Exercise Sheet 6

Discussion on 01.12.23

Exercise 1 (Integration by parts)

a) Let $\Delta x>0,\left(V_{j}\right)_{j=0, \ldots, J} \in \mathbb{R}^{J+1}$, and $\left(W_{j}\right)_{j=0, \ldots, J} \in \mathbb{R}^{J+1}$ with $V_{0}=V_{J}=W_{0}=$ $W_{J}=0$. Prove that

$$
\sum_{j=1}^{J-1} \Delta x\left(\frac{V_{j+1}-2 V_{j}+V_{j-1}}{(\Delta x)^{2}}\right) W_{j}=-\sum_{j=0}^{J-1} \Delta x\left(\frac{V_{j+1}-V_{j}}{\Delta x}\right)\left(\frac{W_{j+1}-W_{j}}{\Delta x}\right) .
$$

b) Let $\Omega \subset \mathbb{R}^{n}, n=1,2,3$ be a bounded domain with piecewise smooth boundary $\partial \Omega$, with outward normal ν along $\partial \Omega$. For $n=1$, let div $=\nabla$. For $v \in C^{1}(\bar{\Omega})$, $q \in C^{1}\left(\bar{\Omega} ; \mathbb{R}^{n}\right)$, show

$$
\int_{\Omega}(v \operatorname{div} q+\nabla v \cdot q) \mathrm{d} x=\int_{\partial \Omega} v q \cdot \nu \mathrm{~d} s .
$$

Hint: You may assume that Gauss's divergence theorem holds for bounded domains with piecewise smooth boundary.

Exercise 2 (Discrete version of Friedrichs inequality)

a) Let $J \in \mathbb{N}, J \geq 2$ and $A \in \mathbb{R}^{(J-1) \times(J-1)}$ given by

$$
A=\left(\begin{array}{cccc}
2 & -1 & & 0 \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
0 & & -1 & 2
\end{array}\right) \in \mathbb{R}^{(J-1) \times(J-1)} .
$$

Prove that for any $k=1, \ldots, J-1$, the vector $x^{k} \in \mathbb{R}^{J-1}$ with components $x_{j}^{k}=\sin (k j \pi / J)$ is an eigenvector of A with eigenvalue $\lambda_{k}:=2(1-\cos (k \pi / J))>0$.
b) Show that $\pi^{2} /\left(2 J^{2}\right) \leq \lambda_{1}$.
c) Use a), b) and the estimate $\lambda_{\min }(A)|v|^{2} \leq v^{\top} A v$ for any $v \in \mathbb{R}^{J-1}$ to prove that there exists $C>0$ such that any $J \in \mathbb{N}, \Delta x:=1 / J$ and any $\left(V_{j}\right)_{j=0, \ldots, J} \in \mathbb{R}^{J+1}$ with $V_{0}=V_{J}=0$ satisfy

$$
\sum_{j=0}^{J-1} \Delta x V_{j}^{2} \leq C \sum_{j=0}^{J-1} \Delta x\left(\frac{V_{j+1}-V_{j}}{\Delta x}\right)^{2}
$$

Exercise 3 (Semi-discrete heat equation)

Consider the semi-discrete PDE

$$
\partial_{t} u-\left(\partial_{x}^{+} \partial_{x}^{-}\right) u=0,
$$

where $u:[0, T] \rightarrow \mathbb{R}^{J-1}$ and $\left(\partial_{x}^{+} \partial_{x}^{-}\right): \mathbb{R}^{J-1} \rightarrow \mathbb{R}^{J-1}$ acts on vectors as $\left(\left(\partial_{x}^{+} \partial_{x}^{-}\right) u\right)_{j}=$ $\partial_{x}^{+} \partial_{x}^{-} u_{j}$ with the symmetric difference quotient from the lecture. For the definition of $\partial_{x}^{+} \partial_{x}^{-} u_{1}$ and $\partial_{x}^{+} \partial_{x}^{-} u_{J-1}$ we set $u_{0}=u_{J}=0$.

1. Compute a matrix $A \in \mathbb{R}^{(J-1) \times(J-1)}$ such that the above semi-discrete PDE is equivalent to the $\operatorname{ODE} u^{\prime}(t)=-A u(t)$.
2. Define $G: \mathbb{R}^{J-1} \rightarrow \mathbb{R}$ by $G(V)=\int_{0}^{1}\left(v^{\prime}\right)^{2} d x /(2 \Delta x)$, where $v:[0,1] \rightarrow \mathbb{R}$ is defined by $v(0)=v(1)=0$ and $v(j \Delta x)=V_{j}$ and a piecewise affine continuation between these values. Show that G satisfies $A=\nabla G$.
3. Conclude with Exercise 2(a) and Example 5.6 (1) from the lecture, that the explicit Euler scheme is stable, if $\tau \leq(\Delta x)^{2} / 2$.

Exercise 4 (Error estimate for implicit Euler scheme)

Additionally to the notation of Proposition 6.2 from the lecture, let $T>0, K \in \mathbb{N}$, $\Delta t:=T / K$ and $t_{k}:=k \Delta t$ for $k=0, \ldots, K$. Prove that for $u \in C^{4}([0, T] \times[0,1])$ and $k=0, \ldots, K$, the $\left(U_{j}^{k}\right)_{j k}$ from the implicit Euler scheme satisfy

$$
\sup _{j=0, \ldots, J}\left|u\left(t_{k}, x_{j}\right)-U_{j}^{k}\right| \leq \frac{t_{k}}{2}\left(\Delta t+(\Delta x)^{2}\right)\left(\left\|\partial_{x}^{4} u\right\|_{C([0, T] \times[0,1])}+\left\|\partial_{t}^{2} u\right\|_{C([0, T] \times[0,1])}\right) .
$$

