Analysis 4 für Physiker, Serie 12

Abgabe am 4.7.2007

- 1. Es sei $\mathscr{E}_1 = T_{E_1}$ die Fundamentallösung der eindimensionalen Wellengleichung und $u_1 \in C(\mathbb{R})$ habe kompakten Träger. Berechnen Sie die Faltung $\mathscr{E}_1 * (T_{u_1} \otimes \delta)$. 4 P
- 2. Es sei $u_1 \in C^1(\mathbb{R})$ und $u(x,t) = \frac{1}{2a} \int_{x-at}^{x+at} u_1(y) dy$.

Zeigen Sie, dass u die eindimensionale Wellengleichung erfüllt sowie die Anfangsbedingungen $u_t(x,0) = u_1(x)$ und u(x,0) = 0.

3. Es sei $F \in C^1(\mathbb{R}^2)$ und

$$v(x,t) = \frac{1}{2a} \iint_{\Delta} F(y,s) \, \mathrm{d}y \, \mathrm{d}s = \frac{1}{2a} \int_{0}^{t} \left(\int_{x-a(t-s)}^{x+a(t-s)} F(y,s) \, \mathrm{d}y \right) \, \mathrm{d}s$$

- (a) Skizzieren Sie den Bereich \triangle , der durch die iterierten Integrale auf der rechten Seite gegeben ist.
- (b) Zeigen Sie, dass v die inhomogene eindimensionale Wellengleichung $v_{tt} a^2 v_{xx} = F$ mit den Anfangsbedingungen $u(x,0) = u_t(x,0) = 0$ erfüllt.

Hinweis. Benutzen Sie die Formel für die Differentiation von Parameterintegralen,

$$\frac{\partial}{\partial t} \int_{a(t)}^{b(t)} G(y, t) \, \mathrm{d}y = G(b(t), t)b'(t) - G(a(t), t)a'(t) + \int_{a(t)}^{b(t)} \frac{\partial}{\partial t} G(y, t) \, \mathrm{d}y.$$
 5 P

4. Berechnen Sie die Fouriertransformationen der folgenden Distributionen aus $\mathscr{S}'(\mathbb{R})$ (a) $S = x\delta''$ (b) $T = (x+a)^2\delta - 5x\delta'$, $a \in \mathbb{R}$ (c) $R = T_{x^2H(x)}$.

Berechnen Sie die Fouriertransformation der folgenden regulären Distribution aus $\mathscr{S}'(\mathbb{R}^2)$. (d) $U = T_{\chi_1 \chi_2} \mathrm{e}^{-x_1^2}$.

5. Lösen Sie das folgende AWP für die Wellengleichung im \mathbb{R}^3 .

$$u_{tt} - 8\Delta u = t^2 x^2,$$

 $u(x, y, z, 0) = y^2,$
 $u_t(x, y, z, 0) = z^2.$

Hinweis. Teilen Sie das Problem in drei eindimensionale Probleme auf.