ÜBUNGSAUFGABEN, Serie 7 (Abgabe am 30.05.2018)

- 1. Sei X und Y unabhängige Zufallsvariablen auf (Ω, \mathcal{F}, P) mit P(X = x) = 0 für alle $x \in \mathbb{R}$. Beweisen Sie, dass P(X = Y) = 0.
- 2. Sei X und Y unabhängige standardnormalverteilte Zufallsvariablen.
 - (a) Sei (R, θ) die Polarkoordinaten des Punktes (X, Y), also $X = R \cos \theta$, $Y = R \sin \theta$, $R \ge 0$, $\theta \in [0, 2\pi)$. Beweisen Sie, dass R und θ unabhängige Zufallsvariablen sind und bestimmen die Dichten von R und θ .
 - (b) Sei R und θ wie in (a). Beweisen Sie, dass $X' = R\cos 2\theta$ und $Y' = R\sin 2\theta$ unabhängige standardnormalverteilte Zufallsvariablen sind.
 - (c) Beweisen Sie, dass

$$\frac{2XY}{\sqrt{X^2 + Y^2}} \quad \text{und} \quad \frac{X^2 - Y^2}{\sqrt{X^2 + Y^2}}$$

unabhängige standardnormalverteilte Zufallsvariablen sind.

- 3. Sei F eine Verteilungsfunktion und $F^{-1}(x) = \sup\{y : F(y) < x\}$. Weisen Sie die Gültigkeit folgender Aussagen nach.
 - (a) Sei X eine gleichverteilte Zufallsvariable auf [0,1] und $Y = F^{-1}(X)$. Dann ist die Verteilungsfunktion von Y gleich F.
 - (b) Sei Y eine Zufallsvariable mit Verteilungsfunktion F und nimm zusätzlich an, dass F stetig ist. Dann ist die Zufallsvariable X = F(Y) gleichverteilt auf [0, 1].
- 4. Für $n \in \mathbb{N}$, sei P eine Verteilung auf $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Beweisen Sie, dass für jedes $\varepsilon > 0$ und jede $B \in \mathcal{B}(\mathbb{R}^n)$ existiern eine kompakte Menge $K \subseteq B$ und eine offene Menge $O \supseteq B$ mit $P(O \setminus K) < \varepsilon$.