Exercise Sheet 9

Discussion on 13.01.2023

Exercise 1

Let $\ell^{2}(\mathbb{N})$ be the space of all sequences $x=\left(x_{j}\right)_{j \in \mathbb{N}} \subset \mathbb{R}$ such that $\|x\|_{\ell^{2}(\mathbb{N})}^{2}=\sum_{j \in \mathbb{N}} x_{j}^{2}<\infty$. Show that the operator

$$
L: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N}),\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(x_{1}, x_{2} / 2, x_{3} / 3, \ldots\right)
$$

is bounded, linear and injective, but $\operatorname{Im} L$ is not closed.

Exercise 2

Let $\ell^{2}(\mathbb{N})$ be the space of all sequences $x=\left(x_{j}\right)_{j \in \mathbb{N}} \subset \mathbb{R}$ such that $\|x\|_{\ell^{2}(\mathbb{N})^{2}}=\sum_{j \in \mathbb{N}} x_{j}^{2}<\infty$. Determine which of the following operators

$$
L_{j}: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N}), j=1,2,3
$$

satisfies an inf-sup condition:

$$
\begin{aligned}
& L_{1} x=\left(x_{1}, 0, x_{2}, 0, x_{3}, 0, \ldots\right) \\
& L_{2} x=\left(x_{1}, x_{3}, x_{3}, \ldots\right) \\
& L_{3} x=\left(x_{1}-x_{2}, x_{3}-x_{4}, \ldots\right)
\end{aligned}
$$

Specify for each operator its adjoint.

Exercise 3

Let V be a Hilbert space and $a: V \times V \rightarrow \mathbb{R}$ be a bounded bilinear form that satisfies

$$
\begin{array}{ll}
\alpha_{1}\|u\|_{V} \leq \sup _{v \in V \backslash\{0\}} \frac{a(u, v)}{\|v\|_{V}} & \text { for all } u \in V \\
\alpha_{2}\|v\|_{V} \leq \sup _{u \in V \backslash\{0\}} \frac{a(u, v)}{\|u\|_{V}} & \text { for all } v \in V
\end{array}
$$

1. Let $F \in V^{\prime}$. Show that there exists a unique solution $u \in V$ to

$$
a(u, v)=F(v) \quad \text { for all } v \in V
$$

2. Does Brezzi's splitting lemma hold, if the coercivity of the bilinear form a is replaced by the two inf-sup conditions from above?
3. Let Q and Λ be two Hilbert spaces and let $b: V \times Q \rightarrow \mathbb{R}$ and $c: Q \times \Lambda \rightarrow \mathbb{R}$ be two continuous bilinear forms. Define $Z(C):=\{q \in Q \mid \forall \mu \in \Lambda: c(q, \mu)=0\} \subseteq Q$. Let b and c satisfy the inf-sup conditions

$$
\begin{array}{ll}
\beta\|q\|_{Q} \leq \sup _{v \in V \backslash\{0\}} \frac{b(v, q)}{\|v\|_{V}} & \text { for all } q \in Z(C), \\
\gamma\|\mu\|_{\Lambda} \leq \sup _{q \in Q \backslash\{0\}} \frac{c(q, \mu)}{\|q\|_{Q}} & \text { for all } \mu \in \Lambda .
\end{array}
$$

Let $F \in V^{\prime}, G \in Q^{\prime}$ and $H \in \Lambda^{\prime}$. Prove that there exists a unique solution $(u, p, \lambda) \in$ $V \times Q \times \Lambda$ to

$$
\begin{array}{rlrl}
a(u, v)+b(v, p) & & =F(v) & \\
b(u, q) & & \text { for all } v \in V \\
c(p, \mu) & & \text { for all } q \in Q \\
& & =H(\mu) & \\
\text { for all } \mu \in \Lambda .
\end{array}
$$

Exercise 4 (Best-approximation with side condition)

Suppose the closed subspaces X_{h} and M_{h} of the Hilbert spaces X and M satisfy the inf-sup condition and consider $g \in X^{\star}$ and the spaces

$$
\begin{aligned}
V(g) & :=\left\{v \in X \mid b(v, \mu)=\langle g, \mu\rangle_{X^{\star}, X} \text { for any } \mu \in M\right\} \text { and } \\
V_{h}(g) & :=\left\{v_{h} \in X_{h} \mid b\left(v_{h}, \mu_{h}\right)=\left\langle g, \mu_{h}\right\rangle_{X^{\star}, X} \text { for any } \mu_{h} \in M_{h}\right\} .
\end{aligned}
$$

Show that there exists $C>0$ such that any $u \in V(g)$ satisfies

$$
\inf _{v_{h} \in V_{h}(g)}\left\|u-v_{h}\right\|_{X} \leq C \inf _{w_{h} \in X_{h}}\left\|u-w_{h}\right\|_{X}
$$

Hint: Utilize the Fortin interpolation operator (Theorem 5.14).

