Exercise Sheet 11

discussion on 20.01.2023

Exercise 1 (Korn inequality)

Let $\Omega \subseteq \mathbb{R}^{n}$ denote a Lipschitz domain. Recall the definition of the symmetric gradient $\varepsilon(\nu):=\left(\mathrm{D} v+\mathrm{D} v^{\top}\right) / 2$ for all $v \in H^{1}\left(\Omega ; \mathbb{R}^{n}\right)$.
(a) Use integration by parts to prove for all $v \in \mathscr{D}\left(\Omega ; \mathbb{R}^{n}\right) \equiv C_{\mathrm{c}}^{\infty}\left(\Omega ; \mathbb{R}^{n}\right)$, that

$$
\begin{equation*}
\|\mathrm{D} v\|_{L^{2}(\Omega)} \lesssim\|\varepsilon(\nu)\|_{L^{2}(\Omega)} . \tag{1}
\end{equation*}
$$

(b) Use a density argument to prove equation (1) for all $v \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$.

Exercise 2 (Variational formulation of linear elasticity)

Given a right-hand side f and Lamé parameters $\lambda, \mu>0$, the PDEs of linear elasticity with homogeneous Dirichlet boundary conditions seek $u \in C^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ with

$$
\begin{equation*}
-\operatorname{div}(\mathbb{C} \varepsilon(u))=f \text { in } \Omega \quad \text { and } \quad u \equiv 0 \text { on } \partial \Omega, \tag{2}
\end{equation*}
$$

where the material tensor \mathbb{C} is defined by $\mathbb{C} M:=2 \mu M+\lambda \operatorname{tr}(M) I_{n \times n}$ for $M \in \mathbb{R}^{n \times n}$.
(a) Derive the weak formulation of (2).
(b) Prove existence and uniqueness of solutions of the variational formulation.

Hint: Assume that the space $H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ of the deformations u is equipped with the usual H^{1} energy-norm.

Exercise 3 (Conforming \boldsymbol{P}_{1} discretization)

Let \mathscr{T} denote a regular triangulation of the domain Ω. Consider the conforming P_{1} discretization $u_{h} \in S_{0}^{1}\left(\mathscr{T} ; \mathbb{R}^{n}\right)$ of the deformation $u \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ in the weak formulation of Exercise 2 (a). Use Céa's Lemma to prove a best-approximation result in the H^{1} (semi-) norm. How does the generic constant in the estimate depend on the Lamé parameter λ for large λ ?

Exercise 4

Show that the linear elasticity problem is equivalent to a saddle point problem with a penalty term of the form

$$
\begin{array}{lc}
a(u, v)+b(v, p)=f & \text { für alle } v \in H_{0}^{1}(\Omega), \\
b(u, q)+c(p, q)=0 & \text { für alle } q \in L^{2}(\Omega),
\end{array}
$$

where $p=\lambda \operatorname{div} u$

