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1. Introduction and notation. Consider a sequence ��tn��n�� of random vectors with
nonnegative coordinates which are i.i.d. in n, but any dependence between the components
is allowed. Put a = Et1 − E�1. Assume that a > 0. Let �n = �n − tn, Sn =

∑n
i=1 �i, and

� =min�n≥ 1 � Sn ≤ 0� <� a.s. be the first passage time to the nonpositive half-line. Here
E�1 =−a < 0. Let B =∑�

i=1 �i.
In what follows, we investigate conditions for the finiteness of the moments E exp�g�B��

and E exp�g����, where the function g is taken from a rather wide class which includes the
logarithmic (g�x� = � logx, � ≥ 1), the linear functions (g�x� = cx, c > 0), and functions
between the logarithmic and linear (e.g., g�x�= x�, � ∈ �0�1� and g�x�= �logx�� , � > 1).
The main motivation for our studies follows from queueing theory, where the random

variables � and B have simple interpretations and appear in various queueing problems.
Indeed, consider a single-server queue with inter-arrival times �tn� and service times ��n�.
Since a > 0, the queue is stable. Suppose that customer 1 arrives at the empty system at
time instant 0. Then B is the (first) busy period of the system (in continuous time) and � is
the number of customers that are served within that busy period. Consider the discrete time
imbedded Markov chain �Wn�n≥1 where Wn represents the waiting time of customer n. Then
� = min�n ≥ 2 � Wn = 0�− 1 may be viewed as the “busy period in discrete time” (busy
cycle). Not only are � and B interesting on their own, but there are plenty of examples of
the use of � and B as estimates for other quantities in the queueing theory.
Note that our results are related to the recent studies of the tail asymptotics for the

busy period distribution in the single-server queue with heavy tails (see, e.g., Borovkov
2000, Jelenkovic et al. 2002, Zwart 2001). Indeed, knowledge of the asymptotics of the tail
distribution gives complete information on the existence of moments. However, the results in
Borovkov (2000), Jelenkovic et al. (2002), and Zwart (2001) relate to particular subclasses
of so-called subexponential distributions only (see also Remark 2). In addition, we are not
aware of any tail asymptotic results for B when the distribution of � has a “Weibull-type”
tail e−x�L�x� with � ∈ �1/2�1�.
In the case g�x� = � logx, it is well known (see, e.g., Gut 1974a, Theorem 2.1) that

E�� <� if and only if E��+
1 �� < � (here x+ = max�0� x�) and if and only if

E�max��1�−L��� <� for any number L≥ 0. In particular, when �1 and t1 are independent,
any of the conditions above is equivalent to the finiteness of E��

1 , and also to the finiteness
of EB� (see, e.g., Ghahramani et al. 1989 and references therein).
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For the exponential moments, it is known (see, for example, Borovkov 1962, Theorem 2)
that if E exp�c�1� <� for some c > 0 then E exp�u�� is finite for all u < � and infinite for
all u > �, where e−� = inf�>0E exp���1� < 1. It is shown in Doney (1989, Theorem 2) that
E exp���� is finite if some extra conditions hold. With regard to the existence of E exp�uB�,
we are not aware of any general results for dependent �n and tn. Note that, for the D/GI/1
queue with tn ≡ t = const, if E exp�c�1� is finite for some c > 0, then E exp�uB� is finite for
all u < �/t and infinite for all u > �/t, where � is as above. This is, in fact, an immediate
consequence of the result for E exp�u��.
In a number of papers (see, e.g., Kalashnikov 1978, Chapter 4, Theorem 2.1, and the

list of references therein) conditions for the finiteness of the moments of � are studied in
a more general stochastic setting (for Markov chains), but the functions G�x� ≡ expg�x�
considered are assumed to be convex and their derivatives are assumed to be concave (in
particular, the function G�x�= x� satisfies these conditions iff � ∈ !1�2").
Some other papers (see, e.g., Gut 1974b, Alsmeyer 1987, and the list of references

therein) deal with the problem of the finiteness of the moments of the first hitting time on
some set (under more general stochastic assumptions).
In order to get unified results, fix two nonnegative numbers k0 and k1 and put �n =

k0+k1�n, $ =∑�
i=1 �i. Note that $ = B if k0 = 0, k1 = 1 and $ = � if k0 = 1, k1 = 0. First,

in Theorem 2.1, we obtain sufficient conditions for the existence of E exp�g�$�� for the class
of eventually nondecreasing and concave functions g. In particular, for power moments, the
conditions obtained are also necessary for both the moments of � and of B. For exponential
moments, our conditions are also necessary for the moments of � . Second, we consider (see
Theorem 2.2) a subclass of functions g that are lighter than any linear function (g�x�= o�x�,
x →�) and for which relatively simple conditions imply the conditions of Theorem 2.1.
The paper is organized as follows. In §2 we state the main results of the paper. We

illustrate our results by examples in §3. Section 4 contains the proofs of the results.

2. The results. Recall that we consider a sequence ��tn��n�� of random vectors with
nonnegative coordinates which are i.i.d. in n, but any dependence between the components
of the vectors is allowed. Let �n = �n − tn, with E�1 = −a < 0, Sn =

∑n
i=1 �i, and � =

min�n ≥ 1 � Sn ≤ 0�. Fix two nonnegative numbers k0 and k1 and consider $ = ∑�
i=1 �i,

where �i = k0 + k1�i. In particular, if k0 = 0, k1 = 1, then $ = B =∑�
i=1 �i (the first busy

period in the queueing context), and if k0 = 1, k1 = 0, then $ = � (the number of customers
served within the first busy period or the first busy period in discrete time in the queueing
context).

Theorem 2.1. Let g be a function bounded from above on compact sets and eventually
nondecreasing and concave.
Suppose that, for some c >−k1,

(2.1) Eeg�c�+1 +k1�1� <��

and there exist L > 0 and x0 ≥ 0 such that if �̃1 =max��1�−L�, then E�̃1 < 0 and, for all
x ≥ x0,

E exp
{
g�x+ c�̃1+�1�− g�x�

}≤ 1&(2.2)

Then

Eeg�$� <�&(2.3)

In particular, for c > 0, condition (2.1) with k1 = 0 and condition (2.2) with �1 = 1
imply the finiteness of E exp�g����. Similarly, for c >−1, (2.1) with k1 = 1 and (2.2) with
�1 = �1 imply the finiteness of E exp�g�B��.
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Remark 1. The result of Theorem 2.1 also holds for functions g for which the concavity
and nondecreasing conditions are replaced by the following one:

(2.4) g�x+ y�≤ g�x�+ g�y+�+K for some K and all x ≥ x0&

Remark 2. Note that �1 ≥ �+
1 = ��1− t1�

+ a.s. Hence, (2.1) and (2.2) hold if for some
c > 0,

(2.5) Eeg��c+k1��1� <��

and E exp�g�x + c�̂1 + �1� − g�x�� ≤ 1 for all x ≥ x0, where �̂1 = �1 − min�t1�L� ≥ �̃1
for some L > 0 such that E�̂1 < 0.
Moreover, for c > 0, (2.1) and (2.5) are equivalent if �1 and t1 are independent.
Remark 3. In the exponential case (eg�x� = eux), Theorem 2.1 gives the well-known

sufficient condition for the finiteness of Eeg���: if Eek�1 <� for some k > 0, then Eeu� <�
for all u < �, where e−� = inf�>0Ee��1 .
To see this, let �0 be such that Ee�0�1 = e−� (note that �0 always exists). Take an arbitrary

u < �. The conditions of Theorem 2.1 are valid for c = �0/u and g�x� = ux, since (2.1)
follows from the finiteness of Ee�0�1 and (2.2) from the inequalities:

E exp
(
g�x+ c�1+ 1�− g�x�

)=E exp��0�1+ u�= e−�+u < 1&

Hence Eeg��� <� as required.
We now provide some conditions which yield (2.2) for functions g which increase slower

than linear functions. We write ln+ x =max�0� ln x+�. Let h′ denote the left derivative of
any concave function h. Recall that a=−E�1. Let b =E�1.

Theorem 2.2. Let the function g be such that the function h�x� = g�x� − ln+ x is
bounded from above on compact sets, eventually nondecreasing and concave, and further
h�x�= o�x� as x →�. If
(2.6) Eeg�c�+1 +k1�1� <� for some c > �k0+ k1b�/a�

then (2.1) and (2.2) hold, and hence Eeg�$� <�.
Corollary 2.1. Under the conditions of Theorem 2.2 the following statements hold via

specific choices of k0 and k1. If

(2.7) Eeg�c�+1 � <� for some c > 1/a�

then

(2.8) Eeg��� <��

and if

(2.9) Eeg�c�+1 +�1� <� for some c > b/a�

then

(2.10) Eeg�B� <�&

In particular, if �n and tn are independent, then conditions (2.7) and (2.9) are equivalent
to (2.5) with k1 = 0 and k1 = 1, respectively.
We further give an analogue of the result above for functions which are only asymptoti-

cally equivalent to nondecreasing and concave ones.
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Corollary 2.2. Let the function g be bounded from above on compact sets and satisfy
the following conditions:
(a) lim supx→� g�x�/g�rx�≡ b�r� < 1 for all r > 1;
(b) g�x�= o�x�, as x →�; and
(c) there exists a nondecreasing and concave function g1 such that

g�x�= g1�x��1+ o�1��&

If

Eeg�c�+1 � <� for some c > 1/a�(2.11)

then

Eeg��� <�&(2.12)

Similarly, if

Eeg�c�1� <� for some c > 1+ b/a�(2.13)

then

Eeg�B� <�&(2.14)

Proof of Corollary 2.2. The proofs of (2.12) and (2.14) are similar to each other,
and we provide only the first.
Note that for any random variable , and for any two functions v and v1 which are

bounded from above on compact sets, if v�x� = �1+ o�1��v1�x� → � as x → � and if
Eev�,� is finite, then Eev1�c1,� is finite for all c1 < 1.
Hence, without loss of generality, we can assume that the function g1 satisfies (2.11) with

the same constant c.
By the condition (a), the function h1�x� = g1�x� − ln+�x� is eventually monotone and

concave. Thus, the statement of Corollary 2.1 holds for the function g1.
Consider c1 ∈ �1/a� c�. Then the statement of Corollary 2.1 is also valid for the function

g̃�x�≡ g1�cx/c1� if one replaces c by c1 in (2.7). Hence, Eeg1�c�/c1� <� and Eeg��� <�. �

Remark 4. The sharpness of the conditions obtained may be illustrated as follows:
(a) It follows from the Strong Law of Large Numbers (see also, e.g., the proof of Heyde

1964, Lemma 3) that, for any 0< . < 1 and / > 0, for all sufficiently large n,

P�Sn > 0�≥ n.P
(
�1+ a > �a+ /�n

)
&

(b) By applying the circular permutation method and Feller (1971, Chapter 12, §6,
Lemma 2) it follows that

P�� > n�≥ P�Sn > 0�/n&

Combining (a) and (b) we get that, for any 0< . < 1 and 0< c < 1/a,

P�� > n�≥ .P�c�1 > n�

for all sufficiently large n.
Thus if Eeg��� <�, then Eeg�c�1� <� for all c < 1/a.

3. Examples. In this section, several examples of functions g which satisfy the con-
ditions of Theorem 2.2 are considered. We also discuss the paper of Borovkov (2000), in
which conditions for the finiteness of E exp�g���� are obtained for a specific class of func-
tions g. We show that the class of functions considered is strictly included in the one from
Corollary 2.2.
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Example 1. The following are examples of functions g which satisfy the conditions of
Theorem 2.2.
• Let g�x�= � ln x for x ≥ x1 ≥ 1, where �≥ 1. Then (2.1) is equivalent to the finiteness

of E��+
1 �� in case of $ = � and to the finiteness of E��1�

� in case of $ = B. As remarked
in the Introduction, it is well known that these conditions are necessary and sufficient for
the finiteness of E�� and EB�, respectively.

• Let g�x� = ��ln x�� for x ≥ x1 ≥ 1, where � > 0, � > 1. Then (2.8) follows from
the condition Eeg�c�+1 � < � for some c > 1/a and (2.10) follows from the condition
Eeg�c�+1 +�1� <� for some c > b/a.
• Let g�x� = x� for x ≥ x1 ≥ 0, where � ∈ �0�1�. Then condition (2.7) reduces to

Eec��+1 �� <� for some c > �1/a�� and condition (2.9) reduces to Ee�c�+1 +�1�
�
<� for some

c > b/a .
• Let g�x�= x/ ln x for x ≥ x1 > 1. If Eec�1/ ln �1I��1 > x1� <� for some c > 1/a, then

(2.8) holds. The finiteness of Ee�c�+1 +�1�/ ln�c�
+
1 +�1�I�c�+

1 +� > x1� for some c > b/a implies
(2.10).
• As observed above in Corollary 2.2, the result of Theorem 2.2 is also valid for functions

of the form g�x��1 + o�1��. Consider, for example, the function g�x� = x��1 + o�1��.
The finiteness of E exp�c��+

1 ��� for some c > �1/a�� implies (2.12), and the finiteness of
E exp�c�1

�� for some c > �1+ b/a�� results in (2.14).
Example 2. The paper of Borovkov (2000) deals with functions g which satisfy the

condition

(3.1) g�x+ y�− g�x�= �g�x�

x
y�1+ o�1��� y = o�x�� 0< � < 1&

This condition is related to slow variation with remainder as treated, for example, in de Haan
and Stadtmuller (1996), Goldie and Smith (1987), Bingham et al. (1987), and de Haan
and Resnick (1996). Note that (see, e.g., Theorem 2.2.2 in Goldie and Smith 1987, Theo-
rem 3.12.2 in Bingham et al. 1987) this is a subclass of regularly varying functions

(3.2) g�x�= x�L�x�� 0< � < 1�

where L�x� is a slowly varying function such that lnL�x�=C+o�1/x�+∫ x

1 �/�t�/t�dt for
some function /�t�→ 0 as t →� and some constant C.
For such functions g, the finiteness of E exp�g���� follows from Borovkov (2000, Corol-

lary 5.1). On the other hand, this result also follows from Corollary 2.2. To show this,
consider, for x ≥ 1, the nondecreasing function

g̃�x�=
∫ x

1

�g�z�

z
dz&

Without loss of generality we can assume that g�x� = x�L�x�, where lnL�x� =∫ x

1 �/�t�/t�dt for a function /�t�→ 0 as t →�.
Since g′�x�= ��g�x�/x��1+ o�1��, as x →�,

g�x�= g̃�x��1+ o�1��� as x →�&

Also, g̃ is eventually concave, since its derivative is an eventually decreasing function.
This follows since, for y > 0, by (3.1),

�
g�x+ y�

x+ y
−�

g�x�

x
≤ ���− 1� g�x�

x�x+ y�
y�1+ o�1�� < 0� as x →�&

Below we show by example that the class of (eventually) nondecreasing and concave
functions is wider than the class of functions (3.2).
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Example 3. Let 0< � < 1< �. Let the function h be defined by h�xn�= x�
n for

x0 = 2� xn+1 = x�
n

with piecewise linear interpolation elsewhere. Then h is a monotone concave function.
Put � = �+�−�� and x̃n = x�

n . Then � ∈ �1��� and x̃n ∈ �xn� xn+1� for all n. Further,
as n→�,

h�x̃n�

2x̃�/�
n

→ 1&

Thus h cannot be represented in the form x3L�x� for any 3 ∈ �0�1� and slowly varying
function L.

4. The proofs.
Proof of Theorem 2.1. Without loss of generality we can assume that g�x� = 0 for

x ≤ 0. In order to avoid technicalities, assume that g is nondecreasing and concave on
!0���. Let �̃n = max��n�−L� and �Sn = ∑n

1 �̃i for n = 1�2� 4 4 4 , and put �̃ = min�n ≥
1 � �Sn ≤ 0�. Note that �̃ ≥ � since �̃i ≥ �i a.s.
Let 5i = c�̃i +�i, 6n =

∑n
i=15i. Then

$ =
�∑

i=1
�i ≤

�̃∑
i=1

�i =
�̃∑

i=1
��i + c�̃i�− c�S�̃ ≡6�̃ − c�S�̃ �

where −c�S�̃ ≤ c+L a.s.
Since

g�$�≤ g
(
6�̃ − c�S�̃

)≤ g�6�̃�+ g�c+L��

Eeg�$� <� if Eeg�6�̃ � <�.
Since �+

n −L≤ �̃n ≤ �+
n , it follows from (2.1) that E exp�g�5+

1 �� <�. Therefore, for all
n= 2�3� 4 4 4 ,

(4.1) E exp�g�6n��≤E exp
( n∑

1

g�5+
i �

)
= (

E exp�g�5+
1 ��

)n
<�&

Consider random variables Zn = eg�6�̃ �I��̃ ≤ n�. Observe that Zn ≤Zn+1 a.s. for all n and
Zn → eg�6�̃ � a.s. as n→�. Hence, EZn →Eeg�6�̃ � ≤�. Since

0≤Zn ≤
n∑

i=1
exp�g�6i���

EZn is finite for all n.
Now we show that limn→� EZn is also finite. Put �̃n =min��̃� n� and introduce random

variables Un = exp�g�6�̃n
��, that is,

Un = exp
(
g

( �̃n∑
i=1

5i

))
= exp

(
g

( n∑
i=1

5iI��̃ ≥ i�

))
≤ exp

( n∑
1

g�5+
i �

)
&

It follows from (4.1) that EUn <�. Clearly, Zn ≤Un a.s. Therefore, it is sufficient to prove
that

(4.2) sup
n

EUn <�&

Consider

EUn+1−EUn =E�Un+1−Un�=E��Un+1−Un�I��̃ ≥ n+ 1��=EVn�
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where

Vn =
{
E�Un+1/�n�−Un

}
I��̃ ≥ n+ 1��

and �n is a �-algebra generated by the random variables �1� 4 4 4 ��n� t1� 4 4 4 � tn.
Since Un = exp�g�6n�� and Un+1 = exp�g�6n+1�� when �̃ ≥ n + 1, one can represent

Vn as

(4.3) Vn = eg�6n�E�eg�6n+5n+1�−g�6n� − 1/�n�I��̃ ≥ n+ 1�&
Let Gn =

∑n
i=1 �i.

Suppose first that k0 > 0. If �̃ ≥ n+ 1, then 6n = k0n+k1Gn + c�Sn ≥ k0n+ �k1+ c��Sn >
k0n since �Sn > 0 a.s. Then, from (2.2) and (4.3), Vn ≤ 0 a.s. for all n ≥ x0/k0. Hence,
EUn+1 ≤EUn, and (4.2) follows.
Suppose now that k0 = 0. Then, from (4.3), for all 3 > 0,

Vn ≤E1+E2�

where

E1 = eg�6n�E�eg�6n+5n+1�−g�6n� − 1/�n�I��̃ ≥ n+ 1�Gn > 3n�

and

E2 =E�eg�6n+5n+1�/�n�I�Gn ≤ 3n�&

We make a particular choice of 3 below.
If �̃ ≥ n + 1 and Gn > 3n, then �Sn > 0 and 6n = k1Gn + c�Sn > �k1 − c−�3n, where

c− =max�−c�0�. Thus, from (2.2), E1 ≤ 0 a.s. for all n≥ x0/3�k1− c−�.
If Gn ≤ 3n, then

6n = k1Gn + c�Sn ≤ �k1+ c+�Gn ≤ �k1+ c+�3n&

Since g is concave, there exist u > 0 and x̃ > 0 such that g�x� ≤ ux/�k1 + c+� for all
x ≥ x̃.
Hence g�6n�≤ g��k1+ c+�3n�≤ u3n for all n≥ x̃/3�k1+ c+�.
Note that

P�Gn ≤ 3n�≤ e�3nEe−�Gn = �e�3Ee−��1�n

for � > 0. Therefore, for all n≥max�x0/3�k1− c−�� x̃/3�k1+ c+��,

EUn+1−EUn ≤Eeg�5+
1 �eu3nP�Gn ≤ 3n�≤Eeg�5+

1 ��e3��+u�Ee−��1�n&

Let ��3�= e3��+u�Ee−��1 and put �= 2u3/b, where b =E�1.
We have �′�0�=−u < 0. Then there exists 30 > 0 such that �0 ≡ ��30� < 1 and

EUn+1−EUn ≤Eeg�5+
1 ��n

0 ≡ k�n�&

Since
∑�

n=1 k�n� <�, the proof of Theorem 2.1 is completed. �

The proof of Theorem 2.2 is based on the following lemma.

Lemma 4.1. Let 5 be a random variable such that E5 < 0 and P�5 ≥ −M� = 1 for
some M ∈ �0���. For any function H , if H�0�≥ 0 and
(4.4) EeH�5�+ln+ 5 <��

then there exists /0 > 0 such that

(4.5) E expmin�/5�H�5+��≤ 1
and

(4.6) E5 expmin�/5�H�5+�� < 0

for all / ∈ !0� /0".
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Proof. For any fixed q > 0 and for any / > 0,

E ≡Eemin�/5�H�5+�� ≤E1+E2�

where

E1 =Ee/5I
(
5 <

q

/

)
and E2 =EeH�5�I

(
5 ≥ q

/

)
&

Consider first E1. The following estimates are valid:

e/5 ≤ 1+ eq − 1
q

/5� 0≤ 5 <
q

/
�

e/5 ≤ 1+ /5+ M2

2
/2� 5 ∈ !−M�0"&

Therefore,

(4.7) E1 ≤ 1+
(

eq − 1
q

E5+ −E5−
)
/+ M2

2
/2&

Now choose q > 0 such that �eq − 1�/q < E5−/E5+.
For E2, the following estimate is valid:

(4.8) E2 ≤
/

q
E5eH�5�I

(
5 ≥ q

/

)
&

From condition (4.4), E5eH�5�I�5 > q//�→ 0 as /→ 0. Therefore, there exists /1 > 0
such that

(4.9) K�q�/1�≡−
(

eq − 1
q

E5+ −E5− + 1
q

E5eH�5�I
(
5 ≥ q

/1

))
> 0&

From (4.7)–(4.9), it follows that

E ≤ 1−K�q�/1�/+
M2

2
/2 < 1

for all /≤ /2 ≡ 2K�q�/1�/M
2. Putting /0 ≡min�/1� /2�, we obtain (4.5).

We now prove (4.6). For / > 0, since H�0�≥ 0,
J ≡E5emin�/5�H�5+�� ≤E,1� / +E,2� /�

where

,1� / = 5e/5I
(
5 ≤ q

/

)
and ,2� / = 5eH�5�I

(
5 >

q

/

)
&

Observe that ,1� / → 5 a.s. as /→ 0& Moreover, for any / > 0,

,+
1� / = 5e/5I

(
0≤ 5 ≤ q

/

)
≤ eq5+ and ,−

1� / =−5e/5I�5 < 0�≤ 5−&

Hence the dominated convergence theorem implies

E,1� / →E5 < 0 as /→ 0&

It follows from (4.4) that E,2� / → 0 as /→ 0. Hence J →E5 < 0 as /→ 0 and the result
follows. �
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Proof of Theorem 2.2. Put 5 = c�̃1+�1, where �̃1 =max��1�−L� and L > 0 is cho-
sen such that ã ≡ −E�̃1 > �k0 + k1b�/c. It is sufficient to verify the condition (2.2) of
Theorem 2.1 (the other conditions of that theorem are trivially satisfied), i.e., to show that
there exists x0 such that

(4.10) Eeg�x+5�−g�x� ≤ 1
for all x ≥ x0.
It follows from the conditions of the theorem that there exists x1 ≥ 0 such that h�x� is

monotone and concave for all x ≥ x1.
Put M = cL > 0 and x2 = x1+M . For all x ≥ x2 and y ≥−M , the following inequalities

hold:

h�x+ y�−h�x�≤ h�x2+ y+�−h�x2� and h�x+ y�−h�x�≤ h′�x�y&

Therefore

g�x+ y�− g�x� = h�x+ y�−h�x�+ ln
(
1+ y

x

)

≤ min�h′�x�y�h�x2+ y+�−h�x2��+ ln
(
1+ y

x

)
&

Observe that E5 < 0, since c > �k0 + k1b�/ã and P�5 ≥ −M� = 1. Put H�x� =
h�x2+ x�−h�x2�. Choose /0 the same as in Lemma 4.1 and then x0 ≥ x2 so large that
h′�x�≤ /0 for all x ≥ x0.
Then (4.10) follows from

Eeg�x+5�−g�x� ≤Eemin�h
′�x�5�H�5+��

(
1+ 5

x

)

and Lemma 4.1. �
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