RETAKE SOLUTIONS, 05.10.2015

1. Give an example of a linear operator T on \mathbb{R}^2 such that $T^2 = T$ and rank(T) = 1. Answer: Projection on any line through (0,0).

Solution. Perhaps the simplest example is the projection operator T that maps each $(x_1, x_2) \in \mathbb{R}^2$ to $(x_1, 0)$.

For any $(x_1, x_2) \in \mathbb{R}^2$, $T^2(x_1, x_2) = T(T(x_1, x_2)) = T(x_1, 0) = (x_1, 0) = T(x_1, x_2)$. Thus, $T^2 = T$.

By definition, $\operatorname{rank}(T)$ is the dimension of the image of T, which is the maximal number of linearly independent vectors in $\operatorname{Im}(T)$. Since any two vectors $(x_1, 0)$ and $(y_1, 0)$ are linearly dependent, the dimension equals to 1.

Remark. More generally, let $\langle \cdot, \cdot \rangle$ be the canonical inner product on \mathbb{R}^2 , i.e., for any $u = (u_1, u_2)$ and $v = (v_1, v_2)$, $\langle u, v \rangle = u_1 v_1 + u_2 v_2$. Let $a = (a_1, a_2)$ be a unit vector in \mathbb{R}^2 , i.e., $\langle a, a \rangle = 1$. Let T_a be the projection on the line spanned by a, i.e., for any $x = (x_1, x_2)$, $T_a(x) = \langle x, a \rangle a$. Then T_a is linear and satisfies the desired properties.

- 2. Consider the space \mathbb{R}^2 with the inner product $\langle u, v \rangle = u_1 v_1 + u_2 v_2$, where $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are arbitrary elements of \mathbb{R}^2 . Let T be the linear operator on \mathbb{R}^2 which maps each vector (v_1, v_2) to vector $(v_1 + v_2, v_1 - v_2)$.
 - (a) Is T normal?
 - (b) Find an orthogonal basis of \mathbb{R}^2 in which the matrix of T is diagonal.

Answer: (a) Yes. (b) For example, $\{(1, -(1+\sqrt{2})), (1, -(1-\sqrt{2}))\}$.

Solution. (a) The matrix of T in the orthonormal basis $\{(1,0), (0,1)\}$ is $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Since the matrix is symmetric, the operator T is self-adjoint, and, in particular, normal.

(b) Since T is normal, one can find in \mathbb{R}^2 an orthogonal basis $\{u, v\}$ of eigenvectors of T. Let λ and μ be the eigenvalues of T corresponding to u and v, respectively, i.e., $Tu = \lambda u$ and $Tv = \mu v$. Then the matrix of T in the basis $\{u, v\}$ is $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$. Thus, the question is reduced to finding u and v.

We first find the eigenvalues of T, namely, the roots of the characteristic polynomial $P_T(x) = \det \begin{pmatrix} 1-x & 1 \\ 1 & -1-x \end{pmatrix} = x^2 - 2$. The eigenvalues are $\lambda = -\sqrt{2}$ and

 $\mu = \sqrt{2}$. To find u and v, we solve the systems of linear equations $(T - \lambda I)u = 0$ and $(T - \mu I)v = 0$:

$$\begin{pmatrix} 1+\sqrt{2} & 1\\ 1 & -1+\sqrt{2} \end{pmatrix} \begin{pmatrix} u_1\\ u_2 \end{pmatrix} = 0, \qquad \begin{pmatrix} 1-\sqrt{2} & 1\\ 1 & -1-\sqrt{2} \end{pmatrix} \begin{pmatrix} v_1\\ v_2 \end{pmatrix} = 0$$

We obtain $u_2 = -(1+\sqrt{2})u_1$ and $v_2 = -(1-\sqrt{2})v_1$. In particular, one can take

$$u = (u_1, u_2) = \left(1, -(1 + \sqrt{2})\right), \quad v = (v_1, v_2) = \left(1, -(1 - \sqrt{2})\right).$$

3. Give an example of a bilinear form on the space of complex valued continuous functions on [0, 1].

Answer: Examples include $B(f,g) = \int_0^1 f(x)g(x)dx$, B(f,g) = f(0)g(0).

- 4. For which of the following functions does the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ exist?
 - (a) $f(x,y) = \frac{x^2}{x^2+y^2}$, for (x,y) with $x^2 + y^2 > 0$. (b) $f(x,y) = \frac{x^3}{x^2+y^2}$, for (x,y) with $x^2 + y^2 > 0$.

Answer: (a) No. (b) Yes.

Solution. (a) Let $f(x,y) = \frac{x^2}{x^2+y^2}$, for (x,y) with $x^2 + y^2 > 0$. If there exists $L = \lim_{(x,y)\to(0,0)} f(x,y)$, then for any choice of $\alpha = \alpha(t)$ and $\beta = \beta(t)$ with $\lim_{t\to 0} (\alpha(t), \beta(t)) = (0,0)$, the limit $\lim_{t\to 0} f(\alpha(t), \beta(t))$ is the same and equals L.

For
$$\alpha_1(t) = t$$
, $\beta_1(t) = 0$, $\lim_{t \to 0} f(\alpha_1(t), \beta_1(t)) = \lim_{t \to 0} \frac{t^2}{t^2} = 1$.
For $\alpha_2(t) = t$, $\beta_2(t) = t$, $\lim_{t \to 0} f(\alpha_2(t), \beta_2(t)) = \lim_{t \to 0} \frac{t^2}{2t^2} = \frac{1}{2}$.

Since the two limits are different, the limit of f(x, y) at (0, 0) does not exist.

(b) We will prove that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$. For this it suffices to prove that $\lim_{(x,y)\to(0,0)} |f(x,y)| = 0$. Note that

$$0 \le |f(x,y)| = \frac{|x|^3}{x^2 + y^2} \le \frac{|x|^3}{x^2} = |x|.$$

Since $\lim_{(x,y)\to(0,0)} |x| = 0$, the result follows.

5. Write the equation of the tangent plane to elliptic paraboloid $z = 2x^2 + y^2$ at the point (0, 1, 1).

Answer: z = 2y - 1.

Solution. The equation of the tangent plane to z = f(x, y) at point (x_0, y_0, z_0) is

$$z = z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

In our case, $f_x = 4x$, $f_y = 2y$. In particular, $f_x(0,1) = 0$, $f_y(0,1) = 2$, and the equation is z = 1 + 0(x - 0) + 2(y - 1) = 2y - 1.

6. Find the maximum and minimum of the function z = xy on the circle $x^2 + y^2 = 1$. Answer: $z = \frac{1}{2}$ and $z = -\frac{1}{2}$.

Solution. First note that the circle $x^2 + y^2 = 1$ is a closed and bounded set in \mathbb{R}^2 , thus z attains its maximum and minimum at some points of the circle.

To find the maximum and minimum of z, we use the method of Lagrange multipliers. For $\lambda \in \mathbb{R}$, let $F(x, y) = xy - \lambda(x^2 + y^2 - 1)$. If z attains its maximum or minimum at (x_*, y_*) on the circle $x^2 + y^2 = 1$, then $F_x(x_*, y_*) = F_y(x_*, y_*) = 0$. Thus, the points where z attains its maximum and minimum, are solutions to the following system of equations for some $\lambda \in \mathbb{R}$:

$$\begin{cases} y - \lambda 2x = 0, \\ x - \lambda 2y = 0, \\ x^2 + y^2 = 1. \end{cases}$$

From the first two equations, $y = 4\lambda^2 y$ and $x = 4\lambda^2 x$. Since either $x \neq 0$ or $y \neq 0$, we must have $4\lambda^2 = 1$ and $\lambda = \pm \frac{1}{2}$. Thus, either $x = y = \pm \frac{1}{\sqrt{2}}$ or $x = -y = \pm \frac{1}{\sqrt{2}}$. In the first case, $z = \frac{1}{2}$, in the second, $z = -\frac{1}{2}$.

7. Does the following series converge uniformly on \mathbb{R} ?

$$\sum_{n=1}^{\infty} e^{-n^3|x|} \sin nx.$$

Answer: Yes.

Solution. Let $u_n(x) = e^{-n^3|x|} \sin nx$. We will prove that for all $x \in \mathbb{R}$, $|u_n(x)| \leq \frac{1}{n^2}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$, the Weierstrass criterion for uniform convergence will imply that the given series converges uniformly on \mathbb{R} .

We first recall that $|\sin nx| \le |nx|$ for all x. Thus, it suffices to prove that $v_n(x) = e^{-n^3|x|}|x| \le \frac{1}{n^3}$. Since $v_n(-x) = v_n(x)$, it suffices to consider only x > 0.

We find the supremum of $v_n(x)$ for x > 0. We compute $v'_n(x) = (e^{-n^3x}x)' = -n^3 e^{-n^3x}x + e^{-n^3x}$, which equals to 0 at $x = \frac{1}{n^3}$. Since $v_n(x)$ is non-negative for x > 0 and takes values arbitrarily close to 0 (near 0 and infinity), $x = \frac{1}{n^3}$ is the point of maximum of $v_n(x)$. In particular, $v_n(x) \le v_n(\frac{1}{n^3}) = e^{-1}\frac{1}{n^3} \le \frac{1}{n^3}$. This is what remained to prove.

8. Let (X, ρ) be a metric space. Is $\sqrt{\rho}$ a metric on X? Answer: Yes.

Solution. For $x, y \in X$, let $g(x, y) = \sqrt{\rho(x, y)}$. Then g is a metric on X if (a) $g(x, y) \ge 0$ for all $x, y \in X$ and g(x, y) = 0 iff x = y, (b) g(x, y) = g(y, x) for all $x, y \in X$, (c) $g(x, y) \le g(x, z) + g(z, y)$ for all $x, y, z \in X$.

The properties (a) and (b) are immediate, since they are satisfied by ρ . To prove (c), let $x, y, z \in X$. Since ρ is a metric, we have

$$g(x,y)^{2} = \rho(x,y) \le \rho(x,z) + \rho(z,y) = g(x,z)^{2} + g(z,y)^{2} \le (g(x,z) + g(z,y))^{2}.$$

This proves that g satisfies (c). Thus, g is a metric on X.

9. Find the general solution to the first order differential equation y' - y = 2x + 1. Answer: $y = Ce^x - 2x - 3$.

Solution. This is an equation of the form y' = f(ax + by), thus we make a substitution z = 2x+y. Then, dz = 2dx+dy, and the equation becomes dz-2dx = (z+1)dx, or, equivalently, dz = (z+3)dx. Separation of variables and integration gives $\ln |z+3| = x + \ln |C|$ or $z+3 = Ce^x$, which in the original variables gives the solution $y = Ce^x - 2x - 3$, for any $C \neq 0$.

Note that in the above calcuation we divided by z + 3. A direct check gives that z = -3 is also a solution, but it corresponds to C = 0 in the above general formula. Thus, the general solution is $y = Ce^x - 2x - 3$, for any C.

Remark. Another way to solve this equation is to notice that the equation is linear, thus its solution is the sum of its particular solution (-2x - 3) and the general solution to the homogeneous equation y' - y = 0 (Ce^x).

10. Find the general solution to the second order differential equation y'' + 2y' + y = x. Answer: $y = C_1 e^{-x} + C_2 x e^{-x} + x - 2$.

Solution. This is a linear equation, thus its general solution equals to the sum of its particular solution and the general solution to the homogeneous equation y'' + 2y' + y = 0.

Consider first the homogeneous equation y'' + 2y' + y = 0. The corresponding characteristic polynomial is $\lambda^2 + 2\lambda + 1$. Its root is $\lambda = -1$ of multiplicity 2. Thus, the general solution to the homogeneous equation is $y_1(x) = C_1 e^{-x} + C_2 x e^{-x}$.

To find a particular solution to the inhomogeneous equation, note that the right hand side has the form $(ax + b)e^{0x}$. Since 0 is not a root of the characteristic polynomial, we look for a particular solution in the form $y_2(x) = ax + b$. Substitution in the equation gives

$$(ax+b)'' + 2(ax+b)' + (ax+b) = x,$$

from which a = 1 and b = -2. Thus, $y_2(x) = x - 2$.

Finally, the general solution
$$y(x) = y_1(x) + y_2(x) = C_1 e^{-x} + C_2 x e^{-x} + x - 2$$
. \Box