ÜBUNGSAUFGABEN, Serie 4 (Abgabe am 05.12.2018)

- 1. Polya-Urne. In einer Urne befinden sich anfangs s schwarze und w weiße Kugeln. In jedem Schritt wird eine Kugel willkürlich gezogen und gemeinsam mit einer zusätzlichen Kugel derselben Farbe zurückgelegt. Die Zufallsvariable X_n mit Werten in $\{\frac{s}{s+w+n}, \frac{s+1}{s+w+n}, \ldots, \frac{s+n}{s+w+n}\}$ bezeichnet den Anteil der schwarzen Kugeln in der Urne nach dem n-ten Zurücklegen.
 - (a) Beweisen Sie, dass X_n ein Martingal bezüglich $\mathscr{F}_n = \sigma(X_1, \dots, X_n)$ ist.
 - (b) Beweisen Sie, dass X_n konvergiert in Verteilung gegen eine Zufallsvariable X_∞ mit der Dichte

$$f(x) = \frac{\Gamma(s+w)}{\Gamma(s)\Gamma(w)} x^{s-1} (1-x)^{w-1}, \quad x \in [0,1],$$

wobei $\Gamma(t)=\int_0^\infty x^{t-1}e^{-x}dx$ die Gammafunktion ist. (Die Verteilung von X_∞ heißt die Beta-Verteilung.)

2. Galton-Watson-Prozess. Seien $(\xi_i^n)_{n,i\geq 1}$ unabhängige identisch verteilte Zufallsvariablen mit Werten in $\{0,1,\ldots\}$ und $m=E[\xi_1^1]<\infty$. Setze $Z_0=1$ und

$$Z_{n+1} = \begin{cases} \xi_1^{n+1} + \dots + \xi_{Z_n}^{n+1}, & \text{wenn } Z_n > 0, \\ 0, & \text{sonst.} \end{cases}$$

Setze $x = P\left(\lim_{n \to \infty} \frac{Z_n}{m^n} = 0\right)$ und nimm an, dass x < 1. Beweisen Sie, dass

- (a) $x = P(\bigcup_{n \ge 1} \{Z_n = 0\})$ (die Aussterbewahrscheinlichkeit),
- (b) die Mengen $\left\{\lim_{n\to\infty}\frac{Z_n}{m^n}=0\right\}$ und $\cup_{n\geq 1}\{Z_n=0\}$ *P*-f.s. übereinstimmen.

M.a.W., entweder die Population stirbt aus oder sie wächst exponentiell schnell.

[Hinweis: Der Fall $\xi_1^1=1$, P-f.s., is trivial. Sonst ist m>1. In diesem Fall ist die Aussterbewahrscheinlichkeit der eindeutige Fixpunkt $\rho\in[0,1)$ der erzeugenden Funktion $\varphi(s)=E[s^{\xi_1^1}]$ von ξ_1^1 . Beweisen Sie, dass x auch ein Fixpunkt von φ ist. Nutzen Sie dazu die Beobachtung aus, dass gegeben $Z_1=k\geq 1$, ist Z_{n+1} als die Summe von k unabhängigen Kopien von Z_n verteilt.]

3. Seien $\xi_i^n, n, i \ge 1$, und Z_n wie in 2. Setze $m = E[\xi_1^1], \sigma^2 = \text{Var}(\xi_1^1) < \infty$ und $M_n = \frac{Z_n}{m^n}$. Beweisen Sie, dass

$$E[M_n^2] = 1 + \sigma^2 \sum_{k=2}^{n+1} \frac{1}{m^k}.$$

Insbesondere, falls $\xi_i^n \in L^2(\Omega, \mathcal{F}, P)$, dann auch $M_n \in L^2(\Omega, \mathcal{F}, P)$.

[Hinweis: Beweisen Sie, dass $E[M_n^2] = E[M_{n-1}^2] + E[(M_n - M_{n-1})^2]$, und berechnen Sie $E[(M_n - M_{n-1})^2 \mid \mathscr{F}_{n-1}]$.]