Exercise Sheet 10

Discussion on 12.01.23

Exercise 1 (Globally continuous, piecewise differentiable functions)

Let $\Omega \subseteq \mathbb{R}^n$ be a Lipschitz domain and let $(\Omega_j)_{j=1,\dots,J}$ be Lipschitz domains that are disjoint subsets of Ω with $\overline{\Omega} = \overline{\Omega}_1 \cup \dots \cup \overline{\Omega}_J$. Let $u : \Omega \to \mathbb{R}$ with $u|_{\Omega_j} \in \mathcal{C}^1(\overline{\Omega}_j)$ for all $j = 1, \dots, J$. Show that u is weakly differentiable if and only if $u \in \mathcal{C}(\overline{\Omega})$.

Exercise 2 (Solutions to PMP)

In the setting of the Poisson model problem, let $V = H_D^1(\Omega)$, $a: V \times V \to \mathbb{R}$ defined by $a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx$ and $F(v) = \int_{\Omega} fv \, dx + \int_{\Gamma_N} gv \, ds$. Furthermore assume that Γ_D has positive (d-1) dimensional measure. Prove that there exists a unique solution $u \in V$ to

$$a(u, v) = F(v)$$
 for any $v \in V$,

and that this solution satisfies

$$||u||_{H^1(\Omega)} \le (1 + C_P^2) \max\{1, C_\gamma\} (||f||_{L^2(\Omega)} + ||g||_{L^2(\Gamma_N)}).$$

Exercise 3 $(H^1(\Omega)$ is not embedded in $\mathcal{C}^0(\overline{\Omega}))$

Let $\Omega = B_{1/2}(0) \subseteq \mathbb{R}^2$ and $u : \Omega \to \mathbb{R}$ with

$$u(x) := \ln\left(\left|\ln|x|\right|\right).$$

Prove that $u \in H^1(\Omega) \setminus \mathcal{C}(\Omega)$.

Hint: Calculate the (classical) partial derivatives on $B_{1/2}(0) \setminus \{0\}$ and show that they lie in $L^2(\Omega)$ by transformation to polar coordinates.

Exercise 4 (Euler formulas)

Let \mathcal{T} denote a regular triangulation of the simply connected bounded domain Ω with nodes \mathcal{N} , edges \mathcal{E} and interior edges $\mathcal{E}(\Omega)$. Prove that

$$|\mathcal{N}| + |\mathcal{T}| = 1 + |\mathcal{E}|, \qquad 2|\mathcal{T}| + 1 = |\mathcal{N}| + |\mathcal{E}(\Omega)|,$$

where $|\bullet|$ denotes the number of elements in a set. How can these formulas be generalized for multiply connected domains?