Exercise Sheet 9

Discussion on 05.01.23

Exercise 1 (Finite-Differences for the Poisson problem (five-point stencil))

Let $\Omega=(0,1)^{2}, \Gamma_{D}=\partial \Omega$ and $u_{D}=0$. Let u denote the solution to the Poisson problem

$$
\begin{array}{r}
-\Delta u=f \quad \text { in } \Omega, \\
\left.u\right|_{\Gamma_{D}}=0 .
\end{array}
$$

Let $x_{j, m}:=(j \Delta x, m \Delta x)$ be as in exercise 2 and 3 from sheet 8 . The finite difference approximation $\left(U_{j, m}\right)_{0 \leq j, m \leq J}$ is defined by

$$
\begin{aligned}
-\Delta_{h} U_{j, m} & =f\left(x_{j, m}\right) & & \text { für } 1 \leq j, m \leq J-1, \\
U_{0, m}=U_{J, m}=U_{j, 0}=U_{j, J} & =0 & & \text { for } 0 \leq j, m \leq J .
\end{aligned}
$$

Let $u \in \mathcal{C}^{4}(\bar{\Omega})$. Use exercise 3 from sheet 8 , to prove the error estimation

$$
\sup _{0 \leq j, m \leq J}\left|u\left(x_{j, m}\right)-U_{j, m}\right| \leq \frac{\Delta x^{2}}{12}\|u\|_{\mathcal{C}^{4}\left([0,1]^{2}\right)} .
$$

Exercise 2 (Weak derivatives are necessary)

Let $\Omega=(-1,1) \subseteq \mathbb{R}$ and v_{ε}, sgn $: \bar{\Omega} \rightarrow \mathbb{R}$ with $v_{\varepsilon}(x):=\sqrt{|x|^{2}+\varepsilon^{2}}-\varepsilon$ and

$$
\operatorname{sgn}(x):= \begin{cases}\frac{x}{|x|} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

Prove that v_{ε} converges to $v=|\bullet|$ and the gradient of v_{ε} converges to sgn in $L^{2}(\Omega)$ for $\varepsilon \searrow 0$. Use this to show that $C^{1}(\bar{\Omega})$, equipped with the scalar product $(\bullet, \bullet)_{L^{2}(\Omega)}+$ $(\nabla \bullet, \nabla \bullet)_{L^{2}(\Omega)}$, is not a Hilbert space.

Exercise 3 (Energy minimization)

Let V be a Hilbert space with scalar product $(\bullet, \bullet)_{V}, a: V \times V \rightarrow \mathbb{R}$ a symmetric bilinear form with $0 \leq a(v, v)$ for any $v \in V$. Given $f \in V$, define $G(v):=\frac{1}{2} a(v, v)-(f, v)_{V}$ for any $v \in V$. Prove that the following two statements are equivalent for $u \in V$:

1. $G(u)=\min _{v \in V} G(v)$,
2. $a(u, v)=(f, v)_{V}$ for any $v \in V$.

Exercise 4 (Regularity of solutions)

Let $\gamma \in(\pi, 2 \pi)$ and $\Omega:=\{(r \cos \varphi, r \sin \varphi) \mid 0<r<1,0<\varphi<\gamma\}$ and $u(r, \varphi)=$ $r^{\pi / \gamma} \sin (\varphi \pi / \gamma)$ in polar coordinates on Ω. Prove that $u: \Omega \rightarrow \mathbb{R}$ solves the Poisson problem $-\triangle u=0$ on Ω with right-hand side $f \equiv 0$ and respective boundary data, but $u \notin C^{1}(\bar{\Omega})$ for $\gamma \in(\pi, 2 \pi)$.
Hint: You may use the formula for the Laplacian in polar coordinates,

$$
\Delta u=\partial^{2} u / \partial r^{2}+r^{-1} \partial u / \partial r+r^{-2} \partial^{2} u / \partial \varphi^{2} .
$$

