Exercise Sheet 8

Discussion on 16.12.2022

Exercise 1 (Dirichlet boundary data)

Consider the Poisson model problem with inhomogeneous Dirichlet boundary data: Given $u_D \in C(\Gamma_D)$, $g \in C(\Gamma_N)$ and $f \in L^2(\Omega)$, seek $u : \Omega \to \mathbb{R}$ with

 $-\Delta u = f \text{ in } \Omega$, $u = u_D \text{ on } \Gamma_D$, and $\nabla u \cdot n = g \text{ on } \Gamma_N$.

a) Modify the weak formulation of the Poisson model problem with the space $V_D := \{u \in H^1(\Omega) \mid u|_{\Gamma_D} = u_D\}$ to include inhomogeneous Dirichlet boundary data.

b) Utilize the split $u = u_0 + \tilde{u}_D$, where $u_0 \in H^1_D(\Omega)$ and $\tilde{u}_D \in V_D$ to incorporate the boundary data in the right-hand side of the formulation.

Exercise 2 (Error and refinement)

a) Let $(\mathcal{T}_k)_{k \in \mathbb{N}}$ be a sequence of regular triangulations, where \mathcal{T}_{k+1} is a refinement of \mathcal{T}_k for any $k \in \mathbb{N}$. Furthermore, let $u \in H_0^1(\Omega)$ be the exact solution and $u_k \in S_0^1(\Omega)$ the P_1 finite element solution to the Poisson model problem on each level $k \in \mathbb{N}$. Prove that $\|\nabla(u - u_k)\|_{L^2(\Omega)}$ is a monotonically decreasing sequence.

b) Consider the criss-cross triangulation \mathcal{T}_0 and its refinement depicted in Figure 1. Prove that the P_1 finite element solutions to the Poisson model problem with $f \equiv 1$ on the triangulations coincide.

Figure 1: Criss-cross triangulation \mathcal{T}_0 (left) and its refinement $\mathcal{T}_1 = \texttt{bisec}(\texttt{bisec}(\mathcal{T}_0))$

Exercise 3 (1dFEM = Interpolation)

a) Let \mathcal{T} be a triangulation of the Lipschitz domain Ω . For $f \in L^2(\Omega)$, define $\Pi_0 f \in P_0(\mathcal{T})$ by

$$\|f - \Pi_0 f\|_{L^2(\Omega)} = \min_{p_0 \in P_0(\mathcal{F})} \|f - p_0\|_{L^2(\Omega)}.$$

Prove that any $f \in L^2(\Omega)$ and $T \in \mathcal{T}$ satisfies

$$\Pi_0 f|_T = |T|^{-1} \int_T f \, \mathrm{d}x.$$

b) Let $0 = a_0 < a_1 < \dots, a_N = 1$. Consider the 1d triangulation $\{(a_j, a_{j+1}) \mid j = 0, \dots, N-1\}$. We consider the problem

$$-u'' = f$$
 auf (0, 1) und $u(0) = 0 = u(b)$.

Use the L^2 -projection from a) and Céas Lemma to prove that the nodal interpolation is the P_1 -FEM solution in 1d.

Exercise 4 (Inf-sup condition for matrices)

Let *U* and *V* be finite-dimensional Hilbert spaces and $b: U \times V \to \mathbb{R}$ a bilinear form. Prove that the inf-sup constant

$$\alpha := \inf_{u \in U} \sup_{v \in V} \frac{b(u, v)}{\|u\|_V \|v\|_V}$$

corresponds to the smallest singular value of a matrix *A* representing the bilinar form *b*. Here, for fixed orthonormal bases $(\Phi_j)_{j=1,...,m}$ of *U* and $(\Psi_k)_{k=1,...,n}$ of *V*, the matrix *A* is defined via $A_{jk} = b(\Phi_j, \Psi_k)$ for j = 1,...,m and k = 1,...,n.