Lineare Algebra für Physiker, Serie 12

Abgabe am 17. 1. 2008

- 1. Es sei $V = \mathbb{R}^4$ der euklidische Raum mit dem Standardskalarprodukt und der ONB aus Beispiel 5.5, $B = \{b_1, b_2, b_3, b_4\}$ mit $b_1 = \frac{1}{2}(1, 1, 1, 1)$, $b_2 = \frac{1}{2}(-1, 1, -1, 1)$, $b_3 = \frac{1}{2}(1, -1, -1, 1)$, $b_4 = \frac{1}{2}(1, 1, -1, -1)$ }. Ferner sei $U = \lim\{b_1, b_2\}$ und $v = (a, b, c, d) \in V$.
 - (a) Berechnen Sie die Projektion $P_U(v)$ auf U.
 - (b) Berechnen Sie die Projektion $P_{U^{\perp}}(v)$ auf U^{\perp} .
 - (c) Berechnen Sie den Abstand des Vektors w = (2,4,1,3) von U.
 - (d) Bestimmen Sie die Matrizen $S = M_B(P_U)$ und $T = M_{B_4}(P_U)$ der Projektion bezüglich der Basis B bzw. bzgl. der Standardbasis B_4 des \mathbb{R}^4 . Berechnen Sie S^* , S^2 , T^* , T^2 . 4 P
- 2. Vier Messpunkte $\{(x_i, y_i) \mid i = 1, 2, 3, 4\} = \{(0, 1), (1, 3), (2, 4), (3, 4)\}$, sollen durch eine Gerade y = f(x) = ax + b angenähert werden, gesucht sind also a und b, und zwar so, dass der Abstand d mit

$$d^{2} = (f(x_{1}) - y_{1})^{2} + (f(x_{2}) - y_{2})^{2} + (f(x_{3}) - y_{3})^{2} + (f(x_{4}) - y_{4})^{2}$$

minimal wird (Kleinste-Quadrate-Lösung). Führen Sie dazu die folgenden Schritte aus. Betrachten Sie das inkonsistente lineare Gleichungssystem $A \binom{a}{b} = y$:

$$0a+b=1$$

$$1a+b=3$$

$$2a+b=4$$
 mit Koeffizientenmatrix $A=\begin{bmatrix}0&1\\1&1\\2&1\\3&1\end{bmatrix}$,

den Variablen $(a, b)^{\top}$ und der rechten Seite $y = (y_1, y_2, y_3, y_4)^{\top} = (1, 3, 4, 4)^{\top}$.

- (a) Zwischen welchen Räumen V und W bildet $T_A \colon V \to W$ ab? Bestimmen Sie das Bild $U = \operatorname{Im} A \subset W$, eine ONB von U.
- (b) Berechnen Sie die Projektion $y' = P_U(y)$ zu $y = (1,3,4,4)^{\top} \in \mathbb{R}^4$ und den euklidischen Abstand s des Vektors y von U.
- (c) Geben Sie alle Lösungen $(a,b)^{\top}$ des (konsistenten) linearen Gleichungssystems $A \binom{a}{b} = y'$. an.
- (d) Skizzieren Sie die erhaltene Gerade y = ax + b sowie die vier Messpunkte. Berechnen Sie d^2 für die Gerade $y = \frac{3}{4}x + \frac{9}{4}$.
- 3. Es sei V ein endlichdimensionaler Raum mit Skalarprodukt und U ein linearer Teilraum von V. Beweisen Sie mit Hilfe des Projektionssatzes die Identität $(U^{\perp})^{\perp} = U$. **4 P** *Hinweis*. Zeigen Sie die einfache Richtung $U \subset (U^{\perp})^{\perp}$ und benutzen Sie dann Lemma 2.6 (c) und Satz 2.7.

3 P

4. Gegeben sei die Abbildung $T \in L(\mathbb{R}^3)$, $T(x_1, x_2, x_3) = (x_2, x_2 + 2x_3, x_3)$. Berechnen Sie die Eigenwerte und Eigenvektoren von T.