Exercise Sheet 12

Discussion on 26.01.24

Exercise 1 (P_{2} is no C^{1} element)

Consider a regular triangulation \mathcal{T} and the P_{2} finite element $\left(T, P_{2}(T), \mathcal{K}_{T}\right)$ for any $T \in \mathcal{T}$. Prove that this finite element is not a C^{1} finite element in general.

Exercise 2 (Transformation of finite elements)

Let $\left(\widehat{T}, \widehat{\mathcal{P}}, \mathcal{K}_{\text {ref }}\right)$ be a finite element and $\Phi_{T}: \widehat{T} \rightarrow T$ an affine diffeomorphism.
a) Show that $(T, \mathcal{P}, \mathcal{K})$ is a finite element, where

$$
\begin{aligned}
& T=\Phi_{T}(\widehat{T}), \\
& \mathcal{P}=\left\{\widehat{q} \circ \Phi_{T}^{-1} \mid \widehat{q} \in \widehat{\mathcal{P}}\right\}, \\
& \mathcal{K}=\left\{\chi \mid \chi(v)=\widehat{\chi}\left(v \circ \Phi_{T}\right) \text { for all } v \in \mathcal{C}^{\infty}(T), \widehat{\chi} \in \widehat{\mathcal{K}}\right\} .
\end{aligned}
$$

b) Show that the corresponding interpolants I_{T} and $I_{\widehat{T}}$ and any $\widehat{v} \in W^{m, p}(\widehat{T})$ and $v:=\widehat{v} \circ \Phi_{T}^{-1} \in W^{m, p}(T)$ satisfy

$$
\left(I_{T} v\right) \circ \Phi_{T}=I_{\widehat{T}} \widehat{v} .
$$

Exercise 3 (Barycentric coordinates)

Consider a triangle $T=\operatorname{conv}\left\{P_{1}, P_{2}, P_{3}\right\}$ and the barycentric coordinates $\lambda_{1}, \lambda_{2}, \lambda_{3} \in$ $P_{1}(T)$ defined via $\lambda_{j}\left(P_{k}\right)=\delta_{j k}$ for $j, k=1,2,3$.
a) Prove that any $\alpha, \beta, \gamma \in \mathbb{N}_{0}$ satisfy

$$
\int_{T} \lambda_{1}^{\alpha} \lambda_{2}^{\beta} \lambda_{3}^{\gamma} \mathrm{d} x=2|T| \frac{\alpha!\beta!\gamma!}{(2+\alpha+\beta+\gamma)!} .
$$

b) For the points $P_{j+3}:=\left(P_{j}+P_{j+1}\right) / 2, j=1,2$ and $P_{6}:=\left(P_{3}+P_{1}\right) / 2$, find the nodal basis functions $\mu_{j} \in P_{2}(T)$ with $\mu_{j}\left(P_{k}\right)=\delta_{j k}$ for $j, k=1, \ldots, 6$.
c) Compute the local mass matrices for $P_{1}(T)$ and $P_{2}(T)$, i.e.

$$
M_{1}=\left(\int_{T} \lambda_{i} \lambda_{j} \mathrm{~d} x\right)_{i, j=1, \ldots, 3} \in \mathbb{R}^{3 \times 3} \quad \text { and } \quad M_{2}=\left(\int_{T} \mu_{i} \mu_{j} \mathrm{~d} x\right)_{i, j=1, \ldots, 6} \in \mathbb{R}^{6 \times 6}
$$

Exercise 4 (Error and refinement)

a) Let $\left(\mathcal{T}_{k}\right)_{k \in \mathbb{N}}$ be a sequence of regular triangulations, where \mathcal{T}_{k+1} is a refinement of \mathcal{T}_{k} for any $k \in \mathbb{N}$. Furthermore, let $u \in H_{0}^{1}(\Omega)$ be the exact solution (Galerkinapproximation) and $u_{k} \in S_{0}^{1}\left(\mathcal{T}_{k}\right)$ the P_{1} finite element solution to the Poisson model problem on each level $k \in \mathbb{N}$, where

$$
S_{0}^{1}\left(\mathcal{T}_{k}\right):=\left\{v_{h} \in \mathcal{C}(\bar{\Omega})\left|\ldots v_{h}\right|_{T} \in P_{k}(T) \text { for all } T \in \mathcal{T}_{k},\left.v_{h}\right|_{\partial \Omega}=0\right\}
$$

Prove that $\left\|\nabla\left(u-u_{k}\right)\right\|_{L^{2}(\Omega)}$ is a monotonically decreasing sequence.
b) Consider the criss-cross triangulation \mathcal{T}_{0} and its refinement depicted in Figure 1 . Prove that the P_{1} finite element solutions to the Poisson model problem with $f \equiv 1$ and $\left.u\right|_{\partial \Omega} \equiv 0$ on the triangulations coincide.

Figure 1: Criss-cross triangulation \mathcal{T}_{0} (left) and its refinement $\mathcal{T}_{1}=\operatorname{bisec}\left(\operatorname{bisec}\left(\mathcal{T}_{0}\right)\right)$

