Exercise Sheet 10

discussion on 13.01.23

Exercise 1 (Gradients and divergence)

a) Suppose that $u \in L^2(\Omega)$ and $p \in L^2(\Omega; \mathbb{R}^n)$. Show that $p = -\nabla u$ and $u \in H_0^1(\Omega)$ is equivalent to

$$\int_{\Omega} u \operatorname{div} q \, \mathrm{d}x = \int_{\Omega} p \cdot q \, \mathrm{d}x \quad \text{for any } q \in H(\operatorname{div}, \Omega).$$

b) Suppose that $g \in L^2(\Omega)$ and $p \in L^2(\Omega; \mathbb{R}^n)$. Show that $g = -\operatorname{div} p$ and $p \in H(\operatorname{div}, \Omega)$ with $p \cdot v = 0$ on $\partial\Omega$ is equivalent to

$$\int_{\Omega} vg \, \mathrm{d}x = \int_{\Omega} p \cdot \nabla v \, \mathrm{d}x \quad \text{for any } v \in H^1(\Omega).$$

Exercise 2 ($H(div, \Omega)$ functions do not have normal jumps)

a) Consider the space

$$H(\operatorname{div},\Omega) := \left\{ v \in L^2(\Omega; \mathbb{R}^2) \; \middle| \; \exists g \in L^2(\Omega) \text{ with } \int_{\Omega} v \cdot \nabla \varphi \, dx = \int_{\Omega} g \varphi \, dx \text{ for all } \varphi \in \mathscr{C}^{\infty}_c(\Omega). \right\}$$

Let $u \in H^1(\Omega)$ be the exact weak solution of the Poisson problem $-\Delta u = f$ with some $f \in L^2(\Omega)$. Prove that $\nabla u \in H(\operatorname{div}, \Omega)$.

b) Let \mathcal{T} be a regular triangulation of $\Omega \subseteq \mathbb{R}^2$ and

 $q \in H^1(\mathcal{T}; \mathbb{R}^2) := \{ q \in L^2(\Omega; \mathbb{R}^2) \mid q \mid_T \in H^1(T) \text{ for any } T \in \mathcal{T} \}.$

Prove that $q \in H(\operatorname{div}, \Omega)$ if and only if for any $E = T_+ \cap T_-$ with $T_+, T_- \in \mathcal{T}$, $[q]_E \cdot v_E := (q_{T_+} \cdot v_{T_+} + q_{T_-} \cdot v_{T_-})|_E = 0$ almost everywhere along *E*.

c) Let $f \in L^2(\Omega) \setminus \{0\}$ and $u \in H^1_0(\Omega)$ the exact weak solution to $-\Delta u = f$. For an arbitrary regular triangulation \mathcal{T} of Ω , let $u_h \in S^1_0(\mathcal{T})$ be the P_1 finite element solution. Prove that $u_h \neq u$.

Exercise 3 (Trace identity and inequality)

a) Suppose $T := \operatorname{conv}(\{P\} \cup E) \subset \mathbb{R}^2$ is a triangle with node *P* and opposite edge *E*. Prove that any $f \in H^1(T)$ satisfies the trace identity

$$|E|^{-1} \int_{E} f \, \mathrm{d}s = |T|^{-1} \int_{T} f \, \mathrm{d}x + \frac{1}{2} |T|^{-1} \int_{T} \nabla f(x) \cdot (x - P) \, \mathrm{d}x.$$

b) In the setting of a), show that $f \in H^1(T)$ and $h_T = \text{diam } T$ satisfy the trace inequality

$$\|f\|_{L^{2}(E)} \lesssim h_{T}^{-1/2} \|f\|_{L^{2}(T)} + h_{T}^{1/2} \|\nabla f\|_{L^{2}(T)}.$$

Exercise 4 Let $\Omega = \{(x_1, x_2) \in \mathbb{R}^2 : |x| < 1, x_1, x_2 > 0\}, S = [0, 1] \times \{0\}$ and

$$u_{\varepsilon}: \Omega \to \mathbb{R}^2, x \mapsto \frac{[-x_2, x_1]^{\top}}{\varepsilon + |x|^2}.$$

a) Show that $u_{\epsilon} \in H(\operatorname{div}, \Omega)$ and that there exists $\alpha_{\epsilon} \in \mathbb{R}$ such that $\tilde{u}_{\epsilon} = \alpha_{\epsilon} u_{\epsilon} \in H(\operatorname{div}, \Omega)$ and $\|\tilde{u}_{\epsilon}\|_{L^{2}(\Omega)} = 1$.

b) Show that $\|\tilde{u}_{\epsilon} \cdot n\|_{L^{1}(S)}$ is unbounded as $\epsilon \to 0$, and conclude that the trace operator for functions in $H(\operatorname{div}, \Omega)$ is not well-defined as an operator into $L^{1}(\partial \Omega)$ in general.

c) Why is the expression $\int_{\partial\Omega} u_{\epsilon} \cdot n$ ds well-defined?