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We study bounds on the rate of convergence to the stationary distribution
in monotone separable networks which are represented in terms of stochastic
recursive sequences. Monotonicity properties of this subclass of Markov chains
allow us to formulate conditions in terms of marginal network characteris-
tics. Two particular examples, generalized Jackson networks and multiserver
queues, are considered.
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1 Introduction
Let Xx

n , n = 0, 1, . . ., Xx
0 = x be a (time-homogeneous) Markov chain (MC)

taking values in a state space X with a countably generated sigma-algebra BX .
Denote by P (·, ·) its transition probabilities.

It is known (see, e.g. [20]) that any MC may be represented as a stochastic
recursive sequence (SRS)

Xx
n+1 = f(Xx

n , Yn+1), n ≥ 0. (1.1)

Herein, the elements Yn of the driving sequence are i.i.d. and take values in another
measurable state space (Y,BY), and the function f : X ×Y → X is measurable with
respect to the product sigma-algebra BX × BY (that is the minimal sigma-algebra
which contains all sets A×B, A ∈ BX , B ∈ BY). Then

P (z,A) = P(f(z, Y1) ∈ A), z ∈ X , A ∈ BX .
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Assume further that the MC Xx
n is Harris ergodic, i.e. there exists a (stationary)

distribution π on X such that the distribution of Xx
n converges to π in the total

variation norm:

‖P(Xx
n ∈ ·)− π(·)‖ ≡ sup

A∈BX
|P(Xx

n ∈ A)− π(A)| → 0, n →∞.

Geometric ergodicity of a general MC is treated in [27, Chapter 15]. Various suf-
ficient conditions for subgeometric rates of convergence of an f -ergodic MC are
obtained in [32]. The equivalent conditions of [32] are couched in terms of the
first hitting time on some set and a sequence of Foster-Lyapunov drift conditions.
There have been several attemts to replace the sequence of drift conditions in [32,
Theorem 2.1], which are difficult to check, with a single one ([12, 19, 13]). Note
that the geometric ergodicity of an MC follows from a single drift condition (see [27,
Chapter 15]). The nested drift conditions of [32] were first dropped in [12], where
f -ergodicity and the power convergence of a certain Markov process associated with
a multiclass queueing network were studied. In [19] a single drift condition for the
power convergence of a general MC was constructed. The condition of [19] was
generalized in [13], which permitted the proof of subgeometric rates of convergence
in a rather straightforward way. All the papers on convergence rates listed above
are based on a concept of a 'petite set' (see [27]). An alternative approach was
suggested in [21], where subgeometric rates of convergence of an MC in Rd were
studied. In [21] it is assumed that an MC satisfies the local Doeblin condition. This
condition together with recurrence type conditions implied irreducibility.

In our paper we consider only convergence in the total variation norm. For our
purpose it is more convenient to use sufficient conditions for various convergence
rates of ‖P(Xx

n ∈ ·) − π(·)‖ to 0 in terms of the first hitting time on some set.
We first recall these conditions. Then we use representation (1.1) and apply the
results to a subclass of networks which are monotone and separable (see Section
3 for definitions). We introduce a class of networks with an arbitrary initial state
which generalizes the class of monotone separable networks described in [4]. For
such networks, we give a unified approach to obtaining estimates of the convergence
rates of ‖P(Xx

n ∈ ·)− π(·)‖ to 0, where Xx
n describes the behavior of the network.

In particular, we get the same bounds on the convergence rate for a number of
network characteristics. Our conditions are formulated in terms of the so-called
individual maximal dater Z. In our main Theorem 3.1, we prove that, given the
existence of renovating events of positive probability, if Eeg(Z) < ∞ for a certain
function g, then eeg(n)‖P(Xx

n ∈ ·) − π(·)‖ → 0 for another function g̃; the relation
between g and g̃ is then specified. We consider mainly functions g which grow
to infinity slower than linear and faster than logarithmic functions. We apply the
general results to two particular examples of monotone and separable networks:
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generalized Jackson networks and multiserver queues. In each example, we provide
a sample-path representation of a network in terms of SRS, and construct the
corresponding renovating events.

Properties of SRS were thoroughly investigated in the stationary-ergodic con-
text in [10, 11]. In particular, the existence of a stationary measure and coupling
convergence (for the definition see, for example, [22]) were proved by using renova-
tion techniques. General monotone Markov processes and their various applications
were considered in [26, 14].

Monotone separable networks were introduced in [4]. They include generalized
Jackson networks, multiserver queues, Petri nets, (max,+) systems, etc. Mono-
tonicity properties of the workload processes and the queue length processes in
single- and multiserver queues are described in detail in [25, 29]. Various mono-
tonicity properties of Jackson networks are proved in [23, 17, 28, 16]. A general
description of a generalized Jackson network in terms of monotone processes was
proposed in [3].

Basic results on convergence rates for the workload process in a stable GI/GI/1
queue may be found, e.g., in [7]. For a summary of results on power and exponential
convergence rates for various queueing systems, see [8, Chapter 4]). In [30, 31],
the intermediate case between power and exponential convergence in single- and
multiserver queues was considered. In [24], the rates of convergence were studied
by considering a new metric for the input process. The exact rate of convergence for
the M/G/1 queue with regularly varying distribution of service times was obtained
in [1]. First results on rates of convergence in generalized Jackson networks were
obtained in [9] under rather restrictive assumptions on the distributions of the
inter-arrival and service times. Exponential convergence rates have been obtained
for Markovian Jackson networks in [15], and for general monotone regenerative
Markov processes in [26]. In [12] the power convergence for multiclass queueing
networks was established via a fluid model.

Structure of the paper. In the auxiliary Section 2 we formulate known results on
convergence rates for Harris ergodic Markov chains. Section 3 contains a descrip-
tion of a monotone separable network with an arbitrary initial state and the main
result on convergence rates, Theorem 3.1. We then consider two applications. The
instructive example of a monotone separable network, the generalized Jackson net-
work, is treated in Section 4, see Theorem 4.1. Bounds on the rate of convergence
in multiserver queues are studied in Section 5. Finally, the Appendix contains some
technical results.

3



2 Convergence rates in Markov chains
In this section we formulate some results on convergence rates for Harris ergodic

Markov chains. The results are applied to monotone separable networks in the next
section. The following criterion for ergodicity of Markov chains is well-known (see,
for example, [10, Theorem 1]).

Theorem 2.1. Let {Xn} be aperiodic. Assume that there exists a measurable set
B ∈ BX such that, for

τ(x,B) = min{n ≥ 1 : Xx
n ∈ B},

1. P(τ(x,B) < ∞) = 1 for all x ∈ X ;

2. sup
x∈B

Eτ(x,B) < ∞;

3. there exist an integer l ≥ 1, a number p ∈ (0, 1], and a probability measure ϕ
on (X ,BX ) such that, for all x ∈ B,

P(Xx
l ∈ A) ≥ pϕ(A), for all A ∈ BX .

Then {Xn} is Harris ergodic, i.e. there exists a probability measure π on (X ,BX )
such that, for any x ∈ X ,

‖P(Xx
n ∈ ·)− π(·)‖ → 0, as n →∞.

Remark 1. Suppose that an MC is represented as an SRS. Then Condition 3
of Theorem 2.1 follows from
Condition 3′: for some l ≥ 1 there exists an event A ∈ σ(Y1, . . . , Yl) of positive
probability such that , for any x ∈ B,

Xx
l I(A) = G(Y1, . . . , Yl)I(A) a.s.,

where the measurable function G does not depend on x.
Conversely, the standard splitting arguments leed to the following: if Condition 3
holds, then there exists an SRS representation of an MC such that Condition 3'
holds (see, e.g. [2]).

From [32, Theorem 2.1], one can deduce the following result.
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Theorem 2.2. Consider a function g on the real line such that, for some M > 0,
g is bounded for x ≤ M , g(x) = o(x) as x → ∞, there exists the right derivative
g′(x) for x ≥ M such that g′(x) > 0, and the function

g̃(x) =





0, if x < 0,
g(M) + ln g′(M), if 0 ≤ x ≤ M,
g(x) + ln g′(x), if x > M

(2.1)

is subadditive, i.e. g̃(x + y) ≤ g̃(x) + g̃(y) for all x, y.
Suppose that the conditions of Theorem 2.1 hold. Let z ∈ X . Suppose also that

Eeeg(τ(z,B)) < ∞ (2.2)

and
sup
y∈B

Eeg(τ(y,B)) < ∞. (2.3)

Then
eeg(n)‖P(Xz

n ∈ ·)− π(·)‖ → 0 as n →∞. (2.4)

We also use the known result on exponential convergence rates. The following
is [27, Theorem 15.0.1]:

Theorem 2.3. Suppose that the conditions of Theorem 2.1 hold. Let z ∈ X . If
there exists some α > 0 such that

Eeατ(z,B) < ∞,

and
sup
x∈B

Eeατ(x,B) < ∞, (2.5)

then
eβn‖P(Xz

n ∈ ·)− π(·)‖ → 0 as n →∞,

for some β > 0.

3 Rates of convergence in monotone separable stochas-
tic networks

The concept of a monotone separable network was introduced in [4]. Here
we consider monotone separable networks driven by stochastic recursions with an
arbitrary initial state.
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We start with a deterministic network without exogeneous input. The state
space of the network is a metric space (X , ρ) which contains a distinguished element
0 (the empty state). We assume that the following properties hold:
(i) if the network is in state 0 at some time t0 , then a network stays in this state
for all times t > t0;
(ii) the state 0 is attractive: if the network starts at time t from any initial state
x ∈ X , x 6= 0, it eventually reaches the state 0 in a finite time, and
(iii) the time to reach 0 does not depend on t (so the network dynamics is time-
homogeneous).

More precisely, we assume that, for any state x ∈ X , x 6= 0, and for any t, if
the network starts from the state x = Φ(x, 0) at time t, then its state at time t+u,
u ≥ 0 is Φ(x, u) where, for any fixed x, the function {Φ(x, u), u ≥ 0} is a cadlag
(right-continuous with left limits) function with at most finite number of jumps
such that W (x) = min{u ≥ 0 : Φ(x, u) = 0} is finite.

Let us now describe a network with a single (exogeneous) stochastic input pro-
cess. An input process is a marked point process (Y, T ) with points {Tn} and marks
{Yn} where Tn+1 ≥ Tn a.s. for all n and Yn take values in a measurable space Y.
For all m ≤ n ∈ N, let (Y, T )[m,n] = {(Yl, Tl)}n

l=m be the [m,n] restriction of (Y, T ).
Let τn = Tn − Tn−1.

Let Ψ : X × Y → X be a measurable function with the following meaning: if,
at any time t, network is at state x and then receives an input y, then Ψ(x, y) is
its state after that.

Now fix two integers m ≤ n and denote by (x,m, n, (Y, T )) a network which
starts at time Tm−1 from the state x and receives consequently n −m + 1 inputs
Ym, . . . Yn at times Tm, . . . , Tn respectively. If we denote by Xx

i , i = m, . . . , n the
state of this network after receiving an input Yi, then Xx

m = Ψ(Φ(x, Tm−Tm−1), Ym)
and, by homogeneity, for i = m + 1, . . . , n,

Xx
i = Ψ(Φ(Xx

i−1, Ti − Ti−1), Yi).

Thus,
Xx

i = f(Xx
i−1, Yi, Ti − Ti−1)

where f(x, y, u) = Ψ(Φ(x, u), y). Now let W x
[m,n](Y, T ) be the time of the last

activity in the network (x,m, n, (Y, T )), i.e.

W x
[m,n](Y, T ) = Tn + W (Xx

n) = min{t > Tn : Φ(Xx
n , t− Tn) = 0}.

In what follows, we write W[m,n](T ) instead of W[m,n](Y, T ).
As in [4], we say that the network is monotone separable if the following prop-

erties hold for all T .
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1. (causality): for all m ≤ n,

W x
[m,n](T ) ≥ Tn;

2. (external monotonicity): for all m ≤ n,

W x
[m,n](T ) ≤ W x

[m,n](T
′),

whenever T ′ = {T ′n} is such that Tn ≤ T ′n for all n, a property which we will
write T ≤ T ′ for short;

3. (homogeneity): for all c ∈ R and for all m ≤ n

W x
[m,n](T + c) = W x

[m,n](T ) + c,

where T + c = {Tn + c};
4. (separability): for all m ≤ l < n, if W x

[m,l](T ) ≤ Tl+1 then

W x
[m,n](T ) = W 0

[l+1,n](T ).

Note that, in our description of a network, we have assumed the causality and ho-
mogeneity properties from the beginning. Henceforth, we assume also that external
monotonicity and separability hold.

Definition 3.1. The [m,n] maximal dater is

Zx
[m,n](T ) = W x

[m,n](T )− Tn = W x
[m,n](T − Tn).

For convenience, we denote Zx
[1,0] = W (x).

Further we provide two properties of the maximal dater without proofs (see [4]
for details).
External monotonicity. For all m ≤ n

Zx
[m,n](T ) ≥ Zx

[m,n](T
′), (3.1)

whenever T ′ = {T ′n} is such that τn ≤ τ ′n for all n.
Sub-additive property. For all m ≤ l < n and for all T

Zx
[m,n](T ) ≤ Zx

[m,l](T ) + Z0
[l+1,n](T ).

Independence assumptions. In what follows, we assume that {Yn}, {τn} are
mutually independent sequences of i.i.d. random variables. Then, for any initial
state x, {Xx

i }, i = 0, 1, . . . , forms a time-homogeneous MC.
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Also suppose that
Eτ1 = a < ∞, EZn < ∞,

where Zn = Z0
[n,n] = W (Ψ(0, Yn)).

Denote by Q = {Tn} the degenerate input process with Tn = 0 a.s. for all n.
Then there exists a non-negative constant γ(0) such that

lim
n→∞

EZ0
[1,n](Q)

n
= γ(0). (3.2)

We further suppose that
γ(0) < a. (3.3)

Based on ideas from [5], we construct a single server majorant for the maximal
dater.
The single server majorant. From (3.2) it follows that there exists L > 0 such
that

EZ0
[1,L](Q) < LEτ1. (3.4)

Consider the input process T+ = {T+
k }, where T+

k = TnL for (n−1)L+1 ≤ k ≤ nL
and for all n ∈ N. Then

Zx
[1,nL](T ) ≤ Zx

[1,nL](T
+).

We can slightly modify [5, Lemma 5] to get

Zx
[1,(n+1)L](T

+) ≤ Z0
[nL+1,(n+1)L](T

+) + (Zx
[1,nL](T

+)− τ̃n+1)+, (3.5)

where τ̃n+1 = τnL+1 + . . . + τ(n+1)L.
Introduce now an auxiliary single server queue. This is a GI/GI/1 queue with
service times

σ̃n = Z0
[(n−1)L+1,nL](T

+) ≡ Z0
[(n−1)L+1,nL](Q),

interarrival times
τ̃n = τ(n−1)L+1 + . . . + τnL,

and an arbitrary initial value. Let Rn be the sojourn time for the single server
queue defined above, i.e.

Rn+1 = σ̃n + (Rn − τ̃n)+, (3.6)

with initial value R0 = R = const > 0. The following lemma is a consequence of
(3.5) and (3.6).
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Lemma 3.1. For any initial state x ∈ BR = {x : Zx
[1,0] ≤ R},

Zx
[1,nL](T ) ≤ Zx

[1,nL](T
+) ≤ Rn for all n ≥ 0. (3.7)

Hence Rn provides a uniform upper bound for all maximal daters Zx
[1,nL] such

that Zx
[1,0] ≤ R. The following theorem is the main result of the paper.

Theorem 3.1. Let M ≥ 0. Consider a function g(x) such that g(x) = 0, x ≤ 0,
the function h(x) = g(x)− ln+ x is non-decreasing and concave on [M,∞), h(x) =
o(x) as x → ∞, and eg(x) is convex on [M,∞). Here ln+ x = (lnx+)+, where
y+ = max(0, y). As earlier, let

g̃(x) =





0, if x < 0,
g(M) + ln g′(M), if 0 ≤ x ≤ M,
g(x) + ln g′(x), if x > M.

Suppose that a network satisfies the causality, external monotonicity, homogene-
ity, separability, and independence assumptions. Suppose also that the following
conditions hold:

1. γ(0) < a, where a = Eτ1 < ∞, and γ(0) is defined in (3.2);

2. there exists c > 1/(a− γ(0)) such that

Eeg(cZ1) < ∞ (or, respectively, EeαZ1 < ∞ for some α > 0);

3. for any R > 0, there exist l ≥ 1 and an event A ∈ σ((Y1, τ1), . . . , (Yl, τl)) of
positive probability such that , for any x ∈ BR,

Xx
l I(A) = G((Y1, τ1), . . . , (Yl, τl))I(A) a.s.,

where G does not depend on x. Here (Yn, τn) is a driving sequence for Xx
n.

Then there exists a probability measure π such that, for any x ∈ X ,

eeg(n)‖P(Xx
n ∈ ·)− π(·)‖ → 0 as n →∞ (3.8)

(
or, respectively, eβn‖P(Xx

n ∈ ·)− π(·)‖ → 0 as n →∞, for some β > 0
)

.

(3.9)

Corollary 3.1. Let now the initial value x be an independent random variable. If,
in addition to conditions of Theorem 3.1, Eeeg(x) < ∞ (or Eeαx < ∞), then (3.8)
(or, respectively, (3.9)) holds.
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Remark 2. 1. The function g̃ is non-decreasing on [M,∞) if and only if eg(x)

is convex on [M,∞). Indeed,

(eg(x))′ = eg(x)g′(x) = eeg(x).

2. The function g̃ is subadditive. Indeed, from Lemma A.3, it follows that, for
x, y ≥ M , g̃(x + y) ≤ g̃(x) + g̃(y).
For x ≥ M , 0 < y ≤ M , since g̃(z) = 0 for z < 0,

g̃(x + y) ≤ g̃(x + M) ≤ g̃(x) + g̃(M) = g̃(x) + g̃(y).

For x, y ∈ (0,M),

g̃(x + y) ≤ g̃(2M) ≤ g̃(M) + g̃(M) = g̃(x) + g̃(y).

Hence g̃(x+y) ≤ g̃(x)+ g̃(y) for all x, y ≥ 0. Since g̃(x) is non-decreasing for x ≥ 0
and g̃(x) = 0 for x < 0, it follows that g̃(x + y) ≤ g̃(x) + g̃(y) for all x, y.

Proof of Theorem 3.1. First we show that the conditions of Theorem 2.1 hold.
Take L0 > 0 such that (3.4) holds for all L ≥ L0. From (3.4) and (3.7), there exists
R0 > 0 such that BR is positive recurrent for all R ≥ R0, i.e. Conditions 1 and 2 of
Theorem 2.1 hold. By Remark 1 Condition 3 of Theorem 3.1 implies Condition 3
of Theorem 2.1. The MC {Xx

n} is aperiodic, since P(Zx
[1,L](T ) ≤ R) > 0 for all

L ≥ L0 and x ∈ BR.
Fix some x ∈ X . Take R ≥ Zx

[1,0]. From (3.7),

τ(x,BR) ≤ Lmin{n ≥ 1 : Rn ≤ R} a.s. (3.10)
From the property (3.1), we can assume (w.l.o.g.) that the interarrival times are
bounded from above, i.e. that there exists K > 0 such that τn ≤ K for all n. Hence
from (3.6) it follows that, for any R ≥ LK,

Rn+1 = Rn + ξ̃n+1, for all n < min{k ≥ 1 : Rk ≤ R},

where ξ̃n = Z[(n−1)L+1,nL](Q) − τ̃n. Put Sn = Rn − R. Then S0 = 0, and Sn+1 =
Sn + ξ̃n+1 for all n < min{k ≥ 1 : Sk ≤ 0}. Moreover, from (3.10),

τ(x,BR) ≤ Lmin{n ≥ 1 : Sn ≤ 0}.

From Lemma A.1, applied to the function g(Lx), it follows that, if Ee
g(cZ0

[1,L]
(Q))

<
∞ for some c > L/(La−EZ0

[1,L](Q)), then Eeg(τ(x,BR)) < ∞.
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From Kingman's ergodic theorem,

γ(0) = lim
L→∞

EZ0
[1,L](Q)

L
= inf

L>0

EZ0
[1,L](Q)

L
.

Hence for any c > 1/(a− γ(0)) there exists L > 0 such that (3.4) holds and

c >
L

La−EZ0
[1,L](Q)

≥ 1
a− γ(0)

> 0. (3.11)

Since Z0
[1,L](Q) ≤ Z1 + . . . + ZL, where Zn = Z0

[n,n] are i.i.d. random variables,
Eeg(τ(x,BR)) < ∞ for all x ∈ X .
One can apply Lemma A.2 to get the corresponding result in the exponential case.

Thus, the conditions of Theorem 2.2 and Theorem 2.3 hold, and the result
follows.

In the following two sections we consider two classes of monotone separable
networks: generalized Jackson networks and multiserver queues.

4 Generalized Jackson networks
Consider an open network with r single server stations. Let T0 = 0. Customers

arrive at times T1, . . . , Tn, where τi = Ti − Ti−1 are i.i.d. non-negative random
variables with a finite positive mean Eτ1 = a. Upon arrival, a customer is directed
to station i with probability p0,i, where

r∑
i=1

p0,i = 1. At each station, customers
are served in FCFS order. Upon service completion at station i, a customer joins
the queue at station j with probability pi,j and leaves the network with probability
pi,r+1, where

r+1∑
j=1

pi,j = 1. The service times at station i are i.i.d. with a finite mean

bi, and are independent for different i. We suppose that any customer eventually
leaves the network. Such networks are known as generalized Jackson networks.
Let πi be the mean number of visits to station i by a customer. We assume the
network to be stable, i.e. b = max

1≤i≤r
biπi < a (see [17] for details).

In this Section, we apply Theorem 3.1 to find conditions for convergence rates to
the stationary regime for various characteristics of a generalized Jackson network.

In the proofs, we use results from the previous Section and also coupling argu-
ments. For the latter, we need a special sample-path construction of the network
which preserves certain monotonicity properties.

Thus, we assume that service times and routing decisions are associated with
stations but not with customers. At time 0, there are q0 = (q1

0, . . . , q
r
0) customers
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already at the stations, and χi
0 is the residual service time of the first customer

at station i (if any, otherwise χi
0 = 0). Further, with any station i, we associate

two mutually independent sequences {σ(i)
n }n≥1 and {v(i)

n }n≥1. Here the σ's are the
service times and the v's are the routing decisions. For each i we assume {v(i)

n }n≥1

to be i.i.d. with P(v(i)
n = j) = pi,j . With regard to the sequence {σ(i)

n }n≥1, we
assume that (a) if qi

0 = 0, then {σ(i)
n }n≥1 are i.i.d. with mean bi; (b) if qi

0 > 0, then
σ

(i)
1 = χi

0 and {σ(i)
n }n≥2 are i.i.d. with mean bi. With the exogeneous input, we

associate an i.i.d. sequence of input routing decisions: P(v(0)
n = i) = p0,i.

The initial |q0| = q1
0 + . . .+ qr

0 customers are numbered −|q0|+1, . . . , 0, and the
exogeneous customers are numbered 1, 2, . . .. The nth customer (n ≥ 1) is directed
(upon its arrival) to the station v

(0)
n and joins the queue there.

At any station i, the duration of the jth service is σ
(i)
j . After the service

completion the customer is directed to station v
(i)
j and joins the queue there (or

leaves the network if v
(i)
j = r + 1).

Now we introduce an SRS

Xx
n+1 = f(Xx

n , Yn+1), n ≥ 0 (see previous section).

First, let us give the description of the initial value x. Consider first the case where
there is no exogeneous input.
If q0 = (0, . . . , 0), then x = 0.
If |q0| > 0, then, for any i = 1, . . . , r and j = 1, . . . , r + 1, let Γi,j

0 (t) be the
number of transitions of customers from i to j in the time interval (t,∞). Let
Γi,j

0 = {Γi,j
0 (t), t ≥ 0}. Then

x = {Γi,j
0 , 1 ≤ i ≤ r; 1 ≤ j ≤ r + 1},

Φ(x, u) = {θuΓi,j
0 , 1 ≤ i ≤ r; 1 ≤ j ≤ r + 1},

where θuΓi,j
0 = {θuΓi,j

0 (t), t ≥ 0} and θuΓi,j
0 (t) = Γi,j

0 (t + u). We endow the state
space with the Skorohod topology (see, e.g. [6]).

Finally Zx
[1,0] = maxi,j min{t : Γi,j

0 (t) = 0}. Thus x is a random element.

Let di(0) =
r+1∑
j=1

Γi,j
0 (0) for 1 ≤ i ≤ r, d0(0) = 0. Let σ(0) = {{σi

k(0)}di(0)
k=1 , i =

1, . . . , r} and let v(0) = {{vi
k(0)}di(0)

k=1 , i = 1, . . . , r}, where σi
k(0) = σ

(i)
k and vi

k(0) =
v

(i)
k for all 1 ≤ k ≤ di(0), 1 ≤ i ≤ r.

To define the recursion, we will need some other definitions. Consider an open
generalized Jackson network with r stations which is initially empty and which

12



is fed by one customer arriving at time T1. With any station i, we associate two
mutually independent i.i.d. sequences of service times σ

(i)
di(0)+j

and routing decisions
v

(i)

di(0)+j
for j ≥ 1, 1 ≤ i ≤ r. The random variable v

(0)
1 is the first routing decision

for the customer (upon its arrival).
Let di(1) be the number of departures from the station i in this network.

Then d0(1) = 1. We assume that maxi d
i(1) < ∞ a.s., that is, the customer

eventually leaves the network. Let σ(1) = {{σi
k(1)}di(1)

k=1 , i = 1, . . . , r} and
v(1) = {{vi

k(1)}di(1)
k=1 , i = 0, . . . , r}, where σi

k(1) = σ
(i)
di(0)+k

, vi
k(1) = v

(i)
di(0)+k

for
1 ≤ k ≤ di(1), 1 ≤ i ≤ r, and v0(1) = v0

1 = v0
d0(0)+1. We call this network Σ1.

In a similar way one can define networks Σn which are initially empty, fed by
one customer arrived at time Tn, with service times σ(n) and routing decisions
v(n), where σi

k(n) = σ
(i)

di(0)+...+di(n−1)+k
and vi

k(n) = v
(i)

di(0)+...+di(n−1)+k
for k =

1, . . . , di(n).
We thus obtain a sequence of independent random variables {(σ(n), v(n))}n≥0

such that (σ(n), v(n)) are identically distributed for n ≥ 1.
For a network with input process T and initial state x at time Tm−1, which

is fed by customers m, . . . , n at times Tm, . . . , Tn, let Γi,j
[m,n](T, t, x) be the num-

ber of transitions of customers from i to j in the time interval (Tn + t,∞). Let
Γ[m,n](T, x) = {Γi,j

[m,n](T, t, x), 1 ≤ i ≤ r, 1 ≤ j ≤ r + 1; t ≥ 0}. Then

Γ[m,n+1](T, x) = Ψ(Φ(Γ[m,n](T, x), τn+1), ξn+1),

where ξn = (σ(n), v(n)). For the definition of Ψ we refer the reader to Appendix B.
If the Γ-processes are known, we are able to define service times, routing deci-

sions, moments of customers arrivals at stations and moments of their departures,
queue lengthes, etc. Hence, we can conclude that any generalized Jackson network
with input point process T can be described by stochastic recursive sequence

Xx
[1,n+1](T ) = f(Xx

[1,n](T ), Yn+1), Xx
[1,0](T ) = x, (4.1)

where Xx
[m,n](T ) = {Γi,j

[m,n](T, t, x), 1 ≤ i ≤ r, 1 ≤ j ≤ r + 1, t ≥ 0} and Yn =
(τn, σ(n), v(n)).

In particular, the maximal dater Zx
[1,n](T ) for the network is

Zx
[1,n](T ) = max

1≤i≤r
inf{t ≥ 0 : Γi

[1,n](T, t, x) = 0},

where Γi
[1,n](T, t, x) =

r+1∑
j=1

Γi,j
[1,n](T, t, x) is the number of departures from station i

after time Tn + t.

13



As was shown in [16, 3], the sequence Xx
[1,n](T ) is monotone in T and in x, and

Zx
[1,n](T ) satisfies the properties of monotone separable networks.
To check Condition 3 of Theorem 3.1 we introduce the class of feed-forward

generalized Jackson networks.

Definition 4.1. A generalized Jackson network is feed-forward if there exists
a renumbering of the nodes of the network such that the transition matrix {pk,l}
satisfies

pk,l = 0 for all 0 ≤ l ≤ k ≤ r + 1.

In other words, there are no loops in a feed-forward network.

Consider a discrete-time Markov chain {V (m),m ≥ 0}, with state space
{0, . . . , r + 1}, initial value V (0) = 0 and transition matrix {pk,l}. Let

µk = ]{m ≥ 1 : V (m) = k} and πk = Eµk.

Lemma 4.1. There exists a matrix {p̃k,l} and a renumbering of states such that

1. p̃k,l = 0 for all 0 ≤ l ≤ k ≤ r + 1;

2. for all k, l if p̃k,l > 0 then pk,l > 0;

3. if Ṽ (m) is a Markov chain with initial value Ṽ (0) = 0 and with transition
probabilities {p̃k,l}, then π̃k ≤ πk for all k ∈ {1, . . . , r}.

Lemma 4.1 implies that, for any stable generalized Jackson network, one can
obtain a stable feed-forward network by denying some transitions admissible for
the original network, and by renumbering nodes. For the proof of Lemma 4.1 see
Appendix C.

If a generalized Jackson network is given by (4.1), then we define the corre-
sponding feed-forward network by

X̃x
[1,n+1](T ) = f(X̃x

[1,n](T ), Ỹn+1), X̃x
[1,0](T ) = x, (4.2)

where
Ỹn = (τn, σ̃(n), ṽ(n)),

and {ṽ(n)} is a corresponding sequence of routing decisions. Note that d̃i(n) ≤ 1
for all i ∈ {0, . . . , r + 1} and n ∈ N. If d̃i(n) = 1 then σ̃i

1(n) = σi
1(n).

In the following remark we construct a coupling of the original network and the
corresponding feed-forward one.

14



Remark 3. Let

si = max
j : epi,j>0

p̃i,j

pi,j
≥ 1, s = max

0≤i≤r
si ≥ 1.

Consider a sequence of routing decisions v̂(n), where

P(v̂i
k(n) = j) =

pi,j − p̃i,j/s

1− 1/s
,

and sequence of service times σ̂(n) = {{σ̂i
k(n), 1 ≤ k ≤ d̂i(n)}, 1 ≤ i ≤ r}, where

σ̂i
k(n) are independent and have the same distribution as the service time at station

i in original network. Note that d̂i(n) are known, if we know v̂(n). We can also
assume that {σ̂(k), v̂(k)} and {σ̃(k), ṽ(k)} are independent.

Consider a sequence of i.i.d. random variables {αn} such that

P(αn = 1) = 1−P(αn = 0) = 1/s,

and the αn are independent of {σ̃(k), ṽ(k)} and {σ̂(k), v̂(k)}.
Let

(σ(n), v(n)) =
{

(σ̃(n), ṽ(n)), if αn = 1,
(σ̂(n), v̂(n)), if αn = 0.

Then (σ(n), v(n)) have the same distributions as corresponding characteristics of
the original network.

Hereafter, we assume that the original and the corresponding feed-forward net-
works are defined according to the coupling above.

For any M > 0, let nM be such that

TnM ≥ M.

For any n ≥ 0, let

xn = X0
[1,n](Q + Tn) and x̃n = X̃0

[1,n](Q + Tn).

In particular, x0 = x̃0 = 0, where 0k,l(t) = 0 for all k, l and t.
Let

ζ̃(n) = min{m ≥ n + 1 : X̃exn

[n+1,k](T ) = X̃0
[n+1,k](T ) for all k ≥ m}.

From [17, Theorem 6] it follows that ζ̃(n) < ∞ a.s. for any n ∈ N.
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For K1,K2 > 0 consider the event

C = {nM = K1} ∩ {ζ̃(K1) ≤ K1 + K2} ∩
K1+K2⋂

m=1

{σ(m) = σ̃(m), v(m) = ṽ(m)}.

Note that there exist K1,K2 > 0 such that P(C) > 0. Indeed, from the coupling
construction,

P(C) ≥ P(nM = K1)P(ζ̃(K1) ≤ K1+K2)P(αm = 1, for all m ∈ [1,K1+K2]) > 0.

The following lemma shows that Condition 3 of Theorem 3.1 holds for general-
ized Jackson networks.

Lemma 4.2. There exist K1,K2 > 0 such that P(nM = K1) > 0, P(ζ̃(K1) ≤
K1 + K2) > 0, and the event A = {Zx

[1,0](T ) ≤ M} ∩ C satisfies Condition 3 of
Theorem 3.1, i.e.

Xx
[1,K1+K2](T )I(A) = G(Y1, . . . , YK1+K2)I(A), (4.3)

where G does not depend on x, and P(A) > 0.

Proof of Lemma 4.2. It is sufficient to prove only (4.3). Consider an initial
state x such that

Zx
[1,0](T ) ≤ M. (4.4)

We show that

Xx
[1,K1+K2](T )I(C) = G(Y1, . . . , YK1+K2)I(C),

for some function G which does not depend on x.
Consider the point process T̃ = {T̃n}, where

T̃n =
{

TK1 , if 1 ≤ n ≤ K1;
Tn, otherwise.

Note that T ≤ T̃ . Hence

Xx
[1,n](T ) ≤ Xx

[1,n](T̃ ), for all n ∈ N.

From (4.4),
Xx

[1,n](T̃ ) = X0
[1,n](T̃ ) on C for all n ∈ N.

From the monotonicity properties of Xx
[1,n](T ),

X0
[K1+1,n](T ) ≤ X0

[1,n](T ) ≤ Xx
[1,n](T ) ≤ Xx

[1,n](T̃ ) = X0
[1,n](T̃ ) = X

xK1

[K1+1,n](T )
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on C. Let

ζ(n) = min{m ≥ n + 1 : Xxn

[n+1,k](T ) = X0
[n+1,k](T ) for all k ≥ m}.

Since ζ(K1)I(C) = ζ̃(K1)I(C), the result follows.

Remark 4. Let b = max
1≤i≤r

πibi. From [3] it follows that γ(0) = b.

Remark 5. Note that Z1 =
r∑

k=1

dk(1)∑
i=1

σk
i (1). Moreover, Eeg(Z1) < ∞, provided

that max
1≤k≤r

Eeg(σk
1 (1)) < ∞. Indeed, let d = max

1≤k≤r
dk(1); then there exists δ > 0

such that P(d ≥ n) ≤ (1 − δ)n, and d is independent of σk
i (1) for all 1 ≤ k ≤ r

and i ≥ 1. Let ηi =
r∑

k=1

σk
i (1). Then ηi are i.i.d. and Eeg(η1) < ∞, provided that

max
1≤k≤r

Eeg(σk
1 (1)) < ∞. It follows from Lemma A.5 that Eeg(Z1) < ∞. Similarly, if

max
1≤k≤r

Eeeασk
1 (1) < ∞ for some α̃ > 0, then EeαZ1 < ∞ for some α > 0.

We summarize the results of the section in the following theorem.

Theorem 4.1. Let the function g satisfy the conditions of Theorem 3.1. If b < a
and max

1≤k≤r
Eeg(cσk

1 (1)) < ∞ for some c > 1/(a−b) (or, respectively, max
1≤k≤r

Eeασk
1 (1) <

∞ for some α > 0) then there exists a probability measure π such that, for any
initial state x with fixed queue lengths and residual service times at stations,

eeg(n)‖P(Xx
[1,n](T ) ∈ ·)− π(·)‖ → 0 as n →∞

(
or, respectively, eβn‖P(Xx

[1,n](T ) ∈ ·)− π(·)‖ → 0 as n →∞, for some β > 0
)

,

where the Markov chain Xx
[1,n](T ) is defined in (4.1).

Remark 6. Since Xx
[1,n](T ) describes the behavior of the network, the results

on convergence rates of a number of natural characteristics of network (e.g., queue
length distributions, waiting and sojourn time distributions, etc.) to the corre-
sponding stationary ones follow immediately from Theorem 4.1.
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5 GI/GI/m queues
A multiserver queueing system is another example of a monotone separable

network. We consider a multiserver queue GI/GI/m with i.i.d. service times
{σn} and i.i.d. interarrival times {τn}. We assume that the stability condition
Eσ1 < Eτ1 holds. Let

W x
n = (W x

n,1, . . . ,W
x
n,m)

denote the total workload at the n-th arrival time, where {W x
n,i} are the workloads

of the servers, arranged in non-decreasing order, and where x is the initial state of
the system, i.e.

W x
n+1 = R(W x

n + σne1 − τni)+, W x
0 = x (5.1)

for n ≥ 0, where e1 = (1, 0, . . . , 0) and i = (1, . . . , 1) are m-dimensional vectors and
the operator R sorts the components of a vector into non-decreasing order. Then

Zx
[1,n] = max(W x

n,1 + σn+1, W x
n,m).

Definition 5.1. For two m-dimensional vectors x = (x1, . . . , xm) and y =
(y1, . . . , ym), we write x ≤ (≥)y if xj ≤ (≥)yj for all j ∈ {1, . . . , m}.

Let k ∈ {1, 2, . . . , m} be such that

(k − 1)Eτ1 ≤ Eσ1 < kEτ1. (5.2)

Let b = Eσ1, a = Eτ1. Fix M > 0. Consider the event

C = {σ1 ≤ b, . . . , σn0 ≤ b, τ1 ≥ a, . . . , τn0+k−1 ≥ a}. (5.3)

where
n0 =

([
M

ma− b

]
+ 1

)
m. (5.4)

Note that
p = P(C) = P(σ1 ≤ b)n0P(τ1 ≥ a)n0+k−1 > 0. (5.5)

The following lemma shows that W x
n satisfies Condition 3 of Theorem 3.1.

Lemma 5.1. Let A = {Zx
[1,n] ≤ M} ∩ C. Then

W x
n0+k−1 =

(
0, . . . , 0,R(σn0+1 − τn0+1 − . . .− τn0+k−1, . . . , σn0+k−1 − τn0+k−1)+

)

on A, where k is defined in (5.2) and n0 is defined in (5.4).
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Proof. Consider the process W̃n: W̃0 = (M − b, . . . , M),

σ̃n = b, τ̃n = a for n ≤ n0,

σ̃n = σn, τ̃n = τn otherwise.

Then Z̃[1,0] = M and
W x

[1,n] ≤ W̃n on A. (5.6)

Note that the service discipline of the process W̃n is cyclic until the n0-th arrival.
Hence the n0-th customer (where n0 is defined in (5.4)) faces the system with (k−1)
busy stations such that

W̃n0 ≤ (0, . . . , 0, a, . . . , (k − 1)a) on C, (5.7)

because of the choice of k in (5.2). Since (5.6) and (5.7),

W x
n0
≤ (0, . . . , 0, a, . . . , (k − 1)a) on A. (5.8)

The following inequalities hold

τn0+1 ≥ a, . . . , τn0+k−1 ≥ a on A. (5.9)

Hence the result of the lemma follows from (5.8) and (5.9).

Remark 7. 1. From [4] it follows that γ(0) = Eσ1/m = b/m.

2. It is clear that Z1 = σ1.

To summarize the results of the section, we provide the following theorem.

Theorem 5.1. Let the function g satisfy the conditions of Theorem 3.1. If b < ma
and Eeg(cσ1) < ∞ for some c > 1/(a− b/m) (or, respectively, Eeασ1 < ∞ for some
α > 0) then there exists a probability measure π such that, for any initial workload
x,

eeg(n)‖P(W x
n ∈ ·)− π(·)‖ → 0 as n →∞

(
or, respectively, eβn‖P(W x

n ∈ ·)− π(·)‖ → 0 as n →∞, for some β > 0
)

.
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Appendix A: Some results for random walks

Consider a random walk Sn =
n∑

i=1
ξi, S0 = 0, where {ξn} is a sequence of i.i.d.

random variables such that ξn ≥ −N a.s. for some N > 0, Eξ1 = −a < 0. Let
τ(X) = min{n > 0 : X + Sn ≤ 0}, where X ≥ 0.

Let M ≥ 0. We consider functions g(x) such that g(x) = 0, x ≤ 0 and the
function h(x) = g(x)− ln+ x is non-decreasing and concave on [M,∞), and h(x) =
o(x) as x →∞. Here ln+ x = (lnx+)+, where y+ = max(0, y). Let g̃(x) be defined
as in (2.1).

The following lemma is Theorem 2.2 from [18].

Lemma A.1. If Eeg(cξ+) < ∞ for some c > 1/a, where a = −Eξ1, then
Eeg(τ(X)) < ∞.

The following lemma is a well known result from the theory of random walks
(see, e.g. [18] for a proof and also the references therein).

Lemma A.2. Suppose that Eeαξ1 < ∞ for some α > 0. Let θ > 0 be such that
e−θ = inf

α>0
Eeαξ1 . Then Eeθτ(X) < ∞.

Lemma A.3. For all x, y ≥ M ,

g̃(x + y) ≤ g̃(x) + g̃(y).

Proof of Lemma A.3 requires the following lemma.

Lemma A.4. Let function f be such that f(x)/x is non-increasing for x ≥ M .
Then, for all x, y ≥ M ,

f(x + y) ≤ f(x) + f(y).

Proof of Lemma A.4.

f(x) + f(y) =
f(x)

x
x +

f(y)
y

y ≥ f(x + y)
x + y

x +
f(x + y)

x + y
y = f(x + y).

Proof of Lemma A.3. Note that g̃(x) = h(x) + ln(1 + xh′(x)). Let ĥ(x) =
xh′(x). Since h(x) is concave on [M,∞), ĥ(x)/x is decreasing on [M,∞). From
Lemma A.4 it follows that ĥ(x + y) ≤ ĥ(x) + ĥ(y) for all x, y ≥ M . Hence

g̃(x + y) = h(x + y) + ln(1 + ĥ(x + y)) ≤ h(x) + h(y) + ln(1 + ĥ(x) + ĥ(y))

≤
(
h(x) + ln(1 + ĥ(x))

)
+

(
h(y) + ln(1 + ĥ(y))

)
= g̃(x) + g̃(y).

20



Lemma A.5. Let G be any subadditive function such that G(x) = 0 for x ≤ 0, and
G(x) = o(x) as x →∞. Let {ηn} be a sequence of i.i.d. random variables on R+,
let µ be a random variable which is independent of ηn and such that P(µ = k) =
p(1− p)k for some p ∈ (0, 1). Then

EeG(η1) < ∞ iff Ee
G(

µP
i=1

ηi)
< ∞.

Proof. The 'if'-statement is obvious. To prove the 'only if'-statement consider

Ee
G(

νP
i=1

ηi)
=

p

1− p

∞∑

n=1

Ee
G(

nP
i=1

ηi)
(1− p)n.

Let Xn =
n∑

i=1
ηi and let q = ln 1

1−p > 0. Then

Ee
G(

nP
i=1

ηi)
(1− p)n = EeG(Xn)−qn = EeG(Xn)− 2

3
qne−

1
3
qn.

Hence it is sufficient to show that

sup
n

EeG(Xn)− 2
3
qn < ∞.

Note that there exists K > 0 such that

EeG(η1−K) ≤ e
1
3
q.

Since G(x) = o(x) as x → ∞, there exists x̃ > 0 such that G(Kx) ≤ qx/3 for all
x ≥ x̃. Take n ≥ x̃. Then

EeG(Xn)− 2
3
qn ≤ EeG(Xn)−g(Kn)− 1

3
qn ≤ EeG(Xn−Kn)− 1

3
qn

≤ Ee

nP
i=1

G(ηi−K)− 1
3
qn

=
(
EeG(η1−K)

)n
e−

1
3
qn ≤ 1.

Finally, note that Ee
G(

nP
i=1

ηi) ≤ (
EeG(η1)

)n
< ∞ for all n, which completes the

proof.

Appendix B: Construction of Ψ(y, ξ1)

Let y = {Γi,j(t), 1 ≤ i ≤ r, 1 ≤ j ≤ r + 1, t ≥ 0}, where Γi,j : [0,∞) →
Z+ are right-continuous non-increasing step functions such that maxi,j inf{t ≥
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0 : Γi,j(t) = 0} is finite, and let ξ1 = (σ(1), v(1)), where σ(1) = {σi
k(1), 1 ≤

k ≤ di(1), 1 ≤ i ≤ r}, v(1) = {vi
k(1), 1 ≤ k ≤ di(1), 1 ≤ i ≤ r}. To define the

function Ψ(y, ξ1) we will need two constructions from [3].
Construction of the network given y.
We will use the following notation:

Γi(t) =
r+1∑

j=1

Γi,j(t), qi(t) = Γi(t)−
r∑

j=1

Γj,i(t), 1 ≤ i ≤ r, t ≥ 0.

We also define moments of the jumps of Γi,j : for i = 1, . . . , r, j = 1, . . . , r + 1,

Di,j
k = inf{t ≥ 0 : Γi,j(t) < Γi,j(0)− k + 1}, Di,j = {Di,j

k , 1 ≤ k ≤ Γi,j(0)}.

Hereafter, m ≤ k ≤ n or k = m, . . . , n means the empty set of possible values of k,
if n < m.

The main difficulty in the construction of the sequence of service times and
routing decisions given y comes from the possibility of simultaneous departures
from a station (in the case of zero-valued service times at this station). For t > 0,
let

N(t) = {(i, j, k) : Di,j
k = t}, J(t) = ]N(t).

For t > 0, we take an arbitrary numbering {(is, js, ks), 1 ≤ s ≤ J(t)} of the
elements of N(t) satisfying the following constraints: if is1 = is2 and s1 < s2, then
ks1 < ks2 . For such a numbering, let {qi

s(t), i = 1, . . . , r, s = 0, . . . , J(t)} be the
sequence defined by: qi

0(t) = qi(t−),

qi
s(t) = qi

s−1(t) + I(js = i)− I(is = i), for s = 1, . . . , J(t).

Note that qi
J(t)(t) = qi(t) for all i; in particular, if J(t) = 0, then qi is continuous

at t for all i.
We will assume that y satisfies the following
Assumption 1: qi(t) ≥ 0 for all i = 1, . . . , r and t ≥ 0,

and
Assumption 2: for each t > 0, there exists a numbering of the elements of N(t)

satisfying the above constraints and such that qi
s−1(t) ≥ I(is = i) for all i = 1, . . . , r,

s = 1, . . . , J(t). This assumption trivially holds for t > 0 such that J(t) = 0, and
it follows from assumption 1 for t > 0 such that J(t) = 1.

Since the assumptions above hold for Γ-processes associated with networks (that
count the number of transitions from some station to another), and we are only
interested in such processes, it is not a restriction to assume that y satisfies As-
sumptions 1 and 2. In particular, we assume that, for any t, the chosen numbering
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of N(t) is such that Assumption 2 holds.
For 1 ≤ i ≤ r and t > 0, let

ni(t) = Γi(0)− Γi(t−),
a(t) = sup{0 ≤ u < t : Γi(u) < Γi(u−)},
b(t) = sup{0 ≤ u < t : qi(u) = 0}

(here a(t) = 0 and b(t) = 0 if these sets are empty).
To construct a network with Γ-processes y at time t̂ (i.e. Γi,j(t) is a number
of departures from i to j on the time interval (t̂ + t,∞)), we consider an open
generalized Jackson network with no exogeneous input such that, at time t̂, there
are qi(0) customers at station i, i = 1, . . . , r. At time t̂, with each station i we
associate sequences of service times σi

k and routing decisions νi
k for k = 1, . . . , Γi(0)

such that
if, for some t > 0 and i = 1, . . . , r, there is a jump n = Γi(t−)− Γi(t) > 0 and the
numbers j1, . . . , jn are such that

Di,j1
ni(t)+1 = t, . . . ,Di,jn

ni(t)+n = t

(note that we assume that the chosen numbering of N(t) is such that Assumption 2
is satisfied), then

σi
ni(t)+1 = t−max(a(t), b(t)), σi

ni(t)+k = 0 for k = 2, . . . , n

and
vi
ni(t)+k = jk for k = 1, . . . , n.

By this construction we associate a family of networks (depending of a chosen
numbering) with y. All these networks are equivalent in that the sequences of
service times and routing decisions associated with any given station coinside for
all the networks. For our further purposes we can choose any network from this
family.
Composition of networks.
Let Σ be an open generalized Jackson network with no exogeneous input. At time
t̂ ≥ 0, with any station i we associate sequences of service times {σ(i)

j }, routing
decisions {v(i)

j }, and a queue length q(i). Let di be a total number of departures
from i after time t̂. We assume that maxi d

i < ∞. Let Σ̃ be an initially empty open
generalized Jackson network fed by one customer with arrival time t̂. With each
station i we associate sequences of service times σ̃

(i)
j and routing decisions ṽ

(i)
j . Let

d̃i be the corresponding total number of departures from i and assume maxi d̃
i < ∞.
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The composition of Σ and Σ̃ at time t̂ is the open generalized Jackson network Σ̂
with no exogeneous input defined by the following relations: at time t̂, the queue
length at station i is q̂(i) = q(i) + I(ν̃(0)

1 = i), the number of departures from i

after time t̂ is d̂i = di + d̃i, and the sequence of service times and routing decisions
associated with station i at time t̂ is

(σ̂(i)
k , v̂

(i)
k ) =

{
(σ(i)

k , v
(i)
k ), if 1 ≤ k ≤ di,

(σ̃(i)
k , ṽ

(i)
k ), if di + 1 ≤ k ≤ d̂i.

We do not need to define (σ̂(i)
k , v̂

(i)
k ) for all k, since there are no customers served

at station i after the d̂i-th departure.
We define Ψ(y, ξ1) according to the following algorithm.

1. At time T1 construct the network Σ from y;
2. Construct the composition of the networks Σ and Σ1 at time T1 (see Section 4
for the definition of Σ1);
3. Define Γ-processes Γi,j

1 (t) for the new network as the number of departures from
i to j in the time interval (T1 + t,∞). Then Ψ(y, ξ1) = {Γi,j

1 (t), 1 ≤ i ≤ r, 1 ≤
j ≤ r + 1, t ≥ 0}. Note that Ψ does not depend on T1 and we can replace T1 with
any t̂ ≥ 0 in the procedure above if we let a customer in the network Σ1 arrive at
time t̂. For further details on the pathwise construction of Jackson-type queueing
networks under stationary and ergodic assumptions on the driving sequences we
refer the reader to [3].

Appendix C: Proof of Lemma 4.1
Step 1. Let πi,j = πipi,j be the mean number of transitions from i to j. Then

r+1∑

i=1

π0,i =
r∑

i=0

πi,r+1 = 1, (C.1)

r∑

i=0

πi,j =
r+1∑

i=1

πj,i = πj for all j 6= 0, r + 1. (C.2)

Note that we can study a deterministic network with source 0, sink r+1, and flows
πi,j from i to j, 0 ≤ i, j ≤ r + 1 instead of an MC. It is sufficient to find a network
with flows {π̃i,j} and a renumbering of nodes (states) such that (B.1) and (B.2)
hold and

1. π̃i,j = 0 for all 0 ≤ j ≤ i ≤ r + 1;
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2. for all i, j, if π̃i,j > 0 then πi,j > 0;

3. π̃i =
r+1∑
j=1

π̃i,j ≤ πi for all i.

Indeed, assume we find such flows. Introduce a Markov chain {Ṽ (m)} with tran-
sition probabilities

p̃i,j =
π̃i,j

π̃i
.

(For i such that π̃i = 0, we define transition probabilities from i arbitrarily to
satisfy the conditions of lemma.)
For this chain, π̃i is the mean number of visits of i, 0 ≤ i ≤ r + 1. It is clear, that
this new MC satisfies the conditions of Lemma 4.1.
Step 2. Assume that the network with flows {πi,j} contains a cycle, say C, i.e.
there exists a sequence of nodes k0, k1, . . . , ks such that k0 = ks, all k0, . . . , ks−1 are
different, and πkt,kt+1 > 0 for t = 0, 1, . . . , s− 1.

We write {k → l} ∈ C if (k, l) = (kt, kt+1) for some t. Let

πC = min
{k→l}∈C

πk,l

and let
π̂k,l =

{
πk,l − πC , for all {k → l} ∈ C,
πk,l, otherwise;

In particular, π̂i = πi − πC if i = kt for some t, and π̂i = πi otherwise. Note
that (C.1) and (C.2) still hold for {π̂i,j}, and that at least one of π̂k,l = 0 for some
{k → l} ∈ C.
Thus, we have found a family of flows with a smaller number of cycles than that
in the original one, and such that π̂i ≤ πi for all i.
Step 3. Repeat the procedure from step 2 until the last cycle disappears (note that
the number of cycles is finite). Let {π̃i,j} be the final family of flows. Then π̃i ≤ πi

for all i, and the result follows.
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