Series 1

1. Let $(V, \|\cdot\|)$ be a normed vector space over \mathbb{C} and define for a linear operator $A \in \text{Hom}(V, V)$

$$||A||_{op} := \sup_{v \in V \setminus \{0\}} \frac{||Av||}{||v||} \in [0,\infty) \cup \{\infty\}.$$

Let $\mathcal{L}(V) = \{ A \in \text{Hom}(V, V) \mid ||A||_{op} < \infty \}$, i.e. $(\mathcal{L}(V), || \cdot ||_{op})$ is again a normed vector space. We assume $(V, || \cdot ||)$ to be complete. One can show that then $(\mathcal{L}(V), || \cdot ||_{op})$ is complete, too.

- (a) Show $||A||_{op} = \sup_{||v||=1} ||Av||$ and $||A \cdot B||_{op} \le ||A||_{op} \cdot ||B||_{op}$ f.a. $A, B \in \mathcal{L}(V)$, where $A \cdot B$ denotes the composition of operators. (1 pt)
- (b) Show that if $||A||_{op} < 1$, then 1 A is invertible, and that A + B is invertible if A is invertible and $||B|| < ||A^{-1}||^{-1}$. (2 *pts*)
- (c) Show that in general $||A^{-1}|| \neq ||A||^{-1}$. (1 *pt*)

Background: If $\sum_{n=0}^{\infty} a_n r^n$ is a convergent series for r > 0 and $(a_n)_{n \in N} \in \mathbb{C}$ and if $||A|| \leq r$, then $\sum_{n=0}^{\infty} a_n A^n$ converges in $(\mathcal{L}(V), || \cdot ||_{op})$.

Proof: Since $(\mathcal{L}(V), \|\cdot\|)$ is a complete normed space, it suffices to show that $(\sum_{n=0}^{N} a_n A^n)_{N \in \mathbb{N}}$ is a Cauchy sequence. But this follows from the convergence from $(\sum_{n=0}^{N} a_n r^n)_{N \in \mathbb{N}}$ as $\|\sum_{n=m}^{m+k} a_n A^n\| \leq \sum_{n=m}^{m+k} a_n r^n \to 0$ for $m \to \infty$.

- **2.** Let X be a topological space. Then a subset $A \subset X$ is called **dense** if for all $x \in X$ and $U \subset X$ open with $x \in U$ we have $U \cap A \neq \emptyset$.
 - (a) Show that $GL(n, \mathbb{R}) \subset M(n \times n, \mathbb{R})$ is an open and dense subset. (2 *pts*)
 - (b) Let $f: M(n \times n, \mathbb{R}) \to \mathbb{R}$ be a continuous map. Show

$$f(CAC^{-1}) = f(A) \qquad \text{f.a. } A \in M(n \times n, \mathbb{R}), C \in GL(n, \mathbb{R})$$

$$\Rightarrow \qquad f(AB) = f(BA) \qquad \text{f.a. } A, B \in M(n \times n, \mathbb{R}),$$

and that
$$\operatorname{tr}(CAC^{-1}) = \operatorname{tr}(A)$$
 for all $A \in M(n \times n, \mathbb{R}), C \in GL(n, \mathbb{R}).$ (1 pt)

(c) Show that $O(n, \mathbb{R})$ is a compact space.

 \Leftarrow

- **3.** A topological space X is called **path-connected** if for any two points $x, y \in X$ there exists a continuous path $\gamma: [0,1] \to X$ such that $\gamma(0) = a$ and $\gamma(1) = b$.
 - (a) Show that if two topological spaces X and Y are homeomorphic $X \simeq Y$, then one of them is path-connected if and only if the other one is too. (1 pt)
 - (b) Show that \mathbb{R}^2 and \mathbb{R} are not homeomorphic. (1 pt)

(1 pt)

- (c) Consider $S^2 = \{ (x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1 \}$ and show that $S^2 \setminus \{ (0, 0, 1) \}$ and \mathbb{R}^2 are homeomorphic. (1 pt)
- (d) Let $f: [0,1] \rightarrow [0,1]$ be a C^1 -function, i.e. continuous, differentiable on (0,1) and f' continuous on [0,1]. Assume |f'| < 1 on [0,1]. Show that f is a contraction and has a unique fixed point in [0,1].
- **4.** Consider the following map $\gamma \colon (0,1) \to \mathbb{R}^2$, defined piecewise

$$\gamma(t) = \begin{cases} (0, 1 - 6t), & 0 < t \le \frac{1}{3}, \\ \left(\sin\frac{\pi}{2}(3t - 1), -\cos\frac{\pi}{2}(3t - 1)\right), & \frac{1}{3} \le t \le \frac{2}{3}, \\ (3 - 3t, 0), & \frac{2}{3} \le t < 1, \end{cases}$$

and its image $C = \gamma((0, 1))$. Let C carry the topology induced as subset of \mathbb{R}^2 , i.e. the open subsets of C are the intersections of open subsets of \mathbb{R}^2 with C. Show that $\gamma: (0, 1) \to C$ is a bijection (1-1 correspondence) and continuous, but that it is not a homeomorphism. (4 pts)

5. Optional: Consider the vector space of twice differentiable paths $V = C^2([a, b], \mathbb{R}^n)$ and the function

$$S\colon V\to \mathbb{R}, \quad S(\gamma)=\,\frac{1}{2}\int_a^b |\dot\gamma(s)|^2 ds\,.$$

Show: If all directional derivatives $\partial_v S(\gamma) = 0$ where $v \in V$ with v(a) = v(b) = 0, then $\ddot{\gamma} = 0.(2 \text{ pts})$ Definition to be covered in class: Let V be a vector space, $f: V \to \mathbb{R}$ a function. Then the directional derivative of f in the direction $h \in V$ at a point $x \in V$ is defined as

$$\partial_h f(x) := \lim_{t \to 0} \frac{f(x+th) - f(x)}{t},$$

provided that the limit exists.

Hand-In: Practice Session Wednesday Oct. 23