Exercise Sheet 4

Exercise 1 (Euler formulas)

Let \mathscr{T} denote a regular triangulation of the simply connected bounded domain Ω with nodes \mathscr{N}, edges \mathscr{E} and interior edges $\mathscr{E}(\Omega)$. Prove that

$$
|\mathscr{N}|+|\mathscr{T}|=1+|\mathscr{E}|, \quad 2|\mathscr{T}|+1=|\mathscr{N}|+|\mathscr{E}(\Omega)|,
$$

where $|\bullet|$ denotes the number of elements in a set. How can these formulas be generalized for multiply connected domains?

Exercise 2 (Minimum angle condition)

For any triangle T and node $z \in \mathscr{N}(T)$, denote by $\measuredangle(T, z)$ the interior angle of T at z. Prove that any family $\left(\mathscr{T}_{k}\right)_{k \in \mathbb{N}}$ of regular triangulations with

$$
\begin{equation*}
0<\omega_{0} \leq \min _{k \in \mathbb{N}} \min _{T \in \mathscr{T}_{k}} \min _{z \in \mathscr{N}(T)} \measuredangle(T, z) \tag{1}
\end{equation*}
$$

is shape regular. Furthermore, find an example of a family of triangulations that does not satisfy (1) and is not shape regular.

Exercise 3 (Equivalences for shape regularity)

Consider a family of triangulations with the minimum angle condition (cf. Exercise 2) and let \mathscr{T} be any triangulation of this family. Let $z \in \mathscr{N}$ and define $\mathscr{T}(z):=\{T \in \mathscr{T} \mid z$ is a node of $T\}$. Prove

$$
\# \mathscr{T}(z) \lesssim 1 .
$$

Furthermore, for a triangle $T \in \mathscr{T}(z)$ with diameter h_{T} and an edge $E \in \mathscr{E}$ of T, prove

$$
|E| \approx|T|^{1 / 2} \approx h_{T},
$$

where $|E|$ denotes the length of E and $|T|$ denotes the volume of T. Here, $A \lesssim B$ abbreviates, that there exists a constant $C<\infty$ that may depend on the minimum angle ω_{0}, but not on other properties of the family of triangulations. The formula $A \approx B$ abbreviates $A \lesssim B \lesssim A$.

Exercise 4 (Regularity of solutions)

Let $\gamma \in(\pi, 2 \pi)$ and $\Omega:=\{(r \cos \varphi, r \sin \varphi) \mid 0<r<1,0<\varphi<\gamma\}$ and $u(r, \varphi)=r^{\pi / \gamma} \sin (\varphi \pi / \gamma)$ in polar coordinates on Ω. Prove that $u: \Omega \rightarrow \mathbb{R}$ solves the Poisson problem $-\Delta u=0$ on Ω with right-hand side $f \equiv 0$ and respective boundary data, but $u \notin C^{1}(\bar{\Omega})$ for $\gamma \in(\pi, 2 \pi)$. Hint: You may use the formula for the Laplacian in polar coordinates,

$$
\Delta u=\partial^{2} u / \partial r^{2}+r^{-1} \partial u / \partial r+r^{-2} \partial^{2} u / \partial \varphi^{2} .
$$

