Exercise Sheet 4

Exercise 1 (Euler formulas)

Let \mathcal{T} denote a regular triangulation of the simply connected bounded domain Ω with nodes \mathcal{N} , edges \mathscr{E} and interior edges $\mathscr{E}(\Omega)$. Prove that

 $|\mathcal{N}| + |\mathcal{T}| = 1 + |\mathcal{E}|, \qquad 2|\mathcal{T}| + 1 = |\mathcal{N}| + |\mathcal{E}(\Omega)|,$

where |•| denotes the number of elements in a set. How can these formulas be generalized for multiply connected domains?

Exercise 2 (Minimum angle condition)

For any triangle *T* and node $z \in \mathcal{N}(T)$, denote by $\measuredangle(T, z)$ the interior angle of *T* at *z*. Prove that any family $(\mathcal{T}_k)_{k \in \mathbb{N}}$ of regular triangulations with

$$0 < \omega_0 \le \min_{k \in \mathbb{N}} \min_{T \in \mathcal{T}_k} \min_{z \in \mathcal{N}(T)} \measuredangle(T, z)$$
(1)

is shape regular. Furthermore, find an example of a family of triangulations that does not satisfy (1) and is not shape regular.

Exercise 3 (Equivalences for shape regularity)

Consider a family of triangulations with the minimum angle condition (cf. Exercise 2) and let \mathcal{T} be any triangulation of this family. Let $z \in \mathcal{N}$ and define $\mathcal{T}(z) := \{T \in \mathcal{T} \mid z \text{ is a node of } T\}$. Prove

$$#\mathcal{T}(z) \lesssim 1.$$

Furthermore, for a triangle $T \in \mathcal{T}(z)$ with diameter h_T and an edge $E \in \mathcal{E}$ of T, prove

$$|E| \approx |T|^{1/2} \approx h_T,$$

where |E| denotes the length of E and |T| denotes the volume of T. Here, $A \leq B$ abbreviates, that there exists a constant $C < \infty$ that may depend on the minimum angle ω_0 , but not on other properties of the family of triangulations. The formula $A \approx B$ abbreviates $A \leq B \leq A$.

Exercise 4 (Regularity of solutions)

Let $\gamma \in (\pi, 2\pi)$ and $\Omega := \{(r \cos \varphi, r \sin \varphi) | 0 < r < 1, 0 < \varphi < \gamma\}$ and $u(r, \varphi) = r^{\pi/\gamma} \sin(\varphi \pi/\gamma)$ in polar coordinates on Ω . Prove that $u : \Omega \to \mathbb{R}$ solves the Poisson problem $-\Delta u = 0$ on Ω with right-hand side $f \equiv 0$ and respective boundary data, but $u \notin C^1(\overline{\Omega})$ for $\gamma \in (\pi, 2\pi)$. *Hint*: You may use the formula for the Laplacian in polar coordinates,

$$\Delta u = \partial^2 u / \partial r^2 + r^{-1} \partial u / \partial r + r^{-2} \partial^2 u / \partial \varphi^2.$$