Serie 5

1. a) Zeige, daß die Flächenstücke

$$f(u, v) = (u \cos v, u \sin v, \log u),$$

$$g(u, v) = (u \cos v, u \sin v, v),$$

gleiche Gauß-Krümmungsfunktionen $K_f(u,v)=K_g(u,v)$ besitzen, aber daß die Identität $(u,v)\mapsto (u,v)$ dennoch keine lokale Isometrie (Abwicklung) beschreibt. Interpretiere dies in Bezug auf das Theorema Egregium.

- **b)** Kann die Sphäre in irgendeiner Umgebung eines Punktes auf die Ebene abgewickelt werden? Warum?
- **2.** a) Es sei $f: U \to \mathbb{R}^3$ ein Flächenstück mit einem ersten Fundamentaltensor in der konformen Form

$$I=e^{arphi}egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}, \quad \text{i.e.} \ \ g_{ij}=e^{arphi}\delta_{ij} \,.$$

Leite die Formel für die Gaußkrümmung her, $K = K(\varphi)$.

- **b**) Es sei f ein Flächenstück, welches auf die hyperbolische Halbebene abwickelbar ist, d.h. $\mathbb{H}=\{(x,y)\in\mathbb{R}^2\,|\,y>0\}$ mit $g_{ij}=\frac{1}{y^2}\delta_{ij}$. Berechne K aus der Formel von (a).
- c) Wiederhole dies mit einem Flächenstück in der konformen Parametrisierung, so daß $g_{ij} = \frac{1}{(1+u^2+v^2)^2}$.
- 3. a) Finde eine Abwicklung der Pseudosphäre S_{-1} auf die hyperbolische Halbebene, d.h. $V \subset \mathbf{H}$ sowie $\phi \colon V \to \mathbb{R}^3$, so daß $\phi(V) = \mathbf{S}_{-1}$ und ϕ eine Isometrie ist. (Finde erst die geeignete Parametrisierung der Pseudosphäre, siehe Vorl.)
 - **b)** Versuche dies auch mit der Rotationsfläche $f(u,v) = (g(u),h(u)\cos v,h(u)\sin v)$ mit $h(u) = \cosh u, g'(u) = \sqrt{2-\cosh^2 u}$.
- 4. a) Betrachte wieder die hyperbolische Halbebene H wie in 2.) und 3.). Zeige, daß jede Abbildung

$$z \mapsto \frac{az+b}{cz+d}, \quad z \in \mathbb{C}$$

mit $a, b, c, d \in \mathbb{R}$, ad - bc = 1 eine Isometrie von **H** liefert.

b) Finde einen Diffeomorphismus $\phi \colon \mathbf{H} \to \mathbf{E} := \{z \in \mathbb{C} | |z| < 1\}$ welche durch eine holomorphe Funktion gegeben ist und beschreibe die entsprechend isometrische Fundamentalform auf \mathbf{E} .

Rückgabe: Montag 12.11.07 in der Übung.