Mathematical Physics

Series 2

- **1.** Let V be a finite-dimensional vector space with two different bases v_1, \ldots, v_n and v'_1, \ldots, v'_n . Let the basis change be denoted by $v'_i = \sum_j C_i^j v_j$.
 - a) Let $(v_i^* \otimes v_j^*)_{1 \leq i,j \leq n}$ denote the canonically associated basis of $V^* \otimes V^*$, where

$$v_i^* \otimes v_j^*(v_k, v_l) = \delta_{i,k} \delta_{j,l} \,,$$

and let $(v_i \otimes v_j)_{1 \leq i,j \leq n}$ denote the canonically dual basis of $V \otimes V$. Suppose $\beta \in V^* \otimes V^*$ and $h \in V \otimes V$ are expressed with respect to the above bases by

$$\beta = \sum_{i,j} B_{ij} v_i^* \otimes v_j^*, \text{ and } h = \sum_{i,j} H^{ij} v_i \otimes v_j$$

that is, we have two $n \times n$ -matrices B and H. How do they transform as matrices with respect to the basis change C? Use matrix notation B, H, C, C^{-1}, C^t where applicable! (2 pts)

- **b)** Suppose now that $T \in \bigotimes^r V \otimes \bigotimes^s V^*$ is an (r, s)-tensor represented with respect to the basis v_1, \ldots, v_n by $(T_{j_1 \ldots j_s}^{i_1 \ldots i_r})_{1 \le i_a, j_b \le n, 1 \le a \le r, 1 \le b \le s}$. Give the formula in index notation for the basis change with respect to (C_j^i) . (2 *pts*)
- 2. (a) Consider the equation

$$(x+y)\cdot\cosh(x-y) = 2x.$$

Show that there exists $\varepsilon > 0$ and $h: (1 - \varepsilon, 1 + \varepsilon) \to \mathbb{R}$ such that y = h(x) is a solution with h(1) = 1. Compute h'(1). (2 pts)

(b) Let $U(n, \mathbb{C}) = \{ A \in M(n \times n, \mathbb{C}) | A \cdot \overline{A}^t = 1 \}$, the so-called unitary group. Show that near the identity 1 the set $U(n, \mathbb{C})$ can be parametrized by an open subset of the linear space

$$\mathfrak{u}(n,\mathbb{C}) = \{ B \in M(n \times n,\mathbb{C}) \mid B^t = -\overline{B} \}.$$

What is its dimension?

3. Let $\mathbb{C}P^n := \{\mathbb{C} \cdot v \mid v \in \mathbb{C}^{n+1} \setminus \{0\}\}$ where

$$\pi \colon \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}P^n, \pi(v) = \mathbb{C} \cdot v := \{ \lambda v \mid \lambda \in \mathbb{C} \},\$$

i.e. $\mathbb{C}P^n$ is the set of all complex 1-dimensional subvectorspaces of \mathbb{C}^{n+1} , the so-called *complex lines*. $\mathbb{C}P^n$ is called the *n*-dimensional **complex projective space**. The element $\mathbb{C} \cdot (z_0, \ldots, z_n) \in \mathbb{C}P^n$ with $(z_0, \ldots, z_n) \in \mathbb{C}^{n+1} \setminus \{0\}$ is denoted by $[z_0 : \ldots : z_n]$, which we call *homogeneous coordinates* on $\mathbb{C}P^n$, i.e. $[\lambda z_0 : \ldots : \lambda z_n] = [z_0 : \ldots : z_n]$ for all $\lambda \in \mathbb{C} \setminus \{0\}$. Let $\mathbb{C}P^n$ carry the following topology:

$$U \subset \mathbb{C}P^n$$
 is open $\Leftrightarrow \pi^{-1}(U) \subset \mathbb{C}^{n+1} \setminus \{0\}$ is open,

i.e. it is the largest topology on $\mathbb{C}P^n$ such that π is continuous.

(2 pts)

- a) Show that for any topological space X, a map $f: \mathbb{C}P^n \to X$ is continuous if and only if $f \circ \pi: \mathbb{C}^{n+1} \setminus \{0\} \to X$ is continuous, and a map $g: X \to \mathbb{C}P^n$ is continuous exactly if for any $U \subset \mathbb{C}P^n$, s.t. $\pi^{-1}(U)$ is open in $\mathbb{C}^{n+1} \setminus \{0\}$, and for any $x \in X$ with $f(x) \in U$ there exists an open subset $V \subset X$ such that $x \in V$ and $f(V) \subset U$. (1 pt)
- **b**) Consider the following subsets $U_i \subset \mathbb{C}P^n$ for i = 0, ..., n, with

$$U_i := \{ [z_0 : \ldots : z_n] \mid z_i \neq 0 \}$$

and with subset topology. Show that

$$\varphi_i \colon \mathbb{C}^n \to U_i, \ \varphi_i(w_1, \dots, w_n) := [w_1 : \dots : w_i : 1 : w_{i+1} : \dots : w_n]$$

are homeomorphisms.

- c) Compute $\varphi_i^{-1} \circ \varphi_j$ where defined and show that $\{(U_i, \varphi_i, \mathbb{C}^n) | i = 0, ..., n\}$ defines a smooth atlas on $\mathbb{C}P^n$. (1 pt)
- **d**) Show that from the above it follows that $\mathbb{C}P^n$ is a smooth manifold of real dimension 2n. (1 pt)
- a) Consider a smooth function f: U → R, U ⊂ Rⁿ open. A point x ∈ U is called a *critical point* of f if df(x) = 0. Let X, Y ∈ X(U) be two vector fields on U. Show that, if x ∈ U is a critical point of f, then X(Y(f))(x) = Y(X(f))(x), and this expression depends only on f and the vectors X(x), Y(x) ∈ Rⁿ. Hence, we can define Hf(x)(v, w) := X(Y(f))(x) where X(x) = v, Y(x) = w. Explain why Hf(x) is a symmetric 2-0-tensor on Rⁿ. It is called the Hessian of f at x.
 - **b)** Can the Hessian Hf(x) also be defined as a 2-0-tensor, independently of a given basis, if x is not a critical point of f? Prove or give a counterexample. 1 pt
 - c) Let $U \subset \mathbb{R}^n$ be open. An operation $\nabla \colon \mathcal{X}(U) \times \mathcal{X}(U) \to \mathcal{X}(U), (X,Y) \mapsto \nabla_X Y$ which is bilinear for $\mathcal{X}(U)$ as a k-vector space, $k = \mathbb{R}, \mathbb{C}$ and which satisfies

$$\nabla_{fX}Y = f\nabla_X Y, \quad \nabla_X(fY) = f\nabla_X Y + X(f) \cdot Y,$$

for all $X, Y \in \mathcal{X}(U)$, $f \in C^{\infty}(U)$, is called a **connection**. It is *not* a 2-0-tensor, because $(\nabla_X Y)(x)$ does not depend only on X(x) and Y(x). Show that, however, for any two connection ∇ and ∇' , the difference $\nabla - \nabla'$ is a 2-0-tensor, and that the expression

$$T_{\nabla}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

is a 2-0-tensor, the so-called **torsion** of ∇ .

Hand-In: Practice Session Wednesday Oct. 30

1 pt

(1 pt)