Exercise Sheet 5

Discussion on 18.11.2022

Exercise 1 (Weak derivatives are necessary)

Let $\Omega=(-1,1)^{n} \subseteq \mathbb{R}^{n}$ and v_{ε}, sgn $: \bar{\Omega} \rightarrow \mathbb{R}$ with $v_{\varepsilon}(x):=\sqrt{|x|^{2}+\varepsilon^{2}}-\varepsilon$ and

$$
\operatorname{sgn}(x):= \begin{cases}\frac{x}{|x|} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

Prove that v_{ε} converges to $v=|\bullet|$ and the gradient of v_{ε} converges to sgn in $L^{2}(\Omega)$ for $\varepsilon \searrow 0$. Use this to show that $C^{1}(\bar{\Omega})$, equipped with the scalar product $(\bullet, \bullet)_{L^{2}(\Omega)}+(\nabla \bullet, \nabla \bullet)_{L^{2}(\Omega)}$, is not a Hilbert space.

Exercise 2 (Energy minimization)

Let V be a Hilbert space with scalar product $(\bullet, \bullet)_{V}, a: V \times V \rightarrow \mathbb{R}$ a symmetric bilinear form with $0 \leq a(v, v)$ for any $v \in V$. Given $f \in V$, define $G(v):=\frac{1}{2} a(v, v)-(f, v)_{V}$ for any $v \in V$. Prove that the following two statements are equivalent for $u \in V$:

1. $G(u)=\min _{v \in V} G(v)$,
2. $a(u, v)=(f, v)_{V}$ for any $v \in V$.

Exercise 3 (Globally continuous, piecewise differentiable functions)

Let $\Omega \subseteq \mathbb{R}^{n}$ be a Lipschitz domain and let $\left(\Omega_{j}\right)_{j=1, \ldots, J}$ be Lipschitz domains that are disjoint subsets of Ω with $\bar{\Omega}=\bar{\Omega}_{1} \cup \cdots \cup \bar{\Omega}_{j}$. Let $u: \Omega \rightarrow \mathbb{R}$ with $\left.u\right|_{\Omega_{j}} \in C^{1}\left(\bar{\Omega}_{j}\right)$ for all $j=1, \ldots, J$. Show that u is weakly differentiable if and only if $u \in C(\bar{\Omega})$.

Exercise 4 (Solutions to PMP)

In the setting of the Poisson model problem, let $V=H_{D}^{1}(\Omega), a: V \times V \rightarrow \mathbb{R}$ defined by $a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x$ and $F=\int_{\Omega} f v \mathrm{~d} x+\int_{\Gamma_{N}} g v \mathrm{~d} s$. Prove that there exists a unique solution $u \in V$ to

$$
a(u, v)=F(v) \quad \text { for any } v \in V
$$

and that this solution satisfies

$$
\|u\|_{H^{1}[\Omega)} \leq\left(1+C_{P}^{2}\right) \max \left\{1, C_{\gamma}\right\}\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}\left(\Gamma_{N}\right)}\right)
$$

