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We improve results from [2] on subgeometric convergence rates in the
local renewal theorem. The results are used in [3] to generalize previous
results on convergence rates for Markov chains [4].
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1 Introduction

We study subgeometric convergence rates in the local renewal theorem, which plays
an important role in obtaining results on convergence rates for Markov chains [4].

Let {ξn}n≥0 and {ξ′n}n≥0 be two sequences of mutually independent and integer-
valued r.v.’s. Assume further that
(i) ξ0 and ξ

′
0 are non-negative r.v.’s;

(ii) all {ξn}n≥1 and {ξ′n}n≥1 are i.i.d. and strictly positive, with a common distribu-
tion pk = P(ξ1 = k), k ≥ 1 with a finite mean a ≥ 1 and such that

G.C.D.{k ≥ 1 : pk > 0} = 1.

Let

Sn =
n∑

k=0

ξk and S
′

n =
n∑

k=0

ξ
′

k, n = 0, 1, . . .

For any sample path, define a coupling time

T = min{l ≥ 0 : l = Sn = S
′

m for some n and m} ≤ ∞.

Let g : R+ → R+ be any nondecreasing function such that

g(x+ y) ≤ g(x)g(y) for all x, y ∈ R+, (1)

and
ln g(x)

x
→ 0, as x→∞. (2)

Put g0(x) =
∫ x

0
g(y)dy. The following result indicates how fast two independent

renewal processes started from different initial positions couple.

Theorem 1. If Eg(ξ0), Eg(ξ′0), and Eg0(ξ1) are finite, then Eg(T ) is finite.
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In case the ratio ln g(x)/x is monotone decreasing to 0 Theorem 1 is proved in [2].
Note that if ln g(x)/x is monotone decreasing to 0 then the following properties hold:

g(x+ y) ≤ g(x)g(y) for all x, y;

for any ε > 0 and n > 0 there exists c = c(ε, n) such that for all x, y,

g(x+ y) ≤ (1 + ε)g(x) + g(x)g(y)I{y>n} + c(ε, n), (3)

which is the main inequality used in the proof of convergence rates in the renewal
theorem (see [2]).

Our proof of Theorem 1 is elementary and essentially based on the properties (1)
and (2) of the function g, while the previous proofs [2, 4] use (3), which requires
that ln g(x)/x is monotone decreasing to 0.

Remark 1. Theorem 1 holds for functions g1 for which there is a function g satisfying
conditions of Theorem 1, and c ≤ g1(x)/g(x) ≤ C for some positive c and C.

Remark 2. Condition (1) is essential. It assures that for two independent nonneg-
ative random variables ξ and η such that Eg(ξ) < ∞ and Eg(η) < ∞ their sum
satisfies Eg(ξ + η) <∞.

Corollary 1. Let |ξ0 − ξ′0| be bounded a.s.. If Eg0(ξ0), Eg0(ξ′0), and Eg0(ξ1) are
finite, then Eg0(T ) is finite.

We give the proofs in the next section.

2 Proofs.

The proof of Theorem 1 is based on two lemmas.

Lemma 1. T is finite a.s. Moreover, for any γ ∈ (0, 1/a), one can define two
sequences {ψi}i≥1 and {Vi}i≥0 of i.i.d. non-negative integer-valued r.v.’s such that
1) all r.v.’s ξ0, ξ

′
0, {ψi}i≥1, and {Vi}i≥0 are mutually independent;

2) {ψi}i≥1 is an i.i.d. sequence with distribution

P(ψi = 0) = γ, P(ψi ≥ k) = min{1− γ,
∞∑

j=k

P(ξ1 ≥ j)}, k = 1, 2, . . . ;

3) there exists a number n0 = n0(γ) such that

Vi
D
= ξ1 + . . .+ ξn0 ;

4) for µ = min{n ≥ 1 : ψn = 0},

T ≤st T̂ ≡ max(ξ0, ξ
′

0) + V0 +

µ−1∑
i=1

(ψi + Vi). (4)
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Proof of Lemma 1. Without loss of generality we can assume that ξ0 = 0 a.s.

Since {ξn}n≥1 is aperiodic, there exists n0 ≥ 0 and γ ∈ (0, 1/a) such that

P(Sk = n for some k) ≥ γ > 0 for all n ≥ n0.

We use the notation of [1, Theorem 4.2, Chapter 2]. Let A0 = 0,

B2n = min{S ′j − A2n ; S ′j − A2n ≥ 0} = S ′ν2n
− A2n,

in particular, B0 = ξ′0,
V2n = ξ′ν2n+1 + . . .+ ξ′ν2n+n0

,

A2n+1 = S ′ν2n+n0
= A2n +B2n + V2n,

B2n+1 = min{Sj − A2n+1 ; Sj − A2n+1 ≥ 0} = Sν2n+1 − A2n+1,

V2n+1 = ξν2n+1+1 + . . .+ ξν2n+1+n0 ,

A2n+2 = Sν2n+1+n0 = A2n+1 +B2n+1 + V2n+1.

You can read more about the construction in [1, Theorem 4.2, Chapter 2].

Let τ = min{k ≥ 0 : Bk = 0}. Then P(τ ≥ k) ≤ (1− γ)k, and

T ≤ Aτ =
τ−1∑
n=0

(Bn + Vn). (5)

Note that, {Vn} are i.i.d.

Let Dn = min{k ≥ 1 : Sk ≥ n} be the overshoot at the level n for {Sn}. Then

P(Dn = k) ≤ P(ξ1 ≥ k) for all n ≥ 0.

Indeed,

P(Dn = k) =
∞∑

j=1

P(Sj−1 < n, Sj = n+ k) =
∞∑

j=1

n−1∑
i=1

P(Sj−1 = i, ξj = n+ k − i)

=
n−1∑
i=1

P(ξ1 = n+ k − i)P(Di = 0) ≤
n−1∑
i=1

P(ξ1 = k + i) ≤ P(ξ1 ≥ k).

Consider a sequence of i.i.d. random variables {ψn}n≥1 independent of {Vn}n≥0,
where P(ψ1 = 0) = γ, and

P(ψ1 ≥ k) = min(
∞∑

i=k

P(ξ1 ≥ i), 1− γ) for k ≥ 1.

Then
P(Dn ≥ k) ≤ P(ψ1 ≥ k) for all n ≥ n0.

Note that

P(Bn ≥ l | B0 = l0, . . . , Bn−1 = ln−1) = P(Bn ≥ l) | Bn−1 = ln−1)

= P(Dln−1+Vn−1 ≥ l) ≤ P(ψn ≥ l).
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Hence for any f(x0, . . . , xn), which is monotone function of each xi, 0 ≤ i ≤ n

Ef(B0, . . . , Bn) ≤ Ef(ξ′0, ψ1, . . . , ψn).

In particular,

P(

min(τ,n)−1∑
i=0

(Bi + Vi) ≥ k) ≤ P(ξ′0 + V0 +

min(µ,n)−1∑
i=1

(ψi + Vi) ≥ k),

where µ = min{n ≥ 1 : ψn = 0}, P(µ ≥ k) = (1− γ)k−1.
Hence

P(
τ−1∑
i=0

(Bi + Vi) ≥ k) ≤ P(ξ′0 + V0 +

µ−1∑
i=1

(ψi + Vi) ≥ k).

The result immediately follows from (5).

Lemma 2. Let g : R → R+ be any nondecreasing function such that g(x) = 1 for
x ≤ 0, g(x+ y) ≤ g(x)g(y) for all x, y ∈ R+ and ln g(x)/x→ 0 as x→∞.

Let {ξn} be a sequence of i.i.d. random variables on R+ such that Eg(ξ1) <∞, µ be
a random variable which is independent of ξn and P(µ = k) = p(1− p)k−1 for some
p ∈ (0, 1). Then

Eg(

µ∑
i=1

ξi) <∞.

Proof of Lemma 2. We consider

Eg

(
µ∑

i=1

ξi

)
=

p

1− p

∞∑
n=1

Eg

(
n∑

i=1

ξi

)
(1− p)n.

Let Xn =
n∑

i=1

ξi, q = ln 1
1−p

> 0, and G(x) = ln g(x). Then

Eg

(
n∑

i=1

ξi

)
(1− p)n = EeG(Xn)−qn = EeG(Xn)− 2

3
qne−

1
3
qn.

Hence it is sufficient to show that

sup
n

EeG(Xn)− 2
3
qn <∞.

Note that there exists K > 0 such that

EeG(ξ1−K) ≤ e
1
3
q.

Since G(x) = o(x) as x → ∞, there exists x̃ > 0 such that G(Kx) ≤ qx/3 for all
x ≥ x̃. Take n ≥ x̃. Then

EeG(Xn)− 2
3
qn ≤ EeG(Xn)−G(Kn)− 1

3
qn ≤ EeG(Xn−Kn)− 1

3
qn

≤ Ee

n∑
i=1

G(ξi−K)− 1
3
qn

=
(
EeG(ξ1−K)

)n
e−

1
3
qn ≤ 1.
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Finally, note that Eg

(
n∑

i=1

ξi

)
≤ (Eg(ξ1))

n < ∞ for all n, which completes the

proof.

We have enough tools now to prove the main theorem.

Proof of Theorem 1. Consider i.i.d. random variables {ζn}n≥1 independent of ξ0,
ξ
′
0, {ψn}n≥1, and {Vn}n≥0 such that

P(ζi = k) = P(ψi + Vi = k | ψi 6= 0), i ≥ 1.

Then

P(

µ−1∑
i=1

ζi = k) = P(

µ−1∑
i=1

(ψi + Vi) = k).

Hence

T ≤st max(ξ0, ξ
′

0) + V0 +

µ−1∑
i=1

ζi.

Since P(ζ1 = k) ≤ 1
1−γ

P(ψ1 + V1 = k) and g(n+m) ≤ g(n)g(m) for all n,m ∈ Z+,

it follows that Eg(ζ1) <∞. Then (see Lemma 2)

Eg(

µ−1∑
i=1

ζi) <∞.

Hence Eg(T ) <∞.

Proof of Corollary 1. Let ξ0 and ξ′0 be independent and distributed according to
the stationary renewal process. Since Eg0(ξ1) <∞, it follows from Theorem 1 that
Eg(T ) < ∞. Consider a new renewal process ηn defined as follows. We say that
renewal takes place at point n, if so for both original processes. The new process
is a stationary renewal process with delay η0 = T and increments ηn distributed
according to the first coupling time of two independent undelayed renewal processes.
It is well-known that Eg(η0) < ∞ if and only if Eg0(η1) < ∞. Hence the corollary
is proved in the particular case of undelayed renewal processes. Let Tx,y be the
coupling time for two independent renewal processes with delays x and y. Then it
is clear that

Eg0(T0,0) ≥ Eg0(Tn1,n′1
)P(Sk = n1, S

′
k′ = n′1 for some k, k′; T0,0 ≥ max(n1, n

′
1)),

where P(Sk = n1, S
′
k′ = n′1 for some k, k′; T0,0 ≥ max(n1, n

′
1)) is positive for all

large enough n1 and n′1 (from the proof of Lemma 1 it follows that it is sufficient
to take n1, n

′
1 ≥ n0). hence the corollary is true in case the delays are ξ0 = i and

ξ′0 = j for any i and j. The rest of the proof is now obvious.
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