Exercise Sheet 3

Discussion on 10.11.23

Exercise 1

Let $\left(\hat{\alpha}_{\ell}, \hat{\beta}_{\ell}\right)_{\ell=0, \ldots, m}$ define a linear, explicit multistep method and $\left(\alpha_{\ell}, \beta_{\ell}\right)_{\ell=0, \ldots, m}$ define a linear, implicit multistep method. The approximation y_{k+m} is defined by $y_{k+m}=y_{k+m}^{(j)}$, where $y_{k+m}^{(j)}$ is defined by the following algorithm:

1. Compute the solution of the explicit method, i.e., compute

$$
\tilde{y}_{k+m}=-\sum_{\ell=0}^{m-1} \hat{\alpha}_{\ell} y_{k+\ell}+\tau \sum_{\ell=0}^{m-1} \hat{\beta}_{\ell} f\left(t_{k+\ell}, y_{k+\ell}\right) .
$$

2. $\operatorname{Set} y_{k+m}^{(0)}=\tilde{y}_{k+m}$.
3. Compute j steps of the fixpoint iteration of the implicit method, i.e., compute $y_{k+m}^{(j)}$ with

$$
y_{k+m}^{(i+1)}=-\sum_{\ell=0}^{m-1} \alpha_{\ell} y_{k+\ell}+\tau \sum_{\ell=0}^{m-1} \beta_{\ell} f\left(t_{k+\ell}, y_{k+\ell}\right)+\tau \beta_{m} f\left(t_{k+m}, y_{k+m}^{(i)}\right)
$$

Show that, if f is Lipschitz continuous in the second argument, this algorithm defines an explicit multistep method with order of consistency $p=\min \left\{p_{\text {expl }}+j, p_{\text {impl }}\right\}$, where $p_{\text {expl }}$ und $p_{\text {impl }}$ are the orders of the explicit resp. the implicit method.

Exercise 2

Determine the coefficients of the Adams-Bashforth-method and the Adams-Moultonmethod for $m=3$.

Exercise 3

Show that the Adams-Bashforth-method with m steps is consistent of order m and the Adams-Moulton-method with m steps is consistent of order $m+1$.

Exercise 4 (Programming exercise)

Implement the Adams-Bashforth-method with 3 steps and compare the results to those of the already implemented methods.

