Series 2

1. Let V be a finite-dimensional vector space with two different bases v_{1}, \ldots, v_{n} and $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$. Let the basis change be denoted by $v_{i}^{\prime}=\sum_{j} C_{i}^{j} v_{j}$.
a) Let $\left(v_{i}^{*} \otimes v_{j}^{*}\right)_{1 \leq i, j \leq n}$ denote the canonically associated basis of $V^{*} \otimes V^{*}$, where

$$
v_{i}^{*} \otimes v_{j}^{*}\left(v_{k}, v_{l}\right)=\delta_{i, k} \delta_{j, l},
$$

and let $\left(v_{i} \otimes v_{j}\right)_{1 \leq i, j \leq, n}$ denote the canonically dual basis of $V \otimes V$. Suppose $\beta \in V^{*} \otimes V^{*}$ and $h \in V \otimes V$ are expressed with respect to the above bases by

$$
\beta=\sum_{i, j} B_{i j} v_{i}^{*} \otimes v_{j}^{*}, \quad \text { and } \quad h=\sum_{i, j} H^{i j} v_{i} \otimes v_{j},
$$

that is, we have two $n \times n$-matrices B and H. How do they transform as matrices with respect to the basis change C ? Use matrix notation B, H, C, C^{-1}, C^{t} where applicable!
b) Suppose now that $T \in \bigotimes^{r} V \otimes \bigotimes^{s} V^{*}$ is an (r, s)-tensor represented with respect to the basis v_{1}, \ldots, v_{n} by $\left(T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}\right)_{1 \leq i_{a}, j_{b} \leq n, 1 \leq a \leq r, 1 \leq b \leq s}$. Give the formula in index notation for the basis change with respect to $\left(C_{i}^{j}\right)$.
(2 pts)
2. (a) Consider the equation

$$
(x+y) \cdot \cosh (x-y)=2 x .
$$

Show that there exists $\varepsilon>0$ and $h:(1-\varepsilon, 1+\varepsilon) \rightarrow \mathbb{R}$ such that $y=h(x)$ is a solution with $h(1)=1$. Compute $h^{\prime}(1)$.
(2 pts)
(b) Let $U(n, \mathbb{C})=\left\{A \in M(n \times n, \mathbb{C}) \mid A \cdot \bar{A}^{t}=\mathbf{1}\right\}$, the so-called unitary group. Show that near the identity $\mathbf{1}$ the set $U(n, \mathbb{C})$ can be parametrized by an open subset of the linear space

$$
\mathfrak{u}(n, \mathbb{C})=\left\{B \in M(n \times n, \mathbb{C}) \mid B^{t}=-\bar{B}\right\} .
$$

What is its dimension?
3. Let $\mathbb{C} P^{n}:=\left\{\mathbb{C} \cdot v \mid v \in \mathbb{C}^{n+1} \backslash\{0\}\right\}$ where

$$
\begin{gathered}
\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C} P^{n}, \\
\pi(v)=\mathbb{C} \cdot v:=\{\lambda \mid \lambda \in \mathbb{C}\},
\end{gathered}
$$

i.e. $\mathbb{C} P^{n}$ is the set of all complex 1 -dimensional subvectorspaces of \mathbb{C}^{n+1}, the so-called complex lines. $\mathbb{C} P^{n}$ is called the n-dimensional complex projective space. The element $\mathbb{C} \cdot\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C} P^{n}$ with $\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1} \backslash\{0\}$ is denoted by $\left[z_{0}: \ldots: z_{n}\right]$, which we call homogeneous coordinates on $\mathbb{C} P^{n}$, i.e. $\left[\lambda z_{0}: \ldots: \lambda z_{n}\right]=\left[z_{0}: \ldots: z_{n}\right]$ for all $\lambda \in \mathbb{C} \backslash\{0\}$.
Let $\mathbb{C} P^{n}$ carry the following topology:

$$
U \subset \mathbb{C} P^{n} \text { is open } \Leftrightarrow \pi^{-1}(U) \subset \mathbb{C}^{n+1} \backslash\{0\} \text { is open, }
$$

i.e. it is the largest topology on $\mathbb{C} P^{n}$ such that π is continuous.
a) Show that for any topological space X, a map $f: \mathbb{C} P^{n} \rightarrow X$ is continuous if and only if $f \circ$ $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow X$ is continuous, and a map $g: X \rightarrow \mathbb{C} P^{n}$ is continuous exactly if for any $U \subset \mathbb{C} P^{n}$, s.t. $\pi^{-1}(U)$ is open in $\mathbb{C}^{n+1} \backslash\{0\}$, and for any $x \in X$ with $f(x) \in U$ there exists an open subset $V \subset X$ such that $x \in V$ and $f(V) \subset U$. (1 pt)
b) Consider the following subsets $U_{i} \subset \mathbb{C} P^{n}$ for $i=0, \ldots, n$, with

$$
U_{i}:=\left\{\left[z_{0}: \ldots: z_{n}\right] \mid z_{i} \neq 0\right\}
$$

and with subset topology. Show that

$$
\varphi_{i}: \mathbb{C}^{n} \rightarrow U_{i}, \varphi_{i}\left(w_{1}, \ldots, w_{n}\right):=\left[w_{1}: \ldots: w_{i}: 1: w_{i+1}: \ldots: w_{n}\right]
$$

are homeomorphisms.
c) Compute $\varphi_{i}^{-1} \circ \varphi_{j}$ where defined and show that $\left\{\left(U_{i}, \varphi_{i}, \mathbb{C}^{n}\right) \mid i=0, \ldots, n\right\}$ defines a smooth atlas on $\mathbb{C} P^{n}$.
(1 pt)
d) Show that from the above it follows that $\mathbb{C} P^{n}$ is a smooth manifold of real dimension $2 n$. (1 pt)
4. a) Consider a smooth function $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ open. A point $x \in U$ is called a critical point of f if $d f(x)=0$. Let $X, Y \in \mathcal{X}(U)$ be two vector fields on U. Show that, if $x \in U$ is a critical point of f, then $X(Y(f))(x)=Y(X(f))(x)$, and this expression depends only on f and the vectors $X(x), Y(x) \in \mathbb{R}^{n}$. Hence, we can define $H f(x)(v, w):=X(Y(f))(x)$ where $X(x)=v$, $Y(x)=w$. Explain why $H f(x)$ is a symmetric 2-0-tensor on \mathbb{R}^{n}. It is called the Hessian of f at x.
b) Can the Hessian $H f(x)$ also be defined as a 2-0-tensor, independently of a given basis, if x is not a critical point of f ? Prove or give a counterexample.
$1 p t$
c) Let $U \subset \mathbb{R}^{n}$ be open. An operation $\nabla: \mathcal{X}(U) \times \mathcal{X}(U) \rightarrow \mathcal{X}(U),(X, Y) \mapsto \nabla_{X} Y$ which is bilinear for $\mathcal{X}(U)$ as a k-vector space, $k=\mathbb{R}, \mathbb{C}$ and which satisfies

$$
\nabla_{f X} Y=f \nabla_{X} Y, \quad \nabla_{X}(f Y)=f \nabla_{X} Y+X(f) \cdot Y
$$

for all $X, Y \in \mathcal{X}(U), f \in C^{\infty}(U)$, is called a connection. It is not a 2-0-tensor, because $\left(\nabla_{X} Y\right)(x)$ does not depend only on $X(x)$ and $Y(x)$. Show that, however, for any two connection ∇ and ∇^{\prime}, the difference $\nabla-\nabla^{\prime}$ is a 2-0-tensor, and that the expression

$$
T_{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

is a $2-0$-tensor, the so-called torsion of ∇.
1 pt

Hand-In: Practice Session Wednesday Oct. 30

