Exercise Sheet 10

discussion on 13.01.23

Exercise 1 (Gradients and divergence)

a) Suppose that $u \in L^{2}(\Omega)$ and $p \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Show that $p=-\nabla u$ and $u \in H_{0}^{1}(\Omega)$ is equivalent to

$$
\int_{\Omega} u \operatorname{div} q \mathrm{~d} x=\int_{\Omega} p \cdot q \mathrm{~d} x \quad \text { for any } q \in H(\operatorname{div}, \Omega)
$$

b) Suppose that $g \in L^{2}(\Omega)$ and $p \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Show that $g=-\operatorname{div} p$ and $p \in H(\operatorname{div}, \Omega)$ with $p \cdot v=0$ on $\partial \Omega$ is equivalent to

$$
\int_{\Omega} v g \mathrm{~d} x=\int_{\Omega} p \cdot \nabla v \mathrm{~d} x \quad \text { for any } v \in H^{1}(\Omega)
$$

Exercise 2 ($\boldsymbol{H}(\operatorname{div}, \Omega)$ functions do not have normal jumps)

a) Consider the space

$$
H(\operatorname{div}, \Omega):=\left\{v \in L^{2}\left(\Omega ; \mathbb{R}^{2}\right) \mid \exists g \in L^{2}(\Omega) \text { with } \int_{\Omega} v \cdot \nabla \varphi d x=\int_{\Omega} g \varphi d x \text { for all } \varphi \in \mathscr{C}_{c}^{\infty}(\Omega) .\right\}
$$

Let $u \in H^{1}(\Omega)$ be the exact weak solution of the Poisson problem $-\Delta u=f$ with some $f \in L^{2}(\Omega)$. Prove that $\nabla u \in H(\operatorname{div}, \Omega)$.
b) Let \mathscr{T} be a regular triangulation of $\Omega \subseteq \mathbb{R}^{2}$ and $q \in H^{1}\left(\mathscr{T} ; \mathbb{R}^{2}\right):=\left\{q \in L^{2}\left(\Omega ; \mathbb{R}^{2}\right)|q|_{T} \in H^{1}(T)\right.$ for any $\left.T \in \mathscr{T}\right\}$.
Prove that $q \in H(\operatorname{div}, \Omega)$ if and only if for any $E=T_{+} \cap T_{-}$with $T_{+}, T_{-} \in \mathscr{T},[q]_{E} \cdot v_{E}:=$ $\left.\left(q_{T_{+}} \cdot v_{T_{+}}+q_{T_{-}} \cdot v_{T_{-}}\right)\right|_{E}=0$ almost everywhere along E.
c) Let $f \in L^{2}(\Omega) \backslash\{0\}$ and $u \in H_{0}^{1}(\Omega)$ the exact weak solution to $-\Delta u=f$. For an arbitrary regular triangulation \mathscr{T} of Ω, let $u_{h} \in S_{0}^{1}(\mathscr{T})$ be the P_{1} finite element solution. Prove that $u_{h} \neq u$.

Exercise 3 (Trace identity and inequality)

a) Suppose $T:=\operatorname{conv}(\{P\} \cup E) \subset \mathbb{R}^{2}$ is a triangle with node P and opposite edge E. Prove that any $f \in H^{1}(T)$ satisfies the trace identity

$$
|E|^{-1} \int_{E} f \mathrm{~d} s=|T|^{-1} \int_{T} f \mathrm{~d} x+\frac{1}{2}|T|^{-1} \int_{T} \nabla f(x) \cdot(x-P) \mathrm{d} x .
$$

b) In the setting of a), show that $f \in H^{1}(T)$ and $h_{T}=\operatorname{diam} T$ satisfy the trace inequality

$$
\|f\|_{L^{2}(E)} \lesssim h_{T}^{-1 / 2}\|f\|_{L^{2}(T)}+h_{T}^{1 / 2}\|\nabla f\|_{L^{2}(T)}
$$

Exercise 4

Let $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:|x|<1, x_{1}, x_{2}>0\right\}, S=[0,1] \times\{0\}$ and

$$
u_{\epsilon}: \Omega \rightarrow \mathbb{R}^{2}, x \mapsto \frac{\left[-x_{2}, x_{1}\right]^{\top}}{\varepsilon+|x|^{2}}
$$

a) Show that $u_{\epsilon} \in H(\operatorname{div}, \Omega)$ and that there exists $\alpha_{\epsilon} \in \mathbb{R}$ such that $\widetilde{u}_{\epsilon}=\alpha_{\epsilon} u_{\epsilon} \in H(\operatorname{div}, \Omega)$ and $\left\|\widetilde{u}_{\epsilon}\right\|_{L^{2}(\Omega)}=1$.
b) Show that $\left\|\widetilde{u}_{\epsilon} \cdot n\right\|_{L^{1}(S)}$ is unbounded as $\epsilon \rightarrow 0$, and conclude that the trace operator for functions in $H(\operatorname{div}, \Omega)$ is not well-defined as an operator into $L^{1}(\partial \Omega)$ in general.
c) Why is the expression $\int_{\partial \Omega} u_{\epsilon} \cdot n \mathrm{ds}$ well-defined?

