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The aim of this seminar is to discuss classical results and recent developments about random
functions on the hypercube. They arise naturally in theoretical computer science and combina-
torics, and in the last decade their general properties have been instrumental for new striking
developments in statistical physics and percolation.

Consider a Boolean function f : {0, 1}n → {0, 1} and a Bernoulli-p product measure Pp on
{0, 1}n. We will particularly discuss various tools used to understand two phenomena observed
in some general classes of functions:

• noise sensitivity — after resampling every coordinate independently with probability ε,
the (random) value of f becomes almost independent from the original one, namely, if ω
is the random point on the hypercube sampled from Pp, and ωε is its perturbation, then
E[f(ω)f(ωε)]− E[f(ω)]2 → 0 as n→∞ (the opposite notion to it is the noise stability),

• sharp threshold — for a monotone function f , as p increases from 0 to 1, the probability
Pp[f(ω) = 1] increases from almost 0 to almost 1 in an interval of length of order 1

logn .

A crucial role is played by the influence Ipi (f) of individual bit i on the function—the probability
that the value of the function changes after flipping the ith bit. A type of discrete Poincaré
inequality easily gives Var(f) ≤ p(1− p)

∑n
i=1 I

p
i (f). This is too weak to imply any useful con-

clusions. In the first part of the seminar we will discuss how to obtain non-trivial improvements
of this inequality using harmonic analysis on the hypercube, hypercontractivity, and randomized
algorithms [3, 12, 14, 17]. (One of the implications of this theory states: when all the influences
are small, then their sum is large.) In the second part we will use these results to link prop-
erties of influences to the above stated phenomena. If time permits and based on interests of
participants, we may discuss applications in computer science and statistical physics, extensions
to non-product measures, lower bounds on the variance (reverse Poincaré inequality), etc.
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