Exercise Sheet 6

Discussion on 02.12.2022

Exercise $1\left(\boldsymbol{Q}_{\boldsymbol{k}}\right.$-FEM)

Let $T=[0,1]^{2} \subseteq \mathbb{R}^{2}, k \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{k}=1$ and define $Q_{i j}:=\left(t_{i}, t_{j}\right) \in T$. Furthermore, let $\mathscr{K}=\left\{\chi_{i j} \mid i, j=0, \ldots, k\right\}$ with $\chi_{i j}(v):=v\left(Q_{i j}\right)$ for $v \in C^{\infty}(T)$. Prove that $\left(T, Q_{k}(T), \mathscr{K}\right)$ is a finite element in the sense of Ciarlet (where $Q_{k}(T)$ is the space of polynomials of partial degree $\leq k$).

Exercise 2

Let $T \subseteq \mathbb{R}^{2}$ be a triangle and let $0<t<1 / 2$. Let $E=\operatorname{conv}\{a, b\} \subseteq T$ be an edge of T with midpoint $\operatorname{mid}(E)=(a+b) / 2$ and define

$$
\begin{aligned}
& p_{E}^{ \pm}:=\operatorname{mid}(E) \pm t(a-b) \in E, \\
& \chi_{p_{E}^{ \pm}}(\nu):=v\left(p_{E}^{ \pm}\right) \quad \text { for all } v \in \mathscr{C}^{\infty}(T) \text {. }
\end{aligned}
$$

Define $\mathbb{K}:=\left\{\chi_{p_{E}^{ \pm}} \mid E\right.$ is an edge of $\left.T\right\}$. Show that $\left(T, P_{2}(T), \mathscr{K}\right)$ is not a finite element in the sense of Ciarlet.

Exercise 3 (Barycentric coordinates)

Consider a triangle $T=\operatorname{conv}\left\{P_{1}, P_{2}, P_{3}\right\}$ and the barycentric coordinates $\lambda_{1}, \lambda_{2}, \lambda_{3} \in P_{1}(T)$ defined via $\lambda_{j}\left(P_{k}\right)=\delta_{j k}$ for $j, k=1,2,3$.
a) Prove that any $\alpha, \beta, \gamma \in \mathbb{N}_{0}$ satisfy

$$
\int_{T} \lambda_{1}^{\alpha} \lambda_{2}^{\beta} \lambda_{2}^{\gamma} \mathrm{d} x=2|T| \frac{\alpha!\beta!\gamma!}{(2+\alpha+\beta+\gamma)!}
$$

b) For the points $P_{j+3}:=\left(P_{j}+P_{j+1}\right) / 2, j=1,2$ and $P_{6}:=\left(P_{3}+P_{1}\right) / 2$, find the nodal basis functions $\mu_{j} \in P_{2}(T)$ with $\mu_{j}\left(P_{k}\right)=\delta_{j k}$ for $j, k=1, \ldots, 6$.
c) Compute the local mass matrices for $P_{1}(T)$ and $P_{2}(T)$, i.e. $M_{1}=\left(\left(\lambda_{i}, \lambda_{j}\right)_{L^{2}(\Omega)}\right)_{i, j=1, \ldots, 3} \in$ $\mathbb{R}^{3 \times 3}$ and $M_{2}=\left(\left(\mu_{i}, \mu_{j}\right)_{L^{2}(\Omega)}\right)_{i, j=1, \ldots, 6} \in \mathbb{R}^{6 \times 6}$.

Exercise 4 (P_{2} is no $C^{\mathbf{1}}$ element)

Consider a regular triangulation \mathscr{T} and the P_{2} finite element $\left(T, P_{2}(T), \mathscr{K}_{T}\right)$ for any $T \in \mathscr{T}$. Prove that this finite element is not a C^{1} finite element in general.

