Exercise Sheet 1

Discussion on 27.10.23

Exercise 1

Prove theorem 2.3 from the lecture:
If $f \in \mathcal{C}^{m}\left([0, T] \times \mathbb{R}^{n}\right)$, then $y \in \mathcal{C}^{m+1}([0, T])$. If $m \geq 1$, the solutions of the corresponding initial value problems are unique.

Exercise 2 (Discrete Gronwall-Lemma)

Let $\left(u_{k}\right)_{k=0, \ldots, K}$ be a sequence of non negative, real numbers and $\alpha, \beta \in \mathbb{R}$ with $\beta \geq 0$. Furthermore let

$$
u_{\ell} \leq \alpha+\tau \sum_{k=0}^{\ell-1} \beta u_{k} \quad \text { for all } \ell=0, \ldots, K
$$

Show that for all $\ell=0, \ldots, K$

$$
u_{\ell} \leq \alpha e^{\ell \tau \beta}
$$

holds. (Hint: Use $(1+\tau \beta) \leq e^{\tau \beta}$ inductively.)

Exercise 3 (Gerschgorin circle theorem)

Let $A \in \mathbb{R}^{n \times n}$ and let $\lambda \in \mathbb{C}$ be an eigenvalue of A. For $i \in\{1, \ldots, n\}$ define the i-th Gerschgorin disc

$$
D_{i}:=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{\substack{j=1, \ldots, n \\ j \neq i}}\left|a_{i j}\right|\right\} .
$$

Show that

$$
\lambda \in \bigcup_{i=1}^{n} D_{i} .
$$

Exercise 4

Let $D_{1}=1 \frac{\mathrm{~N}}{\mathrm{~m}}, D_{2}=1.0201 \frac{\mathrm{~N}}{\mathrm{~m}}$ be the spring constants of two spring pendulums with the same mass $m=1 \mathrm{~kg}$. The two pendulums are described by the following ODEs and their initial values

$$
\begin{array}{ll}
y_{i}^{\prime \prime}(t)=-\frac{D_{i}}{m} y_{i}(t) & \\
y_{i}(0)=1 & \\
y_{i}^{\prime}(0)=0 & \\
i \in\{1,2\} \text { and } t \in[0, T] \\
& i \in\{1,2\}
\end{array}
$$

Compute the unique solutions for y_{1} and y_{2} and their difference at time $T=100 \pi s \approx$ $314 s$.

