Exercise Sheet 1

Discussion on 24.10.22

Exercise 1 (Errors of difference quotients)

Let $J \in \mathbb{N}, \Delta x:=1 / J$ and $x_{j}:=j \Delta x$ for $j=0, \ldots, J$. Furthermore, let $u \in C^{4}([0,1])$. Show that for all $j \in\{0, \ldots, J\}$ it holds

$$
\begin{aligned}
\left|\partial^{ \pm} u\left(x_{j}\right)-u^{\prime}\left(x_{j}\right)\right| & \leq \frac{\Delta x}{2}\left\|u^{\prime \prime}\right\|_{C([0,1])} \\
\left|\hat{\partial} u\left(x_{j}\right)-u^{\prime}\left(x_{j}\right)\right| & \leq \frac{(\Delta x)^{2}}{6}\left\|u^{\prime \prime \prime}\right\|_{C([0,1])} \\
\left|\partial^{+} \partial^{-} u\left(x_{j}\right)-u^{\prime \prime}\left(x_{j}\right)\right| & \leq \frac{(\Delta x)^{2}}{12}\left\|u^{(4)}\right\|_{C([0,1])} .
\end{aligned}
$$

Exercise 2 (Error estimate for implicit Euler scheme)

Additionally to the notation of Exercise 1.1, let $T>0, K \in \mathbb{N}, \Delta t:=T / K$ and $t_{k}:=k \Delta t$ for $k=0, \ldots, K$. Prove that for $u \in C^{4}([0, T] \times[0,1])$ and $k=0, \ldots, K$, the $\left(U_{j}^{k}\right)_{j k}$ from the implicit Euler scheme satisfy

$$
\sup _{j=0, \ldots, J}\left|u\left(t_{k}, x_{j}\right)-U_{j}^{k}\right| \leq \frac{t_{k}}{2}\left(\Delta t+(\Delta x)^{2}\right)\left(\left\|\partial_{x}^{4} u\right\|_{C([0, T] \times[0,1])}+\left\|\partial_{t}^{2} u\right\|_{C([0, T] \times[0,1])}\right) .
$$

Exercise 3 (Integration by parts)

a) Let $\Delta x>0,\left(V_{j}\right)_{j=0, \ldots, J} \in \mathbb{R}^{J+1}$, and $\left(W_{j}\right)_{j=0, \ldots, J} \in \mathbb{R}^{J+1}$ with $V_{0}=V_{J}=W_{0}=W_{J}=0$. Prove that

$$
\sum_{j=1}^{J-1} \Delta x\left(\frac{V_{j+1}-2 V_{j}+V_{j-1}}{(\Delta x)^{2}}\right) W_{j}=-\sum_{j=0}^{J-1} \Delta x\left(\frac{V_{j+1}-V_{j}}{\Delta x}\right)\left(\frac{W_{j+1}-W_{j}}{\Delta x}\right) .
$$

b) Let $\Omega \subset \mathbb{R}^{n}, n=1,2,3$ be a bounded domain with piecewise smooth boundary $\partial \Omega$, with outward normal v along $\partial \Omega$. For $n=1$, let div $=\nabla$. For $v \in C^{l}(\bar{\Omega}), q \in C^{l}\left(\bar{\Omega} ; \mathbb{R}^{n}\right)$, show

$$
\int_{\Omega}(v \operatorname{div} q+\nabla v \cdot q) \mathrm{d} x=\int_{\partial \Omega} v q \cdot v \mathrm{~d} s .
$$

Hint: You may assume that Gauss's divergence theorem holds for bounded domains with piecewise smooth boundary.

Exercise 4 (Discrete inverse inequality)

a) Let $\Delta x>0$ and $\left(V_{j}\right)_{j=0, \ldots, J} \in \mathbb{R}^{J+1}$ with $V_{0}=V_{J}=0$. Prove that

$$
\sum_{j=0}^{J-1} \Delta x\left(\frac{V_{j+1}-V_{j}}{\Delta x}\right)^{2} \leq \frac{4}{(\Delta x)^{2}} \sum_{j=0}^{J} \Delta x V_{j}^{2}
$$

(b) Let $p \in P_{k}([a, b])$ be a polynomial of degree k on the interval $[a, b]$ with $a, b \in \mathbb{R}$ and $b>a$. Prove that for a constant $C>0$ it holds

$$
\left\|\partial_{x} p\right\|_{L^{2}([a, b])} \leq \frac{C}{b-a}\|p\|_{L^{2}([a, b])} .
$$

