Serie 8

- **1.** Sei $G \subset \mathbb{C}^{\times}$ ein einfach zusammenhängendes Gebiet.
 - a) Zeige: Es existiert auf G ein Zweig des Logarithmus.

2 Punkte

- **b)** Zeige: Es existiert auf G ein Zweig der Wurzelfunktion, d.h. $g \in \mathcal{O}(G)$ mit $\big(g(z)\big)^2 = z$ f.a. $z \in G$.
- **2. a)** Zeige: Jede komplexe Möbiustranformation $\varphi \in \operatorname{Aut}(\hat{\mathbb{C}})$ lässt sich als eine endliche Komposition $\varphi_1 \circ \ldots \circ \varphi_n$ aus Transformationen φ_i vom Typ Inversion $z \mapsto \frac{1}{z}$, Translation $z \mapsto z + b$, $b \in \mathbb{C}$ und Drehstreckung $z \mapsto az$, $a \in \mathbb{C}$ zusammensetzen.
 - **b)** Zeige: Die Gruppen $PSL(2,\mathbb{R})$ und $Aut(\mathbb{H})$ sind isomorph.

2 Punkte

- 3. a) Es seien zwei Kreisbögen k_1 und k_2 in der komplexen Zahlenebene gegeben, so daß sich k_1 und k_2 in zwei Punkten schneiden, also ein sogenanntes Kreisbogenzweieck bilden. Finde eine konforme Abbildung, die das Innere dieses Zweiecks auf die obere Halbebene abbildet. 2 Punkte
 - b) Finde eine konforme Abbildung des Gebiets $\{|z|<1\}$ auf das Gebiet $\{\operatorname{Re} z, \operatorname{Im} z>0\}$ und bestimme auch die inverse Abbildung. 2 *Punkte*
- **4.** Es seien r paarweise verschiedene Punkte $z_1, \ldots, z_r \in \hat{\mathbb{C}}$ gegeben und es sei $G = \hat{\mathbb{C}} \setminus \{z_1, \ldots, z_r\}$. Bestimme $\operatorname{Aut}(G)$ explizit und vollständig für r = 2, 3, 4.

Rückgabe: In den Kasten am 03.06.

VII. I. a Of G = C * ein fach zusammerhängendes Gebiet = Vy: E0,1] - G-geschlassencer. Integrationsung gilt $\int \frac{d^2}{2} = 0 \quad 44 \quad 44$ Sei Zoe & und Woe & mit e = Zo. (2. B. minum Wo = PA/201+ i Arg 20) Sei 82.2: [0,1] - & ein D. Weg wit Y(0)= 20, Y20= (1)= 2 Dann S dz ist unabhängig von Jzz.,
aben west vonz. as hängt wer von z ab. Definiere $\left(f(z):=\int \frac{dz}{z}+w_0.\right):G\to \mathbb{C}$ Dann f ist holomorph and f'(2) = 1 2.2. e f(2) = 2 /zeG. Sei G'ist ein zusammenhängt Kompeneute des Gebietes exp'(G). Betrachte g(w):= f(ew): G'-> C Dann g'(w) = - (w = 1 6 m) g ung g(uo) = f(euo) = f(20) = uo => g(w)=w \ \we \ \earthere '

Sei ZE & und WE & unit & = 2.

Dann & f(z) & f(ew) & g(w) & ew = 2.

=) fist ein holomorpher Zweig des

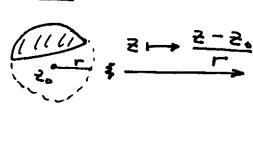
logozithius.

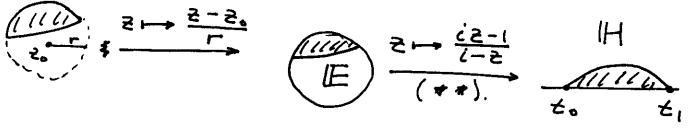
VIII. 1. B Sei $f: G \rightarrow C$ wie oben.

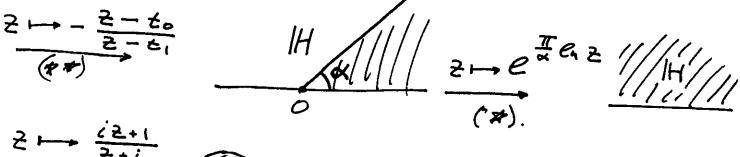
The Definieze $h(z) := e^{\frac{1}{2}f(z)}: C \rightarrow C$ Dann $(h(z))^2 = e^{f(z)} = 2$ $\forall z \in G$.

VIII. 2. q. Sei Ha, To und I E Aut (C) 3 definiert durch Ha (2) = az a = C? TB(2):= 2+8 BED 工(2)=量. Sei $\varphi(2) = \frac{\alpha 2 + 6}{C2 + d} \in Aut(\hat{C}).$ Dann ad- Be +0. Fall 1: C=0. => d+0 4 = \frac{a2+6}{d} = \frac{a}{d} 2 + \frac{B}{d} = \frac{T_g}{d} \cdot H_a(2). Fall 2: C + 0 => $Q(2) = \frac{a^2 + 6}{c^2 + d} = \frac{a}{c} + \frac{6 - ad}{c^2 + d} = \frac{(6 - ad) + 0}{c^2 + d}$

= Ta · He-ed To Ta · He (2). #



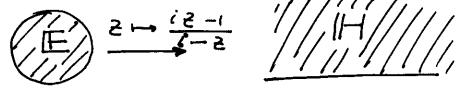




(A) Man nimmt einen etetige tweig des Log auf CIR mit lu(1)=0. Dann le le = 121 und Argeire = large

(47) Die Bilde der Kreise und Geraden

sind Kreise und Geraden.



2 +> e = e = H // = { dm 2 > 0, Re 2 > 0}.

4 ∈ Aut (C \{ ≥1, ..., ≥, 3). Hilfsotz: 4 hat eine holomorphe Fortsetzung & E Aut (C) # Beweis: Sei leier, q'hat einoisolierte Singerland in 2= 2i. Z.z. Es ist kein wesenbliche Sing. Falls Sing ist wesenblich, dann 4 (BE (Zi)) ist dicht in O VECCI. => \phi \B_{\mathbe{z}_3} (\frac{2}{i} + \frac{2\mathbe{z}}{3}) \cap \phi \B_{\mathbe{z}_3}(\frac{2}{2}i)) \deq \B. offen nach Gebiekeren =) I ist nicht injektiv. F. Es folgt es gibt estestige Fortsetoung Analog es gilt etetige Fortsetzung

(4): ê - ê und \(\hat{\varphi} \cdot \((\varphi') = (\varphi') \cdot \varphi = id.

=> \(\hat{\theta} \) \(\hat{\t

Sei # 1=2, 4 & Aut (C'{2, 2,}) Betrachte 4(2):= 2-2, dann Y: Aut (C*) -> Aut (C: {2, 2.}) φ + +: φ· 4 ist ein donnorphismers dez Gruppen. Sei $\varphi \in Aut(C^*)$ dann φ(0) € {0, -} Fall 1. $\hat{\varphi}(0) = 0$ => $\hat{\varphi}|_{\mathcal{C}} \in Aut(\mathcal{C})$ => $\hat{\varphi}(z) = az$. $a \in \mathbb{C}^* = 0$ 9(2) = a 2 a 6 C. Fall 2 $\hat{\varphi}(0) = \varphi = 3$ $\frac{1}{\hat{\varphi}}(0) = 0$. (1) = Aut (C) => \frac{1}{\q(2)} = az => $\varphi(z) = \frac{1}{az}$ Auf (C*) = { az, \frac{a}{2} \ a \in C*}.

Aut (C) = { $a \in \mathbb{Z}$, $\frac{1}{2}$ | $a \in \mathbb{C}^{-1}$ }.

Aut (C) { z_1, z_2 } = { $Y(a + Y'(z)), Y(\frac{q}{Y'(z)})$ }

a60 4(2)= 2-2,

Sei t=3, q & Aut (C. {2, 2, 2, 3}). und 43 = 42.41: (2, 100, 22 101, 23 100) Dann Y: Aut (0*1513) - Aut (0' {21,2,23) 9 my 4 0 4 0 4 -1 ist ein desomorphismes der Grappen. Betracké ein Homomorphisames R: Aut { C*(S)} - S3 $R \varphi = \varphi |_{\{0,1,2\}} : \{0,1,2\}$ 2.2. Rist ein deomorphismens. 1. Rist surjektiv:
Betracte $\varphi_1(z) := \frac{1}{z}$ and $\varphi_2(z) := 1-2$ Dann Rq = { 0 m o - Fransposition RP2 = { 1 mo - Transposition. Da Sz vou jede zwei Transpositionen erzegt ist R surjektiv. 2. Rist injektiv Sei (6) = = = = = = Aut (0" ((5)) und \p(0)=0, \p(1)=1, \p(\sigma)=\sigma

Sei 1=4: Sei 2, ..., 24 verschiedene Punkte Betrachte Doppelverhöltheis dez Punkte (2,, 22, 23, 24) = 21-23, 21-24 D Klein Viezegzuppe C 54. Man nur pt dass fiir alle of E D. (2,22; 23, 24) = (2x1, 2x2; 2x3, 2x4). I Also es gilt 6 alighetheir verschiedene Möglichkeithe für Doppelverhaltuis. d=2, $d=\frac{1}{2}$, d=-1, $d=e^{\frac{2\pi}{3}}$ (2, 22; 23, 24) = d (Z, Zz; Z4, Z3) = (2, 23; 20, 24) = 1-d 2 (21, 23) 24, 22) = 1-d -1 e-i1/3 (2, 2, j 23, 22)= d 2 e i 11/3 2 $(2,24)22,2)=\frac{d-1}{d}$ $d = e^{-i\pi/3}$ $d \notin \{2, \frac{1}{2}, -1, e^{\pm i\pi/3}\}$ 2 e 1 1/3 alle verschiedene } e' 11/3 e-in/>

Sei (2, 22, 23, 24) = (0,0,1, w). Then (#1, 22; 23, 24) = W. w. ≠ { 2, 1, -1, e = 173} ⇒ Aut(Ĉ'{0,1,0,4,3}) = D= Z2 +Z2 { \frac{\w_{0}}{2} \frac{2-\w_{0}}{2-1} \frac{\w_{0} 2-\w_{0}}{2-\w_{0}} \frac{2}{2}. Fall 2 W = -1 => Aut (c. {0,1,-,-1}) $\begin{cases} 2, \frac{1}{2}, -\frac{2}{2}, \frac{-1}{2}, \frac{2+1}{2-1}, \frac{2-1}{2+1}, -\frac{2+1}{2-1}, \frac{2-1}{2+1} \end{cases}$ = Zz DZz DZz. Fall 3,4 Wo = 2, & Analog. Aut (@ {0,1,0,-1}) = Ze & Ze & Ze Fall 5 W. = e 1/3

Aut (@({0,1,2,e'1)}) = A4. < = 1 - 2 = >.