Serie 10

- 1. Berechne die Konvergenzradien der folgenden Potenzreihen:
 - a) $\sum_{n=0}^{\infty} (n+a^n)x^n$, $(a \ge 0 \text{ fest})$,
 - **b)** $\sum_{n=0}^{\infty} (3 + (-1)^n)^n x^n$,
 - c) $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n,$
 - $\mathbf{d}) \ \sum_{n=0}^{\infty} x^{n^2},$
 - e) $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{4^n}$.
- **2.** a) Zeigen Sie (2 Punkte): Ein Polynom $p(z) \in \mathbb{C}[z]$ nimmt genau dann für alle $z \in \mathbb{R}$ nur reelle Werte an, wenn alle seine Koeffizienten reell sind.
 - **b**) (2 Punkte) Zeigen Sie, daß sich jedes reelle Polynom $f(x) = a_n x^n + \ldots + a_1 x + a_0 \in \mathbb{R}[x]$ in reelle Polynome von Grad ≤ 2 faktorisieren läßt. (Sie dürfen den Fundamentalsatz der Algebra verwenden.)
- **3.** a) (1 Punkt) Führe Division mit Rest, f = qg + r, durch für die Polynome $f(x) = x^3 2x^2 5x + 6$ und $g(x) = x^2 + 8x 3$.
 - **b)** (2 Punkte) Finde die Partialbruchzerlegung von

$$R(x) = \frac{-x^2 - 8x + 3}{x^3 - 2x^2 - 5x + 6}.$$

c) (3 Punkte) Finde die Folge $(a_n)_{n\in\mathbb{N}_o}$ so daß die Potenzreihe $\sum_{n=0}^\infty a_n x^n$ positiven Konvergenzradius r>0 hat und für alle |x|< r gegen die Funktion $f(x)=\frac{1}{x^2-2x-3}$ konvergiert. Wie lautet der Konvergenzradius?

Rückgabe: spätestens Dienstag, 06.01.09, 10.30 Uhr in den Briefkästen