
On the truncated long range percolation on Z2

Bernardo Nunes Borges de Lima(1) & Artëm Sapozhnikov(2)
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Abstract

We consider an independent long range bond percolation on Z2. Horizontal and
vertical bonds of length n are independently open with probability pn ∈ [0, 1]. Given∑∞

n=1

∏n
i=1(1−pi) <∞, we prove that there exists an infinite cluster of open bonds

of length ≤ N for some large but finite N . The result gives a partial answer to the
conjecture from [2].

1 Notation and Results

We consider an independent bond percolation on the graph G = (Z2, E), where E = {<
x, y >∈ Z2 × Z2 : x 6= y and x1 = y1 or x2 = y2}. For a given sequence (pn) such
that pn ∈ [0, 1], we declare an edge < x, x + nei > (x ∈ Z2, i ∈ {1, 2}) to be open
with probability pn and closed otherwise. More formally, we consider the probability
space (Ω,F , P ). As sample space we take Ω = {0, 1}E . It’s elements are denoted as
ω = {ω(f) : f ∈ E}. The value ω(f) = 1 corresponds to f being open, and the value
ω(f) = 0 corresponds to f being closed. We take F to be the σ-algebra generated by
finite cylinder sets in Ω. We define the product measure P on (Ω,F) as

∏
f∈E µf , where

µf is Bernoulli measure on {0, 1} given by

µf (ω(f) = 1) = 1− µf (ω(f) = 0) = p|f |,

where |f | = max(|x1 − y1|, |x2 − y2|) given f =< x, y >.

Definition 1.1. We say that two sites x, y ∈ Z2 are k-connected, x
k←→ y, if there are

v1, . . . , vm ∈ Z2 such that v1 = x, vm = y, < vi, vi+1 >∈ E is open, and |vi − vi+1| ≤ k
for all i. If k =∞, then we say that x and y are connected, x←→ y. We say that two sites
x and y of Z2 are connected in W ⊂ Z2 if x, y ∈W , and there is an open path between x
and y such that all the sites of the path are in W .

In this note we study the well known truncation problem: given a sequence (pn) for

which P(0↔∞) > 0, is it true that P(0 N↔∞) > 0 for some large finite N? The answer
is no for the one-dimensional independent percolation ([4, 10]). It is believed that the an-
swer is yes in dimensions d ≥ 2. However, only partial results have been obtained so far.
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In [8] the affirmative answer is given in the case the sequence (pn) is exponentially decay-
ing. The heavy-tailed case has been considered in [1, 9, 11]. In all the papers it is assumed
that the sequence (pn) is monotone decreasing with some conditions on the speed of decay.
The first results for non-monotone sequences were obtained in [2, 3]. In [3] the positive
answer to the truncation question was given for sequences (pn) such that lim supn pn > 0.
For non-summable sequences (pn) (

∑
n pn =∞), the affirmative answer to the truncation

question was given in [2] in dimensions d ≥ 3. It was also conjectured that the statement
is true in two dimensions. In this note we answer yes to the truncation question in two
dimensions for a very general class of non-summable sequences (pn) (see e.g. condition
(1.3)), which supports the conjecture from [2]. Our approach is different from the one in
[3]. It is based on Blackwell’s renewal theorem and renormalization techniques.

Theorem 1.1. Given a sequence (pn) such that pn ∈ [0, 1] and
∑∞

n=1 pn =∞, if

lim sup
n→∞

P(0 and n are connected in [0, n]) > 0 (1.1)

then there exists N such that
P(0 N←→∞) > 0. (1.2)

Remark 1. If lim supn pn > 0 then (1.1) is trivially satisfied. In particular, the result
from [2] follows.

In the next theorem we give a sufficient condition for (1.1).

Theorem 1.2. If
∞∑

n=1

n∏
i=1

(1− pi) <∞ (1.3)

then condition (1.1) holds.

2 Proofs.

Proof of Theorem 1.1. We assume for convenience that the greatest common divisor
G.C.D. {k : pk > 0} = 1. The condition ensures that the infinite open cluster is unique
(see [5, Theorem 12.3]). If G.C.D. {k : pk > 0} = m > 1 then we consider the bond
percolation on mZ2 with

P(< mx, m(x + ne1) > is open ) = P(< mx, m(x + ne2) > is open ) = pmn.

For the sake of notation, we also assume that there exist p > 0 and n0 such that, for all
n ≥ n0,

P(0 and n are connected in [0, n]) ≥ p. (2.1)

The general case when (2.1) is only satisfied for an infinite subsequence (nk) can be treated
in the same way.

The proof is based on a renormalization argument. Let l and L be positive integers
such that l < L. For any x ∈ Z2, the event Ax occurs if:

• any two sites from the set 2Lx+[−l, l]×{0} are connected in 2Lx+[−L,L]×{0}
(see Definition 1.1); and

• any two sites from the set 2Lx+{0}× [−l, l] are connected in 2Lx+{0}× [−L,L].
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Figure 1: Events A0, Ae1 and B0,e1 . The inner boxes are B(0, l) and B(2Le1, l). The
outer boxes are B(0, L) and B(2Le1, L).

The events A0 and Ae1 are illustrated in Figure 1. From the space homogeneity it follows
that P(Ax) = P(A0) for all x ∈ Z2. Moreover, since

P(all the sites [−l, l] are connected in Z) = 1

for all l ∈ N (we use the assumption G.C.D.{i : pi > 0} = 1), for any ε > 0 and for all
l ∈ N there exists L1 = L1(ε, l) such that, for all L ≥ L1,

P(A0) > 1− ε.

For x ∈ Z2 and y = x + (1, 0), we say that the event Bx,y occurs if:

• there exists k ∈ [−l, l]\{0} such that the sites 2Lx + (0, k) and 2Ly + (0, k) are
connected in [2Lx + (0, k), 2Ly + (0, k)] = 2Lx + (0, k) + [0, 2L]× {0}.

In Figure 1, the event B0,e1 occurs with k = −1. We assume that By,x = Bx,y. Similarly,
for x ∈ Z2 and y = x + (0, 1), the events Bx,y and By,x occur if:

• there exists k ∈ [−l, l]\{0} such that the sites 2Lx + (k, 0) and 2Ly + (k, 0) are
connected in [2Lx + (k, 0), 2Ly + (k, 0)] = 2Lx + (k, 0) + {0} × [0, 2L].

Space homogeneity and symmetry of the model imply that, for any x ∼ y (i.e. x and y are
nearest neighbours in Z2) and u ∼ v, P(Bx,y) = P(Bu,v).

Condition (2.1) implies that for all L ≥ n0,

P(0 and 2L are connected in [0, 2L]) ≥ p > 0. (2.2)

Therefore, for any ε > 0 there exist l0 = l0(ε) ∈ N and L > max(l0, n0) such that

P(B0,e1) > 1− ε.

For ε > 0, we take L ≥ max(L1(ε, l0(ε)), n0). It follows that

P(A0) > 1− ε and P(B0,e1) > 1− ε.
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Figure 2: An example of renormalized cluster. Crosses correspond to occurence of events
Ax, and connections between crosses correspond to occurence of events Bx,y.

Moreover, the events {Ax : x ∈ Z2} ∪ {By,z : y, z ∈ Z2, y ∼ z} are defined in terms
of the states of edges in disjoint subsets of E and therefore independent.

Now it is easy to finish the proof. If Ax occurs, we say that the site x is open. If By,z

occurs, we say that the bond < y, z > is open. The constructed model is an independent
nearest-neighbour site-bond percolation.

We can choose ε > 0 small enough such that there is an infinite open cluster in the
renormalized site-bond percolation model (see e.g. [6]). The existence of an infinite open
cluster in the renormalized model implies the existence of infinite open cluster of 2L-
connected sites in the original model. Therefore we can take N = 2L.

Proof of Theorem 1.2. As in the proof of Theorem 1.1 we can assume without loss of
generality that G.C.D. {k : pk > 0} = 1. For any x ∈ Z2 we define

ξx = min{n : < x, x + ne1 > is open }.

Note that ξx are i.i.d. random variables with distribution

P(ξ0 > n) =
n∏

i=1

(1− pi).

Since
∑

n pn =∞, the random variables are finite almost surely. Moreover,

Eξx =
∞∑

n=0

n∏
i=1

(1− pi) <∞.

An important result in renewal theory is Blackwell’s theorem (see e.g. [7]):

Theorem 2.1. Let {Xi} be a sequence of i.i.d. random variables taking values in Z+, and
Sk =

∑k
i=1 Xi. If

G.C.D. {k : P(X1 = k) > 0} = 1

then
P( there exists k such that Sk = n)→ 1

EX1
,

as n→∞. Here, if EX1 =∞ then the limit is 0.
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From Blackwell’s theorem we conclude that there exists n0 such that for all n ≥ n0

P (0 and n are connected in [0, n]) ≥ 1
2Eξ0

=

(
2
∞∑

n=0

n∏
i=1

(1− pi)

)−1

> 0.
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