Exercise Sheet 12

Exercise 1 (Instable $\boldsymbol{P}_{\mathbf{1}}-\boldsymbol{P}_{\mathbf{0}}$ element for the Stokes equations)

Consider the Stokes equations on the domain $\Omega:=(0,1)^{2}$. Prove that the discretization $X_{h}:=S_{0}^{1}\left(\mathscr{T} ; \mathbb{R}^{2}\right)$ and $Y_{h}:=P_{0}(\mathscr{T}) \cap L_{0}^{2}(\Omega)$ for a criss triangulation \mathscr{T} of Ω (i.e. a set of congruent squares which are bisected from the lower left to the upper right corner, see Figure 1) lead to an unstable saddle point problem.

Hint: Therefore show that the inf-sup condition is not satisfied or show that $\left\{v_{h} \in X_{h} \mid \forall q_{h} \in\right.$ $\left.Y_{h}: \int_{\Omega} q_{h} \operatorname{div} v_{h} \mathrm{~d} x=0\right\}=\{0\}$.

Exercise 2 (Fortin operator for $\boldsymbol{P}_{\mathbf{2}}-\boldsymbol{P}_{\mathbf{0}}$ element for the Stokes equations - Compatibility)

 Recall the averaging operator $J_{1}: P_{1}(\mathscr{T}) \rightarrow S_{0}^{1}(\mathscr{T})$ with$$
\left(J_{1} g\right)(z):=\sum_{T \in \mathscr{T}(z)}\left(\left.g\right|_{T}\right)(z) / \#(\mathscr{T}(z)) \quad \text { for all } z \in \mathscr{N}(\Omega) \text { with } \mathscr{T}(z):=\{T \in \mathscr{T} \mid z \in T\}
$$

For any interior edge $E \in \mathscr{E}(\Omega)$, define the P_{2} basis function $\varphi_{E} \in S_{0}^{2}(\mathscr{T})$ on E by piecewise quadratic interpolation of the values

$$
\varphi_{E}(z)=0=\varphi_{E}(\operatorname{mid}(F)) \quad \text { for all } z \in \mathscr{N} \text { and } F \in \mathscr{E}(\Omega) \backslash\{E\} \quad \text { and } \quad \varphi_{E}(\operatorname{mid}(E))=1
$$

Given $v \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ and some coefficients $\left\{\alpha_{E} \in \mathbb{R}^{2} \mid E \in \mathscr{E}(\Omega)\right\}$, set

$$
v_{h}:=J_{1}\left(\Pi_{0} v\right)+\sum_{E \in \mathscr{E}(\Omega)} \alpha_{E} \varphi_{E} \in S_{0}^{2}\left(\mathscr{T} ; \mathbb{R}^{2}\right)
$$

Show, that there exists a specific choice of the coefficients α_{E} such that

$$
\int_{\Omega} q_{h} \operatorname{div}\left(v-v_{h}\right) \mathrm{d} x=0 \quad \text { for all } q_{h} \in P_{0}(\mathscr{T})
$$

Figure 1: Example of a criss triangulation

Exercise 3 (Fortin operator for $\boldsymbol{P}_{\mathbf{2}}-\boldsymbol{P}_{\mathbf{0}}$ element for the Stokes equations - Stability)

Prove that there exists an h-independent generic constant $C>0$ such that, for any $v \in$ $H_{0}^{1}\left(\Omega ; \mathbb{R}^{2}\right)$, the construction $\nu_{h} \in S_{0}^{2}\left(\mathscr{T} ; \mathbb{R}^{2}\right)$ from Exercise 2 satisfies

$$
\left\|\nabla v_{h}\right\|_{L^{2}(\Omega)} \leq C\|\nabla v\|_{L^{2}(\Omega)} .
$$

Exercise 4 (\boldsymbol{L}^{2}-estimation for the Stokes problem)

Let $\|v\|_{k}:=\|\nu\|_{H^{k}(\Omega)}$ and $\|v\|_{0}:=\|v\|_{L^{2}(\Omega)}$. For the Stokes problem on a convex domain with suffiently smooth boundary the folling statement on the regularity holds: (compare Girault and Raviart [1986])

$$
\|u\|_{2}+\|p\|_{1} \leq c\|f\|_{0}
$$

Show with the usual duality technique that the L^{2}-estimation for the velocity

$$
\left\|u-u_{h}\right\|_{0} \leq c h\left(\left\|u-u_{h}\right\|_{1}+\left\|p-p_{h}\right\|_{0}\right)
$$

holds.

