Series 1

1. Let $(V,\|\cdot\|)$ be a normed vector space over \mathbb{C} and define for a linear operator $A \in \operatorname{Hom}(V, V)$

$$
\|A\|_{o p}:=\sup _{v \in V \backslash\{0\}} \frac{\|A v\|}{\|v\|} \in[0, \infty) \cup\{\infty\} .
$$

Let $\mathcal{L}(V)=\left\{A \in \operatorname{Hom}(V, V) \mid\|A\|_{o p}<\infty\right\}$, i.e. $\left(\mathcal{L}(V),\|\cdot\|_{o p}\right)$ is again a normed vector space. We assume $(V,\|\cdot\|)$ to be complete. One can show that then $\left(\mathcal{L}(V),\|\cdot\|_{o p}\right)$ is complete, too.
(a) Show $\|A\|_{o p}=\sup _{\|v\|=1}\|A v\|$ and $\|A \cdot B\|_{o p} \leq\|A\|_{o p} \cdot\|B\|_{o p}$ f.a. $A, B \in \mathcal{L}(V)$, where $A \cdot B$ denotes the composition of operators.
(l pt)
(b) Show that if $\|A\|_{o p}<1$, then $\mathbf{1}-A$ is invertible, and that $A+B$ is invertible if A is invertible and $\|B\|<\left\|A^{-1}\right\|^{-1}$.
(c) Show that in general $\left\|A^{-1}\right\| \neq\|A\|^{-1}$. (1 pt)

Background: If $\sum_{n=0}^{\infty} a_{n} r^{n}$ is a convergent series for $r>0$ and $\left(a_{n}\right)_{n \in N} \in \mathbb{C}$ and if $\|A\| \leq r$, then $\sum_{n=0}^{\infty} a_{n} A^{n}$ converges in $\left(\mathcal{L}(V),\|\cdot\|_{\text {op }}\right)$.
Proof: Since $(\mathcal{L}(V),\|\cdot\|)$ is a complete normed space, it suffices to show that $\left(\sum_{n=0}^{N} a_{n} A^{n}\right)_{N \in \mathbb{N}}$ is a Cauchy sequence. But this follows from the convergence from $\left(\sum_{n=0}^{N} a_{n} r^{n}\right)_{N \in N}$ as $\left\|\sum_{n=m}^{m+k} a_{n} A^{n}\right\| \leq$ $\sum_{n=m}^{m+k} a_{n} r^{n} \rightarrow 0$ for $m \rightarrow \infty$.
2. Let X be a topological space. Then a subset $A \subset X$ is called dense if for all $x \in X$ and $U \subset X$ open with $x \in U$ we have $U \cap A \neq \emptyset$.
(a) Show that $G L(n, \mathbb{R}) \subset M(n \times n, \mathbb{R})$ is an open and dense subset.
(b) Let $f: M(n \times n, \mathbb{R}) \rightarrow \mathbb{R}$ be a continuous map. Show

$$
\begin{array}{ll}
& f\left(C A C^{-1}\right)=f(A) \\
\Leftrightarrow & \text { f.a. } A \in M(n \times n, \mathbb{R}), C \in G L(n, \mathbb{R}) \\
& f(A B)=f(B A)
\end{array} \quad \text { f.a. } A, B \in M(n \times n, \mathbb{R}),
$$

and that $\operatorname{tr}\left(C A C^{-1}\right)=\operatorname{tr}(A)$ for all $A \in M(n \times n, \mathbb{R}), C \in G L(n, \mathbb{R})$. (1 pt)
(c) Show that $O(n, \mathbb{R})$ is a compact space. (1 pt)
3. A topological space X is called path-connected if for any two points $x, y \in X$ there exists a continuous path $\gamma:[0,1] \rightarrow X$ such that $\gamma(0)=a$ and $\gamma(1)=b$.
(a) Show that if two topological spaces X and Y are homeomorphic $X \simeq Y$, then one of them is path-connected if and only if the other one is too.
(b) Show that \mathbb{R}^{2} and \mathbb{R} are not homeomorphic.
(c) Consider $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ and show that $S^{2} \backslash\{(0,0,1)\}$ and \mathbb{R}^{2} are homeomorphic. (1 pt)
(d) Let $f:[0,1] \rightarrow[0,1]$ be a C^{1}-function, i.e. continuous, differentiable on $(0,1)$ and f^{\prime} continuous on $[0,1]$. Assume $\left|f^{\prime}\right|<1$ on $[0,1]$. Show that f is a contraction and has a unique fixed point in $[0,1]$.
4. Consider the following map $\gamma:(0,1) \rightarrow \mathbb{R}^{2}$, defined piecewise

$$
\gamma(t)= \begin{cases}(0,1-6 t), & 0<t \leq \frac{1}{3} \\ \left(\sin \frac{\pi}{2}(3 t-1),-\cos \frac{\pi}{2}(3 t-1)\right), & \frac{1}{3} \leq t \leq \frac{2}{3} \\ (3-3 t, 0), & \frac{2}{3} \leq t<1\end{cases}
$$

and its image $C=\gamma((0,1))$. Let C carry the topology induced as subset of \mathbb{R}^{2}, i.e. the open subsets of C are the intersections of open subsets of \mathbb{R}^{2} with C. Show that $\gamma:(0,1) \rightarrow C$ is a bijection (1-1 correspondence) and continuous, but that it is not a homeomorphism.
5. Optional: Consider the vector space of twice differentiable paths $V=C^{2}\left([a, b], \mathbb{R}^{n}\right)$ and the function

$$
S: V \rightarrow \mathbb{R}, \quad S(\gamma)=\frac{1}{2} \int_{a}^{b}|\dot{\gamma}(s)|^{2} d s
$$

Show: If all directional derivatives $\partial_{v} S(\gamma)=0$ where $v \in V$ with $v(a)=v(b)=0$, then $\ddot{\gamma}=0 .(2$ pts) Definition to be covered in class: Let V be a vector space, $f: V \rightarrow \mathbb{R}$ a function. Then the directional derivative of f in the direction $h \in V$ at a point $x \in V$ is defined as

$$
\partial_{h} f(x):=\lim _{t \rightarrow 0} \frac{f(x+t h)-f(x)}{t},
$$

provided that the limit exists.

Hand-In: Practice Session Wednesday Oct. 23

