Inhalt der Vorlesungen

Analysis 1/2

Winter- und Sommersemster 2008/09

WS 08/09: Analysis 1

Ι	Grundlagen: Zahlbereiche $\mathbb{R},\mathbb{N},\mathbb{C}$
I.1	Axiomatische Beschreibung der reellen Zahlen
I.2	Die natürlichen Zahlen
vollständige Induktion, Binomialkoeffizienten	
I.3	Metrische Eigenschaften von $\mathbb R$
I.4	Komplexe Zahlen
II	Folgen und Reihen
II.1	Der Grenzwertbegriff
II.2	Hauptsätze über konvergente Folgen
II.3	Beispiele
II.4	Cauchy-Folgen und Häufungswerte
II.5	Unendliche Reihen
II.6	Konvergenzkriterien für Zahlenreihen
II.7	Rechnen mit unendlichen Reihen
II.8	Dezimalbruchentwicklung von reellen Zahlen
II.9	Potenzreihen
III	Funktionen
III.	1 Grundlagen
III.:	2 Stetige Funktionen
III.	3 Funktionengrenzwerte

 ${\bf trigonometrische\ Funktionen}$

Normal konvergente Funktionenreihen

IV Differentiation

IV.1 Grundlagen und zentrale Sätze

Definition, Produktregel, Umkehrregel, Satz von Rolle, MWS, verallg. MWS, L'Hospital, Stammfunktion,

IV.2 Taylorreihen

Restgliedabschätzung von Lagrange, Periodizität der trigon. Funktionen, Definition von π , Abelscher Grenzwertsatz

SS 09: Analysis 2

V Integration

Beginn: 09.04.09

V.1 Das Riemannsche Integral

V.2 Riemann-Integrierbarkeit

V.3 Integral-Eigenschaften

V.4 Hauptsatz der Differential- und Integralrechnung

V.5 Integrationsmethoden

V.6 Unbeschränkte Intervalle und uneigentliche Integrale

V.7 Anwendungen

VI Topologische Grundbegriffe metrischer Räume

Beginn geplant: 07.05.09

- VI.1 Definitionen
- VI.2 Grundbegriffe
- VI.3 Konvergenz
- VI.4 Vollständigkeit
- VI.5 Stetige Abbildungen
- VI.6 Kompaktheit
- VI.7 Vervollständigung metrischer Räume
- VI.8 Zusammenhang

VII Differentialrechnung in mehreren Variablen

Beginn geplant: 05.06.09

- VII.1 Differentiation in \mathbb{R}^n
- VII.2 Regeln für das Differential
- VII.3 Gradienten, Graphen, Niveaumengen
- VII.4 Zentrale Sätze
- VII.5 Implizite Funktionen
- VII.6 Taylorformel
- VII.7 Lokale Extremwerte
- VII.8 ...