Exercise Sheet 11

Discussion on 19.01.23

Exercise 1 (Minimum angle condition)

For any triangle T and node $z \in \mathcal{N}(T)$, denote by $\varangle(T, z)$ the interior angle of T at z. Prove that any family $\left(\mathcal{T}_{k}\right)_{k \in \mathbb{N}}$ of regular triangulations with

$$
\begin{equation*}
0<\omega_{0} \leq \inf _{k \in \mathbb{N}} \min _{T \in \mathcal{T}_{k}} \min _{z \in \mathcal{N}(T)} \varangle(T, z) \tag{1}
\end{equation*}
$$

is shape regular. Furthermore, find an example of a family of triangulations that does not satisfy (1) and is not shape regular.

Exercise 2 (Equivalences for shape regularity)

Consider a family of triangulations with the minimum angle condition (cf. Exercise 1) and let \mathcal{T} be any triangulation of this family. Let $z \in \mathcal{N}$ and define $\mathcal{T}(z):=\{T \in$ $\mathcal{T} \mid z$ is a node of $T\}$. Prove

$$
\# \mathcal{T}(z) \lesssim 1
$$

Furthermore, for a triangle $T \in \mathcal{T}(z)$ with diameter h_{T} and an edge $E \in \mathcal{E}$ of T, prove

$$
|E| \approx|T|^{1 / 2} \approx h_{T}
$$

where $|E|$ denotes the length of E and $|T|$ denotes the volume of T. Here, $A \lesssim B$ abbreviates, that there exists a constant $C<\infty$ that may depend on the minimum angle ω_{0}, but not on other properties of the family of triangulations. The formula $A \approx B$ abbreviates $A \lesssim B \lesssim A$.

Exercise 3 (Q_{k}-FEM)

Let $T=[0,1]^{2} \subseteq \mathbb{R}^{2}, k \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{k}=1$ and define $Q_{i j}:=\left(t_{i}, t_{j}\right) \in T$. Furthermore, let $\mathcal{K}=\left\{\chi_{i j} \mid i, j=0, \ldots, k\right\}$ with $\chi_{i j}(v):=v\left(Q_{i j}\right)$ for $v \in C^{\infty}(T)$. Prove that $\left(T, Q_{k}(T), \mathcal{K}\right)$ is a finite element (where $Q_{k}(T)$ is the space of polynomials of partial degree $\leq k)$.

Exercise 4

Let $T \subseteq \mathbb{R}^{2}$ be a triangle and let $0<t<1 / 2$. Let $E=\operatorname{conv}\{a, b\} \subseteq T$ be an edge of T with midpoint $\operatorname{mid}(E)=(a+b) / 2$ and define

$$
\begin{aligned}
p_{E}^{ \pm} & :=\operatorname{mid}(E) \pm t(a-b) \in E, \\
\chi_{p_{E}^{ \pm}}(v) & :=v\left(p_{E}^{ \pm}\right) \quad \text { for all } v \in \mathcal{C}^{\infty}(T) .
\end{aligned}
$$

Define $\mathcal{K}:=\left\{\chi_{p_{E}^{ \pm}} \mid E\right.$ is an edge of $\left.T\right\}$. Show that $\left(T, P_{2}(T), \mathcal{K}\right)$ is not a finite element.

