EXERCISES 9.1-9.2 (submit by 12.06.2015)

- 1. Let $f_n(x) \Rightarrow f(x)$ and $g_n(x) \Rightarrow g(x)$ on E. Prove that $(f_n + g_n)(x) \Rightarrow (f + g)(x)$ and $(f_n g_n)(x) \Rightarrow (fg)(x)$ on E.
- 2. Prove that if $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on E then $u_n(x) \Rightarrow 0$ on E.
- 3. In each of the cases below, find the limit f(x) of $f_n(x)$ for $x \in [0,1]$. Does f_n converge to f uniformly on [0,1]? Is f(x) continuous? Does $\int_0^1 f_n(x) dx$ converge to $\int_0^1 f(x) dx$? Justify your answers.
 - (a) $f_n(x) = \frac{1}{1+nx}$ (b) $f_n(x) = \frac{x}{1+n^2x^2}$ (c) $f_n(x) = \frac{nx}{1+n^2x^2}$ (d) $f_n(x) = n^2xe^{-n^2x^2}$ (e) $f_n(x) = xe^{-n^2x^2}$.
- 4. Which of the following series converge uniformly on \mathbb{R} ? Which of the sums are continuous functions of x on \mathbb{R} ?
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^2}{(1+x^2)^n}$ (b) $\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$ (c) $\sum_{n=1}^{\infty} \frac{1}{x^2+n^2}$ (d) $\sum_{n=1}^{\infty} \frac{\sin nx}{x^2+n}$.
- 5. For which of the following series $\sum_{n=1}^{\infty} u_n(x)$ on $(0, \pi)$, the derivative of the sum equals to the sum of the derivatives $u'_n(x)$?
 - (a) $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ (b) $\sum_{n=1}^{\infty} \frac{\sin nx}{n^3}$ (c) $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$.
- 6. Prove that

$$\int_0^1 x^{-x} dx = \sum_{n=1}^\infty \frac{1}{n^n}.$$

[Hints: (a) Note that $x^{-x} = e^{-x \ln x} = \sum_{n=0}^{\infty} \frac{(-1)^n (x \ln x)^n}{n!}$ and prove that this series converges uniformly on [0, 1]. (b) Use integration by parts and induction to prove that $\int_0^1 x^n (\ln x)^n dx = (-1)^n \frac{n!}{(n+1)^{n+1}}$.]