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We consider an M/G/1 queue with symmetric service discipline. The class of symmetric
service disciplines contains, in particular, the preemptive last-come-first-served discipline and
the processor-sharing discipline. It has been conjectured in Kella, Zwart and Boxma [1]
that the marginal distribution of the queue length at any time is identical for all symmetric
disciplines if the queue starts empty. In this paper we show that this conjecture is true if service
requirements have an Erlang distribution. We also show by a counterexample, involving the
hyperexponential distribution, that the conjecture is generally not true.
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1 Introduction

In this paper we consider the M/G/1 queue with the symmetric service discipline which is defined
as follows. Customers arrive according to a Poisson process with rate λ and have independent
and identically distributed service times {Bi}i≥1. Let p

(n)
i be a sequence of positive numbers

such that for each n, p
(n)
1 + p

(n)
2 + · · ·+ p

(n)
n = 1. If there are n customers in the queue then the

customer in position i gets a fraction p
(n)
i of the service rate. If a new customer arrives at the

queue with n customers he moves into position i with probability p
(n+1)
i ; customers in positions

i, i + 1, . . . , n move to positions i + 1, i + 2, . . . , n + 1.
The class of symmetric queueing disciplines has been introduced by Kelly [2]. It contains

two important disciplines: preemptive Last Come First Served (LCFS) discipline and Processor
Sharing (PS) discipline. It is proved in Section 3.3 of [2] that for the symmetric M/G/1 queue
the distribution of the queue length in steady state is geometric with probability of success 1− ρ,
where ρ is the traffic intensity. In particular, it is insensitive to the service discipline and depends
only on the mean of the service and interarrival times .

Recently, [1] has studied time-dependent, rather than steady-state, properties of the queue
length process {Qt, t ≥ 0} of the symmetric M/G/1 queue. In particular, it has been shown
that if Q0 = 0, then at any moment of time the M/G/1 LCFS queue and PS queue coincide
in distribution , i.e. QPS

t =D QLCFS
t , for any fixed t ≥ 0. Also, it has been shown that if

τ(q) is an independent, exponentially distributed random variable, then QLCFS
τ(q) has a geometric

distribution. It has been conjectured in [1] that Qt has the same distribution for any M/G/1
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symmetric queue. In this paper we show that this conjecture is true if the service requirements
have Erlang distribution (see Theorem 2.2 below). However, in general this conjecture does not
hold and we show this by a simple counterexample (see Section 4 below).

Let β(s) = Ee−sB1 be the Laplace-Stieltjes transform (LST) of the service distribution B1 and
define the net input process Y (t) =

∑N(t)
i=1 Bi− t, where N(t) is the number of customers arrived

by time t. This is a Lévy process with exponent ϕ(s) = s−λ(1−β(s)), that is Ee−sY (t) = etϕ(s).
Let s∗ = inf{s : ϕ(s) > 0}. Since ϕ(s) is continuous and strictly increasing on [s∗,∞), it has an
inverse, which we denote by κ(q), q ≥ 0. In [1, 3] the following result is proved for LCFS and PS
queues.

Proposition 1.1. Let τ(q) be an independent exponentially distributed random variable with rate
q > 0. If Q0 = 0, then

P(Qτ(q) = n) =
(

1− q

κ(q)

)n q

κ(q)
.

The paper is organized as follows. In Section 2 we give the result in case the service require-
ments have an Erlang distribution (Theorem 2.1). We also describe a uniformization procedure,
which allows to reduce the original problem to the analysis of an embedded Markov chain (The-
orem 2.2). We prove Theorem 2.2 in Section 3. We give a counterexample in Section 4.

2 Queue with Erlang distributed service requirements

In this section we study symmetric queues for which customers arrive according to a Poisson
process with intensity parameter λ and their service requirements Bn have Erlang distribution
with parameters N and µ, that is Bn = Bn,1 + . . . + Bn,N for independent Bn,j exponentially
distributed with parameter µ. We prove the following theorem.

Theorem 2.1. Let Q0 = 0. Then, for any t ≥ 0, the distribution of Qt does not depend on
{p(n)

i , 1 ≤ i ≤ n, n ≥ 1}.
In particular, Proposition 1.1 holds for symmetric Erlang queues.
We consider a Markov process Xt on a state space X ∪ {0}, where

X = {(x1, . . . , xl), l ≥ 1, xi ∈ {1, . . . , N}} . (2.1)

In the definition above (x1, . . . , xl) corresponds to a queue with l customers in which the i-th cus-
tomer is on xi-th service stage. For any vector (x1, . . . , xl), we denote its length as |(x1, . . . , xl)|.
Note that Qt = |Xt| is the queue length at time t.

We note that Xt is a Markov jump process. The time it spends in state 0 before it jumps to a
different state has an exponential distribution with parameter λ. The time it spends in any other
state before it jumps to a different state has an exponential distribution with parameter λ + µ.
We want to prove independence of the distribution of the queue length Qt of a symmetric queue
from a service discipline (i.e. independence with respect to {p(m)

i , 1 ≤ i ≤ m, m ≥ 1}). It is
well known that for work conserving queues P(Qt = 0) does not depend on the service discipline.
Therefore we can omit the time Xt spends at 0 by adding one customer in the queue at each time
it becomes empty. It means that we consider a modified Markov process which jumps from N to
1 with the same probability as Xt jumps from the state (N) to (0). From now on we are going to
work only with the modified process. Therefore we also denote it Xt. The new process is defined
on X . The time it spends in any state before it jumps to a different state has an exponential
distribution with parameter λ + µ.
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Let {ξi} be a sequence of independent Exp(λ + µ) random variables. It corresponds to the
times between consequent jumps of Xt. Let N(t) = max{i :

∑i
j=1 ξj ≤ t} be the number of

jumps on (0, t]. Then

P(Qt = i) =
∞∑

n=0

P(Qt = i | N(t) = n)P(N(t) = n) =
∞∑

n=0

P(|Yn+1| = i)P(N(t) = n),

where Yn is an embedded Markov chain corresponding to Xt.
It is sufficient to prove that, for any n ≥ 1 and i ≥ 1, P(|Yn| = i) does not depend on the

service discipline. We prove a more general result. We introduce subsets of X . For k ≥ 1, let

Uk =

{
(x1, . . . , xl) ∈ X :

l∑

i=1

xi = k

}
. (2.2)

Remark 1.
|Uk| = |Uk−1|+ . . . + |U(k−N)+ |,

in particular, |Uk| = 2k−1 for k ≤ N .

We prove the following theorem.

Theorem 2.2. Let Yn be the Markov chain defined above. For k ≥ 1 and n ≥ 1, let

P (k, n) = P(Yn ∈ Uk). (2.3)

Then
1. P (k, n) does not depend on {p(m)

i , 1 ≤ i ≤ m, m ≥ 1}, and, moreover, for any (x1, . . . , xl) ∈
Uk,

P(Yn = (x1, . . . , xl)) =
(

λ

λ + µ

)l−1 (
µ

λ + µ

)k−l

P (k, n). (2.4)

2. P (k, n) satisfies the following recursion:

P (k, n) = P (k − 1, n− 1) +
λ

λ + µ

(
µ

λ + µ

)N

P (k + N, n− 1). (2.5)

Remark 2. The recursion (2.5) simply means that the Markov chain jumps to Uk from Uk−1

or from a subset of Uk+N which consists of vectors such that at least one of the components is
N .

3 Proof of Theorem 2.2

It is clear that P (k, n) = 0 for k > n. We prove the result by induction.
The result holds for n = 1. Indeed, P (k, 1) = δk(1).
We assume that P (k, n) does not depend on {p(m)

i , 1 ≤ i ≤ m, m ≥ 1} for any k, and, for
any (x1, . . . , xl) ∈ Uk, (2.4) holds. We show that the result holds for Yn+1.

We fix any state (x1, . . . , xl) ∈ Uk. The Markov chain Y can jump to Uk either from Uk−1 or
Uk+N . It jumps from Uk−1 to Uk if a new customer arrives at the queue or if an existing customer
goes to the next service stage. The Markov chain Y jumps from Uk+N to Uk if a customer leaves
the queue. Therefore,

P (Yn+1 = (x1, . . . , xl)) =
∑

(y1,...,ym)∈Uk−1

P ((y1, . . . , ym) 7→ (x1, . . . , xl))P (Yn = (y1, . . . , ym))

+
∑

(y1,...,ym)∈Uk+N

P ((y1, . . . , ym) 7→ (x1, . . . , xl))P (Yn = (y1, . . . , ym)) ,
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where a 7→ b stays for a transition from a to b in one step. We write the last two summands as

P (Yn+1 = (x1, . . . , xl)) = Σ1 + Σ2. (3.1)

We evaluate Σ1 and Σ2 separately.

Σ1 =
∑

(y1,...,yl−1)∈Uk−1

P ((y1, . . . , yl−1) 7→ (x1, . . . , xl))P (Yn = (y1, . . . , yl−1))

+
∑

(y1,...,yl)∈Uk−1

P ((y1, . . . , yl) 7→ (x1, . . . , xl))P (Yn = (y1, . . . , yl))

=
(

λ

λ + µ

)l−2 (
µ

λ + µ

)k−l+1

P (k − 1, n)
∑

(y1,...,yl−1)∈Uk−1

P ((y1, . . . , yl−1) 7→ (x1, . . . , xl))

+
(

λ

λ + µ

)l−1 (
µ

λ + µ

)k−l

P (k − 1, n)
∑

(y1,...,yl)∈Uk−1

P ((y1, . . . , yl) 7→ (x1, . . . , xl)) .

The transition from (y1, . . . , yl−1) ∈ Uk−1 to (x1, . . . , xl) ∈ Uk occurs if a new customer arrives at
the queue, that is xi = 1 for some i. From the definition of the symmetric queue it follows that

∑

(y1,...,yl−1)∈Uk−1

P ((y1, . . . , yl−1) 7→ (x1, . . . , xl)) =
λ

λ + µ

∑

i : xi=1

p
(l)
i . (3.2)

The transition from (y1, . . . , yl) ∈ Uk−1 to (x1, . . . , xl) ∈ Uk occurs if an existing customer goes
to the next service stage. Therefore,

∑

(y1,...,yl)∈Uk−1

P ((y1, . . . , yl) 7→ (x1, . . . , xl)) =
µ

λ + µ

∑

i : xi 6=1

p
(l)
i . (3.3)

We obtain

Σ1 =
(

λ

λ + µ

)l−1 (
µ

λ + µ

)k−l

P (k − 1, n). (3.4)

Similarly, we compute

Σ2 =
∑

(y1,...,yl+1)∈Uk+N

P ((y1, . . . , yl+1) 7→ (x1, . . . , xl))P (Yn = (y1, . . . , yl+1))

=
(

λ

λ + µ

)(l+1)−1 (
µ

λ + µ

)k+N−(l+1)

P (k + N, n)

·
∑

(y1,...,yl+1)∈Uk+N

P ((y1, . . . , yl+1) 7→ (x1, . . . , xl)) .

The transition from (y1, . . . , yl+1) ∈ Uk+N to (x1, . . . , xl) ∈ Uk occurs if a customer leaves the
queue, that is yi = N for some i. Hence

∑

(y1,...,yl+1)∈Uk+N

P ((y1, . . . , yl+1) 7→ (x1, . . . , xl)) =
l+1∑

i=1

p
(l+1)
i µ

λ + µ
=

µ

λ + µ
.

We obtain

Σ2 =
(

λ

λ + µ

)l−1 (
µ

λ + µ

)k−l
{

λ

λ + µ

(
µ

λ + µ

)N

P (k + N,n)

}
. (3.5)
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The result now follows from (3.1), (3.4) and (3.5).
Q.E.D.
Theorem 2.1 follows from Theorem 2.2 and reduction to the analysis of the embedded Markov

chain which resulted from the uniformization procedure described in Section 2.

Remark 3. The property of the symmetric queue was essentially used in (3.2)–(3.4).

4 Counterexample

Once Theorem 2.1 is proved for the symmetric queues with Erlang distributed service re-
quirements, it is natural to ask if it still holds when service requirements have the phase type
distribution. If it were true, a classical approximation procedure (see e.g. [2, Lemma 3.9]) would
give a result for the symmetric queues with general service requirements. Unfortunately the
answer is no. In this section we give an example of a symmetric queue for which Theorem 2.1
does not hold. Let, as before, customers arrive in the queue according to a Poisson process with
intensity parameter λ, and the service requirements are independent and identically distributed
with the density function

1
2
µ1e

−µ1x +
1
2
µ2e

−µ2x, x ≥ 0.

Then, LST of service time B1 is equal to β(s) = 1
2( µ1

µ1+s + µ2

µ2+s). This system could be considered
as a model with customers of two types: customers of both types arrive according to independent
Poisson processes with intensity parameter λ/2 and their service requirements are independent
and exponentially distributed with parameters µ1 and µ2 respectively. We consider a symmetric
queue with the following service discipline:

p
(1)
1 = 1, p

(2)
1 = p, p

(2)
2 = q = 1− p, p

(n)
i = δn,i, for 1 ≤ i ≤ n, n ≥ 3.

Note that the case of q = 1 corresponds to the LCFS discipline.
Let τ(α) be an independent random variable exponentially distributed with parameter α > 0.

We show that for the symmetric queue introduced above P q
def= P(Qτ(α) ≥ 2) does depend on q.

It is sufficient to show that P q is different for q = 1 and q = 1/2. For q = 1, it is known [1] that

P 1 =
(
1− α

κ(α)

)2
, where κ(α) is the inverse function for ϕ(s) = s− λ(1− β(s)).

Let
γ =

µ1

µ1 + µ2
,

π1 = π1(α) =
µ1

µ1 + κ(α)
, π2 = π2(α) =

µ2

µ2 + κ(α)
, π1,2 = π1,2(α) =

µ1 + µ2

µ1 + µ2 + 2κ(α)
.

We show that, for q = 1/2,

P := P 1/2 =
(

1− α

κ(α)

){
λ

λ + α
− α

λ + α

R
λ

λ+α(π1 + π2)− 4−R

}
, (4.1)

where

R =
λ

λ + α

(
λ

λ + α
(π1π2 + π1,2(γπ1 + (1− γ)π2))− (π1 + π2 + 2π1,2)

)
.

It can be shown analytically that the above expressions for P 1 and P 1/2 are different for
different values of q. But it is much easier to verify it numerically. For λ = 1, µ1 = 1, µ2 = 10
and α = 1, we have κ(α) = 1.346215241 and

P 1 = 0.06613987328 6= P 1/2 = 0.05720076818.
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Now we prove (4.1). We denote the two types of customers as a and b. Then (a) stays for the
queue with a single customer of type a, (b) stays for the queue with a single customer of type b.
A use of the total probability formula and memoryless property of the exponential distribution
give

P = P(Qτ(α) ≥ 2 | τ(α) ≤ τbp)P(Qτ(α) 6= 0) = P(Qτ(α) ≥ 2 | τ(α) ≤ τbp)
(

1− α

κ(α)

)
,

where τbp is the first busy period. We denote P̃ = P(Qτ(α) ≥ 2 | τ(α) ≤ τbp). Therefore, as in
Section 2, it is sufficient to consider a queue for which the state 0 is deleted, and which jumps
with intensity λ from the state (a) to (a, a) or (a, b) with probabilities 1/2, and from the state (b)
to (a, b) or (b, b) with probabilities 1/2. Note that the states (a, b) and (b, a) are indistinguishable,
since p = q = 1/2.

Let Tn be the n-th return to {(a), (b)}, T0 = 0. The time the queue spends in the set {(a), (b)}
from the time Tn is exponentially distributed with parameter λ. We denote it ξn. Hence

P̃ =
∞∑

n=1

P(Tn−1 + ξn < τ(α) < Tn) =
∞∑

n=1

(
Ee−αTn−1

λ

λ + α
−Ee−αTn

)
(4.2)

=
λ

λ + α
− α

λ + α

∞∑

n=1

Ee−αTn . (4.3)

Note that

Ee−αTn =
(

λ

λ + α

)n

Ee−αeTn ,

where T̃n is the total time the queue spends outside the set {(a), (b)} up to the time Tn. Condi-
tioned the queue starts from the state (a) or (b) we denote T̃n as T̃n(a) or T̃n(b) respectively. A
lengthy but straightforward computation gives a recursion for the Laplace-Stieltjes transforms of
T̃n(a) and T̃n(b):

Ee−αeTn(a) =
1
2

(π1 + (1− γ)π1,2)Ee−αeTn−1(a) +
1
2
γπ1,2Ee−αeTn−1(b), (4.4)

and
Ee−αeTn(b) =

1
2
(1− γ)π1,2Ee−αeTn−1(a) +

1
2

(π2 + γπ1,2)Ee−αeTn−1(b). (4.5)

Let

S(a) =
∞∑

n=1

(
λ

λ + α

)n

Ee−αeTn(a), S(b) =
∞∑

n=1

(
λ

λ + α

)n

Ee−αeTn(b). (4.6)

Then

S =
∞∑

n=1

Ee−αeTn =
1
2

(S(a) + S(b)) . (4.7)

From (4.4) and (4.5) we obtain a system of equation for S(a) and S(b)

2S(a) =
λ

λ + α
(π1 + π1,2) +

λ

λ + α
{(π1 + (1− γ)π1,2) S(a) + γπ1,2S(b)} , (4.8)

2S(b) =
λ

λ + α
(π2 + π1,2) +

λ

λ + α
{(1− γ)π1,2S(a) + (π2 + γπ1,2) S(b)} , (4.9)

which results in (4.1).
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