Exercise Sheet 13

Exercise 1 (arbitrary oscillations for efficiency)

Prove that the efficiency estimate from theorem 6.5 also holds for oscillations of higher order, i.e. for oscillations

$$\operatorname{osc}_k(f, \mathcal{T}) := \|h_{\mathcal{T}}(f - \Pi_k f)\|_{\mathcal{T}}$$

where $\Pi_k : L^2(\Omega) \to P_k(\mathcal{T})$ denotes the L^2 -projection onto piecewise polynomials of degree smaller or equal to k.

Exercise 2 (Arbitrarily bad convergence for uniform refinements)

Let $\mathcal{T}_{\ell}, \ell \in \mathbb{N}$, denote a sequence of consecutive red-refinements of the initial regular triangulation \mathcal{T}_0 of Ω . Given an arbitrary monotonically decreasing sequence $\varepsilon_k, k \in \mathbb{N}$, show that there exists a right-hand side $f \in H^{-1}(\Omega) := (H_0^1(\Omega))^*$ such that the exact weak solution $u \in H_0^1(\Omega)$ to the Poisson model problem $-\Delta u = f$ and the corresponding finite element approximations $u_{\ell} \in S_0^1(\mathcal{T}_{\ell})$ satisfy

$$\|\nabla(u-u_\ell)\|_{L^2(\Omega)} = \varepsilon_\ell.$$

Exercise 3 (Convergence for any refinement)

Let Ω denote a polygonal Lipschitz domain, $f \in L^2(\Omega)$, $a : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ a scalar product and \mathcal{T}_0 an initial regular triangulation of Ω . Let $\mathcal{T}_{\ell}, \ell \in \mathbb{N}$, be a sequence of arbitrary consecutive refinements, i.e., \mathcal{T}_{ℓ} is an (arbitrary) refinement of $\mathcal{T}_{\ell-1}$. Let $u_{\ell} \in S_0^1(\mathcal{T}_{\ell}) \subset$ $H_0^1(\Omega)$ be the associated finite element solutions, i.e.,

$$a(u_{\ell}, v_{\ell}) = \int_{\Omega} f v_{\ell} dx$$
 for all $v_{\ell} \in S_0^1(\mathcal{T}_{\ell})$.

- (a) Prove that the sequence $u_{\ell}, \ell \in \mathbb{N}$, converges to a function $u_{\infty} \in H_0^1(\Omega)$.
- (b) Does the limit u_{∞} solve the weak formulation

$$a(u, v) = \int_{\Omega} f v \, dx \qquad \text{for all } v \in H_0^1(\Omega) \, ? \tag{1}$$

(c) State a sufficient criterion on the sequence $\mathcal{T}_{\ell}, \ell \in \mathbb{N}$, such that $u_{\infty} = u$ holds with the solution $u \in H_0^1(\Omega)$ to the weak formulation (1).

Exercise 4

Show that the solution to P_1 -FEM in general does not converge better than with rate h.