥𝛼 <lex 𝑥

𝛽if either |𝛼 | < |𝛽 | or |𝛼 | = |𝛽 | and
the left most entry of 𝛼 − 𝛽 is negative. So for example, when 𝑆 = 𝑘[𝑥1, 𝑥2] ,
𝛼 = (1, 1) and 𝛽 = (1, 2), then 𝑥𝛼 <lex 𝑥

𝛽 . Grvlex ususally used for computations
as it (almost all the times) reduces the time Buchbergers algorithm for computing
Groebner bases takes to terminate.

4.5.12 Exercise. Verify that <lex is indeed a monomial order. What is the small-
est element?

Definition. Let < be a monomial order onMon(𝑆) and 𝑓 ∈ 𝑆. Then, we define
the initial monomial of 𝑓 =

∑𝑠
𝑖=1 𝑐𝑖𝑥

𝛼𝑖 ∈ 𝑆 wrt. < by

in<(𝑓 ) = max<{𝑥𝛼𝑖 ∈ Mon(𝑆) | 𝑐𝑖 ≠ 0}.

For an ideal 𝐼 ⊂ 𝑆 we write in<(𝐼) for the ideal generated by in<(𝑔) for all 𝑔 ∈ 𝐼 .

It is important to note that for an ideal 𝐼 ⊂ 𝑆 generated by 𝑓1, . . . 𝑓𝑟 the initial
ideal in<(𝐼) does not necessarily equal ⟨in<(𝑓1), . . . , in<(𝑓𝑟)⟩.

4.5.13 Exercise. Can you find an ideal in a univariate polynomial ring which
does not have this property? Find an ideal 𝐼 ⊂ ℝ[𝑥, 𝑦] which does not have this
property.

This motivates the following definition.

Definition. Let 𝐼 be an ideal in 𝑆 and fix a monomial order <. We say a generat-
ing set𝐺 = {𝑔1, . . . , 𝑔𝑠} for 𝐼 is aGröbner basis of 𝐼 wrt. to the monomial order
< if in<(𝐼) = ⟨in<(𝑔1), . . . , in<(𝑔𝑠)⟩.

Let us record a few important properties of Gröbner basis whichwewill need
at a later point.

4.5.14 Proposition. Let 𝐼 be an ideal in 𝑆 and < a monomial order.

(1) There exists a Gröbner basis for 𝐼 .
(2) Polynomial division wrt. to a Gröbner basis 𝐺 is unique. In particular, a

polynomial is contained in 𝐼 if and only if its remainder wrt. 𝐺 vanishes.

4.5.15 Exercise. Let 𝑓 = 𝑥2 𝑦 + 𝑥𝑦2 + 𝑦2. Then divide 𝑓 by the ordered tuple
(𝑔1, 𝑔2) where 𝑔1 = 𝑥𝑦 − 1 and 𝑔2 = 𝑦2 − 1, and compare that with the result
when you divide 𝑓 by (𝑔2, 𝑔1).

4.5.16 Theorem (Macaulay). The set of monomials Mon(𝑆) \ in<(𝐼) form a 𝑘-
basis of 𝑆/𝐼 .
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Proof. Let 𝐺 = {𝑔1, . . . , 𝑔𝑟} be a Gröbner basis of 𝐼 , and let 𝑓 ∈ 𝑆. Then, 𝑓 has
a unique remainder 𝑟 with respect to 𝐺. The residue class of 𝑓 modulo 𝐼 is the
same as that of 𝑟, and no monomial in the support of 𝑟 is divided by any of the
monomials in<(𝑔𝑖), which follows from the division algorithm. This shows that
Mon(𝑆) \Mon(in<(𝐼)) is a system of generators of the 𝑘-vector space 𝑆/𝐼 . As-
sume there exists a set {𝑢1, . . . , 𝑢𝑠} ⊂ Mon(𝑆)\Mon(in<(𝐼)) and 𝑎𝑖 ∈ 𝑘\{0} such
that ℎ =

∑𝑠
𝑖=1 𝑎𝑖𝑢𝑖 ∈ 𝐼 . We may assume that 𝑢1 = in<(ℎ). Then 𝑢1 = in<(ℎ) ∈

Mon(in<(𝐼)), a contradiction. ■

4.5.17 Corollary. Let 𝐼 ⊂ 𝑆 be a graded ideal and < a monomial order on 𝑆. Then
𝑆/𝐼 and 𝑆/in<(𝐼) have the same Hilbert function, i.e. 𝐻 (𝑆/𝐼, 𝑖) = 𝐻 (𝑆/in<(𝐼), 𝑖)
for all 𝑖.

4.5.18 Corollary. Let 𝐺 = {𝑔1, . . . , 𝑔𝑟} be a homogeneous system of generators of
𝐼 , and let 𝐽 = ⟨in<(𝑔1), . . . , in<(𝑔𝑟)⟩. Then 𝐺 is a Gröbner basis of 𝐼 if and only if
𝑆/𝐼 and 𝑆/𝐽 have the same Hilbert function.

Proof. If 𝐺 is a Gröbner basis then 𝐽 = 𝐼 . If it is not then, 𝐽 ⊂ in<(𝐼), such that
𝐻 (𝑆/𝐽, 𝑖) > 𝐻 (𝑆/in<(𝐼), 𝑖) = 𝐻 (𝑆/𝐼, 𝑖) for all 𝑖. Hence, the Hilbert function will
differ. ■

4.6. Free resolutions

We have seen earlier in this course that not all modules do come with a basis;
those were precisely modules which are not free. The first goal of this section
is therefore to remedy this shortcoming by introducing a series of free modules
over any module - called free resolution. Secondly, we then want use these res-
olutions to find the Hilbert series of modules. However, before we start with the
setup, it is important to note that description of free resolutions comes in two
flavours. Those, where the finitely generated modules are over standard graded
𝑘-algebras and those where they are modules over local rings. Whereas the latter
is the more general notion, the former is more applicable in our context. Hence,
we choose here to introduce the notion over graded 𝑘-algebras and then explain
how to move between them.

Let 𝑀 be a finitely generated standard graded 𝑆-module with homogeneous
generators𝑚1, . . . , 𝑚𝑟 and deg(𝑚𝑖) = 𝑎𝑖 for 𝑖 ∈ [𝑟]. Further, let 𝐹0 =

⊕𝑟
𝑖=1 𝑆𝑒𝑖 be

a free module over 𝑆 of rank 𝑟. Then, there exists a surjective 𝑆-module homo-
morphism 𝐹0 → 𝑀 with 𝑒𝑖 ↦→ 𝑚𝑖. If we assign to 𝑒𝑖 the degree 𝑎𝑖 for 𝑖 ∈ [𝑟] , then
𝐹0 becomes isomorphic to

⊕𝑟
𝑖=1 𝑆(−𝑎𝑖) and we obtain the short exact sequence

(SES)
0 −→ 𝑈 ↩→

⊕
𝑗

𝑆(−𝑗)𝛽0𝑗 −→ 𝑀 −→ 0,

where 𝛽0𝑗 = |{𝑖 | 𝑎𝑖 = 𝑗}|, and 𝑈 = ker
(⊕

𝑗 𝑆(−𝑗)𝛽0𝑗 → 𝑀
)
such that the se-

quence is exact indeed. (Note that the 𝛽0𝑗 simply collect all copies of 𝑆 whose de-
grees are shifted by 𝑗.) Themodule𝑈 is a graded submodule of 𝐹0 =

⊕
𝑗 𝑆(−𝑗)𝛽0𝑗 .
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Since𝑀 was finitely, generated we know that𝑈 is also finitely generated. There-
fore, we can apply the same construction as above again to find a surjective ho-
momorphism

⊕
𝑗 𝑆(−𝑗)𝛽1𝑗 → 𝑈 . (Notice the power 𝛽1𝑗 here.) Composing this

map with the inclusion map𝑈 ↩→ ⊕
𝑗 𝑆(−𝑗)𝛽0𝑗 we obtain the exact sequence⊕

𝑗

𝑆(−𝑗)𝛽1𝑗 −→
⊕
𝑗

𝑆(−𝑗)𝛽0𝑗 −→ 𝑀 −→ 0

of graded 𝑆-modules. Proceeding in this way, and setting 𝐹𝑖 =
⊕

𝑗 𝑆(−𝑗)𝛽𝑖 𝑗 , we
obtain a long exact sequence

· · · −→ 𝐹2 −→ 𝐹1 −→ 𝐹0 −→ 𝑀 −→ 0

of graded 𝑆-modules.

Definition. Let 𝑀 be a finitely generated graded 𝑆-module as above and 𝐹𝑖 =⊕
𝑗 𝑆(−𝑗)𝛽𝑖 𝑗 . Then, a long exact sequence

𝔽 : · · · −→ 𝐹2 −→ 𝐹1 −→ 𝐹0 −→ 𝑀 −→ 0

is called a graded free 𝑆-resolution of 𝑀. Moreover, the powers 𝛽𝑖 𝑗 are called
graded Betti numbers, and the 𝑖-th Betti number 𝛽𝑖 is defined as 𝛽𝑖 =

∑
𝑗 𝛽𝑖 𝑗.

4.6.1 Example. Consider 𝑆 as an module over itself. Then, 𝑆𝑛 → 𝑆 → 0 is a
graded free 𝑆-resolution of 𝑆. However, so is 𝑆𝑛+1 → 𝑆 → 0. This shows that
free resolutions are not at all unique.

4.6.2 Exercise. (1) Let 𝑀 be as above. Is the sequence⊕
𝑗

𝑆(−𝑗)𝛽1𝑗 −→
⊕
𝑗

𝑆(−𝑗)𝛽0𝑗 −→ 𝑀 −→ 0

exact at every position?
(2) What does the 𝑖-th Betti number count?

We have seen that free resolutions are not unique. However, if, in each step,
we choose the resolution minimally, the overall chain will be unique up to iso-
morphism, motivating the following definition.

Definition. Let 𝑀 be a finitely generated 𝑆-module. Then, we call a set of
homogeneous generators 𝑚1, . . . , 𝑚𝑟 of 𝑀 minimal if no proper subset of it
generates 𝑀. Moreover, a graded free S-resolution F of M is called minimal
free resolution if for all 𝑖, the image of 𝐹𝑖+1 → 𝐹𝑖 is contained in 𝔪𝐹𝑖, where
𝔪 = ⟨𝑥1, . . . , 𝑥𝑛⟩ ⊂ 𝑆.

For this definition to make sense we need the following statement, which as-
serts a relation between minimal generators and the containment condition in
the submodules𝔪𝐹𝑖.

4.6.3 Lemma. Let 𝑚1, . . . , 𝑚𝑟 be a homogeneous set of generators of the graded 𝑆-
module 𝑀. Let 𝐹0 =

⊕𝑟
𝑖=1 𝑆𝑒𝑖 and 𝜀 : 𝐹0 → 𝑀 be the surjective homomorphism

with 𝑒𝑖 ↦→ 𝑚𝑖 for 𝑖 ∈ [𝑟]. Then, the following conditions are equivalent:
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(1) 𝑚1, . . . , 𝑚𝑟 are minimal generators of 𝑀
(2) ker(𝜀) ⊆ 𝔪𝐹0, where𝔪 = ⟨𝑥1, . . . , 𝑥𝑛⟩ ⊂ 𝑆

Proof. First, suppose ker(𝜀) ⊈ 𝔪𝐹0. Then, there exists a homogeneous element
𝑓 =

∑𝑟
𝑖=1 𝑓𝑖𝑒𝑖 ∈ ker(𝜀) such that 𝑓 ∉ 𝔪𝐹0. Since elements in𝔪𝐹0 are degree 1 or

higher, at least one of the coefficients 𝑓𝑖 must be of degree 0, wlog. deg 𝑓1 = 0 and
𝑓1 ∈ 𝐾 \ 0. Therefore, it follows that

𝑚1 = 𝑓
−1
1 𝑓2𝑚2 + · · · + 𝑓−11 𝑓𝑟𝑚𝑟 ,

but then 𝑚2, . . . , 𝑚𝑟 would already generate 𝑀, contradicting our assumption.
For the converse, suppose that ker(𝜀) ⊂ 𝔪𝐹0, further wlog. suppose that 𝑚1

can be omitted, such that𝑚2, . . . , 𝑚𝑟 is a system of generators of𝑀 as well. Then,
we have 𝑚1 =

∑𝑟
𝑖=2 �̃�𝑖𝑚𝑖 for suitable homogeneous elements �̃�𝑖 ∈ 𝑆. Next, we

consider

𝑓 = 𝑒1 −
𝑟∑︁
𝑖=2

�̃�𝑖𝑒𝑖,

which is in ∈ ker(𝜀). However, since the coefficient of 𝑒1 is of degree 0, we see
that 𝑓 ∉ 𝔪𝐹0. Thus, contradicting our assumption. ■

4.6.4 Corollary. Every finitely generated standard graded 𝑆-module admits a min-
imal free resolution.

As alluded to at the beginning of this section, we could have defined minimal
free resolutions over local rings (O, 𝑃). We can do this by saying that such a res-
olution is minimal if the images of the maps in the chain complex are contained
in 𝑃𝐹𝑖, where the 𝐹𝑖 are modules over O. Now, recall that every maximal ideal𝔪
in a commutative ring 𝑅with 1 is prime, hence the localization at𝔪 yields a local
ring (𝑅𝔪 ,𝔪𝑅𝔪). Furthermore, for every 𝑅-module𝑀, localization at𝔪 yields a
module over 𝑅𝔪. Now, since any standard graded 𝑘-algebra 𝑅 is isomorphic to
a quotient of 𝑆, we know that 𝑅 does not contain a unique maximal ideal, how-
ever there is a unique homogeneousmaximal ideal𝔪 =

⊕
𝑖≥1 𝑅𝑖. So there is a

canonical way of passing from a standard graded 𝑘-algebra to a local ring. Finally,
notice, if we do so, 𝑥 ∈ 𝔪𝐹𝑖 if and only if 𝑥 ∈ (𝔪𝑆𝔪)𝐹𝑖, where 𝐹𝑖 = (𝐹𝑖)𝔪. Then,
upon combinations of these observations, we see that the definitions align.

To get a non-trivial but finite example of a minimal free resolution it is most
convenient to introduce a few more notions.

Definition. Let Δ be a simplicial complex with vertex set [𝑛]. Then, we define
the reduced chain complex of Δ over a field 𝑘 as the complex C̃•(Δ; 𝑘) as

0 → 𝑘𝐹𝑛−1 (Δ)
𝜕𝑛−1−−−→ · · · 𝜕𝑖+1−−→ 𝑘𝐹𝑖 (Δ)

𝜕𝑖−→ 𝑘𝐹𝑖−1 (Δ)
𝜕𝑖−1−−−→ · · · 𝜕0−→ 𝑘𝐹−1 (Δ) → 0,

where 𝐹𝑖(Δ) denotes the set of faces of dimension 𝑖. Its boundary maps are
defined by

𝜕𝑖(𝑒𝜎 ) =
∑︁
𝑗∈𝜎

sign( 𝑗, 𝜎 )𝑒𝜎\𝑗,

where 𝜎 ∈ Δ and sign( 𝑗, 𝜎 ) = (−1)𝑟−1 when 𝑗 is the 𝑟-th element of 𝜎 .
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4.6.5 Exercise. Verify that this is indeed a chain complex. That is, show that
im 𝜕𝑖 ⊂ ker 𝜕𝑖−1 i.e. 𝜕𝑖−1 ◦ 𝜕𝑖 = 0.

4.6.6 Example. The reduced chain complex for the simplicial complex given
by Δ ⊂ 2[5] with F (Δ) = {{1, 2, 3}, {2, 4}, {3, 4}, {5}} is

0 → 𝑘


1
−1
1
0
0

−−−−−→
𝜕2

𝑘5


−1 −1 0 0 0
1 0 1 1 0
0 1 1 0 −1
0 0 0 1 1
0 0 0 0 0

−−−−−−−−−−−−−−−−−−−−→
𝜕1

𝑘5

[
1 1 1 1 1

]
−−−−−−−−−−−−−−−−→

𝜕0
𝑘 → 0,

with respect to the canonically ordered basis.

Definition. TheKoszul complex𝕂•(𝑛) is the complex of free modules over 𝑆
whose boundary maps are derived as follows:

(1) Start with the reduced chain complex of the simplicial complex consisting
of all subsets 𝜎 of [𝑛].

(2) For every face 𝜎 ∈ 𝐹𝑖 label the columns and rows of the boundary maps
corresponding to 𝑒𝜎 by 𝜎 .

(3) Renumber the homological degree such that the empty set∅ sits in homo-
logical degree 0.

4.6.7 Example. The Koszul complex for 𝑛 = 3 is given as:

𝕂•(3) : 0 → 𝑆


𝑥𝑦𝑧

𝑥𝑦 1
𝑥𝑧 −1
𝑦𝑧 1

−−−−−−−−−→ 𝑆3


𝑥𝑦 𝑥𝑧 𝑦𝑧

𝑥 −1 −1 0
𝑦 1 0 −1
𝑧 0 1 1

−−−−−−−−−−−−−−−→ 𝑆3

[𝑥 𝑦 𝑧
1 1 1 1

]
−−−−−−−−−−−→ 𝑆 → 0

4.6.8 Exercise. Write down the Koszul complex for 𝑛 = 4.

4.6.9 Proposition. The Koszul complex𝕂•(𝑛) is aminimal free graded 𝑆-resolution
of 𝑆/𝔪 where𝔪 = ⟨𝑥1, . . . , 𝑥𝑛⟩.

Now, let us apply everything we have learned about minimal resolutions to
Hilbert series. To that end, let

𝔽 : 0 −→ 𝐹𝑝 −→ 𝐹𝑝−1 −→ · · · −→ 𝐹1 −→ 𝐹0 −→ 𝑀 −→ 0

be a graded minimal free 𝑆-resolution of 𝑀 with

𝐹𝑖 =
⊕
𝑗

𝑆(−𝑗)𝛽𝑖 𝑗 =
𝛽𝑖⊕
𝑗=1

𝑆(−𝑑𝑖 𝑗),

where suitable 𝑑𝑖 𝑗 ∈ ℕ. Recall, from the proof of Theorem 4.5.10 that the Hilbert
function is additive on SES.More precisely, for the SES of 𝑆-modules from above

0 −→ 𝑈𝑖+1 ↩→ 𝐹𝑖 −→ 𝑈𝑖 −→ 0,
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we get 𝐻 (𝐹0, 𝑖) = 𝐻 (𝑈𝑖+1, 𝑖) + 𝐻 (𝑈𝑖, 𝑖). Now notice that, closely following the
construction detailed at the beginning of this section, we can extend 𝔽 by diag-
onally inserting the SES from the display above. Next, we note that the shifted
Hilbert series of 𝑆 is 𝐻𝑆(−𝑗) (𝑡) = 𝑡 𝑗/(1 − 𝑡)𝑛. Combining these two observations
allows us to write down the Hilbert series of 𝑀 as follows

𝐻𝑀 (𝑡) = 𝑅𝑀 (𝑡)
(1 − 𝑡)𝑛 ,

where 𝑅𝑀 (𝑡) = ∑𝑝
𝑖=0(−1) 𝑖

∑
𝑗 𝛽𝑖 𝑗𝑡

𝑗 =
∑𝑝
𝑖=0(−1) 𝑖

∑𝛽𝑖
𝑗=1 𝑡

𝑑𝑖 𝑗 .

4.7. Face counting and Hilbert functions

We begin to study the relationship between the Hilbert function (or, more gener-
ally the Betti numbers) of a Stanley-Reisner ring and the enumerative combina-
torics of the corresponding simplicial complex.

We saw in Theorem 4.5.10 that the Hilbert function of a finitely generated
graded module 𝑀 over a standard graded algebra 𝑅 is a rational function

𝐻𝑀 (𝑡) = 𝑄𝑀 (𝑡)
(1 − 𝑡)𝑑

where 𝑄𝑀 (𝑡) is a Laurent polynomial with integer coefficients, say 𝑄𝑀 (𝑡) =∑𝑠
𝑖=𝑟 ℎ𝑖𝑡

𝑖.
Definition. We call the coefficient vector (ℎ𝑟 , ℎ𝑟+1, . . . , ℎ𝑠) of 𝑄𝑀 (𝑡) ∈ ℤ[𝑡, 𝑡−1]
the ℎ-vector of the graded module 𝑀.

The goal of this section is to relate the ℎ-vector of the Stanley-Reisner algebra
𝐾 [Δ] = 𝑆/𝐼Δ with the 𝑓 -vector of the simplicial complex Δ. For this, we consider
𝐾 [Δ] as a graded module𝑀 over the standard graded algebra 𝑆 = 𝐾 [𝑥1, . . . , 𝑥𝑛].
4.7.1 Proposition. Let Δ be a simplicial complex of dimension 𝑑 − 1 and write its
𝑓 -vector as (𝑓0, 𝑓1, . . . , 𝑓𝑑−1) (meaning that 𝑓𝑖 = 𝑓𝑖(Δ) is the number of 𝑖-dimensional
faces of Δ). Then the Hilbert function of 𝐾 [Δ] is

𝐻𝐾 [Δ] (𝑡) =
∑𝑑
𝑖=0 𝑓𝑖−1𝑡

𝑖(1 − 𝑡)𝑑−𝑖
(1 − 𝑡)𝑑 .

Proof. For a monomial 𝑢 = 𝑥𝛼 ∈ Mon(𝑆) we write supp(𝑢) = {𝑖 ∈ [𝑛] : 𝛼𝑖 ≠ 0}
for the set of variables that actually occur in themonomial 𝑢. By Proposition 4.4.5,
the set 𝐵 of all 𝑢 ∈ Mon(𝑆) such that supp(𝑢) ∈ Δ is a 𝐾-basis of 𝐾 [Δ]. We
partition this basis by the faces of Δ so that we can compute the Hilbert function
𝐻𝐾 [Δ] in terms of the faces. So for any face 𝐹 ∈ Δwe have

{𝑢 ∈ Mon(𝑆) | supp(𝑢) = 𝐹} = {𝑥𝐹 · 𝑣 | 𝑣 ∈ Mon (𝐾 [{𝑥𝑖}𝑖∈𝐹])} .

As claimed, the basis 𝐵 of 𝐾 [Δ] is the disjoint union of these sets

𝐵 =
⋃
𝐹∈Δ

{𝑢 ∈ Mon(𝑆) | supp(𝑢) = 𝐹}
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so that the dimension of 𝐾 [Δ] in dimension 𝑡 is the sum of the dimensions of
𝐾 [{𝑥𝑖}𝑖∈𝐹]𝑡−|𝐹 | over all faces 𝐹 of Δ. Since 𝐻𝐾 [{𝑥𝑖}𝑖∈𝐹] =

1
(1−𝑡) |𝐹 | and Hilbert func-

tions are additive, we get the desired formula

𝐻𝐾 [Δ] (𝑡) =
∑︁
𝐹∈Δ

𝑡 |𝐹 |

(1 − 𝑡) |𝐹 | =
∑𝑑
𝑖=0 𝑓𝑖−1𝑡

𝑖(1 − 𝑡)𝑑−𝑖
(1 − 𝑡)𝑑 .

■

4.7.2 Corollary. If Δ is a simplicial complex of dimension 𝑑 − 1, then the Stanley-
Reisner ring 𝐾 [Δ] has Krull dimension 𝑑. ■

4.7.3 Exercise. Give a direct proof of the inequality dim(𝐾 [Δ]) ≥ 𝑑. Can you
also prove the other inequality directly?

Definition. The multiplicity 𝑒(𝑀) of a finitely generated graded module 𝑀
over a standard graded algebra 𝑅 is 𝑄𝑀 (1) with the same notation 𝐻𝑀 (𝑡) =

𝑄𝑀 (𝑡)/(1 − 𝑡)𝑑 as before.
4.7.4 Corollary. Let Δ be a simplicial complex of dimension 𝑑 − 1. Its Euler char-
acteristic is 𝜒(Δ) = (−1)𝑑−1ℎ𝑑 + 1 and the multiplicity of the Stanley-Reisner ring is
𝑒(𝐾 [Δ]) = 𝑓𝑑−1.
4.7.5 Exercise. Do the necessary computations for 𝐻𝐾 [Δ] to prove the previous
statement.

Our next goal is a result due to Macaulay characterizing the numerical func-
tions ℎ : ℤ≥0 → ℤ≥0 that are Hilbert functions of standard graded algebras.

4.7.6 Lemma. Fix a positive integer 𝑗. Any positive integer 𝑎 has a unique expan-
sion

𝑎 =

(
𝑎𝑗
𝑗

)
+
(
𝑎𝑗−1
𝑗 − 1

)
+ . . . +

(
𝑎𝑘
𝑘

)
where 𝑎𝑗 > 𝑎𝑗−1 > . . . > 𝑎𝑘 ≥ 𝑘 ≥ 1.

4.7.7 Exercise. Suppose 𝑗 = 2. Compute this expansion for 𝑎 = 5 and 𝑎 = 12.

Proof. Existence follows by induction: choose 𝑎𝑗 as large as possible with the
property that 𝑎 ≥ (𝑎𝑗

𝑗

)
. Then we set 𝑎′ = 𝑎 − (𝑎𝑗

𝑗

)
and continue inductively until

we reach 0. The only subtlety is to show 𝑎𝑗 > 𝑎𝑗−1 (exercise).
We show uniqueness by induction on 𝑎 showing that 𝑎𝑗 is indeed the largest

integer such that 𝑎 ≥ (𝑎𝑗
𝑗

)
. For 𝑎 = 1, this is clear. So let 𝑎 > 1 and assume(𝑎𝑗+1

𝑗

) ≤ 𝑎. Then

𝑎′ =
𝑗−1∑︁
𝑖=𝑘

(
𝑎𝑖
𝑖

)
≥

(
𝑎𝑗 + 1
𝑗

)
−
(
𝑎𝑗
𝑗

)
=

(
𝑎𝑗
𝑗 − 1

)
≥

(
𝑎𝑗−1 + 1
𝑗 − 1

)
which is in contradiction to the induction hypothesis. This implies the claim now
by recursively applying this argument. ■
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Definition. Wecall the expansion of 𝑎 in Lemma 4.7.6 thebinomial expansion
of 𝑎with respect to 𝑗. We define the integer

𝑎⟨𝑗⟩ =
(
𝑎𝑗 + 1
𝑗 + 1

)
+
(
𝑎𝑗−1 + 1

𝑗

)
+ . . . +

(
𝑎𝑘 + 1
𝑘 + 1

)
.

4.7.8 Exercise. Compute the integers 5⟨2⟩ and 12⟨2⟩ .

4.7.9 Exercise. Show that 𝑎⟨𝑗⟩ ≥ 𝑏⟨𝑗⟩ for any positive integer 𝑗 and any positive
integers 𝑎 ≥ 𝑏.

With the binomial expansion, we can at least state Macaulay’s Theorem.

4.7.10 Theorem (Macaulay). Let ℎ : ℤ≥0 → ℤ≥0 be a function. The following
statements are equivalent.

(1) ℎ is the Hilbert function 𝐻𝑅 of a standard graded 𝐾-algebra 𝑅.
(2) ℎ(0) = 1 and ℎ( 𝑗 + 1) ≤ ℎ( 𝑗)⟨𝑗⟩ for all 𝑗 > 0.

4.8. Alexander duality

For a simplicial complex Δ ⊂ [𝑛] , we define its Alexander dual as

Δ∨ = {[𝑛] \ 𝐹 | 𝐹 ∉ Δ} = {𝐹 ⊂ [𝑛] | [𝑛] \ 𝐹 ∉ Δ} .

4.8.1 Lemma. The set Δ∨ ⊂ [𝑛] is a simplicial complex and we have

(Δ∨)∨ = Δ.

Proof. That Δ∨ is itself a simplicial complex is direct: For any 𝐹′ ⊂ 𝐹 and 𝐹 ∈ Δ∨

we have [𝑛] \ 𝐹 ∉ Δ and [𝑛] \ 𝐹 ∉ Δ and [𝑛] \ 𝐹 ⊂ [𝑛] \ 𝐹′. Since Δ is a simplicial
complex, this implies 𝐹′ ∈ Δ∨. Biduality (Δ∨)∨ = Δ is clear. ■

4.8.2 Exercise. Check the following description of the set of faces of theAlexan-
der dual complex Δ∨.

F (Δ∨) = {[𝑛] \ 𝐹 | 𝐹 ∈ N (Δ)}

Write Δ for the simplicial complex generated by the complements of faces of
Δ, in symbols

Δ = ⟨[𝑛] \ 𝐹 | 𝐹 ∈ F (Δ)⟩.
We use the notation

𝐼Δ = ⟨𝑥𝐹 | 𝐹 ∈ N (Δ)⟩ and
𝐼 (Δ) = ⟨𝑥𝐹 | 𝐹 ∈ F (Δ)⟩

for the Stanley-Reisner ideal and the facet ideal of Δ.
4.8.3 Exercise. Compute the Alexander dual as well as the associated Stanley-
Reisner ideals and facet ideals for the simplicial complex Δ ⊂ [5] with faces

F (Δ) = ⟨{1, 2, 3}, {2, 3, 4}, {3, 5}, {4, 5}⟩.
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4.8.4 Exercise. The Stanley-Reisner ideal of the Alexander dual of a simplicial
complex Δ is the facet ideal of the simplicial complex Δ, i. e., we have 𝐼Δ∨ = 𝐼 (Δ).
4.8.5 Exercise. Compute the standard primary decomposition of the Stanley-
Reisner ideal 𝐼Δ of a simplicial complex Δ. Derive from this the minimal mono-
mial generating set 𝐺(𝐼Δ∨) for the Alexander dual.
Hint: It can be written in terms of the prime ideals 𝑃𝐹 = ⟨𝑥𝑖 | 𝑖 ∈ 𝐹⟩ for the faces
𝐹 of some associated simplicial complex.
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Chapter 5: Hochster’s formula

The goal of this chapter is to show Hochster’s formula relating Betti numbers of
monomial ideals to the (co-)homology of the simplicial complex. This requires
some abstract nonsense that we mostly summarize only briefly.

5.1. Modules over the exterior algebra

The basic setup in this section is the following. Wefix a field 𝐾 and an 𝑛-dimensional
vector space 𝑉 over 𝐾 , usually 𝑉 = 𝐾𝑛 with its standard basis 𝑒1, 𝑒2, . . . , 𝑒𝑛. We
write 𝐸 =

∧
𝑉 =

⊕𝑛
𝑖=0

∧𝑖 𝑉 for the exterior algebra. Then 𝐸 is a standard
graded (non-commutative) 𝐾-algebra with 𝐸1 = 𝑉 and the relation 𝑣 ∧ 𝑣 = 0 for
every 𝑣 ∈ 𝑉 .
5.1.1 Exercise. The 𝐾-vector space

∧𝑘 𝑉 is spanned by the vectors 𝑒𝐹 = 𝑒𝑖1 ∧
. . . ∧ 𝑒𝑖𝑘 for all 𝑘-element subsets 𝐹 = {𝑖1, 𝑖2, . . . , 𝑖𝑘} ⊂ [𝑛] whose elements are
ordered 𝑖1 < . . . < 𝑖𝑘. These basis vectors satisfy the relation

𝑒𝐹 ∧ 𝑒𝐺 =

{ (−1)𝜎 (𝐹, 𝐺)𝑒𝐹∪𝐺 if 𝐹 ∩ 𝐺 = ∅
0 otherwise.

where we write 𝜎 (𝐹, 𝐺) for the number of pairs (𝑖, 𝑗) with 𝑖 ∈ 𝐹, 𝑗 ∈ 𝐺, and 𝑖 > 𝑗.

Definition. A graded 𝐸-module is a finite-dimensional 𝐾-vector space𝑀 sat-
isfying the following properties.

(1) 𝑀 =
⊕

𝑖 𝑀𝑖 is a direct sum of 𝐾-vector spaces 𝑀𝑖.
(2) 𝑀 is a left and a right 𝐸-module.
(3) For all integers 𝑖 and 𝑗 and all 𝑓 ∈ 𝐸𝑖 and 𝑥 ∈ 𝑀𝑗 we have 𝑓 𝑥 ∈ 𝑀𝑖+𝑗 and

𝑓 𝑥 = (−1) 𝑖 𝑗𝑥𝑓 .
5.1.2 Example. 𝐸 =

∧
𝑉 is a graded 𝐸-module with respect to the usual decom-

position
∧
𝑉 =

⊕
𝑖

∧𝑖 𝑉 as above.

Our primary examples of graded 𝐸-modules are quotients of 𝐸 by submodules
associated to simplicial complexes.

5.1.3 Construction. Let Δ ⊂ [𝑛] be a simplicial complex. For every face 𝐹 ∈ Δ
we define the associated monomial 𝑒𝐹 = 𝑒𝑖1 ∧ . . . ∧ 𝑒𝑖𝑘 for 𝐹 = {𝑖1, . . . , 𝑖𝑘} and
𝑖1 < . . . < 𝑖𝑘. Write 𝐽Δ for the 𝐸-submodule of 𝐸 generated by the monomials 𝑒𝐹 ,
𝐹 ∈ Δ. Write 𝐾{Δ} for the quotient 𝐸/𝐽Δ. We call this 𝐸-module the exterior
face ring of Δ.
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5.1.4 Exercise. Show that 𝐽Δ is a graded ideal of 𝐸 so that the exterior face ring
𝐾{Δ} is a graded 𝐾-algebra. Moreover, show that the dimension of 𝐾{Δ}𝑖 as a
𝐾-vector space is equal to 𝑓𝑖−1(Δ), the number of (𝑖 − 1)-dimensional faces of Δ
(for each 𝑖).

Next, we want to discuss duality of graded 𝐸-modules. The fact that 𝐸 is not
commutative makes this more technical than we might be used to. We have to
keep track of multiplication from left or right throughout the process. Let𝑀 and
𝑁 be graded 𝐸-modules. We write

∗Hom𝐸 (𝑀, 𝑁) =
⊕
𝑖

Hom𝐸 (𝑀, 𝑁)𝑖,

where Hom𝐸 (𝑀, 𝑁)𝑖 is the set of all homogeneous 𝐸-module homomorphisms
𝜑 : 𝑀 → 𝑁 of degree 𝑖. We make this set into an 𝐸-module with multiplication
defined as follows. For any 𝑓 ∈ 𝐸 and any 𝜑 ∈ ∗Hom𝐸 (𝑀, 𝑁) define (𝑓 𝜑) (𝑥) =
𝜑(𝑥𝑓 ) and (𝜑𝑓 ) (𝑥) = 𝜑(𝑥)𝑓 for all 𝑥 ∈ 𝑀.

5.1.5 Exercise. Show that this definition satisfies property (3) in the definition
of a graded 𝐸-module.

We set 𝑀∨ = ∗Hom𝐸 (𝑀, 𝐸) and 𝑀∗ = ∗Hom𝐾 (𝑀, 𝐾 (−𝑛)), where 𝐾 (−𝑛)
is the 𝐸-module 𝑀 with 𝑀𝑛 = 𝐾 and 𝑀𝑗 = {0} for 𝑗 ≠ 𝑛 – this is the 𝐸-module
obtained from the 𝐸-module 𝐾 by shifting the grading. In other words, (𝑀∗) 𝑗
is isomorphic to Hom𝐾 (𝑀𝑛−𝑗, 𝐾) for all 𝑗. Here, 𝑀∗ is a graded 𝐸-module with
left multiplication defined by (𝑓 𝜑) (𝑥) = 𝜑(𝑥𝑓 ) for all 𝑥 ∈ 𝑀, as before, abd right
multiplication defined by 𝜑𝑓 = (−1) 𝑖 𝑗𝑓 𝜑 for any 𝜑 ∈ (𝑀∗) 𝑗 and any 𝑓 ∈ 𝐸𝑖 (so
that property (3) holds by definition).

5.1.6 Exercise. What is 𝐸∨?

5.1.7 Construction. Let 𝑀 be a graded 𝐸-module. For 𝜑 ∈ 𝑀∨, we define
𝜑𝐹 : 𝑀 → 𝐾 (−𝑛) for any 𝐹 ⊂ [𝑛] as follows. For 𝑥 ∈ 𝑀 we have 𝜑(𝑥) =∑
𝐹⊂[𝑛] 𝜑𝐹 (𝑥)𝑒𝐹 with 𝜑𝐹 (𝑥) ∈ 𝐾 for all 𝐹 ⊂ [𝑛] because 𝜑 is a map from 𝑀 to

𝐸. Since 𝜑 is in particular a linear map of 𝐾-vector spaces, each 𝜑𝐹 is a 𝐾-linear
map 𝜑𝐹 : 𝑀 → 𝐾 (−𝑛).
5.1.8 Theorem. The map 𝑀∨ → 𝑀∗, 𝜑 ↦→ 𝜑[𝑛] , is a functorial isomophism of
graded 𝐸-modules.

Proof. This is mostly abstract nonsense and some elementary computations in
linear algebra using the above definitions of module structures. ■

5.1.9 Corollary. (1) The functor 𝑀 ↦→ 𝑀∨ is contravariant and exact.
(2) We have (𝑀∨)∨ � 𝑀 and dim𝐾 (𝑀) = dim𝐾 (𝑀∨) for all graded 𝐸-modules

𝑀. ■

5.1.10 Proposition. Let Δ ⊂ [𝑛] be a simplicial complex. The following identities
of graded 𝐸-modules hold.

(1) 0 : 𝐸 𝐽Δ = 𝐽Δ∨ ;
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(2) 𝐾{Δ}∨ = 𝐽Δ∨ and ( 𝐽Δ)∨ = 𝐾{Δ∨}.

Proof. The first claim is elementary, using that 0 : 𝐸 𝐽Δ is again a monomial ideal,
from 𝑒𝐹 ∈ 0 : 𝐸 𝐽Δ if and only if 𝐹 ∩ 𝐺 ≠ ∅ for all 𝐺 ∉ Δ.

The second claim follows from dualizing the exact sequence

0 → 𝐽Δ → 𝐸 → 𝐾{Δ} → 0

defining the exterior face ring 𝐾{Δ} to obtain the exact sequence

0 → 𝐾{Δ}∨ → 𝐸∨ → ( 𝐽Δ)∨ → 0.

Identifying 𝐾{Δ} and 0 : 𝐸 𝐽Δ and using the first claim then gives the second claim.
■

5.2. Simplicial homology

Originally homology has been introduced as a tool, informally speaking, to mea-
sure the number of holes in the boundary of manifolds. Our exposure here is
more abstractly formulated in the language of modules over the exterior algebra.

Let 𝑀 be a graded 𝐸-module and fix 𝑣 ∈ 𝑉 = 𝐸1. We write (𝑀, 𝑣) for the
complex

. . .
𝑣−→ 𝑀𝑖−1

𝑣−→ 𝑀𝑖
𝑣−→ 𝑀𝑖+1

𝑣−→ . . .

of finitely generated 𝐾-vector spaces, where eachmap is given by (left-)multiplication
with 𝑣. The 𝑖th homology of this complex, denoted by 𝐻𝑖(𝑀, 𝑣), is defined to be

𝐻𝑖(𝑀, 𝑣) = ker(𝑀𝑖
𝑣−→ 𝑀𝑖+1)/im(𝑀𝑖−1

𝑣−→ 𝑀𝑖).

5.2.1 Exercise. Why is (𝑀, 𝑣) a complex?

5.2.2 Exercise. Show that we get for every short exact sequence 0 → 𝑁 →
𝑀 → 𝑃 → 0 of graded 𝐸-modules a long exact sequence of in homology, namely

· · · → 𝐻𝑖(𝑁, 𝑣) → 𝐻𝑖(𝑀, 𝑣) → 𝐻𝑖(𝑃, 𝑣) → 𝐻𝑖+1(𝑁, 𝑣) → . . .

by constructing the connecting morphisms 𝐻𝑖(𝑃, 𝑣) → 𝐻𝑖+1(𝑁, 𝑣).

To define the 𝑖-th cohomology, we take the dual complex (𝑀, 𝑣)∗

. . .
𝑣∗−→ Hom𝐾 (𝑀𝑖+1, 𝐾) 𝑣∗−→ Hom𝐾 (𝑀𝑖, 𝐾) 𝑣∗−→ Hom𝐾 (𝑀𝑖−1, 𝐾) 𝑣∗−→ . . .

and take its 𝑖-th homology so that

𝐻 𝑖(𝑀, 𝑣) = ker(𝑀∗
𝑖

𝑣∗−→ 𝑀∗
𝑖−1)/im(𝑀∗

𝑖+1
𝑣∗−→ 𝑀∗

𝑖 ),

where we used the notation 𝑀∗
𝑖 = Hom𝐾 (𝑀𝑖, 𝐾). Thus, we call 𝐻 𝑖(𝑀, 𝑣) the

𝑖-th cohomology of (𝑀, 𝑣).
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5.2.3 Exercise. Show that Hom𝐾 (𝐻 𝑖(𝑀, 𝑣), 𝐾) is (functorially) isomorphic to
𝐻𝑖(𝑀, 𝑣). Dually, the same statement holds forHom𝐾 (𝐻𝑖(𝑀, 𝑣), 𝐾) and𝐻 𝑖(𝑀, 𝑣).
5.2.4 Proposition. Let 𝑀 be a graded 𝐸-module. Then there is an isomorphism
from 𝐻 𝑖(𝑀∨, 𝑣) to 𝐻𝑛−𝑖(𝑀, 𝑣) for all 𝑖 ∈ [𝑛].
Proof. The main argument is that the following diagram of maps given in the
above Theorem 5.1.8 is commutative.

(𝑀∨)𝑖−1 Hom𝐾 (𝑀𝑛−𝑖+1, 𝐾)

(𝑀∨)𝑖 Hom𝐾 (𝑀𝑛−𝑖, 𝐾)

𝛼𝑖−1

𝛼𝑖

𝑣 (−1)𝑛−𝑖𝑣∗

■

Definition. LetΔ ⊂ [𝑛] be a simplicial complex and set 𝑒 =
∑𝑛
𝑖=1 𝑒𝑖 ∈ 𝑉 . We de-

fine the 𝑖-th reduced simplicial homology of Δwith values in 𝐾 as 𝐻𝑖(Δ; 𝐾) =
𝐻𝑖+1(𝐾{Δ}, 𝑒) and the 𝑖-th reduced simplicial cohomology of Δwith values in
𝐾 as 𝐻 𝑖(Δ; 𝐾) = 𝐻 𝑖+1(𝐾{Δ}, 𝑒).
5.2.5 Exercise. Show that there are functorial isomorphisms from 𝐻𝑖(Δ; 𝐾) to
Hom𝐾

(
𝐻 𝑖(Δ; 𝐾), 𝐾

)
and dually from 𝐻 𝑖(Δ; 𝐾) to Hom𝐾

(
𝐻𝑖(Δ; 𝐾), 𝐾

)
. In par-

ticular, it follows that 𝐻𝑖(Δ; 𝐾) has the same dimension as a 𝐾-vector space as
𝐻 𝑖(Δ; 𝐾).
5.2.6 Proposition (Alexander duality). Let Δ ⊂ [𝑛] be a simplicial complex. For
each 𝑖 ∈ [𝑛] there is a functorial isomorphism

𝐻 𝑖−2(Δ∨; 𝐾) � 𝐻𝑛−𝑖−1(Δ; 𝐾).

Proof. This follows essentially from Proposition 5.2.4 and Exercise 5.2.3. ■

5.3. Hochster’s formula

First, we have to fix some notation. For 𝑎 ∈ ℤ𝑛 the numbers

𝛽𝑖,𝑎(𝐼Δ) = dim𝐾 𝐻𝑖(𝐾{𝕂𝑎(𝐼Δ)}; 𝑒)

are called the multigraded or ℤ𝑛-graded Betti numbers of 𝐼Δ. An element
𝑎 ∈ ℤ𝑛 is called squarefree if 𝑎 has only the integers 0 and 1 as possible entries.
We set supp(𝑎) = {𝑖 | 𝑎𝑖 ≠ 0}. Moreover, let Δ ⊂ 2[𝑛] be a simplicial complex
and𝑊 = supp(𝑎), then we define the restriction of a simplicial complex by

Δ𝑊 = {𝐹 ⊆ [𝑛] | 𝐹 ⊆ 𝑊 }.

Finally, let
𝕂𝑎(𝐼Δ) = {𝐹 ⊂ [𝑛] | 𝑥𝑎−𝜀(𝐹) ∈ 𝐼Δ}
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be theupperKoszul simplicial complex of 𝐼Δ in degree 𝑎, where , where 𝜀(𝐹) ∈
{0, 1}𝑛 such that supp(𝜀(𝐹)) = 𝐹.
5.3.1 Exercise. Show that Δ𝑊 and 𝕂𝑎(𝐼Δ) are simplical complexes.

Now we can state the fundamental theorem of Hochster, which gives a very
useful description of the ℤ𝑛-graded Betti numbers of a Stanley–Reisner ideal.

5.3.2 Theorem (Hochster). Let Δ be a simplicial complex and 𝑎 ∈ ℤ𝑛. Then we
have:

(a) 𝐻𝑖(𝐾{𝕂𝑎(𝐼Δ)}; 𝑒) = 0 if 𝑎 is not squarefree;
(b) if 𝑎 is squarefree and𝑊 = supp(𝑎), then

𝐻𝑖(𝐾{𝕂𝑎(𝐼Δ)}; 𝑒) � 𝐻 |𝑊 |−𝑖−2(Δ𝑊 ; 𝐾) for all 𝑖

Proof. We start with a bit of setup. For 𝐹 ⊆ [𝑛] , 𝐹 = { 𝑗0 < 𝑗1 < · · · < 𝑗𝑖}, we set
𝑒𝐹 = 𝑒𝑗0 ∧ 𝑒𝑗1 ∧ · · · ∧ 𝑒𝑗𝑖 . Then, the elements 𝑒𝐹 with 𝐹 ⊆ [𝑛] and |𝐹 | = 𝑖 form a
basis of the free 𝑆-module 𝕂𝑖(𝑛); the 𝑖-th homology part of the Koszul complex.
Then, in 𝑖-th homology of the corresponding chain complex, the vector space
𝐶𝑖(𝕂𝑎(𝐼Δ); 𝐾), has a basis given by

𝑥𝑏𝑒𝐹 , 𝑏 + 𝜀(𝐹) = 𝑎, supp(𝑏) ⊈ Δ.

Next, define the following simplicial complex

Δ𝑎 = {𝐹 ⊆ [𝑛] : 𝐹 ⊆ supp(𝑎) ∧ supp(𝑎 \ 𝜀(𝐹)) ∉ Δ}.

Further, let 𝐶•(Δ𝑎; 𝐾) [−1] be the reduced chain complex of Δ𝑎 shifted by −1 in
homological degree, that is 𝐶𝑖(Δ𝑎; 𝐾) [−1] = 𝐶𝑖−1(Δ𝑎; 𝐾). Then we obtain an
isomorphism of complexes

𝛼 : 𝐶•(Δ𝑎; 𝐾) [−1] −→ 𝐶•(𝕂𝑎(𝐼Δ); 𝐾)

where each

𝛼𝑖 : 𝐶𝑖−1(Δ𝑎; 𝐾) → 𝐶𝑖(𝕂𝑎(𝐼Δ); 𝐾), 𝐹 = [ 𝑗0, 𝑗1, . . . , 𝑗𝑖−2] ↦→ 𝑥𝑎−𝜀(𝐹)𝑒𝐹

is a vector space isomorphism. Note that we can think of𝕂𝑎(𝐼Δ) as an 𝐸 =
∧
𝐾𝑛-

module via its exterior face ring 𝐾{𝕂𝑎(𝐼Δ)}. This induces an isomorphism in
homology

𝐻𝑖−1(Δ𝑎; 𝐾) � 𝐻𝑖(𝐾{𝕂𝑎(𝐼Δ)}; 𝑒),
where 𝑒 =

∑|𝐹 |
𝑗=1 𝑒𝑗, and again to emphasise 𝑊 = supp(𝑎). We begin with the

proof of (𝑎): Suppose 𝑎 is not squarefree. Then there exists 𝑗 such that 𝑎𝑗 > 1.
We define 𝑎(𝑟) = (𝑎1, . . . , 𝑎𝑗 + 𝑟, . . . , 𝑎𝑛) for 𝑟 ≥ 0. Since Δ𝑎 depends only on the
support of 𝑎 we get Δ𝑎 = Δ𝑎(𝑟) for all 𝑟 ≥ 0. Moreover, 𝐻𝑖(𝐾{𝕂𝑎(𝑟) (𝐼Δ)}; 𝑒),
has only finitely many nonzero graded components there exists 𝑟 ≫ 0 such that
𝐻𝑖(𝐾{𝕂𝑎(𝑟) (𝐼Δ)}; 𝑒), = 0. Thus, by the isomorphism above, we have

𝐻𝑖(𝐾{𝕂𝑎(𝐼Δ)}; 𝑒), � 𝐻𝑖−1(Δ𝑎; 𝐾) = 𝐻𝑖−1(Δ𝑎(𝑟) ; 𝐾) � 𝐻𝑖(𝐾{𝕂𝑎(𝑟) (𝐼Δ)}; 𝑒) = 0.
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52 5. Hochster’s formula

It remains to prove (𝑏). Let 𝑎 ∈ ℤ𝑛 squarefree with𝑊 = supp(𝑎). Then 𝐹 ∈ Δ𝑎 if
and only if 𝐹 ⊆ 𝑊 and𝑊 \𝐹 ⊈ Δ𝑎. This is equivalent to saying that (Δ𝑊 )∨ = Δ𝑎.
Thus, it follows by Alexander duality, i.e. Proposition 5.2.6, that

𝐻𝑖(𝐾{𝕂𝑎(𝐼Δ}; 𝑒) � 𝐻𝑖−1((Δ𝑊 )∨; 𝐾) � 𝐻 |𝑊 |−𝑖−2(Δ𝑊 ; 𝐾),

as desired. ■
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