Exercise Sheet 8

Discussion on 16.12.2022

Exercise 1 (Dirichlet boundary data)

Consider the Poisson model problem with inhomogeneous Dirichlet boundary data: Given $u_{D} \in C\left(\Gamma_{D}\right), g \in C\left(\Gamma_{N}\right)$ and $f \in L^{2}(\Omega)$, seek $u: \Omega \rightarrow \mathbb{R}$ with

$$
-\Delta u=f \text { in } \Omega, \quad u=u_{D} \text { on } \Gamma_{D}, \quad \text { and } \quad \nabla u \cdot n=g \text { on } \Gamma_{N}
$$

a) Modify the weak formulation of the Poisson model problem with the space $V_{D}:=\{u \in$ $\left.H^{1}(\Omega)|u|_{\Gamma_{D}}=u_{D}\right\}$ to include inhomogeneous Dirichlet boundary data.
b) Utilize the split $u=u_{0}+\tilde{u}_{D}$, where $u_{0} \in H_{D}^{1}(\Omega)$ and $\tilde{u}_{D} \in V_{D}$ to incorporate the boundary data in the right-hand side of the formulation.

Exercise 2 (Error and refinement)

a) Let $\left(\mathscr{T}_{k}\right)_{k \in \mathbb{N}}$ be a sequence of regular triangulations, where \mathscr{T}_{k+1} is a refinement of \mathscr{T}_{k} for any $k \in \mathbb{N}$. Furthermore, let $u \in H_{0}^{1}(\Omega)$ be the exact solution and $u_{k} \in S_{0}^{1}(\Omega)$ the P_{1} finite element solution to the Poisson model problem on each level $k \in \mathbb{N}$. Prove that $\| \nabla(u-$ $\left.u_{k}\right) \|_{L^{2}(\Omega)}$ is a monotonically decreasing sequence.
b) Consider the criss-cross triangulation \mathscr{T}_{0} and its refinement depicted in Figure 1 . Prove that the P_{1} finite element solutions to the Poisson model problem with $f \equiv 1$ on the triangulations coincide.

Figure 1: Criss-cross triangulation $\mathscr{T}_{0}(\mathrm{left})$ and its refinement $\mathscr{T}_{1}=\operatorname{bisec}\left(\mathrm{bisec}\left(\mathscr{T}_{0}\right)\right)$

Exercise 3 (1dFEM = Interpolation)

a) Let \mathscr{T} be a triangulation of the Lipschitz domain Ω. For $f \in L^{2}(\Omega)$, define $\Pi_{0} f \in P_{0}(\mathscr{T})$ by

$$
\left\|f-\Pi_{0} f\right\|_{L^{2}(\Omega)}=\min _{p_{0} \in P_{0}(\mathscr{T})}\left\|f-p_{0}\right\|_{L^{2}(\Omega)} .
$$

Prove that any $f \in L^{2}(\Omega)$ and $T \in \mathscr{T}$ satisfies

$$
\left.\Pi_{0} f\right|_{T}=|T|^{-1} \int_{T} f \mathrm{~d} x
$$

b) Let $0=a_{0}<a_{1}<\ldots, a_{N}=1$. Consider the 1d triangulation $\left\{\left(a_{j}, a_{j+1}\right) \mid j=0, \ldots, N-1\right\}$. We consider the problem

$$
-u^{\prime \prime}=f \quad \text { auf }(0,1) \quad \text { und } \quad u(0)=0=u(b) .
$$

Use the L^{2}-projection from a) and Céas Lemma to prove that the nodal interpolation is the P_{1}-FEM solution in 1d.

Exercise 4 (Inf-sup condition for matrices)

Let U and V be finite-dimensional Hilbert spaces and $b: U \times V \rightarrow \mathbb{R}$ a bilinear form. Prove that the inf-sup constant

$$
\alpha:=\inf _{u \in U} \sup _{v \in V} \frac{b(u, v)}{\|u\|_{U}\|v\|_{V}}
$$

corresponds to the smallest singular value of a matrix A representing the bilinar form b. Here, for fixed orthonormal bases $\left(\Phi_{j}\right)_{j=1, \ldots, m}$ of U and $\left(\Psi_{k}\right)_{k=1, \ldots, n}$ of V, the matrix A is defined via $A_{j k}=b\left(\Phi_{j}, \Psi_{k}\right)$ for $j=1, \ldots, m$ and $k=1, \ldots, n$.

