Convergence rates in the local renewal theorem.
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We improve results from [2] on subgeometric convergence rates in the
local renewal theorem. The results are used in [3] to generalize previous
results on convergence rates for Markov chains [4].
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1 Introduction

We study subgeometric convergence rates in the local renewal theorem, which plays
an important role in obtaining results on convergence rates for Markov chains [4].

Let {&,}n>0 and {€, },>0 be two sequences of mutually independent and integer-
valued r.v.’s. Assume further that

(i) & and &, are non-negative r.v.’s;

(i) all {&,}n>1 and {€, },>1 are i.i.d. and strictly positive, with a common distribu-
tion pp = P(§ = k), k > 1 with a finite mean a > 1 and such that

G.CDAk>1: p,>0}=1.
Let . .
Sp=> & and S, =) & n=01,..
k=0 k=0
For any sample path, define a coupling time

T=min{l>0:1=5,=5, forsome n and m} < co.

Let ¢ : Ry — Ry be any nondecreasing function such that

gz +y) < g(r)g(y) forall z,y € Ry, (1)
and |
HZ;(QJ) — 0, asz — oo. (2)

Put ¢°(z) = [, g9(y)dy. The following result indicates how fast two independent
renewal processes started from different initial positions couple.

Theorem 1. If Eg(&,), Eg(&',), and Eg°(&1) are finite, then Eg(T) is finite.
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In case the ratio In g(z)/x is monotone decreasing to 0 Theorem 1 is proved in [2].
Note that if In g(x)/x is monotone decreasing to 0 then the following properties hold:

g(x+y) < g(x)g(y) for all z,y;

for any € > 0 and n > 0 there exists ¢ = ¢(e,n) such that for all x,y,

gz +y) < (L+e)g(@) + g(x)g(y)iysny + (e, n), (3)

which is the main inequality used in the proof of convergence rates in the renewal
theorem (see [2]).

Our proof of Theorem 1 is elementary and essentially based on the properties (1)
and (2) of the function g, while the previous proofs [2, 4] use (3), which requires
that In g(z)/x is monotone decreasing to 0.

Remark 1. Theorem 1 holds for functions g; for which there is a function ¢ satisfying
conditions of Theorem 1, and ¢ < ¢y(x)/g(z) < C for some positive ¢ and C.

Remark 2. Condition (1) is essential. It assures that for two independent nonneg-
ative random variables £ and 7 such that Eg(§) < oo and Eg(n) < oo their sum
satisfies Eg(§ +n) < oo.

Corollary 1. Let [&y — &)| be bounded a.s.. If Eg°(&), Eg°(&), and Eg°(&) are
finite, then Eg°(T) is finite.

We give the proofs in the next section.

2 Proofs.

The proof of Theorem 1 is based on two lemmas.

Lemma 1. T is finite a.s. Moreover, for any v € (0,1/a), one can define two
sequences {1; }i>1 and {V;}i>o of i.i.d. non-negative integer-valued r.v.’s such that
1) all m.v.s &, &, {¥itis1, and {Vi}iso are mutually independent;

2) {i}is1 is an i.i.d. sequence with distribution

P(y;=0)=7v, Py >k)=min{l—7,> P& >/} k=12 ;
j=k
3) there exists a number ng = ny(y) such that
ViZ &t b

4) for w =min{n >1 : ¢, =0},

pn—1
T <o T=max(&. &)+ Vo+ > (¥ + Vi), (4)

i=1



Proof of Lemma 1. Without loss of generality we can assume that £, = 0 a.s.
Since {&, }n>1 is aperiodic, there exists ng > 0 and v € (0,1/a) such that

P(Si = n for some k) >~ >0 for all n > ny.
We use the notation of [1, Theorem 4.2, Chapter 2|. Let Ay =0,
Bgn = mln{S; — Agn ) S]/ — Agn Z 0} = S{/Qn — Agn,

in particular, By = &,
Vo, = 51//2n+1 +.oo+ 51,/2n+n07
Aon1 =S, ing = Aon + Ban + Vay,
Bopy1 = min{S; — Agpqq 5 Sj — Agpyr >0} =S, — Aonya,

‘/2n+1 = €V2n+1+1 Tt §V2n+1+n07
A2n+2 = SV2n+1+n0 = A2n+1 + BQn—l—l + ‘/Qn—&-l'

You can read more about the construction in [1, Theorem 4.2, Chapter 2.
Let 7 =min{k >0 : By =0}. Then P(7 > k) < (1 —v)*, and

—_

T<A =S (B, +V,). (5)

3

S
I
o

Note that, {V,} are i.i.d.
Let D,, = min{k > 1 : Sy > n} be the overshoot at the level n for {S,}. Then

P(D, = k) <P(& > k) for all n > 0.

Indeed,
0o co n—1

PD,=k) = Y P(Sji<n, Sj=n+k)=> Y P(S;1=i, §=n+k—1i)
j=1 j=1 i=1
n—1 n—1

= Y P =n+k—0)P(D;=0)< Y P& =k+i) <P(& > k).

i=1

Consider a sequence of i.i.d. random variables {¢,},>1 independent of {V},},>o0,
where P(¢, = 0) =+, and

Py, > k)= min(i P(& >id), 1 —v) for k> 1.

i=k

Then
P(D, > k) <P(¢y > k) for all n > ny.

Note that

P(Bn > ‘ By = lOa s 7Bn—1 = ln—l) = P(Bn > l) ’ B, = ln—l)
- P(Dlnfl‘i‘vnfl > l) < P(¢n > l)

3



Hence for any f(xo,...,x,), which is monotone function of each z;, 0 <i <n

Ef(Bo,...,Bn) <Ef(&, U1, .. 0n).

In particular,

mln(r n)—1 min(p,n)—1
(). Bi+V) =2k <PEG+Vo+ >, (Wi+V)>h)
=0 i=1

where = min{n >1 : ¢, =0}, P(u > k) = (1 —y)* "

Hence B »
PO (Bi+ Vi) 2 k) <PE+ Vot Y (i + Vi) > k).
i=0 i=1

The result immediately follows from (5).

O

Lemma 2. Let g : R — Ry be any nondecreasing function such that g(x) =1 for

<0, g(zr+y) <g(x)g(y) for allxz,y € Ry and Ing(x)/x — 0 as x — oo.

Let {&,} be a sequence of i.i.d. random variables on R, such that Eg(&;) < 0o, p be
a random variable which is independent of &, and P(u = k) = p(1 — p)k~L for some

€ (0,1). Then

Proof of Lemma 2. We consider
o [e's) n
p
E E i = — E E E 2] (1—
g(z’:1£> l=pi= g(i:1€>(

Let X, => &, q= lnl%p >0, and G(z) = Ing(z). Then

=1

. (Z &> = BeCXn)=m _ O -fame—fan,

Hence it is sufficient to show that

Xn)_%qn

sup Ec¢ < Q.

n

Note that there exists KX > 0 such that

1

Since G(z) = o(x) as © — o0, there exists £ > 0 such that G(Kz) < gz/3 for all

x> 2. Take n > Z. Then

EcC(m =50 < Rt -G —gan < FeGXa—Kn—5an
Lan
- EezzlG@’ K)=zam (BeC& )" gmsam < 1,



Finally, note that Eg <Z fi) < (Eg(&))" < oo for all n, which completes the
i=1

proof. ]
We have enough tools now to prove the main theorem.
Proof of Theorem 1. Consider i.i.d. random variables {(, },>1 independent of &,
€0y {UnYn>1, and {V,, }n>0 such that

PlG=k =P +Vi=k|¢;#0), i>1
Then

pn—1 pn—1

P> G=k =P Wi+ Vi)=k).

i=1 i=1

Hence
pn—1

T <o max (&, &) + Vo + > G
i=1
Since P((; = k) < ﬁP(% + Vi =k) and g(n +m) < g(n)g(m) for all n,m € Z,,
it follows that Eg((;) < co. Then (see Lemma 2)

pn—1
Eg(z G) < oo.
i=1
Hence Eg(T) < 0. O

Proof of Corollary 1. Let & and & be independent and distributed according to
the stationary renewal process. Since EgY(£;) < oo, it follows from Theorem 1 that
Eg(T) < oo. Consider a new renewal process 7, defined as follows. We say that
renewal takes place at point n, if so for both original processes. The new process
is a stationary renewal process with delay ny = 7' and increments 7, distributed
according to the first coupling time of two independent undelayed renewal processes.
It is well-known that Eg(ny) < oo if and only if E¢°(n;) < co. Hence the corollary
is proved in the particular case of undelayed renewal processes. Let T, be the
coupling time for two independent renewal processes with delays x and y. Then it
is clear that

Eg’(Too) > Eg® (T, )P (Sk = n1, Spy = nj for some k, k'; Tyy > max(ny,n)),

where P(Sy = ny, S, = n} for some k,k'; Too > max(ni,n})) is positive for all
large enough n; and n} (from the proof of Lemma 1 it follows that it is sufficient
to take ny,n] > ng). hence the corollary is true in case the delays are & = i and
&, = j for any i and j. The rest of the proof is now obvious. m
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