Exercise Sheet 3

Exercise 1 (Conservation of Energy)

Prove that for the exact solution $u \in C^2([0, T] \times [0, 1])$ to the wave equation, the energy

$$\frac{1}{2}\int_0^1 (\partial_t u(t,x))^2 + c^2 (\partial_x u(t,x))^2 \,\mathrm{d}x$$

is constant in $t \in [0, T]$.

Exercise 2 (Discrete Maximum principle)

Consider the two-dimensional domain $[0,1]^2$. Let $J \in \mathbb{N}$ und $\Delta x = 1/J$. We consider a grid with grid points $x_{j,m} := (j\Delta x, m\Delta x)$. Define a discrete Laplace operator by

$$-\Delta_h U_{j,m} := -\partial_1^+ \partial_1^- U_{j,m} - \partial_2^+ \partial_2^- U_{j,m}.$$

Show the discrete maximum principle. If $(U_{j,m})_{0 \le j,m \le J}$ suffices $-\Delta_h U_{j,m} \le 0$ for all j, m = 1, ..., J - 1 then U obtains its maximum at the boundary, i.e.

$$\max_{0 \le j,m \le J} U_{j,m} \le \max_{0 \le j \le J} \max\{U_{0,j}, U_{J,j}, U_{j,0}, U_{j,J}\}.$$

Exercise 3

Let $x_{j,m}$ and $U_{j,m}$ as in exercise 2. Let $(U_{j,m})_{0 \le j,m \le J}$ have zero boundary values, i.e.

$$U_{0,m} = U_{J,m} = U_{j,0} = U_{j,J} = 0$$
 für $0 \le j, m \le J$.

Then

$$\max_{0 \le j, m \le J} |U_{j,m}| \le \frac{1}{2} \max_{1 \le j, m \le J-1} |\Delta_h U_{j,m}|.$$
(1)

Proceed as follows:

- 1. Define $W_{j,m} := (j\Delta x)^2 + (m\Delta x)^2$ and compute $\Delta_h W_{j,m}$.
- 2. Let $S := \max_{1 \le j,m \le J-1} |\Delta_h U_{j,m}|$. Define $V_{j,m} := U_{j,m} + S W_{j,m}/4$. Use the discrete maximum principle from exercise 2 für $V_{j,m}$.
- 3. Conclude (1).

Exercise 4 (Finite-Differences for the Poisson problem (five-point stencil))

Let $\Omega = (0, 1)^2$, $\Gamma_D = \partial \Omega$ and $u_D = 0$. Let u denote the solution to the Poisson problem

$$-\Delta u = f \quad \text{in } \Omega,$$
$$u|_{\Gamma_D} = 0.$$

Let $x_{j,m} := (j\Delta x, m\Delta x)$ be as in exercise 2 and 3. The finite difference approximation $(U_{j,m})_{0 \le j,m \le J}$ is defined by

$$-\Delta_h U_{j,m} = f(x_{j,m}) \qquad \text{für } 1 \le j, m \le J - 1,$$
$$U_{0,m} = U_{J,m} = U_{j,0} = U_{j,J} = 0 \qquad \text{for } 0 \le j, m \le J.$$

Let $u \in \mathcal{C}^4(\overline{\Omega})$. Use exercise 3, to prove the error estimation

$$\sup_{0 \le j,m \le J} |u(x_{j,m} - U_{j,m})| \le \frac{\Delta x^2}{12} \|u\|_{\mathscr{C}^4([0,1]^2)}.$$