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RETAKE SOLUTIONS, 05.10.2015

1. Give an example of a linear operator T on R2 such that T 2 = T and rank(T ) = 1.

Answer: Projection on any line through (0, 0).

Solution. Perhaps the simplest example is the projection operator T that maps each
(x1, x2) ∈ R2 to (x1, 0).

For any (x1, x2) ∈ R2, T 2(x1, x2) = T (T (x1, x2)) = T (x1, 0) = (x1, 0) = T (x1, x2).
Thus, T 2 = T .

By definition, rank(T ) is the dimension of the image of T , which is the maximal
number of linearly independent vectors in Im(T ). Since any two vectors (x1, 0) and
(y1, 0) are linearly dependent, the dimension equals to 1.

Remark. More generally, let 〈·, ·〉 be the canonical inner product on R2, i.e., for
any u = (u1, u2) and v = (v1, v2), 〈u, v〉 = u1v1 + u2v2. Let a = (a1, a2) be a unit
vector in R2, i.e., 〈a, a〉 = 1. Let Ta be the projection on the line spanned by a,
i.e., for any x = (x1, x2), Ta(x) = 〈x, a〉a. Then Ta is linear and satisfies the desired
properties.

2. Consider the space R2 with the inner product 〈u, v〉 = u1v1+u2v2, where u = (u1, u2)
and v = (v1, v2) are arbitrary elements of R2. Let T be the linear operator on R2

which maps each vector (v1, v2) to vector (v1 + v2, v1 − v2).

(a) Is T normal?

(b) Find an orthogonal basis of R2 in which the matrix of T is diagonal.

Answer: (a) Yes. (b) For example,
{(

1,−(1 +
√

2)
)
,
(
1,−(1−

√
2)
)}

.

Solution. (a) The matrix of T in the orthonormal basis {(1, 0), (0, 1)} is

(
1 1
1 −1

)
.

Since the matrix is symmetric, the operator T is self-adjoint, and, in particular,
normal.

(b) Since T is normal, one can find in R2 an orthogonal basis {u, v} of eigenvectors
of T . Let λ and µ be the eigenvalues of T corresponding to u and v, respectively,

i.e., Tu = λu and Tv = µv. Then the matrix of T in the basis {u, v} is

(
λ 0
0 µ

)
.

Thus, the question is reduced to finding u and v.

We first find the eigenvalues of T , namely, the roots of the characteristic polynomial

PT (x) = det

(
1− x 1

1 −1− x

)
= x2 − 2. The eigenvalues are λ = −

√
2 and



µ =
√

2. To find u and v, we solve the systems of linear equations (T − λI)u = 0
and (T − µI)v = 0:(

1 +
√

2 1

1 −1 +
√

2

)(
u1
u2

)
= 0,

(
1−
√

2 1

1 −1−
√

2

)(
v1
v2

)
= 0.

We obtain u2 = −(1 +
√

2)u1 and v2 = −(1−
√

2)v1. In particular, one can take

u = (u1, u2) =
(

1,−(1 +
√

2)
)
, v = (v1, v2) =

(
1,−(1−

√
2)
)
.

3. Give an example of a bilinear form on the space of complex valued continuous
functions on [0, 1].

Answer: Examples include B(f, g) =
∫ 1

0
f(x)g(x)dx, B(f, g) = f(0)g(0).

4. For which of the following functions does the limit lim(x,y)→(0,0) f(x, y) exist?

(a) f(x, y) = x2

x2+y2
, for (x, y) with x2 + y2 > 0.

(b) f(x, y) = x3

x2+y2
, for (x, y) with x2 + y2 > 0.

Answer: (a) No. (b) Yes.

Solution. (a) Let f(x, y) = x2

x2+y2
, for (x, y) with x2 + y2 > 0. If there exists

L = lim(x,y)→(0,0) f(x, y), then for any choice of α = α(t) and β = β(t) with
limt→0(α(t), β(t)) = (0, 0), the limit limt→0 f(α(t), β(t)) is the same and equals
L.

For α1(t) = t, β1(t) = 0, limt→0 f(α1(t), β1(t)) = limt→0
t2

t2
= 1.

For α2(t) = t, β2(t) = t, limt→0 f(α2(t), β2(t)) = limt→0
t2

2t2
= 1

2
.

Since the two limits are different, the limit of f(x, y) at (0, 0) does not exist.

(b) We will prove that lim(x,y)→(0,0) f(x, y) = 0. For this it suffices to prove that
lim(x,y)→(0,0) |f(x, y)| = 0. Note that

0 ≤ |f(x, y)| = |x|3

x2 + y2
≤ |x|

3

x2
= |x|.

Since lim(x,y)→(0,0) |x| = 0, the result follows.

5. Write the equation of the tangent plane to elliptic paraboloid z = 2x2 + y2 at the
point (0, 1, 1).

Answer: z = 2y − 1.
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Solution. The equation of the tangent plane to z = f(x, y) at point (x0, y0, z0) is

z = z0 + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

In our case, fx = 4x, fy = 2y. In particular, fx(0, 1) = 0, fy(0, 1) = 2, and the
equation is z = 1 + 0(x− 0) + 2(y − 1) = 2y − 1.

6. Find the maximum and minimum of the function z = xy on the circle x2 + y2 = 1.

Answer: z = 1
2
and z = −1

2
.

Solution. First note that the circle x2 + y2 = 1 is a closed and bounded set in R2,
thus z attains its maximum and minimum at some points of the circle.

To find the maximum and minimum of z, we use the method of Lagrange multipliers.
For λ ∈ R, let F (x, y) = xy− λ(x2 + y2− 1). If z attains its maximum or minimum
at (x∗, y∗) on the circle x2 + y2 = 1, then Fx(x∗, y∗) = Fy(x∗, y∗) = 0. Thus, the
points where z attains its maximum and minimum, are solutions to the following
system of equations for some λ ∈ R:

y − λ2x = 0,
x− λ2y = 0,
x2 + y2 = 1.

From the first two equations, y = 4λ2y and x = 4λ2x. Since either x 6= 0 or y 6= 0,
we must have 4λ2 = 1 and λ = ±1

2
. Thus, either x = y = ± 1√

2
or x = −y = ± 1√

2
.

In the first case, z = 1
2
, in the second, z = −1

2
.

7. Does the following series converge uniformly on R?

∞∑
n=1

e−n
3|x| sinnx.

Answer: Yes.

Solution. Let un(x) = e−n
3|x| sinnx. We will prove that for all x ∈ R, |un(x)| ≤ 1

n2 .
Since

∑∞
n=1

1
n2 < ∞, the Weierstrass criterion for uniform convergence will imply

that the given series converges uniformly on R.

We first recall that | sinnx| ≤ |nx| for all x. Thus, it suffices to prove that vn(x) =
e−n

3|x||x| ≤ 1
n3 . Since vn(−x) = vn(x), it suffices to consider only x > 0.

We find the supremum of vn(x) for x > 0. We compute v′n(x) = (e−n
3xx)′ =

−n3e−n
3xx + e−n

3x, which equals to 0 at x = 1
n3 . Since vn(x) is non-negative for

x > 0 and takes values arbitrarily close to 0 (near 0 and infinity), x = 1
n3 is the

point of maximum of vn(x). In particular, vn(x) ≤ vn( 1
n3 ) = e−1 1

n3 ≤ 1
n3 . This is

what remained to prove.
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8. Let (X, ρ) be a metric space. Is
√
ρ a metric on X?

Answer: Yes.

Solution. For x, y ∈ X, let g(x, y) =
√
ρ(x, y). Then g is a metric on X if (a)

g(x, y) ≥ 0 for all x, y ∈ X and g(x, y) = 0 iff x = y, (b) g(x, y) = g(y, x) for all
x, y ∈ X, (c) g(x, y) ≤ g(x, z) + g(z, y) for all x, y, z ∈ X.

The properties (a) and (b) are immediate, since they are satisfied by ρ. To prove
(c), let x, y, z ∈ X. Since ρ is a metric, we have

g(x, y)2 = ρ(x, y) ≤ ρ(x, z) + ρ(z, y) = g(x, z)2 + g(z, y)2 ≤ (g(x, z) + g(z, y))2.

This proves that g satisfies (c). Thus, g is a metric on X.

9. Find the general solution to the first order differential equation y′ − y = 2x+ 1.

Answer: y = Cex − 2x− 3.

Solution. This is an equation of the form y′ = f(ax+ by), thus we make a substitu-
tion z = 2x+y. Then, dz = 2dx+dy, and the equation becomes dz−2dx = (z+1)dx,
or, equivalently, dz = (z + 3)dx. Separation of variables and integration gives
ln |z + 3| = x + ln |C| or z + 3 = Cex, which in the original variables gives the
solution y = Cex − 2x− 3, for any C 6= 0.

Note that in the above calcuation we divided by z + 3. A direct check gives that
z = −3 is also a solution, but it corresponds to C = 0 in the above general formula.
Thus, the general solution is y = Cex − 2x− 3, for any C.

Remark. Another way to solve this equation is to notice that the equation is
linear, thus its solution is the sum of its particular solution (−2x − 3) and the
general solution to the homogeneous equation y′ − y = 0 (Cex).

10. Find the general solution to the second order differential equation y′′+ 2y′+ y = x.

Answer: y = C1e
−x + C2xe

−x + x− 2.

Solution. This is a linear equation, thus its general solution equals to the sum
of its particular solution and the general solution to the homogeneous equation
y′′ + 2y′ + y = 0.

Consider first the homogeneous equation y′′ + 2y′ + y = 0. The corresponding
characteristic polynomial is λ2 + 2λ+ 1. Its root is λ = −1 of multiplicity 2. Thus,
the general solution to the homogeneous equation is y1(x) = C1e

−x + C2xe
−x.

To find a particular solution to the inhomogeneous equation, note that the right hand
side has the form (ax+ b)e0x. Since 0 is not a root of the characteristic polynomial,
we look for a particular solution in the form y2(x) = ax + b. Substitution in the
equation gives

(ax+ b)′′ + 2(ax+ b)′ + (ax+ b) = x,

from which a = 1 and b = −2. Thus, y2(x) = x− 2.

Finally, the general solution y(x) = y1(x) + y2(x) = C1e
−x + C2xe

−x + x− 2.
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